EP1286416B1 - Schliessen und Phasenverschieben einer Antenne - Google Patents

Schliessen und Phasenverschieben einer Antenne Download PDF

Info

Publication number
EP1286416B1
EP1286416B1 EP20020291958 EP02291958A EP1286416B1 EP 1286416 B1 EP1286416 B1 EP 1286416B1 EP 20020291958 EP20020291958 EP 20020291958 EP 02291958 A EP02291958 A EP 02291958A EP 1286416 B1 EP1286416 B1 EP 1286416B1
Authority
EP
European Patent Office
Prior art keywords
cell
phase
antenna
phase shift
phase shifter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020291958
Other languages
English (en)
French (fr)
Other versions
EP1286416A1 (de
Inventor
Xavier Thales Intellectual Property Delarue
Richard Thales Intellectual Property Guener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1286416A1 publication Critical patent/EP1286416A1/de
Application granted granted Critical
Publication of EP1286416B1 publication Critical patent/EP1286416B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/185Phase-shifters using a diode or a gas filled discharge tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to a method of closing an electronic scanning antenna, a method of adjusting such an antenna and a phase shifter associated with a radiating element. It applies for example for the setting of active antennas with electronic scanning, in particular for the adjustment of its transmission and reception modules.
  • the modern multifunction radars having to perform both a multi-target tracking function and a standby function, include an electronic scanning antenna capable of performing a scanning site and field.
  • Electron scanning antennas commonly consist of a set of radiating elements emitting a microwave whose phase is electronically controllable, independently for each element or group of elements, in order to obtain an antenna beam sweeping the antenna. space.
  • the plane of such an antenna is lined with phase shifters, a phase shifter being associated with a radiating element.
  • An antenna whose beam is able to scan the space in two directions requires a large number of radiating elements. Most of the time, for cost reasons, diode phase shifters are used.
  • An active antenna furthermore comprises emission sources, more particularly power amplifiers intended for the amplification of a microwave signal supplied by a local oscillator.
  • An elementary amplifier may be associated with one or more phase shifters. In fact, it is for example a module comprising both the transmission function, amplification of a microwave signal, and the reception function. Since the antenna beam is a function of the phase shifts applied to the signals of the radiating elements, the phase at the origin of each of the emission modules is important. It is indeed necessary that the emission modules emit with the same phase for reasons of optimization of the antenna patterns. For an antenna manufacturer, a solution a priori simple consists of supplying identical phase modules to equip the same antenna. However, such a solution is expensive because their phases are dispersed from manufacture.
  • An economical solution therefore consists in using modules and phase-shifters with dispersed initial phases, which are therefore less expensive, and in adjusting or calibrating the phases at the output of the phase-shifters, once the antenna has been equipped.
  • Conventional methods use a calibration signal flowing in each of the transmission modules. The parameters of the latter are then adjusted so as to obtain a phase determined according to the calibration signal.
  • a first disadvantage is that the calibration function can be disturbed by the external environment, especially in case of interference.
  • a second disadvantage lies in the fact that the calibration signal emitted by an antenna can constitute a signal of relatively high power that can be detected, and therefore troublesome in a context of discretion.
  • the subject of the invention is a method of closing an electronically scanned antenna comprising radiating elements each connected upstream to a microwave phase shifter.
  • the phase shifter comprising cascaded switch phase shift cells, the last cell being composed of two branches each opening on the radiating element and having at least one switch, the closing of the antenna is obtained by controlling the switches of the cell in the on state.
  • the degree of isolation of the closure is reinforced because the penultimate cell is composed of two branches each having at least one switch and joining at the input of the last branch, the switches of the two branches are controlled at the passing state.
  • the latter comprises two switches D6, D7 separated by a distance equal to ⁇ / 4 where ⁇ is the average wavelength signals transmitted by the antenna, the most upstream switch D6 being controlled in the on state while the downstream switch D7 is controlled in the off state so as to create a phase shift equal to ⁇ relative to the blocked state of the switch D6.
  • the invention also relates to a method for adjusting an electronic scanning antenna according to claim 8 and a microwave phase shifter comprising cascaded diode phase shifters according to claim 10.
  • the main advantages of the invention are that it allows a reliable and discreet setting of an electronic scanning antenna, that it is simple to implement and that it is economical.
  • the figure 1 illustrates an example of architecture of a scanning antenna.
  • This antenna has N groups of elements radiating 1, each radiating element being associated with a phase-shifter 2 located upstream.
  • a radiating element, placed at the output of its phase-shifter, is for example a dipole.
  • the radiating elements and their phase shifters are for example grouped in rows or columns. For example, we will consider N rows.
  • Each line is connected to a transmission and reception module 3.
  • a low-level microwave signal f 0 drives the modules 3 which amplify this signal to provide each group of phase-shifters 2 with an amplified signal.
  • microwave lines 4 are distributed in each of the phase shifters by a tree structure of microwave lines 4, in the form of candlestick for example, the important thing is that the signal is distributed equiphase on the phase shifters. Moreover, if a group has m phase shifter and the signal has a power P, the power received by a phase shifter is P / m.
  • These microwave lines are for example of the triplate type. They are for example connected to a transmission and reception module 3 by a divider 5, for example a hybrid ring, so that a first input / output is connected by a microwave line to the module 3. Another output is connected to a first combiner 6.
  • the output of the reception channel of each module 3 is connected to a divider 7 whose output is connected to a second combiner 8 and the other output is connected to a third combiner 9.
  • the output of the third combiner 9 constitutes the sum channel and the outputs of the first and second combiners 6, 8 constitute the difference paths, in elevation and in azimuth, in particular for deviation measurements.
  • a calibration signal f E is sent by a coupler 10 to each of the phase shifter groups 2. This calibration signal has a reference phase ⁇ 0 .
  • the figure 2 illustrates by a block diagram a diode phase shifter 2 according to the invention.
  • This phase shifter comprises four diode phase shift cells 21, 22, 23, 24.
  • the phase shift function is performed in a manner quantified by these cells. Each cell corresponds to a given phase shift weight.
  • the first, second, third and fourth cells 21, 22, 23, 24 operate for example respectively a phase shift of ⁇ / 8, ⁇ / 4, ⁇ / 2 or ⁇ according to the state of their control bits.
  • the microwave signal arrives via an E input before moving successively in the first 21, second 22, third 23 and fourth cell 24. At the output of the latter, the phase-shifted signal drives the radiating element 1, for example a dipole.
  • the invention makes particular use of this diode phase shifter by advantageously exploiting some of its properties.
  • the first cell 21, cell of the ⁇ / 8 bit is for example conventionally composed of two ends of microwave lines of length ⁇ / 4, also called “stub" in the Anglo-Saxon literature. This cell acts by disturbance. Subsequently, ⁇ corresponds to the average wavelength, that is to say the frequency at the center of the operating band.
  • the second cell 22, ⁇ / 4 bit cell is for example also composed of "stubs". Other forms of cells are conceivable.
  • the last two phase shift cells 23, 24, before the radiating element 1 their constructions are as defined below.
  • the penultimate phase shift cell 23, ⁇ / 2 bit cell acts by path difference.
  • it is composed of two branches 231, 232 which meet at its output.
  • the two branches have different lengths, the second branch having a length greater than ⁇ / 4 relative to the first 231.
  • the first branch is a microwave line comprising a diode D8.
  • the second branch is a microwave line comprising two diodes D6, D7. The distance between these two diodes is ⁇ / 4.
  • the last cell 24, ⁇ bit cell associated with the dipole 1, acts by reversing the electromagnetic field. It comprises two branches 241, 242 each opening on a branch of the dipole.
  • the first branch 241 comprises a diode D10 and the second branch comprises a diode D9.
  • phase shifter during operation of the antenna consists in making one of the branches of the ⁇ / 2 cell passing and the other blocking. This amounts in particular to controlling the diodes D6, D7, D8 of the bit cell ⁇ / 2 so as to direct the microwave signal in one branch or the other, that is to say to block the diode D8 when the diodes D6 and D7 conduct and vice versa.
  • the diode D9 is blocked when the diode D10 is conducting to obtain the field vector in one direction and the field is switched. in phase opposition when the commands of the diodes are reversed, hence the phase shift of ⁇ .
  • phase-shifter presented by the figure 2 advantageously makes it possible to perform at least two functions.
  • a first function performs the closing of the antenna. The antenna is then isolated from the outside.
  • a calibration signal injected into the phase shifter can then be reflected towards the source or to a calibration coupler.
  • the second function protects these circuits by providing a user with control over the path of the reflected signal, so that it is directed in particular elsewhere than to the source or the calibration coupler where fragile circuits are located such as limiters for example.
  • the invention thus allows a closure of the antenna.
  • a calibration signal f E is injected. This signal is for example injected, for each group of radiating elements associated with a transmission / reception module, at the input x of the triplate-type circuit comprising the supply lines 4 of the phase-shifters. This allows in particular to inject a reception signal or to make a power transmission, the two operations being temporally decorrelated, and to collect a measurement signal.
  • the invention makes it possible, in a simple way, to isolate the transmission and reception circuits up to and including the phase shifters, in one direction and in the other.
  • the phase shifter is used in a non-conforming manner, in particular with regard to its last two cells 23, 24.
  • This use according to the invention prevents a signal from passing.
  • the last cell 24 ⁇ phase shift, the two diodes D9 and D10 are controlled in the on state, which brings an open circuit in the dipole 1 and input of this cell 24.
  • Experimental measurements carried out by the Applicant show that an insulation of 30 dB can be obtained between the dipole 1 and the input of the last cell 24.
  • the diodes D6, D7 and D8 are also controlled in the on state, which brings an open circuit at the output of this cell 23.
  • Experimental measurements performed by the Applicant have shown that an additional insulation of 20dB could be thus obtained.
  • a second function provided by the invention is a phase shift in reflection.
  • it relates to the control of the cells 21, 22, 23, that is to say on the cell 23 where the reflection of the calibration signal begins and the cells 21, 22 which precede it.
  • the control relates particularly to the diode D6 of one of the branches 232 of the penultimate cell, located furthest upstream.
  • the second diode of the branch, located downstream is the diode D7.
  • the figure 3 presents, by way of example, a possible embodiment of a phase shifter according to the invention corresponding to the schematic diagram of the figure 2 .
  • the phase shifter is for example made on a structure 32 of microrubber type still called microstrip.
  • the figure 3 shows the circuits of the phase-shifter by a view from above.
  • This microstrip structure comprises for example the dipole 1 forming the radiating element placed at the output of the phase shifter.
  • the circuit therefore comprises a microwave line 33 from the input E of the phase shifter to the penultimate cell composed of its two branches 231, 232. These latter each comprise at least one diode D6, D7, D8 and meet in cell output.
  • One of the two branches 232 comprises two successive diodes D6, D7 separated by a distance equal to ⁇ / 4 where ⁇ is the average wavelength of the signals emitted by the antenna.
  • This path difference of ⁇ / 4 between the two branches 231, 232 makes it possible to create a phase shift of ⁇ / 2 depending on whether one passes through one or the other of the two branches and also makes it possible to create a phase shift of ⁇ for the reflected signal, in particular because the diodes D6 and D8 are equidistant from the point of separation A of the two branches.
  • the last phase shift cell placed at the output of the preceding one is composed of two branches 241, 242 of equal length opening on the dipole 1.
  • Each branch comprises at least one diode D9, D10 located equidistant from the separation point B of the two branches.
  • the phase shifter of the figure 3 is a four-bit control phase shifter capable of producing sixteen equidistributed phase shift values in the range between 0 and 2 ⁇ .
  • the two preceding cells 23, 24 produce respective phase shifts of ⁇ / 2 and ⁇ .
  • the first two cells of the cascade 21, 22 producing phase shifts of ⁇ / 8 and ⁇ / 4 are located along the microwave lines 33 connecting the input of the phase shifter to the point of entry A of the penultimate cell 23.
  • the first cell is for example conventionally composed of two "stub" lines 34, 35 each connecting the microwave line 33 to a diode D34, D35.
  • the first cell comprises for example three "stubs" 36, 37, 38 each connecting the microwave line 33 to a diode D36, D37, D38.
  • the control signals of the diodes, supplied by the control means 31, pass through one or more layers of printed circuit type associated with the triplate circuit.
  • the control signals arrive on the front panel, which includes the diodes, by means of metallized holes then are conveyed to the diodes by low frequency conductive tracks, these conventional elements not being represented on the figure 3 .
  • the insulation obtained between the entry point A of the penultimate cell and the output of the phase shifter, at the level of the radiating element 1, can reach about 50dB, which provides good protection vis-à-vis the outside.
  • This function advantageously corresponds to a closure of an antenna constituted by the radiating elements 1 associated with the phase-shifters 2. This function obviously protects in both directions of propagation of the signal. It thus allows a large attenuation of calibration signals to the outside flowing in the antenna.
  • the antenna closing method according to the invention can be implemented simply and economically, since it is mainly acting on the controls. If the control means 31 are programmable, the material cost is then virtually zero.
  • the antenna closure as described above can be applied in a method of setting an electronic scanning antenna, since it must be circulated in the latter, whether in its transmission modules and / or receiving signals or other circuits, calibration signals.
  • These calibration signals therefore circulate in the antenna circuits, for example the aforementioned modules, up to and including the phase shifters.
  • These signals are then protected, more particularly isolated, vis-à-vis the outside. The setting can be done safely and discreetly.
  • phase shifter comprising diode phase shift cells. These diodes may nevertheless be replaced by any other component fulfilling the function of a switch between the short circuit state and the open circuit state, and vice versa.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (14)

  1. Verfahren zum Schließen einer Antenne mit elektronischer Abtastung, die Strahlungselemente (1) aufweist, denen je ein Höchstfrequenz-Phasenschieber (2) vorgeschaltet ist, dadurch gekennzeichnet, dass, da der Phasenschieber (2) Phasenverschiebungszellen mit Schaltern (21, 22, 23, 24) in Kaskadenschaltung aufweist, wobei die letzte Zelle aus zwei Zweigen (241, 242) besteht, die je am Strahlungselement münden und mindestens einen Schalter (D9, D10) aufweisen, das Schließen der Antenne durch Steuern der Schalter der letzten Zelle (24) in den leitenden Zustand erhalten wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die letzte Phasenverschiebungszelle (24) eine Phasenverschiebung um π erzeugt, wenn einer ihrer Zweige leitend und der andere gesperrt ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass, da die vorletzte Zelle (23) aus zwei Zweigen (231, 232) besteht, die je mindestens einen Schalter (D6, D7, D8) aufweisen und sich am Eingang der letzten Zelle (24) vereinen, die Schalter der zwei Zweige in den leitenden Zustand gesteuert werden.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass, da einer der Zweige (232) der vorletzten Phasenverschiebungszelle (23) zwei Schalter (D6, D7) aufweist, die um einen Abstand gleich λ/4 getrennt sind, wobei λ die mittlere Wellenlänge der von der Antenne gesendeten Signale ist, der am weitesten vorne liegende Schalter (D6) in den leitenden Zustand gesteuert wird, während der nachgeschaltete Schalter (D7) in den gesperrten Zustand gesteuert wird, um eine Phasenverschiebung gleich π bezüglich des gesperrten Zustands des am weitesten vorne liegenden Schalters (D6) zu erzeugen.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die vorletzte Zelle (23) und die vorhergehenden Phasenverschiebungszellen (21, 22) gesteuert werden, um ein von dieser vorletzten Zelle (23) reflektiertes Signal zu regeln, wobei die Regelung durch Anwenden oder nicht von Phasenverschiebungen aufeinanderfolgender Gewichtungen durchgeführt wird, wobei die Phasenverschiebungs-Gewichtung der anderen Zellen (21, 22) bezüglich der direkten Strecke verdoppelt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die aufeinanderfolgenden Gewichtungen mindestens π, π/2 und π/4 betragen.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antenne Sende- und Empfangsmodule (3) aufweist, die einem Strahlungselement (1) oder einer Gruppe von Strahlungselementen (1) zugeordnet sind, wobei ein Phasenschieber (2) zwischen jedem Strahlungselement und seinem zugeordneten Sende- und Empfangsmodul angeordnet ist.
  8. Verfahren zur Einstellung einer Antenne mit elektronischer Abtastung, die Strahlungselemente (1) aufweist, welche je mit einem vorgeschalteten Höchstfrequenz-Phasenschieber (2) verbunden sind, wobei ein Kalibriersignal in den Schaltkreisen der Antenne, einschließlich in den Phasenschiebern, zirkuliert, dadurch gekennzeichnet, dass es ein Schließen der Antenne nach einem der vorhergehenden Ansprüche durchführt.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schalter Dioden sind.
  10. Höchstfrequenz-Phasenschieber, der Phasenverschiebungszellen (21, 22, 23, 24) mit Schaltern in Kaskadenschaltung und Einrichtungen (31) zum Steuern der Schalter in den leitenden oder gesperrten Zustand aufweist, wobei der Phasenschieber eine nachgeschaltete Phasenverschiebungszelle (24) aufweist, die aus zwei Zweigen (241, 242) besteht, die je mindestens einen Schalter (D9, D10) aufweisen, und die letzte Zelle der Kaskade bildet, die an einem Antennen-Strahlungselement (1) münden kann, dadurch gekennzeichnet, dass er mindestens eine Phasenverschiebungszelle (23) aufweist, die aus zwei Zweigen (231, 232) besteht, die je mindestens einen Schalter (D6, D7, D8) aufweisen und sich am Ausgang vereinen, wobei einer der zwei Zweige (232) zwei aufeinanderfolgende Schalter (D6, D7) aufweist, die um einen Abstand gleich λ/4 getrennt sind, wobei λ die mittlere Wellenlänge der von der Antenne gesendeten Signale ist, wobei der Abstand des Schalters D6 zum Punkt A der Trennung der zwei Zweige gleich dem Abstand des Schalters D8 des anderen Zweigs (231) zu diesem Punkt A ist, wobei die Steuereinrichtungen (31) den Ausgang des Phasenschiebers verschließen, indem mindestens die Schalter (D9, D10) der letzten Zelle (24) in den leitenden Zustand gesteuert werden.
  11. Phasenschieber nach Anspruch 10, dadurch gekennzeichnet, dass die letzte Zelle (24) und die vorletzte Zelle (23) Phasenverschiebungen von π bzw. π/2 durchführen.
  12. Phasenschieber nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die Steuereinrichtungen (31) den Ausgang verschließen, indem sie außerdem die Schalter (D6, D7, D8) der vorletzten Zelle in den leitenden Zustand steuern.
  13. Phasenschieber nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass eine Phasenverschiebung um π an einem von der vorletzten Zelle (23) reflektierten Signal erhalten wird, indem der am weitesten vorne liegende Schalter (D6) in den leitenden Zustand und der nachgeschaltete Schalter (D7) in den gesperrten Zustand gesteuert wird, um einen Phasenschieber mit N - 1 Steuerbits für das reflektierte Signal zu bilden, wobei N die Anzahl von Phasenverschiebungszellen (21, 22, 23, 24) ist.
  14. Phasenschieber nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Schalter Dioden sind.
EP20020291958 2001-08-10 2002-08-02 Schliessen und Phasenverschieben einer Antenne Expired - Lifetime EP1286416B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0110742 2001-08-10
FR0110742A FR2828583B1 (fr) 2001-08-10 2001-08-10 Procede de fermeture d'une antenne a balayage electronique, procede de reglage et dephaseur d'une telle antenne

Publications (2)

Publication Number Publication Date
EP1286416A1 EP1286416A1 (de) 2003-02-26
EP1286416B1 true EP1286416B1 (de) 2009-12-16

Family

ID=8866481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020291958 Expired - Lifetime EP1286416B1 (de) 2001-08-10 2002-08-02 Schliessen und Phasenverschieben einer Antenne

Country Status (4)

Country Link
EP (1) EP1286416B1 (de)
DE (1) DE60234742D1 (de)
FR (1) FR2828583B1 (de)
SG (1) SG103355A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230091640A1 (en) * 2020-07-05 2023-03-23 Space Exploration Technologies Corp. System and method for over-the-air antenna calibration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192707B (zh) * 2007-12-03 2011-11-30 中国移动通信集团广东有限公司 一种电调定向智能天线
FR2954599B1 (fr) * 2009-12-23 2012-04-06 Thales Sa Antenne avec elements rayonnants incorporant un dephaseur.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803621A (en) * 1971-12-20 1974-04-09 Gen Electric Antenna element including means for providing zero-error 180{20 {11 phase shift
FR2589011B1 (fr) * 1985-10-22 1988-10-14 Thomson Csf Antenne reseau a balayage conique et radar comportant une telle antenne
US5025493A (en) * 1989-06-02 1991-06-18 Scientific-Atlanta, Inc. Multi-element antenna system and array signal processing method
CA2071715A1 (en) * 1991-07-15 1993-01-16 Gary George Sanford Directional scanning circular phased array antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230091640A1 (en) * 2020-07-05 2023-03-23 Space Exploration Technologies Corp. System and method for over-the-air antenna calibration
US11784408B2 (en) * 2020-07-05 2023-10-10 Space Exploration Technologies Corp. System and method for over-the-air antenna calibration

Also Published As

Publication number Publication date
FR2828583B1 (fr) 2005-06-17
DE60234742D1 (de) 2010-01-28
EP1286416A1 (de) 2003-02-26
SG103355A1 (en) 2004-04-29
FR2828583A1 (fr) 2003-02-14

Similar Documents

Publication Publication Date Title
EP0600799B1 (de) Aktive Antenne mit variabler Polarisations-Synthese
BE1010979A4 (fr) Radar a reseau phase se surveillant et se calibrant lui-meme, et sous-ensemble d'emission/reception ajustable interchangeable.
EP2532046B1 (de) Flachplatten-abtastantenne für landfahrzeuganwendung, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit solch einem fahrzeug
FR2956252A1 (fr) Antenne plane directive embarquee, vehicule comportant une telle antenne et systeme de telecommunication par satellite comportant un tel vehicule
EP3577720B1 (de) Elementare antenne mit einer planaren strahlungsvorrichtung
EP3577721A1 (de) Elementare antenne mit einer planaren strahlungsvorrichtung
FR2522446A1 (fr) Dephaseur a dephasage variable, utilisable notamment dans un systeme d'antennes pour radar
EP0451497B1 (de) Verfahren zur Formung des Strahlendiagrammes einer aktiven Radarantenne mit elektronisch gesteuerter Ablenkung, und Antenne dazu
EP1170823B1 (de) Telekommunikationsantenne mit grossem Erdabdekkungsbereich
FR2522447A1 (fr) Circuit a micro-ondes, notamment emetteur-recepteur de transmission d'energie electromagnetique et reseau d'antennes commandees en phase utilisant un tel circuit
EP1286416B1 (de) Schliessen und Phasenverschieben einer Antenne
EP0072316B1 (de) Antenne mit elektronischer Schwenkung und mehreren Eingängen und Radar mit einer solchen Antenne
EP3159965B1 (de) Antennennetzsender für ein monoimpulsradarsystem
EP1677385B1 (de) Elektronisch gesteuerte breitbandige Antenne
FR2755796A1 (fr) Alimentation pour une antenne de radar dans la bande des gigahertz
EP0664574B1 (de) Einrichtung zur Kompensation des Richtungsfehlers bei einer Antenne mit elektronischer Ablenkung
WO2009083513A1 (fr) Antenne reseau avec elements rayonnants, repartis non uniformement en sous-reseaux.
FR2930845A1 (fr) Antenne active d'emission/reception a balayage electronique un plan
EP4092928A1 (de) Planare netzantenne
EP3955374A1 (de) Schaltung mit zirkulatorfunktion mit siw-technologie, entsprechender sende-/empfangskanal und radar
EP0546901A1 (de) Mehrfach polarisierte leichte Antenne
FR2734410A1 (fr) Antenne hyperfrequence a synthese de diagramme de rayonnement
FR2522453A1 (fr) Dephaseur, notamment dephaseur commande numeriquement a n bits, utilisable dans des circuits a micro-ondes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030820

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60234742

Country of ref document: DE

Date of ref document: 20100128

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110727

Year of fee payment: 10

Ref country code: DE

Payment date: 20110727

Year of fee payment: 10

Ref country code: FR

Payment date: 20110818

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110812

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60234742

Country of ref document: DE

Effective date: 20130301