EP1291806B1 - Procédé de lecture d'étiquettes électroniques par identification de leur code - Google Patents

Procédé de lecture d'étiquettes électroniques par identification de leur code Download PDF

Info

Publication number
EP1291806B1
EP1291806B1 EP02292167A EP02292167A EP1291806B1 EP 1291806 B1 EP1291806 B1 EP 1291806B1 EP 02292167 A EP02292167 A EP 02292167A EP 02292167 A EP02292167 A EP 02292167A EP 1291806 B1 EP1291806 B1 EP 1291806B1
Authority
EP
European Patent Office
Prior art keywords
labels
bits
row
label
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02292167A
Other languages
German (de)
English (en)
Other versions
EP1291806A1 (fr
Inventor
Gérard Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1291806A1 publication Critical patent/EP1291806A1/fr
Application granted granted Critical
Publication of EP1291806B1 publication Critical patent/EP1291806B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10019Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers.
    • G06K7/10029Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers. the collision being resolved in the time domain, e.g. using binary tree search or RFID responses allocated to a random time slot
    • G06K7/10039Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers. the collision being resolved in the time domain, e.g. using binary tree search or RFID responses allocated to a random time slot interrogator driven, i.e. synchronous
    • G06K7/10049Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers. the collision being resolved in the time domain, e.g. using binary tree search or RFID responses allocated to a random time slot interrogator driven, i.e. synchronous binary tree
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer

Definitions

  • the invention relates to a method of reading a set of electronic tags each comprising a distinct identification code of N bits and located in the electromagnetic field (EM) of an interrogator device.
  • EM electromagnetic field
  • the invention also relates to a system for reading a set of tags by an interrogator device, the tags and the interrogator device each comprising signal transmitter / receiver means, as well as sequencing means and storage means.
  • the invention applies, in general, to any transaction between an interrogator system and responder systems (more simply called "tags"), of which we know, a priori, neither the number nor the identification codes.
  • the invention has applications in the field of the recognition of individuals carrying badges, or medical surveillance of individuals carrying implants, or in the field of the accounting and control of objects carrying carriers. labels, such as luggage at an airport, or products in a production line or for the management of merchandise stocks.
  • the invention can be applied, more particularly, to the continuous inventory of the contents of a supermarket shopping cart, in which the buyer may deposit or withdraw at any time one or more products.
  • multi-tag read Many systems and methods for identifying tagged objects are currently known to those skilled in the art. Most of them apply to multiple tag reads, called “multi-tag read”, and re-issue the tag code, after a random time specific to each tag, when there is collision detection messages sent simultaneously by several tags.
  • Other methods include leaving a particular time slot for the response of a tag, each time slot being unequivocally determined by the identification code of each tag.
  • the tags present in the EM field of this interrogator device supply their identification code, successively bit by bit, until it is fully identified.
  • a label detects that the code being identified is different from its own, it momentarily inhibits itself, ie it becomes mute, so that the identification cycle continues with the other labels. , until only one uninhibited label remains.
  • the code of this label is then identified.
  • the identified tag permanently inhibits itself and the other tags cancel their momentary inhibition.
  • the identification procedure is then reset to identify another label.
  • the request for FR-A-2,776,094 describes a method for improving the technique described above by decreasing the code acquisition time.
  • This method proposes to save the number of messages exchanged between the interrogator device and the tags by browsing a search tree. In this case, the identification of the identification codes of the labels is done successively, one after the other.
  • the invention aims to overcome the disadvantages of the techniques described above by reducing the number of messages transmitted by the interrogator device.
  • Another object of the invention is to provide several modes of analysis of the codes of labels taking into account the intended application and constraints related to this application.
  • sequence numbers are consecutive to one another.
  • sequence numbers of the labels are updated as the bits of the identification codes are detected.
  • the method comprises a step of verifying, after identification of all the tags present in the electromagnetic field, the identification codes detected by a call of all the labels already listed.
  • the call of all the labels already listed is carried out by means of the sequence numbers.
  • the identification of a tag is performed in a parallel mode in which blocks of m bits of the same rank are analyzed for all tags.
  • the parallel mode comprises two variants, a first variant, called the width mode, in which the analysis of a rank k + 1 from a rank k is performed by interrogating each partial order number consecutively.
  • a second variant, called simultaneous mode in which the analysis of a rank k + 1 from a rank k is carried out in two phases, ie a first phase in which all the labels of all the numbers of order indicates the value of its (k + 1) ith block and a second phase in which the (k + 1) ith block is analyzed whether all labels are not the same block to the rank k + 1.
  • the invention also relates to a reading system according to claim 9.
  • the method of the invention consists in reading the identification codes of a set of labels present in the electromagnetic field of an interrogator device.
  • the identification codes are binary, all different from each other, and have the same known length. Also, throughout the remainder of the description, it will be considered that each identification code of a tag contains N bits, where N is an integer.
  • the method for identifying the codes of the labels is, according to the invention, by analysis of successive blocks of m bits, block rank of m bits per block row of m bits, by traversing a binary search tree, of which each branch represents the value of a block of m bits. Two branches representing two blocks having at least one different bit are connected via a node.
  • the search tree can be followed starting from the block of bits of higher value to the block of bits of lower value, or vice versa, the two paths leading to two completely symmetrical processes.
  • the method of the invention therefore proposes to determine all the bit blocks constituting the codes of the tags, block rank of m bits per block row of m bits, the block rank of m bits being the current position of the block pointer m bits constituting the identification code being read.
  • the analyzed tags emit the value of the bits constituting the block of this rank. For this, as illustrated by figure 1 , we define 2 m contiguous time intervals.
  • the labels emit a "BEEP" in the time interval 2 v corresponding to the value v of the block of m bits being analyzed.
  • the method of the invention consists in traversing the binary tree, rank of block of m bits per block row of m bits, in order to determine whether there is a collision of blocks of m bits or no, that is, if there is a possibility of new codes.
  • a collision is handled by assigning a separate sequence number to each label or group of tags with the same code start.
  • the order numbers make it possible to know, at each rank of m bits block, the maximum number of possible codes present at this rank, taking into account all possible hypotheses.
  • the order numbers make it possible, in the preferred embodiment of the invention, to call all the tags in order to eliminate the invalid hypotheses and thus to determine the actual list of identification codes.
  • the figure 2 represents a functional diagram of the process for the sequential modes.
  • Step 10 is the beginning of the sequencing.
  • the order number N0 being analyzed is initialized to -1, all the labels present in the electromagnetic field of the reader emit the value of the first block of m bits of their identifier.
  • a label penetrating the electromagnetic field after this step and before the end of the identification cycle will not participate in this identification cycle. It will remain silent while waiting for a new message to start reading cycle.
  • Steps 16 and 17 are respectively identical to steps 13 and 14: only the number of rank analyzed is different. These steps are performed until the last rank has been analyzed.
  • Step 18 marks the end of identification of a label: the reader updates the correspondence table order number ⁇ identification code, the identified label is assigned the current order number NO.
  • step 19 is activated where the reader searches the multicode storage register for the highest rank where several responses have been received; it indicates to the labels the rank from which the analysis begins again; the sequence number is incremented and in the correspondence table it copies the value to the address NO-1 in the address NO.
  • the process proceeds to step 16 where only the tags belonging to the path selected by the reader from row O to the current rank emit the value of their block of the current rank.
  • Step 30 is the beginning of the sequencing: the number of partial order numbers of the previous rank NO (rank -1) is initialized to 0, and the counter RANG of the rank of m bits being analyzed. All tags present in the electromagnetic field of the interrogator emit their first block of m bits. A label penetrating the electromagnetic field after this step and before the end of the identification cycle will not participate in this identification cycle. It will remain silent while waiting for a new message to start reading cycle.
  • the rank reading step 31 consists in knowing all the values of the blocks of m bits of the row being analyzed. In this phase, an index i and the counters of partial order numbers NO (rank) of the row being analyzed are initialized to zero.
  • step 32 end LM.
  • the interrogator at step 33 indicates to the tags the values found in step 31 and the algorithm continues at step 34.
  • Steps 34, 35, 36 and 37 are common to the two parallel modes: they consist of successively analyzing all the order numbers present in the rank preceding the rank being analyzed.
  • step 34 only the labels having the order number i at the previous rank emit their value.
  • Step 35 is used by the interrogator to update the counter of the partial order numbers NO (rank) of the rank under analysis, to update the correspondence table; by issuing the command VBIP the reader indicates to the labels the values read in step 34, and the labels update their partial order number for the current rank.
  • step 36 the index i of analysis of the order numbers of the previous rank is incremented. If all these sequence numbers have not been analyzed, go to step 34. Otherwise, the counter of the sequence numbers of the previous rank NO (rank-1) is initialized by NO (rank) in the step 37.
  • step 41 end LM. Otherwise, the rank number is incremented in step 38 and the rank analysis resumes at step 31.
  • the figure 4 represents a search tree for identifying the codes of six labels, A, B, C, D, E and F, each having N bits.
  • bit blocks each comprise 4 bits.
  • the successive ranks of the bit blocks are designated by the references R0 to R3 where R3 represents the initial level of the search corresponding to the root of the search tree in which no code is yet identified, and the level R0 represents the final level of the search where all codes are identified.
  • the identification is carried out label by sweeping the tree from the row R3 to the row R0.
  • the codes are identified four bits by four bits.
  • each tag assigns itself a sequence number corresponding to the number of tags identified before it.
  • a correspondence table between the sequence numbers and the identification codes is established to ensure rapid exchange between the tags and the interrogator after the identification phase.
  • the following table illustrates the evolution of the sequence numbers during the tree search according to a first variant of the sequential mode in which the resumption of the analysis of the tree after identification of a label is made from the root.
  • Label identified Branch traveled Order number assigned AT 0-1-2 0 B 0-1-3 1 VS 0-1-4 2 D 5-6-7 3 E 5-8-9 4 F 10-11-12 5
  • the uninhibited tags emit their second block at the request of the interrogator.
  • the latter selects one and the labels that do not have the second selected block are momentarily inhibited.
  • the others are listening to a request from the interrogator to issue the next block. This procedure is repeated until the last rank R0 of the N-bit code.
  • the rank R0 is reached by successively browsing the branches 0-1-2, 0-1-3, and 0-1-4 respectively allowing the identification of the complete code of the labels A, B and C.
  • the resumption of the analysis of the tree after identification of a label is made from the rank of the last block where partially identified and identical labels are differentiated.
  • the analysis tree has at least two branches corresponding to blocks that differ by at least one bit.
  • the uninhibited tags issue their second blocks on request of the interrogator.
  • the latter selects one and the tags that do not have this second block are momentarily inhibited.
  • the others are listening to a request from the interrogator to issue the block next four bits. This procedure is repeated until the last block, that is to say until reading a complete code of N bits.
  • the rank R0 is reached by successively traversing the branches 0-1-2, to identify the label A, then the branch 3 from the rank R1 to identify the label B, then the branch 4, from the rank R1 , to identify the label C.
  • the identification of the code of the label D is obtained by traversing the branches 5-6-7, the identification of the code of the label E, by traversing the branches 8-9 from the rank R2 and that of the label F by browsing the branches 10-11-12 from the row R0.
  • figure 5 will be used successively to describe a mode width_2 in which the analysis is performed by sub-blocks of two bits, and a simultaneous mode_4 in which the analysis is performed by sub-blocks of four bits.
  • the correspondence list is updated as the identification of blocks of m bits is made.
  • the method described above is implemented by a system comprising an interrogator device 40 and labels 42 comprising signal transceiver means 44 connected, via modulation / demodulation means 46, 47, to sequencing means 48.
  • the interrogator device 40 furthermore comprises means for analyzing each tag 42 block of m bits per block of m bits, and for calculating, for each tag 42, a serial number representing the number of groups of tags having the same code. partially identified so that said interrogator 40 knows at all times the number of groups of labels present in the electromagnetic field, a first memory 49 for storing a correspondence table between the order numbers and the partially identified codes, a first rank counter 58 indicating the number of the group of bits in progress analysis and a second counter 52 indicating the number of tags is fully identified or partially identified.
  • Each tag 42 also comprises means for calculating the sequence numbers, a first counter 68 for counting the rank of blocks of bits being analyzed and a first memory 74 for storing said order numbers and for storing the code of identification of the label.
  • each tag 42 operating in sequential mode further comprises a second counter of order number 60 for counting the fully identified tags, and in the case of the sequential mode depth a second memory of sequence numbers 64 for storing the number node where the tag was not selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Near-Field Transmission Systems (AREA)

Description

    Domaine technique
  • L'invention concerne un procédé de lecture d'un ensemble d'étiquettes électroniques comprenant chacune un code d'identification distinct de N bits et situées dans le champ électromagnétique (EM) d'un dispositif interrogateur.
  • L'invention concerne également un système de lecture d'un ensemble d'étiquettes par un dispositif interrogateur, les étiquettes et le dispositif interrogateur comportant chacun des moyens émetteur/récepteur de signaux, ainsi que des moyens de séquencement et des moyens de mémorisation.
  • L'invention s'applique, de manière générale, à toute transaction entre un système interrogateur et des systèmes répondeurs (appelés plus simplement « étiquettes »), dont on ne connaît, a priori, ni le nombre, ni les codes d'identification. En particulier, l'invention trouve des applications dans le domaine de la reconnaissance d'individus porteurs de badges, ou de surveillance médicale d'individus porteurs d'implants, ou dans le domaine de la comptabilisation et du contrôle d'objets porteurs d'étiquettes, tel que des bagages dans un aéroport, ou des produits dans une chaîne de production ou encore pour la gestion des stocks de marchandises. L'invention peut s'appliquer, plus particulièrement, à l'inventaire continu du contenu d'un caddie de supermarché, dans lequel l'acheteur peut déposer ou retirer, à tout moment, un ou plusieurs produits.
  • Etat de la technique antérieure
  • De nombreux systèmes et procédés d'identification d'objets porteurs d'étiquettes sont actuellement connus de l'homme de l'art. La plupart d'entre eux s'appliquent à une lecture multiple d'étiquettes, appelée « lecture multiétiquette » et proposent une réémission du code de l'étiquette, après un temps aléatoire propre à chaque étiquette, lorsqu'il y a détection de collision de messages émis simultanément par plusieurs étiquettes.
  • D'autres procédés consistent à laisser une tranche de temps particulière pour la réponse d'une étiquette, chaque tranche de temps étant déterminée de manière univoque par le code d'identification de chaque étiquette.
  • Toutefois, ces procédés n'optimisent pas le temps de transaction entre le système interrogateur et l'ensemble des étiquettes. De plus, le temps mis par un tel procédé pour lire la totalité des étiquettes peut ne pas être déterministe, puisqu'il peut être basé sur des tirages de nombres aléatoires, en supplément de l'aléa du nombre d'étiquettes présentes dans le champ EM du dispositif de lecture.
  • Il existe, par ailleurs, des procédés qui proposent une lecture systématique et déterministe des codes d'identification des étiquettes. L'un de ces procédés est décrit notamment dans la demande de brevet FR-A-2 677 135 .
  • Selon ce procédé, en réponse à un signal de commande du dispositif interrogateur les étiquettes présentes dans le champ EM de ce dispositif interrogateur fournissent leur code d'identification, successivement bit par bit, jusqu'à ce que celui-ci soit entièrement identifié. Lorsqu'une étiquette détecte que le code en cours d'identification est différent du sien, elle s'inhibe momentanément, c'est-à-dire qu'elle devient muette, de sorte que le cycle d'identification continue avec les autres étiquettes, jusqu'à ce qu'il ne reste plus qu'une seule étiquette non inhibée. Le code de cette étiquette est alors identifié. En fin de cycle d'identification, sur une seule commande du dispositif interrogateur, l'étiquette identifiée s'inhibe définitivement et les autres étiquettes lèvent leur inhibition momentanée. La procédure d'identification est ensuite réinitialisée pour identifier une autre étiquette. Ces opérations sont répétées jusqu'à ce que toutes les étiquettes soient identifiées séparément.
  • Par ailleurs, la demande de brevet FR-A-2 776 094 décrit un procédé destiné à améliorer la technique décrite précédemment en diminuant le temps d'acquisition des codes. Ce procédé propose d'économiser le nombre de messages échangés entre le dispositif interrogateur et les étiquettes en parcourant une arborescence de recherche. Dans ce cas, la détection des codes d'identification des étiquettes se fait successivement, les unes à la suite des autres.
  • Du fait que dans les procédés décrits ci-dessus l'identification du code d'une étiquette est effectuée bit par bit, de nombreuses émissions de commandes du dispositif interrogateur sont nécessaires pour analyser un code entier d'une étiquette. En outre, ces procédés ne permettent pas d'identifier simultanément les codes de toutes les étiquettes présentes dans le champ électromagnétique du dispositif interrogateur.
  • L'invention a pour but de remédier aux inconvénients des techniques décrites précédemment en diminuant le nombre de messages émis par le dispositif interrogateur.
  • Un autre but de l'invention est de fournir plusieurs modes d'analyse des codes des étiquettes tenant compte de l'application envisagée et des contraintes liées à cette application.
  • Exposé de l'invention
  • Ces buts sont atteints au moyen d'un procédé de lecture d'un ensemble d'étiquettes électroniques comprenant chacune un code d'identification distinct de N bits et situées dans le champ électromagnétique d'un dispositif interrogateur.
  • Le procédé selon l'invention comporte les étapes suivantes :
    1. a) pour chaque code de N bits donné, définir un bloc élémentaire d'analyse comportant m bits, m étant un sous-multiple de N supérieur à 1 ;
    2. b) analyser en parallèle les codes des étiquettes en parcourant ces codes bloc de m bits par bloc de m bits, ladite analyse consistant à répéter les étapes suivantes :
    3. c) attribuer un même numéro d'ordre à toutes les étiquettes ayant le même code partiellement identifié au rang d'analyse courant indiquant le bloc de m bits en cours d'analyse, le nombre de numéros d'ordre attribués représentant le nombre de groupes d'étiquettes ayant le même code partiellement identifié ;
    4. d) établir une table de correspondance entre chaque numéro d'ordre et la valeur du code partiellement identifié.
  • Selon l'invention, les numéros d'ordre sont consécutifs les uns aux autres.
  • Selon l'invention, les numéros d'ordre des étiquettes sont mis à jour au fur et à mesure de la détection des bits des codes d'identification.
  • Selon l'invention, le procédé comporte une étape consistant à vérifier, après identification de toutes les étiquettes présentes dans le champ électromagnétique, les codes identification détectés par un appel de toutes les étiquettes déjà listées.
  • Selon l'invention, l'appel de toutes les étiquettes déjà listées est effectué au moyen des numéros d'ordre.
  • Selon l'invention, l'identification d'une étiquette est réalisée selon un mode parallèle dans lequel les blocs de m bits de même rang sont analysés pour toutes les étiquettes.
  • Selon l'invention, le mode parallèle comporte deux variantes, une première variante, dite mode largeur, dans laquelle l'analyse d'un rang k+1 à partir d'un rang k est effectuée en interrogeant consécutivement chaque numéro d'ordre partiel, et une deuxième variante, dite mode simultané, dans laquelle l'analyse d'un rang k+1 à partir d'un rang k est effectuée en deux phases, soit une première phase dans laquelle toutes les étiquettes de tous les numéros d'ordre indiquent la valeur de leur (k+1)iéme bloc et une deuxième phase dans laquelle le (k+1)iéme bloc est analysé si toutes les étiquettes n'ont pas le même bloc au rang k+1.
  • L'invention concerne aussi un système de lecture selon la revendication 9.
  • Lesdits moyens pour analyser chaque étiquette consistent en des algorithmes aptes à fonctionner selon deux modes :
    • un mode séquentiel dans lequel les codes des blocs de m bits successifs des étiquettes sont analysés étiquette par étiquette en balayant un arbre de recherche à partir d'un rang de bloc de bits jusqu'au dernier rang de bloc de bits pour chaque code ;
    • et un mode parallèle dans lequel les blocs de m bits de même rang sont analysés pour toutes les étiquettes avant d'analyser les blocs de rang suivant.
    Brève description des dessins
    • La figure 1 représente un chronogramme illustrant les séquences d'échange d'informations entre le dispositif interrogateur et une étiquette ;
    • les figures 2 et 3 représentent le diagramme fonctionnel du procédé respectivement pour un mode séquentiel et selon l'invention pour un mode parallèle ;
    • les figures 4 et 5 représentent des exemples de recherche arborescente avec le procédé de l'invention ; et
    • les figures 6 et 7 représentent schématiquement respectivement un dispositif interrogateur et une étiquette du système de l'invention.
    Exposé détaillé de modes de réalisation particuliers
  • Le procédé de l'invention consiste en une lecture des codes d'identification d'un ensemble d'étiquettes présentes dans le champ électromagnétique d'un dispositif interrogateur. Dans l'exemple de réalisation qui sera décrit ci-après, les codes d'identification sont binaires, tous différents les uns des autres, et possèdent une même longueur connue. Aussi, dans toute la suite de la description, on considérera que chaque code d'identification d'une étiquette contient N bits, N étant un nombre entier.
  • Le procédé d'identification des codes des étiquettes se fait, selon l'invention par analyse de blocs successifs de m bits, rang de bloc de m bits par rang de bloc de m bits, en parcourant un arbre de recherche binaire, dont chaque branche représente la valeur d'un bloc de m bits. Deux branches représentant deux blocs ayant au moins un bit différent sont connectées par l'intermédiaire d'un noeud.
  • L'arborescence de recherche peut être suivie en partant du bloc de bits de plus grande valeur vers le bloc de bits de plus faible valeur, ou inversement, les deux parcours conduisant à deux procédés tout à fait symétriques.
  • Le procédé de l'invention propose donc de déterminer tous les blocs de bits constituant les codes des étiquettes, rang de bloc de m bits par rang de bloc de m bits, le rang de bloc de m bits étant la position courante du pointeur de blocs de m bits constituant le code d'identification en cours de lecture.
  • A chaque rang de bloc, les étiquettes analysées émettent la valeur des bits constituant le bloc de ce rang. Pour cela, comme illustré par la figure 1, on définit 2m intervalles de temps contigus.
  • Les étiquettes émettent un "BIP" dans l'intervalle de temps 2v correspondant à la valeur v du bloc de m bits en cours d'analyse.
  • Il peut alors se présenter deux cas différents :
    • soit un seul des intervalles de temps est occupé et la valeur du bloc de m bits est connue pour le rang k analysé et on peut passer au rang k+1,
    • soit plusieurs intervalles de temps sont occupés et il convient soit de sélectionner une valeur et poursuivre l'analyse au rang k+1 dans le mode séquentiel, soit selon l'invention de réattribuer des numéros d'ordre au rang k avant de poursuivre l'analyse au rang k+1 dans le mode parallèle.
  • En d'autres termes, le procédé de l'invention consiste à parcourir l'arborescence binaire, rang de bloc de m bits par rang de bloc de m bits, afin de déterminer s'il y a une collision de blocs de m bits ou non, c'est-à-dire s'il y a une possibilité de nouveaux codes. Une collision est gérée en attribuant un numéro d'ordre distinct à chaque étiquette ou groupe d'étiquettes ayant le même début de code. Les numéros d'ordre permettent de connaître, à chaque rang de bloc de m bits, le nombre maximum de codes possibles présents à ce rang, en tenant compte de toutes les hypothèses possibles.
  • Les numéros d'ordre permettent, dans le mode de réalisation préféré de l'invention, de faire l'appel de toutes les étiquettes afin d'éliminer les hypothèses non valides et donc de déterminer la liste réelle des codes d'identification.
  • La figure 2 représente un diagramme fonctionnel du procédé pour les modes séquentiels. L'étape 10 est le début du séquencement. Le numéro d'ordre N0 en cours d'analyse est initialisé à -1, toutes les étiquettes présentes dans le champ électromagnétique du lecteur émettent la valeur du premier bloc de m bits de leur identifiant. Une étiquette pénétrant dans le champ électromagnétique après cette étape et avant la fin du cycle d'identification ne participera pas à ce cycle d'identification. Elle restera silencieuse en attendant un nouveau message de début de cycle de lecture.
  • A l'étape 11, le numéro d'ordre N0 est incrémenté, le rang de bloc de bits est initialisé à zéro. L'étape 13 de lecture de ce premier rang consiste à connaître la ou les valeurs des blocs de m bits de ce premier rang. Plusieurs configurations sont possibles :
    • aucune réponse : passage à l'étape 12 "fin d'algorithme",
    • au moins une réponse : passage à l'étape 14. L'interrogateur sélectionne parmi les valeurs présentes la branche qui va être analysée, met à jour le code et, si le nombre de valeurs trouvées est supérieur à 1, mémorise qu'il y a plusieurs codes au rang en cours d'analyse.
  • A l'étape 15, on passe au rang d'analyse suivant : seules les étiquettes appartenant au chemin sélectionné par le lecteur depuis le début d'analyse de l'arbre jusqu'au rang k envoient la valeur du (k+1)ième bloc de m bits.
  • Les étapes 16 et 17 sont respectivement identiques aux étapes 13 et 14 : seul le numéro de rang analysé est différent. Ces étapes sont effectuées tant que le dernier rang n'a pas été analysé.
  • L'étape 18 marque la fin d'identification d'une étiquette : le lecteur met à jour la table de correspondance numéro d'ordre ↔ code d'identification, l'étiquette identifiée s'attribue le numéro d'ordre NO en cours.
  • Si l'algorithme en cours est l'algorithme systématique, l'analyse reprend à l'étape 11 et toutes les étiquettes non identifiées participent à la séquence.
  • Pour l'algorithme profondeur, on active l'étape 19 où le lecteur recherche dans le registre mémorisation multicode le rang le plus élevé où plusieurs réponses ont été reçues ; il indique aux étiquettes le rang à partir duquel l'analyse recommence ; le numéro d'ordre est incrémenté et dans la table de correspondance il recopie la valeur à l'adresse NO-1 dans l'adresse NO. Le processus passe à l'étape 16 où seules les étiquettes appartenant au chemin sélectionné par le lecteur depuis le rang O jusqu'au rang courant émettent la valeur de leur bloc du rang courant.
  • La figure 3 représente un diagramme fonctionnel du procédé de l'invention pour les modes parallèles. L'étape 30 est le début du séquencement : le nombre de numéros d'ordre partiels du rang précédent NO(rang -1) est initialisé à 0, ainsi que le compteur RANG du rang de m bits en cours d'analyse. Toutes les étiquettes présentent dans le champ électromagnétique de l'interrogateur émettent leur premier bloc de m bits. Une étiquette pénétrant dans le champ électromagnétique après cette étape et avant la fin du cycle d'identification ne participera pas à ce cycle d'identification. Elle restera silencieuse en attendant un nouveau message de début de cycle de lecture.
  • L'étape 31 de lecture de rang consiste à connaître toutes les valeurs des blocs de m bits du rang en cours d'analyse. Dans cette phase, un indice i et les compteurs des numéros d'ordre partiels NO(rang) du rang en cours d'analyse sont initialisés à zéro.
  • Si aucune étiquette ne répond, la séquence d'analyse se termine à l'étape 32 : fin LM.
  • Sinon, dans le cas de l'algorithme largeur, l'interrogateur à l'étape 33 indique aux étiquettes les valeurs trouvées dans l'étape 31 et l'algorithme se poursuive à l'étape 34.
  • Dans le cas de l'algorithme simultané, l'interrogateur dans l'étape 39 confirme les valeurs reçues dans l'étape 31. Si toutes les étiquettes ont émis la même valeur, l'interrogateur émet une commande NB_VBIP=0, met à jour la table de correspondance à l'étape 40 et passe au test "dernier rang". Sinon, l'interrogateur indique pour NB_VBIP≠0 les valeurs reçues et l'algorithme se poursuit par l'étape 34.
  • Les étapes 34, 35, 36 et 37 sont communs aux deux modes parallèles : elles consistent à analyser successivement tous les numéros d'ordre présents au rang précédent le rang en cours d'analyse.
  • A l'étape 34, seules les étiquettes ayant le numéro d'ordre i au rang précédent émettent leur valeur.
  • L'étape 35 est utilisée par l'interrogateur pour mettre à jour le compteur des numéros d'ordre partiels NO(rang) du rang en cours d'analyse, pour mettre à jour la table de correspondance ; par l'émission de la commande VBIP le lecteur indique aux étiquettes les valeurs lues à l'étape 34, et les étiquettes actualisent leur numéro d'ordre partiel pour le rang en cours.
  • A l'étape 36, on incrémente l'indice i d'analyse des numéros d'ordre du rang précédent. Si tous ces numéros d'ordre n'ont pas été analysés, on passe à l'étape 34. Sinon, le compteur des numéros d'ordre du rang précédent NO(rang-1) est initialisé par NO(rang) dans l'étape 37.
  • Si le dernier rang a été analysé, le processus s'arrête à l'étape 41 : fin LM. Sinon, le numéro de rang est incrémenté dans l'étape 38 et l'analyse du rang reprend à l'étape 31.
  • La figure 4 représente un arbre de recherche pour identifier les codes de six étiquettes, A, B, C, D, E et F, comportant chacune N bits.
  • Dans cet exemple, les blocs de bits comportent chacun 4 bits. Les rangs successifs des blocs de bits sont désignés par les références R0 à R3 où R3 représente le niveau initial de la recherche correspondant à la racine de l'arbre de recherche dans lequel aucun code n'est encore identifié, et le niveau R0 représente le niveau final de la recherche où tous les codes sont identifiés.
  • L'identification est effectuée étiquette par étiquette en balayant l'arbre du rang R3 jusqu'au rang R0. Les codes sont identifiés quatre bits par quatre bits.
  • Selon une caractéristique de l'invention, chaque étiquette s'attribue un numéro d'ordre correspondant au nombre d'étiquettes identifiées avant elle. Une table de correspondance entre les numéros d'ordre et les codes d'identification est établie pour assurer un échange rapide entre les étiquettes et l'interrogateur après la phase d'identification.
  • Le tableau suivant illustre l'évolution des numéros d'ordre pendant la recherche arborescente selon une première variante du mode séquentiel dans laquelle la reprise de l'analyse de l'arbre après identification d'une étiquette s'effectue à partir de la racine.
    Etiquette identifiée Branche parcourue Numéro d'ordre attribué
    A 0-1-2 0
    B 0-1-3 1
    C 0-1-4 2
    D 5-6-7 3
    E 5-8-9 4
    F 10-11-12 5
  • Au rang R3, toutes les étiquettes ont émis leurs premiers blocs. L'interrogateur en sélectionne un. Ainsi, si on veut analyser toutes les étiquettes, on peut choisir, par exemple, selon les valeurs croissantes (ou décroissantes), et si on ne veut pas identifier toutes les étiquettes, mais vérifier uniquement la présence d'une étiquette, on peut imposer la valeur recherchée. Les étiquettes ne présentant pas le bloc sélectionné s'inhibent momentanément. Les autres restent à l'écoute d'une requête de l'interrogateur pour émettre le bloc suivant.
  • Au rang R2, les étiquettes non inhibées émettent leur deuxième bloc sur requête de l'interrogateur. Ce dernier en sélectionne un et les étiquettes ne présentant pas le deuxième bloc sélectionné s'inhibent momentanément. Les autres restent à l'écoute d'une requête de l'interrogateur pour émettre le bloc suivant. Cette procédure est répétée jusqu'au dernier rang R0 du code de N bits.
  • Le rang R0 est atteint en parcourant successivement les branches 0-1-2, 0-1-3, et 0-1-4 permettant respectivement l'identification du code complet des étiquettes A, B et C.
  • Une procédure similaire est exécutée pour identifier les codes des étiquettes D, E et F.
  • Selon une autre variante du mode séquentiel, la reprise de l'analyse de l'arbre après identification d'une étiquette s'effectue à partir du rang du dernier bloc où des étiquettes partiellement identifiées et identiques se différencient. Au niveau de ce rang, l'arbre d'analyse présente au moins deux branches correspondant à des blocs qui diffèrent par au moins un bit.
  • Le tableau suivant illustre l'évolution des numéros d'ordre pendant la recherche arborescente selon la deuxième variante du mode séquentiel.
    Etiquette identifiée Branche parcourue Numéro d'ordre attribué
    A 0-1-2 0
    B 3 1
    C 4 2
    D 5-6-7 3
    E 8-9 4
    F 10-11-12 5
  • Comme dans la première variante, au rang R3, toutes les étiquettes ont émis leurs premiers blocs. L'interrogateur en sélectionne un et les étiquettes ne présentant pas le bloc sélectionné s'inhibent momentanément. Les autres restent à l'écoute d'une requête de l'interrogateur pour émettre le bloc suivant.
  • Au rang R2, les étiquettes non inhibées émettent leurs deuxièmes blocs sur requête de l'interrogateur. Ce dernier en sélectionne un et les étiquettes ne présentant pas ce deuxième bloc s'inhibent momentanément. Les autres restent à l'écoute d'une requête de l'interrogateur pour émettre le bloc de quatre bits suivant. Cette procédure est répétée jusqu'au dernier bloc, c'est-à-dire jusqu'à la lecture d'un code complet de N bits.
  • Ainsi, le rang R0 est atteint en parcourant successivement les branches 0-1-2, pour identifier l'étiquette A, puis la branche 3 à partir du rang R1 pour identifier l'étiquette B, ensuite la branche 4, partir du rang R1, pour identifier l'étiquette C.
  • De même, l'identification du code de l'étiquette D est obtenu en parcourant les branches 5-6-7, l'identification du code de l'étiquette E, en parcourant les branches 8-9 à partir du rang R2 et celle de l'étiquette F en parcourant les branches 10-11-12 à partir du rang R0.
  • La figure 5 représente un arbre de recherche pour identifier les codes de six étiquettes, A, B, C, D, E et F, comportant chacune N bits selon le mode parallèle. Le mode parallèle comporte deux variantes, une première variante, dite mode largeur, dans laquelle l'analyse d'un rang k+1 à partir d'un rang k est effectuée en interrogeant consécutivement chaque numéro d'ordre partiel, et une deuxième variante, dite mode simultané, dans laquelle l'analyse d'un rang n+1 à partir d'un rang k est effectuée en deux phases :
    • une première phase dans laquelle toutes les étiquettes de tous les numéros d'ordre indiquent la valeur de leur (k+1)iéme bloc ;
    • et une deuxième phase dans laquelle le (k+1)iéme bloc est analysé si toutes les étiquettes n'ont pas le même bloc au rang k+1.
  • L'exemple de la figure 5 sera utilisé successivement pour décrire un mode largeur_2 dans lequel l'analyse est effectuée par sous-blocs de deux bits, et un mode simultané_4 dans lequel l'analyse est effectuée par sous-blocs de quatre bits.
  • Dans les deux variantes, une table de correspondance entre les numéros d'ordre et les codes d'identification est établie pour assurer un échange rapide entre les étiquettes et l'interrogateur après la phase d'identification.
  • L'évolution des numéros d'ordre des étiquettes dans le parcours de l'arbre de la figure 4 est donnée dans le tableau suivant :
    Etiquettes Et Rang3 Rang2 Rang1 Rang0
    Etiquette A 0 0 0 0
    Etiquette B 0 0 0 1
    Etiquette C 0 0 0 2
    Etiquette D 0 1 1 3
    Etiquette E 0 1 2 4
    Etiquette F 0 2 3 5
  • En désignant par Et(k) la valeur du sous-bloc de rang k d'une étiquette Et, par NO(k) le numéro d'ordre au rang k, et par X les sous-blocs suivants non encore identifiés, l'évolution de la table de correspondance entre les numéros d'ordre NO(k) et les codes d'identification est la suivante:
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
  • Selon une caractéristique de l'invention, dans la mode largeur la liste de correspondance est actualisée au fur et à mesure de l'identification de blocs de m bits.
  • Le procédé décrit précédemment est mis en oeuvre par un système comprenant un dispositif interrogateur 40 et des étiquettes 42 comportant des moyens émetteur-récepteur 44 de signaux relié, via des moyens de modulation/démodulation 46, 47, à des moyens de séquencement 48.
  • Le dispositif interrogateur 40 comporte en outre des moyens pour analyser chaque étiquette 42 bloc de m bits par bloc de m bits, et pour calculer, pour chaque étiquette 42, un numéro d'ordre représentant le nombre de groupes d'étiquettes ayant le même code partiellement identifié de sorte que ledit interrogateur 40 connaisse à tout moment le nombre de groupes d'étiquettes présentes dans le champ électromagnétique, une première mémoire 49 destinée à mémoriser une table de correspondance entre les numéros d'ordre et les codes partiellement identifiés, un premier compteur de rang 58 indiquant le numéro du groupe de bits en cours d'analyse et un deuxième compteur 52 indiquant le nombre d'étiquettes soit totalement identifiées soit partiellement identifiées. Chaque étiquette 42 comporte également des moyens pour calculer les numéros d'ordre, un premier compteur 68 pour compter le rang de blocs de bits en cours d'analyse et une première mémoire 74 pour mémoriser lesdits numéros d'ordre et pour stocker le code d'identification de l'étiquette.
  • Lesdits moyens pour analyser chaque étiquette sont constitués par des algorithmes fonctionnant selon deux modes :
    • un mode séquentiel dans lequel les codes des blocs de m bits successifs des étiquettes sont analysés étiquette par étiquette en balayant un arbre de recherche à partir du premier rang de bloc de bits jusqu'au dernier rang de bloc de bits pour chaque code ;
    • et un mode parallèle dans lequel les blocs de m bits de même rang sont analysés simultanément pour toutes les étiquettes.
  • Le dispositif interrogateur fonctionnant en mode séquentiel profondeur, comporte en outre :
    • une deuxième mémoire 50 destinée à mémoriser les noeuds à branches multiples de l'arbre d'analyse dans le mode séquentiel le deuxième compteur d'étiquettes 52 indiquant le nombre d'étiquettes totalement identifiées (ce compteur 52 joue aussi ce rôle dans le mode séquentiel systématique.
  • Le dispositif interrogateur fonctionnant en mode parallèle, comporte en outre :
    • un troisième compteur de numéros d'ordre 54 indiquant le nombre de groupes d'étiquettes identifiées dans le rang d'analyse k+1 ;
    • un quatrième compteur de numéros d'ordre 56 indiquant le nombre de numéros d'ordre traités dans le rang d'analyse en cours pour le mode parallèle, le deuxième compteur de numéros d'ordre 52 indiquant le nombre de groupes d'étiquettes ayant le même code partiellement identifié au rang d'analyse k,
  • En référence à la figure 7, chaque étiquette 42 fonctionnant en mode séquentiel, comporte en outre un deuxième compteur de numéro d'ordre 60 destiné à compter les étiquettes totalement identifiées, et dans le cas du mode séquentiel profondeur une deuxième mémoire de numéros d'ordre 64 pour mémoriser le numéro du noeud auquel l'étiquette n'a pas été sélectionnée.
  • Chaque étiquette 42 fonctionnant en mode parallèle, comporte en outre :
    • une deuxième mémoire 72 destinée à mémoriser le nombre de groupes ayant un code partiellement identifié identique au rang d'analyse k,
    • un deuxième compteur de numéro d'ordre 62 destiné à indiquer le numéro d'ordre en cours d'analyse dans le mode parallèle ;
    • une troisième mémoire 70 destinée à mémoriser le numéro d'ordre attribué à une étiquette lors du traitement d'un rang k dans le mode parallèle.

Claims (13)

  1. Procédé de lecture d'un ensemble d'étiquettes électroniques (42) comprenant chacune un code d'identification distinct de N bits et situées dans le champ électromagnétique d'un dispositif interrogateur (40), caractérisé en ce qu'il comporte les étapes suivantes :
    a) pour chaque code de N bits donné, définir un bloc élémentaire d'analyse comportant m bits, m étant un sous-multiple de N supérieur à 1 ;
    b) analyser en parallèle les codes des étiquettes en parcourant ces codes bloc de m bits par bloc de m bits, ladite analyse consistant à répéter les étapes suivantes :
    c) attribuer un même numéro d'ordre à toutes les étiquettes ayant le même code partiellement identifié au rang d'analyse courant indiquant le bloc de m bits en cours d'analyse, le nombre de numéros d'ordre attribués représentant le nombre de groupes d'étiquettes ayant le même code partiellement identifié ;
    d) établir une table de correspondance entre chaque numéro d'ordre et la valeur du code partiellement identifié.
  2. Procédé selon la revendication 1, caractérisé en ce que les numéros d'ordre attribués sont consécutifs les uns aux autres.
  3. Procédé selon la revendication 2, caractérisé en ce que les numéros d'ordre des étiquettes sont mis à jour au fur et à mesure de la détection des bits des codes d'identification.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il consiste à vérifier, après identification de toutes les étiquettes présentes dans le champ électromagnétique, les codes d'identification détectés par un appel des étiquettes déjà identifiées.
  5. Procédé selon la revendication 4, caractérisé en ce que l'appel des étiquettes déjà identifiées est effectué au moyen des numéros d'ordre.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'identification d'une étiquette est réalisée selon un mode parallèle dans lequel les blocs de m bits de même rang sont analysés pour toutes les étiquettes.
  7. Procédé selon la revendication 6, caractérisé en ce qu'en mode parallèle, l'analyse d'un rang k+1 à partir d'un rang k est effectuée en interrogeant consécutivement chaque numéro d'ordre.
  8. Procédé selon la revendication 6, caractérisé en ce qu'en mode parallèle, l'analyse d'un rang k+1 à partir d'un rang k est effectuée en deux phases, soit une première phase dans laquelle toutes les étiquettes de tous les numéros d'ordre indiquent la valeur de leur (k+1)iéme bloc et une deuxième phase dans laquelle le (k+1)iéme bloc est analysé numéro d'ordre par numéro d'ordre si toutes les étiquettes n'ont pas le même bloc au rang k+1.
  9. Système de lecture d'un ensemble d'étiquettes (42) par un dispositif interrogateur (40), les étiquettes (42) et le dispositif interrogateur (40) comportant chacun des moyens émetteur-récepteur (44) de signaux reliés via des moyens de modulation/démodulation (46,47) à des moyens de séquencement (48), et chaque étiquette comprenant un code d'identification distinct de N bits, caractérisé en ce que le dispositif interrogateur (40) comporte en outre des moyens pour analyser chaque étiquette (42) bloc de m bits par bloc de m bits, m étant un sous-multiple de N supérieur à 1, et pour attribuer un même numéro d'ordre, à toutes les étiquettes ayant le même code partiellement identifié au rang d'analyse courant, le nombre de numéros d'ordre attribués représentant le nombre de groupes d'étiquettes ayant le même code partiellement identifié de sorte que ledit interrogateur (40) connaisse à tout moment le nombre de groupes d'étiquettes présentes dans le champ électromagnétique, et une première mémoire (49) destinée à mémoriser une table de correspondance entre les numéros d'ordre et les codes partiellement identifiés, un premier compteur de rang (58) indiquant le numéro du groupe de bits en cours d'analyse et un deuxième compter (52) indiquant le nombre d'étiquettes soit totalement identifiées, soit partiellement identifiées, et en ce que chaque étiquette (42) comporte également des moyens pour calculer les numéros d'ordre, et un premier compteur (68) pour compter les rangs de blocs de bits en cours d'analyse et une première mémoire (74) pour mémoriser lesdits numéros d'ordre et pour stocker le code d'identification de l'étiquette.
  10. Système selon la revendication 9, caractérisé en ce que lesdits moyens pour analyser chaque étiquette consistent en des algorithmes aptes à fonctionner selon deux modes :
    - un mode séquentiel dans lequel les codes des blocs de m bits successifs des étiquettes sont analysés étiquette par étiquette en balayant un arbre de recherche à partir d'un rang de bloc de bits jusqu'au dernier rang de bloc de bits pour chaque code ;
    - et un mode parallèle dans lequel les blocs de m bits de même rang sont analysés pour toutes les étiquettes avant d'analyser les blocs de rang suivant.
  11. Système selon la revendication 10, caractérisé en ce que le dispositif interrogateur fonctionnant en mode séquentiel, chaque étiquette comporte en outre un deuxième compteur (60) d'étiquettes totalement identifiées.
  12. Système selon la revendication 10, caractérisé en ce que le dispositif interrogateur fonctionnant en mode séquentiel profondeur, comporte en outre une deuxième mémoire (50) destinée à mémoriser les noeuds à branches multiples de l'arbre d'analyse dans le mode séquentiel et en ce que chaque étiquette comporte en outre une deuxième mémoire (64) pour mémoriser le numéro du noeud auquel l'étiquette n'a pas été sélectionnée et un deuxième compteur (60) d'étiquettes totalement identifiées.
  13. Système selon la revendication 10, caractérisé en ce que le dispositif interrogateur fonctionnant en mode parallèle, comporte en outre :
    - un troisième compteur de numéros d'ordre (54) indiquant le nombre de groupes d'étiquettes identifiées dans le rang d'analyse k+1 ;
    - un quatrième compteur de numéros d'ordre (56) indiquant le nombre de numéros d'ordre traités dans le rang d'analyse en cours pour le mode parallèle ;
    et que chaque étiquette (42) comporte
    - une deuxième mémoire (72) destinée à mémoriser le nombre de groupes ayant un code partiellement identifié identique au rang d'analyse k,
    - un deuxième compteur de numéro d'ordre (62) destiné à indiquer le numéro d'ordre en cours d'analyse dans le mode parallèle ;
    - une troisième mémoire (70) destinée à mémoriser le numéro d'ordre attribué à une étiquette lors du traitement d'un rang k dans le mode parallèle.
EP02292167A 2001-09-05 2002-09-03 Procédé de lecture d'étiquettes électroniques par identification de leur code Expired - Fee Related EP1291806B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0111476A FR2829259B1 (fr) 2001-09-05 2001-09-05 Procede de lecture d'etiquettes electroniques par identification de leur code par bloc de bits
FR0111476 2001-09-05

Publications (2)

Publication Number Publication Date
EP1291806A1 EP1291806A1 (fr) 2003-03-12
EP1291806B1 true EP1291806B1 (fr) 2010-01-27

Family

ID=8866983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02292167A Expired - Fee Related EP1291806B1 (fr) 2001-09-05 2002-09-03 Procédé de lecture d'étiquettes électroniques par identification de leur code

Country Status (5)

Country Link
US (1) US7075452B2 (fr)
EP (1) EP1291806B1 (fr)
JP (1) JP4402340B2 (fr)
DE (1) DE60235219D1 (fr)
FR (1) FR2829259B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2426365A (en) * 2004-03-10 2006-11-22 Advanced Analysis And Integrat A microcircuit for product authentication in which an identifier and a count of the number of times the circuit has been interrogated are stored.
US20050237157A1 (en) * 2004-04-13 2005-10-27 Impinj, Inc. RFID tag systems, RFID tags and RFID processes with branch node indexing
KR100612699B1 (ko) * 2005-03-10 2006-08-16 에스케이 텔레콤주식회사 태그 인식 충돌 방지 rfid 시스템 및 태그 식별 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677135B1 (fr) 1991-05-28 1997-09-12 Commissariat Energie Atomique Systeme d'identification automatique d'objets ou d'individus par interrogation a distance
US5489908A (en) * 1994-07-27 1996-02-06 Texas Instruments Deutschland Gmbh Apparatus and method for identifying multiple transponders
US5673037A (en) * 1994-09-09 1997-09-30 International Business Machines Corporation System and method for radio frequency tag group select
FR2776094B1 (fr) * 1998-03-12 2002-09-06 Commissariat Energie Atomique Procede et systeme de lecture multiple d'un ensemble d'etiquettes portant des codes d'identification distincts
US6661335B1 (en) * 1999-09-24 2003-12-09 Ge Interlogix, Inc. System and method for locating radio frequency identification tags
DE19949572B4 (de) * 1999-10-14 2006-02-16 Texas Instruments Deutschland Gmbh Verfahren zum Identifizieren mehrerer Transponder
US6725014B1 (en) * 2000-08-17 2004-04-20 Honeywell International, Inc. Method and system for contention resolution in radio frequency identification systems

Also Published As

Publication number Publication date
JP4402340B2 (ja) 2010-01-20
FR2829259B1 (fr) 2003-10-24
US7075452B2 (en) 2006-07-11
EP1291806A1 (fr) 2003-03-12
FR2829259A1 (fr) 2003-03-07
US20030132834A1 (en) 2003-07-17
DE60235219D1 (de) 2010-03-18
JP2003216892A (ja) 2003-07-31

Similar Documents

Publication Publication Date Title
CA2191787C (fr) Procede d'interrogation a distance d'etiquettes, station et etiquette pour sa mise en oeuvre
EP0586492B1 (fr) Systeme d'identification automatique d'objets ou d'individus par interrogation a distance
EP0942386B1 (fr) Procédé et systeme de lecture multiple d'un ensemble d'étiquettes portant des codes d'identification distincts
KR101143069B1 (ko) 하나 이상의 태그의 집합 내의 태그 개수 추정 방법
EP0942385B1 (fr) Procédé et système de lecture d'un ensemble dynamique d'étiquettes portant des codes d'identification distincts
EP1228478A1 (fr) Systeme de transpondeurs tenant compte du niveau de bruit environnant
EP0935222B1 (fr) Procédé d'identification de cartes électroniques présentes dans une zone d'investigation
CA2283685C (fr) Procede perfectionne de gestion des collisions dans un systeme d'echange de donnees sans contact
EP1257964B1 (fr) Procede de lecture d'etiquettes electroniques par identification simultanee de leur code
EP1291806B1 (fr) Procédé de lecture d'étiquettes électroniques par identification de leur code
CN108494977A (zh) 短信号码的识别方法、装置和系统
EP0957442B1 (fr) Système d'identification électronique d'une pluralité de transpondeurs
EP0942387B1 (fr) Procédé et système de lecture multiple d'un ensemble dynamique d'étiquettes
FR2800943A1 (fr) Systeme de suivi de consommateurs notamment dans une enceinte d'hypermarche
EP1721285A1 (fr) Procede d'identification d'etiquette electronique, etiquette electronique et base-station le mettant en oeuvre
EP1093076A1 (fr) Dispositif d'identification et de gestion chronologiques à distance d'étiquettes
EP1466256A1 (fr) Procede d'anti-collision d'elements a identifier par un ordinateur hote
WO1999049409A1 (fr) Systeme et procede d'identification de produits par identifiant aleatoire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030811

AKX Designation fees paid

Designated state(s): DE GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 20071227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60235219

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140911

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140917

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140915

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60235219

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150903

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401