EP1290464A1 - Procede et dispositif pour determiner la position d'un objet par optoelectronique - Google Patents

Procede et dispositif pour determiner la position d'un objet par optoelectronique

Info

Publication number
EP1290464A1
EP1290464A1 EP01940480A EP01940480A EP1290464A1 EP 1290464 A1 EP1290464 A1 EP 1290464A1 EP 01940480 A EP01940480 A EP 01940480A EP 01940480 A EP01940480 A EP 01940480A EP 1290464 A1 EP1290464 A1 EP 1290464A1
Authority
EP
European Patent Office
Prior art keywords
radiation
radiation sources
measuring
evaluation unit
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01940480A
Other languages
German (de)
English (en)
Inventor
Gerd Reime
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1290464A1 publication Critical patent/EP1290464A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the invention relates to a method for optoelectronic position determination of an object according to the preamble of claim 1 and a device for carrying out the method according to the preamble of claim 3.
  • the device there is preferably used for the detection of water drops on a glass pane, it being possible for a windshield wiper to be controlled as a function of the drops determined.
  • two measuring sections are set up between a radiation source and a radiation receiver. While the radiation source emits the radiation, the radiation receiver determines the reflection reflected on surfaces or objects. The two measuring sections are operated periodically and alternately via a clock generator. The detection signals determined by the radiation receiver are filtered and broken down again into the detection signals assigned to the individual measuring sections in a synchronous demodulator controlled by the clock generator. A useful signal is determined from this in a comparator and used as a measure of the wetting that has taken place.
  • a useful signal U (t) of zero results.
  • the useful signal is fed to a signal centering stage. Depending on whether there is a control voltage at the output or not, this control voltage is then used to regulate the amount of radiation radiated into the measuring sections, so that the detection signal is readjusted as a function of a time constant. This makes it possible to to detect cal changes in the sensor-active area of the measuring arrangement, while at the same time reliable extraneous light compensation takes place.
  • a method for optoelectronic detection of the angular position of a measurement object is known from DE 43 32 022 C2.
  • the angle refers to the rotation about an axis that is perpendicular to the plane in which the optical axis of the receiver and the at least two light sources lie.
  • the present invention seeks to provide a method and a device that can easily and inexpensively detect the position and / or movement of an object in an optoelectronic manner.
  • optoelectronic measuring sections are provided, into which a certain radiation is radiated, with the retroreflection from a radiation receiver likewise being used here is recorded.
  • External light compensation can preferably be provided so that the method and device can also be operated under any external light conditions.
  • the initial values from the measurement sections should be separately detectable and the spatial relationships between radiation sources and radiation receivers should be fixed. It is thus possible to use the measured values of individual measuring sections for determining the position as well as for determining the movement of an object which is moving in the sensor-active area of the measuring arrangement. Due to the spatially separated arrangement of the radiation sources, the object always has clearly defined ratios of the retroreflection retroreflected from the two measurement sections to determine the position and / or the movement of the object. This ratio is initially independent of how strongly the object reflects the radiation. In addition, the location of the object that generates the strongest retroreflection, which is usually the closest to the measuring arrangement, is always determined.
  • a corresponding device for determining a clear result can be improved by providing at least one further radiation source. If there are over-determined equations, the solutions drop out in which the object should be inside the measuring arrangement or below or behind the measuring arrangement.
  • FIG. 1 shows a first embodiment of a device according to the invention
  • Fig. 3.2 the course of the useful signal when, for example, a cloth on the
  • FIG. 4b the course of the differentiated movement signal U ⁇ t) when the first sensor-active area is tapped
  • 4c the course of the useful signal U (t) when a finger is removed from the first sensor-active area
  • FIG. 4d the course of the differentiated movement signal U ⁇ t) when a finger is removed from the first sensor-active area
  • FIG. 4e the course of the useful signal U ( t) when tapping the second sensor-active
  • FIG. 4f the course of the differentiated movement signal U ⁇ t) when the second sensor-active area is tapped
  • FIG. 4g the course of the useful signal U (t) when a finger is removed from the second sensor-active area
  • FIG. 4h shows the course of the differentiated movement signal U ⁇ (t) when a finger is removed from the second sensor-active area
  • FIG. 5a shows the course of the measurement signal when the first sensor-active area is swept
  • 5b shows the curve of the output signal of the first threshold switch in the in
  • FIG. 5a shows the situation
  • FIG. 6 shows the course of the values U 20 (t), U R (t), and U B (t 0 ),
  • the exemplary embodiments show different configurations of an optoelectronic device for determining the position of an object 50 by means of a measuring arrangement which is separated from the object 50 by a medium 31, 52 which is transparent to at least one specific radiation.
  • the device is equipped with at least two light-emitting radiation sources 1, 3, 57 and at least one radiation receiver 2.
  • the radiation receiver 2 transmits its signals, the value of which depends on the amount of light received, to an evaluation unit 55.
  • Radiation sources 1, 3, 57 and radiation receiver 2 can be arranged in such a way that the light coming from the transmission element is scattered or reflected by objects which are within a specific sensor-active region S in such a way that at least a part of the latter is scattered or reflected.
  • tated light reaches the radiation receiver 2 as retroreflection 53.
  • the change in the amount of reflected or scattered light received by the radiation receiver caused by a movement of the object thus causes a change in the state of the output values.
  • At least two light-emitting diodes 1, 3 are arranged as a radiation source under a glass plate 31, the radiation of which, here light, can at least partially be reflected on the glass plate 31 as a transmission element, also penetrate it and, after reflection or scattering, partially on the object 50 the photodiode 2 strikes as a radiation receiver.
  • the glass plate 31 and the ambient air 52 are therefore two media that are permeable to a specific radiation. Basically, only a medium is sufficient, which can not only be solid or gaseous, but also a liquid. However, a plurality of media can also be provided which are transparent to the respective radiation.
  • the light of the light emitting diodes 1,3 is reflected on a finger as the object 50.
  • a photodiode or a correspondingly connected light-emitting diode can serve as radiation source 2.
  • the glass plate or another surface should be transparent to light or radiation at least in a certain wavelength range.
  • the light from the light-emitting diode 1 is only partially reflected on the glass plate 31 and thus emerges into the outside space, whereby it is again reflected by an object 50, here a finger, and can thus be partially scattered back into the photodiode 2.
  • the two light-emitting diodes 1, 3 are supplied with voltage by means of a clock generator 13, the signal of one of the two light-emitting diodes being inverted. If the light output of the LEDs is uniform and if the reflection is exactly symmetrical, or if the brightness of at least one of the two LEDs is suitably regulated (see below), a DC voltage signal is present at the output of photodiode 2, which, in order to eliminate DC voltage and low-frequency AC components, has a high pass 32 is supplied.
  • the high pass 32 whose cut-off frequency lies below the frequency of the clock generator 13, only allows alternating components to pass through, so that with a corresponding output power of the light-emitting diodes 1, 3, the signal fed to the amplifier 4 becomes “0”. With this arrangement, influences from extraneous light sources become locked out.
  • This signal, filtered in this way, is fed to a synchronous demodulator 5 after the amplifier 4.
  • the synchronous demodulator 5 receives its clock signal from the frequency generator 13, this clock signal by the delay element 15 for adaptation to the signal delay times can be delayed accordingly in the high pass 32 and in the amplifier 4.
  • the synchronous demodulator 5 divides the signal of the light sources 1 and 3 common in the signal path of the light receiver 2, the high-pass filter 32 and the amplifier 4 again into two separate paths corresponding to the respective measuring paths x, y.
  • the signal sections cut out by the synchronous demodulator 5 are cleaned of interfering spectral ranges in the low-pass filters 6 and 7 and fed to the comparator 9.
  • the comparator 9 consists of a simple operational amplifier.
  • the useful signal U (t) can also be fed to the signal centering stage 11 via a low pass 10 for dynamic measurement.
  • the output of the signal centering stage 11, at which the voltage U R (t) is present, is connected to the controller 12, or, via the inversion stage 61, to the inverted controller 12 ' .
  • only one of the two radiation sources can be controlled, but this is at the expense of eliminating temperature and aging influences on the useful signal U R (d).
  • This arrangement ensures that the useful signal changes when the reflection of the light beam emitted by the light-emitting diode 1 changes, but is always returned to the zero value.
  • the time constant for this feedback is determined in the exemplary embodiment by the low-pass filter 10. This allows the dynamic movement of an object to be determined.
  • the device thus forms a measuring arrangement that can determine the position and / or movement of the object 50. If the object is or is moving in the sensor-active area S, it produces a more or less strong retroreflection 53. This retroreflection is more or less strong, depending on the reflection properties of the object 50, the initial value U R (t), that is to say the ratio The two measuring sections to one another and their difference value U R (d) are not affected by this.
  • the position of the object can be determined from the initial value U R (t) or the difference value U R (d) the family of curves g ⁇ g, g " (FIG. 7) can be determined.
  • the movement of the object in relation to the radiation sources 1, 3 can also be detected by means of the circuit 60 to be described. If the dynamic detection is not required, the low-pass filter 10, the signal centering stage 11 and the signal evaluation in the form of the circuit 60 can be omitted; consequently U (t) becomes U R (t).
  • the useful signal U R (d) results in zero if the object 50 is located in front of the receiver in such a way that the same reflection from both measurement sections is scattered back.
  • this is a position on the straight line g in FIG. 7 by the radiation receiver 2.
  • the straight line g is part of a plane, whose normal is that straight line and which is also the plane of symmetry with respect to the radiation sources 1, 3.
  • the useful signal U (t) changes briefly depending on the direction of movement toward positive or negative values with respect to the reference voltage 19.
  • a one-dimensional movement can be detected, for example in a horizontal version for the position detection of bottles on a running rail in a bottling plant.
  • at least one third radiation source 57 can be provided according to FIG. Together with another radiation source
  • the second measuring arrangement could be constructed completely independently of the first measuring section and have two separate radiation sources and a separate radiation receiver.
  • the measuring sections can be sequential or at the same time, e.g. with different wavelengths. Both measuring arrangements each deliver an angle curve (eg g, g ⁇ g "), at the intersection of which the object 50 is located in a plane projection.
  • the second measuring arrangement for detecting the spatial position of an object 50 can be at almost any distance that is> 0 , up to the measurement range limit for the first measurement arrangement, namely with two measurement arrangements, whether they are nested or not, the angles of the object can be calculated, in which the object is in relation to the straight line through the radiation source and radiation receiver at least one further radiation source or measuring arrangement is to be provided, which, however, could also be formed in FIG. 2 by appropriate wiring using the measuring path z and the other measuring paths y or x.
  • the third radiation source 57 is arranged outside the plane e ⁇ e, in which the first two radiation sources 1, 3 and the radiation receiver
  • the third radiation source or the further measuring arrangement can be at any angle from 0 ° to 360 ° to the first measuring arrangement; in some circumstances, only an angle of 180 ° provides no further usable results. If at least this third radiation source 57 is arranged such that its main radiation component is not emitted normally to the plane e-e in which the first two radiation sources 1, 3 and the radiation receiver 2 are arranged, the measurement result can be clearly determined. In principle, further radiation sources and / or radiation receivers can also be provided.
  • the angular curve of the object with respect to at least two straight lines, which are each laid through the radiation receiver and radiation source is determined as follows: Emitting the determined radiation by means of the radiation sources 1, 3.57,
  • the evaluation unit 55 determining the position of the object by the evaluation unit determining a specific angular curve of the object with respect to the radiation sources 1, 3 from the output values and thus from the ratio of the measured values determined and / or their difference value, 57 determined with a known spatial ratio of the radiation sources to one another.
  • Certain measured value ratios can also be stored in a database 56 in order to convert non-linear angular relationships into position-corrected initial values.
  • U (t) is additionally used, for example in order to recognize whether an object is approaching, for example, the glass surface 31 and thus initially activating the measuring arrangement, or, for example, activating an illumination device .
  • the position or movement is then detected and as soon as the object 50, such as a finger, for example, moves away from the glass surface, the device is switched off again.
  • This object can be achieved with the circuit 60 described below, which is known per se, but not for this purpose, from the earlier patent application 100 01 955.2. Further embodiments are also explained there, for the sake of simplicity, however, only one embodiment of this type for detecting a movement pattern corresponding to a switching operation is described, a distinction being made again between U (t) and U R (t):
  • Figs. 3.1, 3.2, 4 the useful signal U (t) emitted by the sensor device described above is shown in different situations. 4a, the useful signal U (t) is plotted when the sensor-active area S is tapped. A switching operation is to be triggered by such a signal. In Figs. 3.1 and 3.2, useful signal curves are plotted, as they occur when sweeping once or wiping back and forth across the sensor-active area S. Such signal profiles should not trigger a switching process. This goal is achieved as follows (Fig. 1):
  • the useful signal U (t) is fed to the high-pass filter 16, which acts here as a differentiating element, so that the value U ⁇ t) of the differentiated motion signal is present at its output.
  • the value U (t) of the useful signal increases analogously to move slowly and stops abruptly when the finger is braked on the glass plate 31, see FIG. 4a. If the finger remains motionless, the value U (t) of the useful signal is slowly returned to U 0 .
  • the abrupt change in the value of the useful signal leads to a jump in the movement signal value U ⁇ (t) at the output of the high-pass filter 16, see FIG. 4b.
  • the cut-off frequency of the high-pass filter 16 is selected such that tapping at a moderate speed still leads to a signal that is easy to detect.
  • the cut-off frequency could, for example, be in the range of 10 Hertz.
  • a signal generated from the useful signal namely the motion signal obtained by differentiation, is used, which triggers a first process when its value U ⁇ (t) exceeds a certain limit value U G1 .
  • the useful signal is used directly and triggers a process - change in the state of the flip-flop - when the value U (t) of the useful signal exceeds or falls below a certain value.
  • the output of the threshold switch 34 is connected to the reset input of the flip-flop 82, so that in the event of an overwipe or the like which has set the flip-flop 82 to active, it is reset to zero a short time later.
  • the output signal of the flip-flop 82 is fed to the time detection circuit 33.
  • This circuit is set so that its output is only set to active when the flip-flop 82 is on. less than a predetermined time ⁇ t ⁇ , for example 100 ms, was active.
  • This predetermined first time period ⁇ ti corresponds approximately to the usual minimum dwell time of a finger, a hand or another part of the body when a switch designed as an electrical switching element is tapped.
  • the output of the time detection circuit 33 is connected to the set input of the second flip-flop 18. If the sensor-active surface is deliberately tapped, the output of the second flip-flop 18 is thus set to active, since here the time between setting the first flip-flop 82 and resetting this flip-flop is greater than ⁇ ti, in other words: the finger remains longer than ⁇ t 1 on the sensor-active surface 26. However, in the case of movements which are not intended to trigger a switching operation - for example wiping with a cloth - the time between setting and resetting the first flip-flop 82 is less than ⁇ ti, so that these movements are therefore not for setting the second flip-flop 18 lead. By tapping the sensor-active surface, the state of the second flip-flop 18 is changed in a controlled manner.
  • the output of the flip-flop 18 can also be connected to a switching output 23, for example a relay, which, for example; used in conjunction with the value at output 59 to control or operate a device.
  • the circuit 60 thus recognizes the following movement pattern: approaching an object - abrupt braking of the object r persistence of the object for a period of time which exceeds a predetermined period of time. If this movement pattern is recognized, the switching state of a switching element, here of the second flip-flop 18, is changed. The movement of the object can then be detected with the circuit explained at the beginning on the basis of the output values U (t), U R (t), for example in order to achieve an adjustment movement of a device - for example temperature setting of a hotplate.
  • the second flip-flop 18 set by tapping the sensor-active surface 26 will be reset by deliberately removing the finger. This then results in the function of a button.
  • the instantaneous value of the control signal U R (t) present at the output of the signal centering stage 11 is sampled and stored at a point in time at which the approximate object is still just in front of the user interface. In order to achieve this in the exemplary embodiment, this signal is fed to the delay circuit 20.
  • the voltage value U 20 present at the output of the delay circuit 20 is stored in the memory 21 at the point in time t 0 at which a signal is present at the output of the first threshold switch 17, that is to say at the point in time at which the first threshold switch 17 taps recognized.
  • the signal present at the output of the signal centering stage 1 1 can be multiplied by a value less than 1 and this value can be stored.
  • the circuit 60 thus has the following advantages:
  • the measured values U (t) and thus the initial value 23 and the measured value U R (d) can be through a glass plate - a plate made of another material can of course also be used here, it only has to be transparent for the selected spectral range - Be obtained when the transmitting and receiving elements located behind the glass plate. The movement or the approaching or tapping of an object, for example a finger, on the plate side opposite the transmitting elements is then detected.
  • the position - relative to the light emitting diodes serving as radiation sources and the photodiode serving as radiation receiver - and the shape of the radiation-transmissive plate can be freely selected in a wide range.
  • the measured values U (t) and thus the initial value 23 and the measured value U R (d) can also be obtained without an insulating glass pane, even if, for example, the radiation sources radiate almost parallel to a plate or surface.
  • the approaching or tapping of this surface is detected by means of the evaluation 60, the local position of the object, for example the finger, is represented by the measured value U R (d).
  • the arrangement is "blind" to extraneous light, so that the arrangement can be operated under strongly changing external lighting conditions.
  • the evaluation unit 55 and / or the circuit 60 determine the distance of the object 50 from the measuring arrangement. If the distance is less than a specified distance, e.g. Illumination of a switch or a display switched on. If the item is e.g. around a person's finger or hand, a switching operation can now be activated in the following - as just described - by tapping the now illuminated surface, which is deactivated again when the finger is lifted off. In addition, between activation and deactivation, a certain movement can be detected as above.
  • a specified distance e.g. Illumination of a switch or a display switched on.
  • the radiation sources A / C / A / D and B / C / B / D together with the radiation receivers E1 or E2 or E1 together with E2 can form a first measurement arrangement.
  • a second measuring arrangement is formed from the radiation sources A / C / B / C and A / D / B / D together with the radiation receiver E2 or E1 or E2 together with E1.
  • Both measurement arrangements can now work sequentially, so that the four radiation sources together with their radiation receivers already form two measurement arrangements nested inside one another.
  • This measuring arrangement is particularly suitable for vertical measurement through a glass plate, whereby the following arrangement can be selected in the case of a measuring arrangement without an insulating glass plate: radiation sources A / C and B / C form a measuring arrangement together with the radiation receiver E1 between them, the second measuring arrangement is made with the radiation sources A / C and A / D are formed together with the radiation receiver E2 located between them.
  • the position or the movement e.g. of a finger can be detected on any surface, provided that the finger is in the detection range of the measuring arrangements.
  • first and second measuring arrangement are arranged offset by 90 ° to one another, as in FIG.
  • the only important thing is that they are offset from one another by a certain amount, or are arranged rotated, except for the position in which they are exactly rotated by 180 °.
  • FIG. 9 A further embodiment of a measurement arrangement is shown in FIG. 9: the radiation transmitters A / C / A / D and B / C / B / D together with the radiation receiver E form a first measurement arrangement, the second measurement arrangement is carried out by the radiation transmitters A / C / B / C and A / D / B / D formed together with the radiation receiver E.
  • the radiation receiver E is therefore used in common for both measuring arrangements, which is not a problem due to a corresponding clocking of the radiation sources and corresponding synchronous demodulation of the signal of the radiation receiver E.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un procédé et un dispositif servant à la détermination optoélectronique de la position d'un objet (50) par l'intermédiaire d'un montage métrologique, séparé de l'objet (50) par un moyen (31, 52) perméable à au moins un rayonnement déterminé. Ce montage métrologique comprend au moins une zone (S) d'activité sensorielle dans ledit moyen, comprenant au moins deux lignes de mesure (x, y), qui sont maintenues par au moins deux sources de rayonnement (1, 3) émettant le rayonnement déterminé et par au moins un récepteur de rayonnement (2) affecté aux sources de rayonnement. Ce récepteur de rayonnement détermine la réflexion (53) renvoyée par l'objet (50) pour créer un signal de détection correspondant au rayonnement reçu. Selon l'invention, les sources de rayonnement (1, 3) émettent un rayonnement déterminé et la réflexion (53) renvoyée par l'objet (50) est saisie, afin d'allouer des valeurs initiales (U(t), UR(d)) à chacune des lignes de mesure. L'invention est caractérisée en ce qu'une unité d'évaluation (55) définit la position et/ou le mouvement d'un objet (50) en déterminant, à partir de la valeur initiale (UR(T), UR(d)), une courbe angulaire précise de l'objet par rapport aux sources de rayonnement (1, 3, 57) pour un rapport spatial connu de ces dernières entre elles. L'optoélectronique permet ainsi de manière simple et avantageuse de saisir la position et/ou le mouvement d'un objet.
EP01940480A 2000-05-19 2001-05-16 Procede et dispositif pour determiner la position d'un objet par optoelectronique Ceased EP1290464A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10024156 2000-05-19
DE10024156A DE10024156A1 (de) 2000-05-19 2000-05-19 Verfahren und Vorrichtung zur optoelektronischen Positionsbestimmung eines Gegenstands
PCT/EP2001/005545 WO2001090770A1 (fr) 2000-05-19 2001-05-16 Procede et dispositif pour determiner la position d'un objet par optoelectronique

Publications (1)

Publication Number Publication Date
EP1290464A1 true EP1290464A1 (fr) 2003-03-12

Family

ID=7642385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01940480A Ceased EP1290464A1 (fr) 2000-05-19 2001-05-16 Procede et dispositif pour determiner la position d'un objet par optoelectronique

Country Status (6)

Country Link
US (1) US6953926B2 (fr)
EP (1) EP1290464A1 (fr)
JP (1) JP2003534554A (fr)
AU (1) AU2001274039A1 (fr)
DE (1) DE10024156A1 (fr)
WO (1) WO2001090770A1 (fr)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062417A1 (de) * 2004-12-20 2006-06-29 Gerd Reime Vorrichtung und Verfahren zur optoelektronischen Bestimmung der Lage eines Objekts
EP1686397A1 (fr) * 2005-01-26 2006-08-02 Senstronic (Société Anonyme) Capteur photoéléctrique et procédé de sa mise en oeuvre
ITTO20050569A1 (it) * 2005-08-09 2007-02-10 St Microelectronics Srl Dispositivo e metodo di determinazione della posizione di contatto e dispositivo elettronico sensibile al contatto
JP4706771B2 (ja) * 2009-03-27 2011-06-22 エプソンイメージングデバイス株式会社 位置検出装置及び電気光学装置
JP5549204B2 (ja) * 2009-12-01 2014-07-16 セイコーエプソン株式会社 光学式位置検出装置、ハンド装置およびタッチパネル
JP5549202B2 (ja) * 2009-12-01 2014-07-16 セイコーエプソン株式会社 光学式位置検出装置、ハンド装置および位置検出機能付き表示装置
JP5549203B2 (ja) * 2009-12-01 2014-07-16 セイコーエプソン株式会社 光学式位置検出装置、ハンド装置およびタッチパネル
JP2011122867A (ja) * 2009-12-09 2011-06-23 Seiko Epson Corp 光学式位置検出装置および位置検出機能付き表示装置
JP5343896B2 (ja) * 2010-03-10 2013-11-13 セイコーエプソン株式会社 光学式位置検出装置
JP5423543B2 (ja) * 2010-04-02 2014-02-19 セイコーエプソン株式会社 光学式位置検出装置
JP5423544B2 (ja) * 2010-04-02 2014-02-19 セイコーエプソン株式会社 光学式位置検出装置
JP5423545B2 (ja) * 2010-04-02 2014-02-19 セイコーエプソン株式会社 光学式位置検出装置
JP5423542B2 (ja) 2010-04-02 2014-02-19 セイコーエプソン株式会社 光学式位置検出装置
JP5408026B2 (ja) 2010-04-28 2014-02-05 セイコーエプソン株式会社 位置検出機能付き機器
JP5471778B2 (ja) * 2010-04-28 2014-04-16 セイコーエプソン株式会社 位置検出機能付き機器
JP5589547B2 (ja) * 2010-05-13 2014-09-17 セイコーエプソン株式会社 光学式検出装置、表示装置及び電子機器
JP5740104B2 (ja) 2010-05-13 2015-06-24 セイコーエプソン株式会社 光学式位置検出装置および位置検出機能付き機器
JP5445321B2 (ja) * 2010-05-13 2014-03-19 セイコーエプソン株式会社 光学式検出装置、表示装置及び電子機器
JP5516145B2 (ja) * 2010-06-30 2014-06-11 セイコーエプソン株式会社 光学式検出装置、表示装置及び電子機器
EP2405283B1 (fr) 2010-07-06 2014-03-05 Mechaless Systems GmbH Agencement de mesure optoélectronique doté d'une source lumineuse de compensation
EP2418512A1 (fr) * 2010-07-30 2012-02-15 Mechaless Systems GmbH Agencement de mesure optoélectronique doté d'une compensation de lumière parasite
JP5533407B2 (ja) 2010-08-04 2014-06-25 セイコーエプソン株式会社 光学式位置検出装置および位置検出機能付き機器
JP5533408B2 (ja) 2010-08-04 2014-06-25 セイコーエプソン株式会社 光学式位置検出装置および位置検出機能付き機器
JP5668416B2 (ja) 2010-11-05 2015-02-12 セイコーエプソン株式会社 光学式検出装置、電子機器及び光学式検出方法
JP2012103938A (ja) 2010-11-11 2012-05-31 Seiko Epson Corp 光学式検出システム及びプログラム
JP5521995B2 (ja) 2010-11-18 2014-06-18 セイコーエプソン株式会社 光学式位置検出装置および位置検出機能付き機器
JP5625866B2 (ja) 2010-12-16 2014-11-19 セイコーエプソン株式会社 光学式位置検出装置および位置検出機能付き機器
DE102011014374B3 (de) 2011-03-17 2012-04-12 Gerd Reime Optoelektronischer Drehgeber
JP5732980B2 (ja) 2011-04-04 2015-06-10 セイコーエプソン株式会社 光学式位置検出装置、光学式位置検出システム、および入力機能付き表示システム
JP5742398B2 (ja) 2011-04-06 2015-07-01 セイコーエプソン株式会社 光学式位置検出装置、および入力機能付き表示システム
JP5776281B2 (ja) 2011-04-08 2015-09-09 セイコーエプソン株式会社 光学式位置検出装置、及びロボットハンド装置
WO2012155870A1 (fr) * 2011-05-13 2012-11-22 Balluff Gmbh Procédé permettant de faire fonctionner un capteur de distance et dispositif permettant de mettre en œuvre ledit procédé
JP5754266B2 (ja) 2011-06-30 2015-07-29 セイコーエプソン株式会社 指示部材、光学式位置検出装置、および入力機能付き表示システム
JP5821333B2 (ja) 2011-06-30 2015-11-24 セイコーエプソン株式会社 光学式位置検出装置および入力機能付き表示システム
JP2013024579A (ja) 2011-07-15 2013-02-04 Seiko Epson Corp 光学式位置検出装置および入力機能付き表示システム
JP5799627B2 (ja) 2011-07-15 2015-10-28 セイコーエプソン株式会社 位置検出装置、位置検出システムおよび入力機能付き表示システム
EP2602635B1 (fr) 2011-12-06 2014-02-19 ELMOS Semiconductor AG Procédé de mesure d'une voie de transmission à l'aide d'une mesure d'amplitude à compensation et procédé delta-sigma ainsi que dispositif destiné à l'exécution du procédé
EP2631674A1 (fr) 2012-02-23 2013-08-28 ELMOS Semiconductor AG Procédé et système de capteur destinés à la mesure des propriétés d'une voie de transmission d'un système de mesure entre émetteur et récepteur
EP2653885A1 (fr) 2012-04-18 2013-10-23 ELMOS Semiconductor AG Système de capteur et procédé destinés à la mesure des propriétés de transmission d'une voie de transmission d'un système de mesure entre un émetteur et un récepteur
US9086271B2 (en) 2012-11-09 2015-07-21 Recognition Robotics, Inc. Industrial robot system having sensor assembly
DE102013002676B4 (de) 2013-02-12 2023-06-29 Elmos Semiconductor Se Kompensiertes Sensorsystem mit einem in der Sensitivität regelbaren Empfänger als kompensierendes Element
WO2014131385A1 (fr) 2013-02-27 2014-09-04 Elmos Semiconductor Ag Système de micro-détecteur optique multifonctionnel
US9300397B2 (en) * 2013-02-27 2016-03-29 Elmos Semiconductor Ag Multifunctional optical micro sensor system
DE102014002486B4 (de) 2013-02-27 2017-10-19 Elmos Semiconductor Aktiengesellschaft Kompensierendes optisches Sensorsystem
DE102013005788B4 (de) 2013-03-28 2020-06-04 Elmos Semiconductor Aktiengesellschaft Straßenbeleuchtung
DE102013022275A1 (de) 2013-03-28 2014-10-02 Elmos Semiconductor Ag Straßenbeleuchtung
DE102014002194B4 (de) 2014-02-12 2017-10-19 Elmos Semiconductor Aktiengesellschaft Kompensierendes optisches Mikrosystem
EP2924460A1 (fr) 2014-03-25 2015-09-30 ELMOS Semiconductor AG Système de capteurs de détection d'au moins un objet dans une liaison de transmission au moyen d'une diode
EP2924466B1 (fr) 2014-03-25 2020-06-03 Elmos Semiconductor Aktiengesellschaft Système de capteurs pour la détection d'au moins un objet dans une voie de transmission
EP2924459A1 (fr) 2014-03-25 2015-09-30 ELMOS Semiconductor AG Système de capteurs pour la détection d'au moins un objet dans une voie de transmission
WO2017202913A1 (fr) * 2016-05-24 2017-11-30 Koninklijke Philips N.V. Procédés et systèmes de détection optique de forces dans une brosse à dents
US10775299B2 (en) * 2019-01-08 2020-09-15 Trimble Inc. Optical tuning for plant detection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3526992A1 (de) * 1985-07-27 1987-02-05 Weiss Hans Dipl Ing Fh Einrichtung zum ein- und ausschalten eines elektrischen verbrauchers sowie verwendung einer solchen
US5103085A (en) 1990-09-05 1992-04-07 Zimmerman Thomas G Photoelectric proximity detector and switch
DE4040225C2 (de) * 1990-12-15 1994-01-05 Leuze Electronic Gmbh & Co Reflexions-Lichttaster
AU6968494A (en) * 1993-07-02 1995-01-24 Gerd Reime Arrangement for measuring or detecting a change in a retro-reflective component
DE4332022C2 (de) * 1993-09-21 1997-07-03 Tr Elektronic Gmbh Verfahren und Vorrichtung zum berührungslosen Erfassen der Winkellage eines Objekts, insbesondere beim Vermessen von länglichen Gegenständen
DE4405376C1 (de) * 1994-02-19 1995-02-16 Leuze Electronic Gmbh & Co Verfahren zum Erfassen von Objekten in einem Überwachungsbereich
US5825481A (en) 1996-05-22 1998-10-20 Jervis B. Webb Company Optic position sensor
DE19805959A1 (de) * 1998-02-13 1999-08-19 Ego Elektro Geraetebau Gmbh Sensor-Schaltvorrichtung mit einer Sensortaste
DE10001955A1 (de) 2000-01-18 2001-07-19 Gerd Reime Opto-elektronischer Schalter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0190770A1 *

Also Published As

Publication number Publication date
DE10024156A1 (de) 2001-11-29
US20030155487A1 (en) 2003-08-21
US6953926B2 (en) 2005-10-11
WO2001090770A1 (fr) 2001-11-29
JP2003534554A (ja) 2003-11-18
AU2001274039A1 (en) 2001-12-03

Similar Documents

Publication Publication Date Title
EP1290464A1 (fr) Procede et dispositif pour determiner la position d'un objet par optoelectronique
EP1269629B1 (fr) Commutateur optoelectronique a evaluation des variations de mouvement
DE10001943C2 (de) Vorrichtung und Verfahren zum Auswerten eines von einem Näherungssensor stammenden Nutzsignals
DE69011100T2 (de) Auf regen reagierende scheibenwischersteuerung.
EP3499267B1 (fr) Capteur photoélectrique trigonométrique
WO1997006997A1 (fr) Detecteur de distance de visibilite et de presence de pluie
EP2397837A2 (fr) Capteur de détermination sans contact de la capacité d'une bande de conduite et son utilisation
DE4339574C2 (de) Auswertevorrichtung für Signale, die von einer Meßanordnung zum Messen oder Erkennen einer Benetzung einer Fläche ermittelt wurden
EP2583082B1 (fr) Capteur pour la détermination, sans contact, des conditions de la chaussée, et son utilisation
EP1027227A1 (fr) Dispositif pour influer sur un appareil d'eclairage
DE102012006347A1 (de) Verfahren und Sensorsystem zur Erfassung eines Objektes und/oder zur Bestimmung eines Abstands zwischen dem Objekt und einem Fahrzeug
DE102013002676B4 (de) Kompensiertes Sensorsystem mit einem in der Sensitivität regelbaren Empfänger als kompensierendes Element
DE102016219518B4 (de) Lichtlaufzeitkamerasystem
WO2017060335A1 (fr) Système de guide optique pour la détection optique de gouttes
WO2023017054A1 (fr) Dispositif de capteur lidar et procédé de mesure
EP0143165B1 (fr) Senseur de distance pour mesurer la distance d'un objet proche
DE102013018800A1 (de) Verfahren und Vorrichtung zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich, insbesondere in einem Überwachungsbereich von automatischen Türen
EP2402793B1 (fr) Procédé de fonctionnement pulsé d'une barrière lumineuse et barrière lumineuse
EP4249950B1 (fr) Détection et détermination de la distance d'un objet
EP2963444B1 (fr) Capteur et procédé de détection à un endroit précis d'un objet transporté dans une direction de transport, par rapport à un capteur
EP4249949B1 (fr) Détection et détermination de la distance d'un objet
EP3561465B1 (fr) Procédé et dispositif de détection des états lumineux de sources de rayonnement
EP0865012A2 (fr) Dispositif de surveillance d'un espace
DE102010025721A1 (de) Verfahren und Vorrichtung zur Bestimmung der Helligkeit in der Umgebung eines Fahrzeuges
EP3531171A1 (fr) Capteur optoélectronique et procédé de détection d'un objet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20080705