DE102016219518B4 - Lichtlaufzeitkamerasystem - Google Patents

Lichtlaufzeitkamerasystem Download PDF

Info

Publication number
DE102016219518B4
DE102016219518B4 DE102016219518.2A DE102016219518A DE102016219518B4 DE 102016219518 B4 DE102016219518 B4 DE 102016219518B4 DE 102016219518 A DE102016219518 A DE 102016219518A DE 102016219518 B4 DE102016219518 B4 DE 102016219518B4
Authority
DE
Germany
Prior art keywords
time
light
flight
pixels
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102016219518.2A
Other languages
English (en)
Other versions
DE102016219518A1 (de
Inventor
Robert Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PMDtechnologies AG
Original Assignee
PMDtechnologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PMDtechnologies AG filed Critical PMDtechnologies AG
Publication of DE102016219518A1 publication Critical patent/DE102016219518A1/de
Application granted granted Critical
Publication of DE102016219518B4 publication Critical patent/DE102016219518B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates

Abstract

Lichtlaufzeitkamerasystem (1) mit einer Beleuchtung (10) zur Aussendung eines modulierten Lichts (Sp1) mit einer vorgegebenen Wellenlänge und einer Lichtlaufzeitkamera (20) mit einem Lichtlaufzeitsensor (22), der mehrere Lichtlaufzeitpixel (23) aufweist, die als PMD-Pixel mit Modulationsgates (Garn, Gbm) und wenigstens zwei Integrationsknoten (Ga, Gb) ausgebildet sind, mit einer Auswerteeinheit, die derart ausgestaltet ist, dass ein Entfernungswert (d) anhand einer Phasenverschiebung (Δφ) zwischen dem ausgesendeten (Sp1) und einem empfangenen Licht (Sp2) bestimmt wird, wobei zur Bestimmung der Phasenverschiebung (Δφ) eine Differenz der an den Integrationsknoten (Ga, Gb) nach einer Integrationszeit anliegenden Ladungen bzw. deren Spannungsäquivalent gebildet wird, dadurch gekennzeichnet, dass die Kamera (20) einen Kanten- oder Bandpassfilter aufweist, der für die vorgegebene Wellenlänge des ausgesendeten Lichts durchlässig ist, und dass die Beleuchtung (10) zur Aussendung eines modulierten Lichts in Form eines Punktemuster (50) ausgebildet ist, und die Auswerteeinheit derart ausgestaltet ist, dass zur Bestimmung eines Entfernungswerts nur die Pixel (23) des Lichtlaufzeitsensors (22) herangezogen werden, deren erfasste Nutzlichtamplitude (As) einen vorgegebenen Amplitudengrenzwert (ASG) übersteigen, wobei die Entfernungswerte unmittelbar benachbarter Pixel (23) zu einem gemeinsamen Entfernungswert zusammengefasst werden, wobei die Beleuchtung (10) derart ausgestaltet ist, dass unterschiedliche Lichtprofile durch eine Defokussierung der Strahlformungsoptik darstellbar sind.

Description

  • Die Erfindung betrifft ein Lichtlaufzeitkamerasystem nach Gattung des unabhängigen Anspruchs.
  • Mit Lichtlaufzeitkamerasystem sollen insbesondere alle Lichtlaufzeit bzw. 3D-TOF-Kamerasysteme, die eine Laufzeitinformation aus der Phasenverschiebung einer emittierten und empfangenen Strahlung gewinnen. Als Lichtlaufzeit bzw. 3D-TOF-Kameras sind insbesondere PMD-Kameras mit Photomischdetektoren (PMD) geeignet, wie sie u.a. in der DE 197 04 496 A1 beschrieben und beispielsweise von der Firma ‚ifm electronic GmbH‘ oder ,pmdtechnologies ag' als Frame-Grabber O3D bzw. als CamCube zu beziehen sind. Die PMD-Kamera erlaubt insbesondere eine flexible Anordnung der Lichtquelle und des Detektors, die sowohl in einem Gehäuse als auch separat angeordnet werden können.
  • Aus der EP 1 933 167 A2 ist ein optoelektronischer Sensor sowie ein Verfahren zur Erfassung und Abstandsbestimmung eines Objekts bekannt, bei dem ein erstes Tiefenbild mit einem ersten und ein zweites Tiefenbild mit einem zweiten 3D-Messverfahren ermittelt wird. Als mögliche Verfahren sind Stereoskopie, Triangulation, Lichtlaufzeitverfahren und auch strukturiertes Licht genannt.
  • Des Weiteren zeigt die DE 10 2011 089 629 A1 eine Lichtlaufzeitkamera, bei der Lichtlaufzeitpixel in Abhängigkeit erfasster Grauwerte zusammengefasst werden. Für die zusammengefassten Pixel wird hierbei ein gemeinsamer Entfernungswert bestimmt.
  • Ferner zeigt die EP 2 947 482 A2 eine Kamera mit einer Beleuchtung, die fokussierte Lichtstrahlen mit zwei unterschiedlichen Intensitäten aussendet. Wobei die Intensität der Lichtstrahlen in Abhängigkeit des erfassten Umgebungslichts eingestellt wird.
  • Aus der US 2006/0227317 A1 ist ein Lidar-System bekannt, mit einer Beleuchtung, die im Strahlengang ein Strahlformungselement aufweist, mit dem gezielt Objekte oder Objektpunkte im Sichtbereich der Kamera beleuchtet werden können.
  • Aufgabe der Erfindung ist es, die Entfernungsmessung eines Lichtlaufzeitkamerasystems zu verbessern.
  • Die Aufgabe wird in vorteilhafter Weise durch das erfindungsgemäße Lichtlaufzeitkamerasystem und Verfahren nach Gattung der unabhängigen Ansprüche gelöst.
  • Vorteilhaft ist ein Lichtlaufzeitkamerasystem vorgesehen, mit einer Beleuchtung zur Aussendung eines modulierten Lichts mit einer vorgegebenen Wellenlänge und einer Lichtlaufzeitkamera mit einem Lichtlaufzeitsensor, der mehrere Lichtlaufzeitpixel aufweist, die als PMD-Pixel mit Modulationsgates und wenigstens zwei Integrationsknoten ausgebildet sind, mit einer Auswerteeinheit, die derart ausgestaltet ist, dass ein Entfernungswert anhand einer Phasenverschiebung zwischen dem ausgesendeten und dem empfangenen modulierten Licht bestimmt wird, wobei zur Bestimmung der Phasenverschiebung eine Differenz der an den Integrationsknoten nach einer Integrationszeit anliegenden Ladungen bzw. deren Spannungsäquivalent gebildet wird,
    wobei die Kamera einen spektralen Kanten- oder Bandpassfilter aufweist, der für die vorgegebene Wellenlänge des ausgesendeten Lichts durchlässig ist, und die Beleuchtung für die Aussendung eines Punktmusters ausgebildet ist, wobei die Anzahl der Punkte im Punktemuster kleiner ist als die Anzahl der Lichtlaufzeitpixel des Lichtlaufzeitsensors,
    und die Auswerteeinheit derart ausgestaltet ist, dass zur Bestimmung eines Entfernungswerts nur die Pixel des Lichtlaufzeitsensors herangezogen werden, deren erfasste Nutzlichtamplitude (nach der Demodulation im pmd-Empfänger) einen vorgegebenen Amplitudengrenzwert übersteigen, wobei die Entfernungswerte unmittelbar benachbarter Pixel zu einem gemeinsamen Entfernungswert zusammengefasst werden.
  • Dieses Vorgehen hat den Vorteil, dass für die Entfernungsbestimmung nur Pixel herangezogen werden, die am Lichtlaufzeitsensor eine ausreichende Helligkeit bzw. Nutzlichtamplitude aufweisen.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert.
  • Es zeigen:
    • 1 schematisch ein Lichtlaufzeitkamerasystem,
    • 2 eine modulierte Integration erzeugter Ladungsträger,
    • 3 ein erfindungsgemäßes Lichtlaufzeitkamerasystem,
    • 4 verschiedene Punktemustervarianten,
    • 5 Punktemuster mit Lichtpunkten unterschiedlicher Größe,
    • 6 einen Querschnitt einer Lichtverteilung durch ein Punktemuster,
    • 7 eine Querschnitt einer Lichtverteilung durch ein Punktemuster mit einer Basisamplitude
    • 8 einen Querschnitt einer erfassten Nutzlichtamplitude mit ausreichender Basisamplitude,
    • 9 einen Querschnitt einer erfassten Nutzlichtamplitude mit zu geringer erfassten Basisamplitude,
    • 10 eine Querschnitt einer Lichtverteilung mit einer Basisamplitude zwei unterschiedlichen Punktemuster-Amplituden.
  • Bei der nachfolgenden Beschreibung der bevorzugten Ausführungsformen bezeichnen gleiche Bezugszeichen gleiche oder vergleichbare Komponenten.
  • 1 zeigt eine Messsituation für eine optische Entfernungsmessung mit einer Lichtlaufzeitkamera, wie sie beispielsweise aus der DE 197 04 496 A1 bekannt ist.
  • Das Lichtlaufzeitkamerasystem 1 umfasst eine Sendeeinheit bzw. ein Beleuchtungsmodul 10 mit einer Beleuchtung 12 und einer dazugehörigen Strahlformungsoptik 15 sowie eine Empfangseinheit bzw. Lichtlaufzeitkamera 20 mit einer Empfangsoptik 25 und einem Lichtlaufzeitsensor 22.
  • Der Lichtlaufzeitsensor 22 weist mindestens ein Laufzeitpixel, vorzugsweise auch ein Pixel-Array auf und ist insbesondere als PMD-Sensor ausgebildet. Die Empfangsoptik 25 besteht typischerweise zur Verbesserung der Abbildungseigenschaften aus mehreren optischen Elementen. Die Strahlformungsoptik 15 der Sendeeinheit 10 kann beispielsweise als Reflektor, Linsenoptik, Mikrooptik, holographische Optik, DOE, ... ausgebildet sein. In einer sehr einfachen Ausgestaltung kann ggf. auch auf optische Elemente sowohl empfangs- als auch sendeseitig verzichtet werden.
  • Das Messprinzip dieser Anordnung basiert im Wesentlichen darauf, dass ausgehend von der Phasenverschiebung des emittierten und empfangenen Lichts die Laufzeit und somit die zurückgelegte Wegstrecke des empfangenen Lichts ermittelt werden kann. Zu diesem Zwecke werden die Lichtquelle 12 und der Lichtlaufzeitsensor 22 über einen Modulator 30 gemeinsam mit einem bestimmten Modulationssignal Mo mit einer Basisphasenlage φ0 beaufschlagt. Im dargestellten Beispiel ist ferner zwischen dem Modulator 30 und der Lichtquelle 12 ein Phasenschieber 35 vorgesehen, mit dem die Basisphase φ0 des Modulationssignals M0 der Lichtquelle 12 um definierte Phasenlagen φvar verschoben werden kann. Für typische Phasenmessungen werden vorzugsweise Phasenlagen von φvar = 0°, 90°, 180°, 270° verwendet.
  • Entsprechend des eingestellten Modulationssignals sendet die Lichtquelle 12 ein intensitätsmoduliertes Signal Sp1 mit der ersten Phasenlage p1 bzw. p1 = φ0 + φvar aus. Dieses Signal Sp1 bzw. die elektromagnetische Strahlung wird im dargestellten Fall von einem Objekt 40 reflektiert und trifft aufgrund der zurückgelegten Wegstrecke entsprechend phasenverschoben Δφ(tL) mit einer zweiten Phasenlage p2 = φ0 + φvar + Δφ(tL) als Empfangssignal Sp2 auf den Lichtlaufzeitsensor 22. Im Lichtlaufzeitsensor 22 wird das Modulationssignal Mo mit dem empfangenen Signal Sp2 gemischt, wobei aus dem resultierenden Signal die Phasenverschiebung bzw. die Objektentfernung d ermittelt wird.
  • Als Beleuchtungsquelle bzw. Lichtquelle 12 eignen sich vorzugsweise infrarote Leuchtdioden, Laserquellen oder VCSEL. Selbstverständlich sind auch andere Strahlungsquellen in anderen Frequenzbereichen denkbar, insbesondere kommen auch Lichtquellen im sichtbaren Frequenzbereich in Betracht.
  • Das Grundprinzip der Phasenmessung ist schematisch in 2 dargestellt. Die obere Kurve zeigt den zeitlichen Verlauf des Modulationssignals Mo mit der die Beleuchtung 12 und der Lichtlaufzeitsensor 22 angesteuert werden. Das vom Objekt 40 reflektierte Licht trifft als Empfangssignal Sp2 entsprechend seiner Lichtlaufzeit tL phasenverschoben Δφ(tL) auf den Lichtlaufzeitsensor 22. Der Lichtlaufzeitsensor 22 sammelt die photonisch erzeugten Ladungen q über mehrere Modulationsperioden in der Phasenlage des Modulationssignals M0 in einem ersten Akkumulationsgate Ga und in einer um 180° verschobenen Phasenlage M0 + 180° in einem zweiten Akkumulationsgate Gb. Aus dem Verhältnis der im ersten und zweiten Gate Ga, Gb gesammelten Ladungen qa, qb lässt sich die Phasenverschiebung Δφ(tL) und somit eine Entfernung d des Objekts bestimmen.
  • 3 zeigt eine erfindungsgemäße Ausführungsform, bei der anstelle eines örtlich homogen, kontinuierlich verteilten Lichtkegels ein Punktemuster 50 ausgesendet wird. Das Punktemuster 50 kann beispielsweise mit Hilfe einer diffraktiven Optik 18 erzeugt werden. Es ist jedoch auch denkbar, mit mehreren Lichtquellen, insbesondere VCSELs oder LEDs, ein geeignetes Punktemuster 50 zu erzeugen. Die mit dem Punktemuster 50 beleuchteten Objekte 40 werden von der Kamera 20 erfasst.
  • Über die Optik 25 der Kamera 20 werden die Punkte 51 des Punktemusters 50 auf dem Lichtlaufzeitsensor abgebildet. Im dargestellten Fall ist die Größe der Punkte 51 im ausgesendeten Punktemuster 50 ist so abgestimmt, dass beim Empfang ein einzelner Punkt 51 des Punktemusters 50 jeweils ein Pixel 23 des Lichtlaufzeitsensors 22 vorzugsweise vollständig beleuchtet. Selbstverständlich können die Punkte 51 des Punktemusters 50 auch mehrere Lichtlaufzeitpixel 23 beleuchten. Zu Entfernungsbestimmung können die von einem Lichtpunkt 51 beleuchteten Lichtlaufzeitpixel 23 sowohl einzeln als auch zusammengefasst ausgewertet werden.
  • 4 zeigt mögliche Auslegungen der Punktemuster 50. In 4a ist ein Punktemuster 51 gezeigt, bei dem pro 4x4 Sub-Pixelmatrix 24 bzw. Sub-Pixelbereich ein Pixel 23 von einem Punkt 51 beleuchtet wird. In 4b ist eine Variante mit einer nochmals geringeren Flächendichte gezeigt, bei der in einer 8x8 Pixelmatrix nur ein Pixel 23 beleuchtet wird.
  • Erfindungsgemäß kann es vorgesehen, innerhalb des Sub-Pixelbereichs nur Pixel 23 für die Bestimmung eines Entfernungswerts d heranzuziehen deren Nutzlichtamplitude einen Amplitudengrenzwert überschreitet. Ausgehend von diesen Entfernungswert bzw. Entfernungswerten wird für den jeweiligen Sub-Pixelbereich jeweils ein einzelner Entfernungswert d bestimmt.
  • Erfindungsgemäß ist es zur Entfernungsbestimmung auch vorgesehen sein, nur das Pixel mit einer maximalen Nutzlichtamplitude auszuwerten, während die Pixel 23 mit geringeren Amplituden nicht zur Auswertung herangezogen werden.
  • Diese beiden Vorgehen haben den Vorteil, dass zur Entfernungsbestimmung nur die Pixel 23 mit einem hohen Signal-/Rauschverhältnis S/N herangezogen werden.
  • Bevorzugt sind die Punkte 51 im Punktmuster 50 so verteilt, dass pro ausgewertete Sub-Pixelmatrix 24 nur ein Pixel 23 beleuchtet wird. Die Position des Punkts 51 innerhalb einer solchen Sub-Pixelmatrix 24 ist beliebig. Die Verteilung der Punkte 51 im gesamten Punktemuster 51 kann insofern auch beliebig erfolgen, solange wenigstens ein Punkt 51 innerhalb der vorgegebenen Sub-Pixelmatrix 24 detektierbar ist. Somit können Punktemuster 50 mit gleichförmig oder statistisch verteilten Punkten 51 aber auch räumlich kodierte Punktemuster 50 realisiert werden. Ebenso ist es auch denkbar, die Punkte 51 unabhängig von einer auszuwertenden Sub-Pixelmatrix 24 zu verteilen.
  • 5 zeigt eine Variante bei der die Größe der Lichtpunkte 51 variiert und einige der Lichtpunkte 51 des Punktemusters 50 mehrere Lichtlaufzeitpixel 23 beleuchten. Welche und wieviel der beleuchten Lichtlaufzeitpixel 23 ausgewertet werden sollen, kann beispielsweise anhand vorgebbarer Signalamplituden, dem erfassten Hintergrundlicht und/oder anderen Kriterien erfolgen. Mehrere benachbarte, beleuchtete Lichtlaufzeitpixel 23 können ggf. auch gemeinsam ausgewertet werden.
  • Gegenüber einer herkömmlichen homogenen Beleuchtung hat das erfindungsgemäße Vorgehen den Vorteil, dass die Punkte 51 des ausgesendeten Punktemuster 50 mit einer höheren Strahlungsdichte ausgesendet werden können als dies bei einer homogenen Beleuchtung bei gleichem Energieeinsatz möglich wäre. Der mögliche Signalgewinn hängt direkt proportional von der Dichte der Punkte 51 im Punktemuster ab. Bei einer Dichte von 1:4, d.h. 1 Pixel von 4 Pixeln wird beleuchtet, erhöht sich der Signalgewinn um Faktor 4. Bei einem Verhältnis 1:10 um Faktor 10 oder bei 1:1000 um einen Faktor 1000.
  • Durch die Konzentration der Energie auf wenige Punkte lässt sich der Arbeitsbereich des Lichtlaufzeitkamerasystems im Hinblick auf Fremdlichtfestigkeit und/oder Entfernung um den Preis der Ortsauflösung vergrößern. Bei einem Punktemuster mit der Dichte 1:10 verringert sich die Auflösung des Lichtlaufzeitsensors 22 entsprechend um Faktor 10 während sich das S/N-Verhältnis und somit auch die Fremdlichtfestigkeit um einen Faktor 10 erhöht.
  • Wird das Licht zudem in einem bekannten, kodierten Punktemuster 50 ausgesendet, so kann neben der TOF-Entfernungsmessung zusätzlich auch eine Entfernungsbestimmung über Triangulation, so wie es aus so genannten strukturierten Lichtverfahren bekannt ist, herangezogen werden.
  • Ist die Triangulationsauswertung nicht gewünscht, so ist eine genaue Kenntnis, beispielsweise über die Struktur, räumliche Verteilung und/oder Kodierung, des Punktemusters 50 nicht erforderlich. Auch können für eine reine TOF-Auswertung Sender und Empfänger nah nebeneinander angeordnet werden und somit ein kompakteres System realisiert werden. Für eine Triangulationsauswertung würde man in der Regel hingegen einen kleinen Sender-Empfängerabstand vermeiden.
  • Ausgehend vom bekannten Abstand zwischen der Lichtquelle 12 der Beleuchtung 10 und dem Lichtlaufzeitsensor 22 der Kamera 20 kann aus der räumlichen Verschiebung der erfassten Punkte 51 des Punktemusters 50 ein Abstand des erfassten Punkts 51 bestimmt werden.
  • 6 zeigt einen möglichen Querschnitt der Amplituden AB in der Lichtverteilung eines durch die Beleuchtung 10 ausgesendeten Punktemuster 50. Im vorliegenden Fall sind die Lichtpunkte 51 nicht äquidistant verteilt. Die Breite der Amplitudenpeaks der Lichtpunkte 51 ist vorzugsweise so gewählt, dass beim Empfang dieser Lichtpunkte 51 im Wesentlichen nur ein Lichtlaufzeitpixel 23 beleuchtet wird.
  • 7 eine Querschnitt einer Lichtverteilung bei dem zusätzlich zum Punktemuster 51 ein Licht mit einer Basisamplitude ABB ausgesendet wird. Im Unterschied zu der Lichtverteilung gemäß 5 fällt die Lichtemission zwischen den Peaks nicht auf Null, sondern nur bis auf die Basisamplitude ABB ab. In bekannter Weise nimmt die Amplitude bzw. Helligkeit des emittieren Lichts mit 1/r2 ab. Die Basisamplitude ABB ist so gewählt, dass das im Nahbereich vom Lichtlaufzeitsensor 22 erfasste Licht eine ausreichende Signalstärke zum Hintergrundrauschen aufweist. Mit zunehmender Entfernung wird das S/N-Verhältnis dieser Basisamplitude ABB zunehmende schlechter, während die Lichtpunkte mit hoher Amplitude ein nach wie vor ausreichendes S/N-Verhältnis aufweisen.
  • Dieses Vorgehen hat den Vorteil, dass im Nahbereich die Szenerie mit einer für die Entfernungsbestimmung ausreichenden Amplitude vollständig beleuchtet werden kann, und die Entfernungsbestimmung mit der vollen Auflösung des Lichtlaufzeitsensors 22 erfolgen kann. Im Fernbereich hingegen reicht die Stärke der Basisamplitude nicht mehr aus. Eine Entfernungsbestimmung erfolgt dann anhand der mit hoher Intensität ausgestrahlten Lichtpunkte mit geringerer Auflösung.
  • Somit ergibt sich eine effektive Dynamikerweiterung der Laufzeitkamera in Nah-und Fernbereich, sowie eine verbesserte Hintergrundlichtfestigkeit.
  • 8 und 9 zeigen exemplarisch mögliche Signal/Amplitudenverläufe AS des erfassten modulierten Lichts über einen Lichtlaufzeitsensor-Querschnitt xs für einen Nah- bzw. Fernbereich. Erfindungsgemäß ist es vorgesehen, dass nur Signale AS für die Entfernungsmessung ausgewertet werden, die einen Amplitudengrenzwert ASG überschreiten. Im in 8 dargestellten Fall trifft dies für alle Pixel im gezeigten Querschnitt zu. 9 zeigt einen Fall bei dem das mit der Basisamplitude AB ausgesendete und dann vom Lichtlaufzeitsensor 22 empfangene modulierte Licht bzw. Nutzlicht nicht mehr den Amplitudengrenzwert ASG überschreitet. In diesem Fall überscheiten nur die mit größerer Amplitude ausgesendeten Lichtpunkte 51 des Punktmusters 50 den Amplitudengrenzwerts ASG und können ausgewertet werden.
  • Um ein möglichst hohes Signal- zu Rauschverhältnis zu erhalten ist es erfindungsgemäß ferner vorgesehen, in dem in 9 skizzierten Fall nur die Pixel auszuwerten, der Amplitude innerhalb eines vorgegebenen Sub-Pixelbereich maximal ist. Die für dieses Pixel ermittelte Entfernung wird als Entfernungswert für den gesamten Sub-Pixelbereich verwendet.
  • Ob der Sensor in einem Sub-Pixel-Betrieb umgeschaltet wird, kann beispielsweise anhand der Anzahl der Pixel bestimmt werden, die den Amplitudengrenzwert ASG über- oder unterschreiten. Beispielsweise könnte in den Sub-Pixel-Betrieb umgeschaltet werden, wenn mehr als 50 % der Pixel den Amplitudengrenzwert ASG nicht mehr überschreiten. Selbstverständlich können je nach Anwendung auch andere Grenzwerte festgelegt werden.
  • Ferner ist es auch denkbar, wie in 10 gezeigt, Punktemuster mit unterschiedlichen Amplituden zu realisieren. Neben dem Licht mit Basisamplitude ABB wird ein erstes Punktemuster mit einer ersten Peakamplitude ABP1 und ein zweites Punktemuster mit einer zweiten größeren Peakamplitude ABP2 ausgesendet. Falls das erste Punktemuster nicht mehr sinnvoll detektiert werden kann, verbleibt, dass zweite Punktemuster mit der größeren Amplituden ABP2. Da dieses Punktemuster typischerweise eine geringere Punktedichte aufweisen wird, kann auch hier ggf. der Sensor in größere Sub-Pixelbereiche aufgeteilt werden und in der vorgenannten Art und Weise ausgewertet werden.
  • Zusätzlich ist ein System mit mehr als einer Beleuchtung möglich, bei dem mindestens eine der Beleuchtungen das beschriebene Punktemuster ausweist und mindestens eine weitere Beleuchtung die Szene homogen ausleuchtet. Die Beleuchtungen können dann in unterschiedlicher Weise kombiniert werden, je nach Umgebungsbedingung. Beispielsweise könnte das System im Falle von starkem Hintergrundlicht auf die Punkt-Muster-Beleuchtung zurückgreifen, im Falle von keinem oder geringem Hintergrundlicht hingegen die homogene Beleuchtung verwenden.
  • Ebenfalls ist denkbar, eine Beleuchtung zu realisieren, die ein variables Strahlprofil aufweist, also beispielsweise zwischen Punktemuster und homogener Beleuchtung umgeschaltet werden kann. Das ist beispielsweise möglich, wenn die Beleuchtung defokussiert wird.
  • Auch die Verwendung von Mikrospiegelarrays (DMD) ist für diese Aufgabe denkbar.
  • Die Messung des vorhandenen Hintergrundlichts kann mit unterschiedlichen Mitteln erfolgen. Beispielsweise kann eine Fremdlicht-Messphase vorgesehen sein, in der bei nichtaktiver Beleuchtung 10 ein Dunkelbild aufgenommen wird, aus dem die Intensität des Fremd- bzw. Hintergrundlichts ermittelt werden kann.
  • Ebenso kann es vorgesehen sein, während des Entfernungsmessbetriebs aus den an den Lichtlaufzeitpixel 23 erfassten Signalamplituden die Intensität des Hintergrundlichts zu ermitteln bzw. abzuschätzen. Auch ist es denkbar, separate Erfassungsmittel für das Hintergrundlicht vorzusehen.
  • Abhängig vom Hintergrundlicht ist es nicht nur denkbar zwischen unterschiedlichen Beleuchtungen umzuschalten, sondern auch die Auswerteverfahren umzuschalten. Beispielsweise kann es bei einem Punktemuster mit Basisamplitude vorgesehen sein, dass bei eine niedrigen Hintergrundlichtintensität alle Lichtlaufzeitpixel 23 und bei einer hohen Intensität nur die Lichtpunkte 51 für die Entfernungsmessung ausgewertet werden.
  • Zur Bestimmung der für der Signalamplitude am Sensor könnte im einfachsten Fall das Summensignal der an beiden Integrationsknoten im Integrationsintervall akkumulierten Ladung bestimmt werden. Dieses Vorgehen hat jedoch den Nachteil, dass auch das Hintergrundlicht zur Amplitude beiträgt.
  • Erfindungsgemäß ist es daher vorgesehen, eine Nutzlichtamplitude aus den Ladungsdifferenzen qa - qb bzw. hierzu äquivalenten Spannungsdifferenzen zu zwei unterschiedlichen Phasenmessungen zu bestimmen, gemäß A = ( q a q b ) φ 0 2 + ( q a q b ) φ 1 2 2
    Figure DE102016219518B4_0001
    mit qa,b = Ladungen an den Integrationsknoten Ga, Gb und mit φ0,1 = Phasenlage der jeweiligen Messung, beispielsweise mit φ0 = 0° und φ1 = 90°. Dieses Vorgehen hat den Vorteil, dass durch die Differenzbildung das Fremd- bzw. Hintergrundlicht quasi ausgeblendet wird und die Nutzlichtamplitude somit grundsätzlich nur vom moduliert ausgestrahlten und empfangenen Nutzlicht abhängig ist.
  • Das hier formulierte Beispiel der Verwendung von zwei Phasenmessungen zur Amplitudenbestimmung dient lediglich der Veranschaulichung und Abgrenzung zur Verwendung des Summensignals. Das Verfahren ist gleichermaßen übertragbar und anwendbar für andere Modulationsverfahren wie n-Phasen Modulation, Mehr-Frequenzmodulation, pn-Modulation, u.s.w.
  • Bezugszeichenliste
  • 1
    Lichtlaufzeitkamerasystem
    10
    Beleuchtungsmodul
    12
    Beleuchtung
    20
    Empfänger, Lichtlaufzeitkamera
    22
    Lichtlaufzeitsensor
    23
    Lichtlaufzeitpixel
    30
    Modulator
    35
    Phasenschieber, Beleuchtungsphasenschieber
    38
    Modulationssteuergerät
    40
    Objekt
    50
    Punktemuster
    51
    Punkt, Lichtpunkt
    φ, Δφ(tL)
    laufzeitbedingte Phasenverschiebung
    φvar
    Phasenlage
    φ0
    Basisphase
    M0
    Modulationssignal
    p1
    erste Phase
    p2
    zweite Phase
    Sp1
    Sendesignal mit erster Phase
    Sp2
    Empfangssignal mit zweiter Phase
    Ga, Gb
    Integrationsknoten
    d
    Objektdistanz
    q
    Ladung

Claims (8)

  1. Lichtlaufzeitkamerasystem (1) mit einer Beleuchtung (10) zur Aussendung eines modulierten Lichts (Sp1) mit einer vorgegebenen Wellenlänge und einer Lichtlaufzeitkamera (20) mit einem Lichtlaufzeitsensor (22), der mehrere Lichtlaufzeitpixel (23) aufweist, die als PMD-Pixel mit Modulationsgates (Garn, Gbm) und wenigstens zwei Integrationsknoten (Ga, Gb) ausgebildet sind, mit einer Auswerteeinheit, die derart ausgestaltet ist, dass ein Entfernungswert (d) anhand einer Phasenverschiebung (Δφ) zwischen dem ausgesendeten (Sp1) und einem empfangenen Licht (Sp2) bestimmt wird, wobei zur Bestimmung der Phasenverschiebung (Δφ) eine Differenz der an den Integrationsknoten (Ga, Gb) nach einer Integrationszeit anliegenden Ladungen bzw. deren Spannungsäquivalent gebildet wird, dadurch gekennzeichnet, dass die Kamera (20) einen Kanten- oder Bandpassfilter aufweist, der für die vorgegebene Wellenlänge des ausgesendeten Lichts durchlässig ist, und dass die Beleuchtung (10) zur Aussendung eines modulierten Lichts in Form eines Punktemuster (50) ausgebildet ist, und die Auswerteeinheit derart ausgestaltet ist, dass zur Bestimmung eines Entfernungswerts nur die Pixel (23) des Lichtlaufzeitsensors (22) herangezogen werden, deren erfasste Nutzlichtamplitude (As) einen vorgegebenen Amplitudengrenzwert (ASG) übersteigen, wobei die Entfernungswerte unmittelbar benachbarter Pixel (23) zu einem gemeinsamen Entfernungswert zusammengefasst werden, wobei die Beleuchtung (10) derart ausgestaltet ist, dass unterschiedliche Lichtprofile durch eine Defokussierung der Strahlformungsoptik darstellbar sind.
  2. Lichtlaufzeitkamerasystem (1) nach Anspruch 1, bei dem für ein Lichtlaufzeitpixel (23) oder für zusammengefasste Lichtlaufzeitpixel (23) nur dann ein Entfernungswert ermittelt und/oder ausgegeben wird, wenn die Signalamplitude des am Lichtlaufzeitpixel empfangenen Lichts vorgegebenen Auswahlkriterien genügt.
  3. Lichtlaufzeitkamerasystem (1) nach einem der vorhergehenden Ansprüche, bei dem ein zweiter Entfernungswert anhand der örtlichen Lage der modulierten Lichtpunkte (51) mit Hilfe eines Triangulationsverfahrens ermittelt wird.
  4. Lichtlaufzeitkamerasystem (1) nach einem der vorhergehenden Ansprüche, bei dem das Verhältnis der Anzahl der ausgesendeten Lichtpunkte (51) zur Anzahl der Lichtlaufzeitpixel (23) des Lichtlaufzeitsensors (22) 1:4 oder kleiner ist.
  5. Lichtlaufzeitkamerasystem (1) nach einem der vorhergehenden Ansprüche, bei dem die Beleuchtung (10) zur Aussendung eines Punktemusters (50) mit einer Basisamplitude ausgebildet ist, und die Auswerteeinheit derart ausgebildet ist, dass die Lichtlaufzeitpixel (23), die mit einer Basisamplitude beleuchtet werden, nur dann ausgewertet werden, wenn an diesen Lichtlaufzeitpixel (23) eine hinreichende Nutzsignalamplitude in Relation zum Hintergrundlicht anliegt.
  6. Lichtlaufzeitkamerasystem (1) nach einem der vorhergehenden Ansprüche, mit einer Beleuchtung (10), die für Aussendung von wenigstens zwei unterschiedlichen Lichtprofilen ausgebildet ist.
  7. Lichtlaufzeitkamerasystem (1) nach Anspruch 6, bei dem mindestens ein Lichtprofil homogen und mindestens ein weiteres Lichtprofil ein Punktlichtmuster mit lokal erhöhten Punktlichtmustern aufweist.
  8. Lichtlaufzeitkamerasystem (1) nach einem der vorhergehenden Ansprüche, bei dem die Beleuchtung (10) ein Mikrospiegelarray zur Strahlformung aufweist.
DE102016219518.2A 2015-11-12 2016-10-07 Lichtlaufzeitkamerasystem Active DE102016219518B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015222362 2015-11-12
DE102015222362.0 2015-11-12

Publications (2)

Publication Number Publication Date
DE102016219518A1 DE102016219518A1 (de) 2017-05-18
DE102016219518B4 true DE102016219518B4 (de) 2021-06-17

Family

ID=58640513

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016219518.2A Active DE102016219518B4 (de) 2015-11-12 2016-10-07 Lichtlaufzeitkamerasystem

Country Status (1)

Country Link
DE (1) DE102016219518B4 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3717932A1 (de) 2017-11-28 2020-10-07 Sony Semiconductor Solutions Corporation Beleuchtungsvorrichtung, flugzeitsystem und -verfahren
DE102020127332A1 (de) 2020-10-16 2022-04-21 Ifm Electronic Gmbh Lichtlauftzeitkamerasystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060227317A1 (en) * 2005-04-06 2006-10-12 Henderson Sammy W Efficient lidar with flexible target interrogation pattern
EP1933167A2 (de) * 2006-12-15 2008-06-18 Sick Ag Optoelektronischer Sensor sowie Verfahren zur Erfassung und Abstandsbestimmung eines Objekts
DE102011089629A1 (de) * 2010-12-22 2012-06-28 PMD Technologie GmbH Lichtlaufzeitkamera
EP2947482A2 (de) * 2014-05-19 2015-11-25 Rockwell Automation Technologies, Inc. Optische bereichsüberwachung mit punktmatrixbeleuchtung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704496C2 (de) 1996-09-05 2001-02-15 Rudolf Schwarte Verfahren und Vorrichtung zur Bestimmung der Phasen- und/oder Amplitudeninformation einer elektromagnetischen Welle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060227317A1 (en) * 2005-04-06 2006-10-12 Henderson Sammy W Efficient lidar with flexible target interrogation pattern
EP1933167A2 (de) * 2006-12-15 2008-06-18 Sick Ag Optoelektronischer Sensor sowie Verfahren zur Erfassung und Abstandsbestimmung eines Objekts
DE102011089629A1 (de) * 2010-12-22 2012-06-28 PMD Technologie GmbH Lichtlaufzeitkamera
EP2947482A2 (de) * 2014-05-19 2015-11-25 Rockwell Automation Technologies, Inc. Optische bereichsüberwachung mit punktmatrixbeleuchtung

Also Published As

Publication number Publication date
DE102016219518A1 (de) 2017-05-18

Similar Documents

Publication Publication Date Title
EP3729137B1 (de) Multipuls-lidarsystem zur mehrdimensionalen erfassung von objekten
DE102015205826B4 (de) Entfernungsmesssystem mit Lichtlaufzeitpixelzeile
DE19730341A1 (de) Verfahren zum Betrieb einer opto-elektronischen Sensoranordnung
EP1953504A1 (de) Verfahren zur Erfassung eines Gegenstands und optoelektronische Vorrichtung
DE10138609A1 (de) Überwachungsverfahren und optoelektronischer Sensor
EP2210124B1 (de) Vorrichtung zur optischen distanzmessung
DE102005028570B4 (de) Entfernungsmessvorrichtung und Verfahren zur Entfernungsmessung
DE102009046108A1 (de) Kamerasystem
DE102016219518B4 (de) Lichtlaufzeitkamerasystem
DE102010043723B4 (de) Lichtlaufzeitkamerasystem
DE102019123449A1 (de) Lichtlaufzeitkamerasystem mit hohem Dynamikumfang
WO2019243292A1 (de) Lichtlaufzeitkamerasystem mit einer einstellbaren optischen ausgangsleistung
DE102016221184A1 (de) Kalibriervorrichtung und Kalibrierverfahren für ein Kamerasystem
EP1211480A2 (de) Elektrooptisches Messgerät zum Feststellen der Relativlage von Körpern oder von Oberflächenbereichen solcher Körper
DE102016213217A1 (de) Lichtlaufzeitkamerasystem
DE4304815A1 (de) Optischer Sensor
DE19851010B4 (de) Einrichtung zur Erkennung und Lokalisierung von Laserstrahlungsquellen
DE102016219515A1 (de) Lichtlaufzeitkamerasystem
DE102016219516B4 (de) Lichtlaufzeitkamerasystem
DE102016202181A1 (de) Beleuchtung für eine 3D-Kamera
DE102015104021A1 (de) Polygonscanner und Verfahren zum Erfassen von Objekten
DE102009045553B4 (de) Lichtlaufzeit-Messsystem
EP2851704B1 (de) Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
DE102014206236B4 (de) Lichtlaufzeitkamera für ein Fahrzeug
EP3126866B1 (de) Erfassungseinrichtung, insbesondere zur nutzung in einem kraftfahrzeug und kraftfahrzeug

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: PMDTECHNOLOGIES AG, DE

Free format text: FORMER OWNER: PMDTECHNOLOGIES AG, 57076 SIEGEN, DE

R082 Change of representative

Representative=s name: SCHUHMANN, JOERG, DIPL.-PHYS. DR. RER. NAT., DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final