EP1282919A1 - Indium-tin-oxide (ito) layer and method for producing the same - Google Patents

Indium-tin-oxide (ito) layer and method for producing the same

Info

Publication number
EP1282919A1
EP1282919A1 EP01933932A EP01933932A EP1282919A1 EP 1282919 A1 EP1282919 A1 EP 1282919A1 EP 01933932 A EP01933932 A EP 01933932A EP 01933932 A EP01933932 A EP 01933932A EP 1282919 A1 EP1282919 A1 EP 1282919A1
Authority
EP
European Patent Office
Prior art keywords
ito
sputtering
layer
layers
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01933932A
Other languages
German (de)
French (fr)
Inventor
Andreas KLÖPPEL
Jutta Trube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Deutschland Holding GmbH
Original Assignee
Unaxis Deutschland Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unaxis Deutschland Holding GmbH filed Critical Unaxis Deutschland Holding GmbH
Publication of EP1282919A1 publication Critical patent/EP1282919A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • ITO Indium tin oxide
  • the present invention relates to an indium tin oxide (ITO) layer for nerve use as a transparent, conductive electrode, in particular in organic LED displays, and to a method for the deposition of transparent and conductive indium tin oxide (ITO) layers a substrate.
  • ITO indium tin oxide
  • ITO layers Indium-tin-oxide layers
  • transparent substrate material such as in particular glass, transparent plastics, combined glass / plastic laminates, etc.
  • the layers produced by the above methods have a low specific resistance, they have the disadvantage that they have a high surface roughness.
  • the surface structure of such ITO layers is characterized by a domain structure with grains of different crystal orientation within the domains, with individual grains having peaks protruding from the surface (so-called spikes).
  • the rough surface and the so-called ITO spikes mean that when the ITO layer is used as an electrode they act as field tips and thus reduce the lifespan of organic LED cells, for example, if such ITO layers as electrodes in organic LED Displays are used.
  • the increased surface roughness leads to a reduced efficiency of such organic LED cells.
  • Another disadvantage can be seen in the fact that the ITO spikes in the manufacture of organic LED displays can lead to the fact that when the organic materials are deposited on the ITO layer, the tips are not covered with the organic material and then used can then lead to short circuits.
  • ITO layers and a method for depositing ITO layers in which ITO layers can be produced which have a low surface roughness, preferably below 1 nm, and a low specific resistance, preferably have less than 200 ⁇ cm, the deposition temperature or temperature of the substrate on which the ITO layers are to be deposited should be low, in particular below 250 ° C., preferably below 200 ° C.
  • ITO spikes can be avoided.
  • the inventive method for the deposition of transparent and conductive indium tin oxide (ITO) layers, in which the layers in particular have a low specific resistance and a very smooth surface comprises a combined high frequency / direct current (HF / DC) sputtering Process in an atmosphere which has an argon-hydrogen mixture as the reaction gas.
  • HF / DC direct current
  • a reactive gas activation is achieved in the HF plasma for the selected reactive gas mixture argon / hydrogen, which has a positive effect on the properties of the deposited ITO layer.
  • the surface roughness and the specific resistance of the layer are significantly reduced, the substrate temperature being able to be kept at a low value of less than 250 ° C., preferably ⁇ 200 ° C. Due to the lower surface roughness, when using such deposited ITO layers for organic LED cells, greater efficiency, greater yield and longer service life can be achieved for organic LED displays.
  • the reduction in the specific resistance means that, for certain applications with a fixed sheet resistance for the ITO layer, a smaller necessary layer thickness can be selected, so that a lower material requirement for indium tin oxide is required.
  • Known ITO targets are used for sputtering, which preferably comprise 90% In O 3 and 10% SnO 2 .
  • the HF power component of the total power during sputtering is preferably set to at least 30%, in particular 60% and more, preferred ranges being in the range from 40 to 90% HF power component, in particular 60 to 80% HF power components.
  • the Ar / H mixture added to the process gas according to the invention is preferably in a mixing ratio of 80% argon and 20% hydrogen.
  • Such an Ar / H 2 mixture is advantageously added to a process gas usually made of argon in the order of 0.1-30%, in particular 5-15%, but preferably in the range 8-10%.
  • the total pressure of the process gas can also play a role in the deposition of the ITO layers. It has been shown here that particularly good results are achieved, in particular in the range of a total pressure of 0.5 to 5 ⁇ bar, preferably 1 to 3 ⁇ bar and most preferably 1.5 to 2 ⁇ bar.
  • the substrate temperature is reduced to a max. 250 ° C, but preferably set to ⁇ 200 ° C. This has the advantage that neither the substrate nor the layer itself is damaged by an excessively high temperature.
  • the method described is not limited to the use of magnetron sputter systems, it is preferred, however, to use a corresponding magnetron arrangement to undersize the sputter deposition.
  • the ITO layers according to the invention which are produced in particular using the method described above, have a smooth surface with a surface roughness of less than 1 nm and have a specific resistance which is below 200 ⁇ cm, in particular in the range from 140 to 160 ⁇ cm.
  • FIG. 2 shows the dependence of the specific resistance p on ITO layers, which were deposited with an increasing HF power component. It can also be seen here that the specific resistance decreases with increasing HF power share. A particularly significant reduction is observed up to an RF power component of approx. 30%, while from this point only a small, continuous decrease in the specific resistance can be observed with an increasing RF power component.
  • FIG. 3 show AFM images of ITO layers with a magnification of 60,000 times, which can only be obtained by DC sputtering (a), with combined HF / DC sputtering with an HF power share of 33% (b). , with an RF power share of 66% (c) and have been separated using only HF sputtering.
  • the AFM images clearly show that a significantly smoother surface structure can be achieved with an increasing HF power component, an optimum in terms of surface roughness being found in particular with an HF power component of 66%.
  • an ITO layer was deposited on float glass with the following parameters:
  • Total sputtering power 860 W (570 W HF / 290 W DC)
  • Magnetic field strength 1200 G.
  • Substrate float glass
  • an RMS roughness of 0.623 nm was determined using AFM (probe force microscope).
  • the RMS roughness root mean square roughness
  • the specific resistance of the layer was 152 ⁇ cm.
  • the transmission at 550 nm wavelength was 81% compared to the reference air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The invention relates to a method for precipitating transparent and conductive indium-tin-oxide (ITO) layers, which have a particularly low resistance of preferably less than 200 νΦcm and a low degree of surface roughness of preferably less than 1 nm, onto a substrate. To this end, a combined HF/DC sputtering of an indium-tin-oxide (ITO) target is used in which an Ar/H2 mixture serving as a reaction gas is fed to the process gas during sputtering. The invention also relates to (ITO) layers having the aforementioned properties.

Description

Indium-Zinn-Oxid (ITO)-Schicht und Verfahren zur Herstellung derselben Indium tin oxide (ITO) layer and method of manufacturing the same
Die vorliegende Erfindung betrifft eine Indium-Zinn-Oxid (ITO)-Schicht zur Nervvendung als transparente, leitfähige Elektrode, insbesondere bei organischen LED-Displays, sowie ein Verfahren zur Abscheidung von transparenten und leitfälligen Indium-Zinn-Oxid (ITO)- Schichten auf einem Substrat.The present invention relates to an indium tin oxide (ITO) layer for nerve use as a transparent, conductive electrode, in particular in organic LED displays, and to a method for the deposition of transparent and conductive indium tin oxide (ITO) layers a substrate.
Für flache Monitore und Bildschirme, wie sie beispielsweise bei tragbaren Computern oder bei Displays für Mobiltelefone eingesetzt werden, wie z. B. Flüssigkristallanzeigen, organische LED-Displays, TFT-Bildschirme usw. werden transparente und leitfähige Elektroden- Schichten benötigt. Üblicherweise werden dazu Indium-Zinn-Oxid-Schichten (ITO- Schichten) eingesetzt, die hinsichtlich Leitfähigkeit und Transmissions-Eigenschaften die Anforderungen am besten erfüllen. Üblicherweise werden diese ITO-Schichten auf transparentem Substratmaterial, wie insbesondere Glas, transparenten Kunststoffen, kombinierten Glas-/Kιmstoff-Laminaten usw. durch Sputter-Abscheidung (Kathodenzerstäubung) eines ITO-Targets aufgebracht.For flat monitors and screens, such as are used for example in portable computers or in displays for mobile phones, such as. B. liquid crystal displays, organic LED displays, TFT screens, etc. transparent and conductive electrode layers are required. Indium-tin-oxide layers (ITO layers) are usually used for this, which best meet the requirements with regard to conductivity and transmission properties. These ITO layers are usually applied to transparent substrate material, such as in particular glass, transparent plastics, combined glass / plastic laminates, etc., by sputter deposition (sputtering) of an ITO target.
Beispielsweise beschreiben Ishibashi et al. in „Low Resistivity Indium-Tin Oxide Transparent Conductive Films, I. Effect Of Introducing H O Gas or H -Gas During Direct Current Magnetron Sputtering", J Nac. Sei. Technol. A 8(3) Mai/Juni 1990, ein Gleichstrom (DC)- Magnetron-Sputter-Nerfahren, bei dem durch Zugabe von Wasserdampf oder Wasserstoff zum Prozessgas eine ITO-Schicht bei einer Abscheidetemperatur von weniger als 200°C abgeschieden werden kann, die einen spezifischen Widerstand von ca. 6 x 10"4 Ωcm aufweist. Die niedrige Abscheidetemperatur bzw. Substrat-Temperatur von unter 200°C ist in diesem Zusammenhang deshalb wichtig, da bei einer höheren Abscheide- bzw. Substrattemperatur zwar das Sputter-N erfahren einfacher zu den gewünschten Resultaten führt, aber sowohl die abgeschiedene Schicht als auch das Substrat beschädigt werden könnte. Dies ist insbesondere für Substrate, wie z. B. Kunststoffsubstrate, wie z. B. Polyethylentherephtalat (PET) wichtig, die bei höheren Temperaturen zerstört werden würden.For example, Ishibashi et al. in "Low Resistivity Indium-Tin Oxide Transparent Conductive Films, I. Effect Of Introducing HO Gas or H -Gas During Direct Current Magnetron Sputtering", J Nac. Sei. Technol. A 8 (3) May / June 1990, a direct current ( DC) - Magnetron sputter ner driving, in which by adding water vapor or hydrogen to the process gas an ITO layer can be deposited at a deposition temperature of less than 200 ° C, which has a specific resistance of approx. 6 x 10 "4 Ωcm , The low deposition temperature or substrate temperature of below 200 ° C. is important in this context, because at a higher deposition or substrate temperature, the sputtering process leads to the desired results more easily, but both the deposited layer and that Substrate could be damaged. This is particularly for substrates such as. B. plastic substrates such. B. polyethylene terephthalate (PET) important, which would be destroyed at higher temperatures.
Ein weiteres Verfahren zur Abscheidung von ITO-Schichten mit niedrigem Widerstand wird von B. H. Lee et al. in „Effect Of Base Pressure in Sputter Deposition On Characte- ristics of Indium Tin Oxide Thin Film", Fiat panel display Materials II, Sypmposium San Franciso, CA, USA, 8. bis 12. April 1996, Mat.Res. Soc.Symp. Proc.Nol.424, 1997, beschrieben. Bei diesem Verfahren handelt es sich um ein kombiniertes Radiofrequenz (RF)- und DC-Magnetron-SputterV erfahren, bei dem mit gleichen Anteilen an DC-Sputtem und RF-Sputtern ein ITO-Target zerstäubt und eine Schicht mit einem spezifischen Widerstand von weniger als 1,5x10" Ωcm erzeugt wird. Als Prozessgas wurde hierbei Argon verwendet.Another method for the deposition of ITO layers with low resistance is described by BH Lee et al. in "Effect Of Base Pressure in Sputter Deposition On Characteristics of Indium Tin Oxide Thin Film", Fiat panel display Materials II, Sypmposium San Franciso, CA, USA, April 8-12, 1996, Mat.Res. Soc.Symp Proc.Nol.424, 1997. This method is a combined radio frequency (RF) and DC magnetron sputtering method in which an ITO target is used with the same proportions of DC sputterers and RF sputterers atomized and a layer with a specific resistance of less than 1.5x10 " Ωcm. Argon was used as the process gas.
Obwohl die Schichten, die mit den obigen Verfahren erzeugt wurden, einen niedrigen spezifischen Widerstand aufweisen, besitzen sie jedoch den Nachteil, dass sie eine hohe Oberfiä- chenrauhigkeit aufweisen. Insbesondere ist die Oberflächenstruktur derartiger ITO- Schichten durch eine Domänenstruktur mit Körnern unterschiedlicher Kristallorientierung innerhalb der Domänen gekennzeichnet, wobei einzelne Körner aus der Oberfläche herausragende Spitzen aufweisen (sog. Spikes). Die rauhe Oberfläche und die sog. ITO-Spikes führen dazu, dass sie bei der Verwendung der ITO-Schicht als Elektrode als Feldspitzen wirken und somit die Lebensdauer beispielsweise von organischen LED-Zellen herabsetzen, wenn derartige ITO-Schichten als Elektroden bei organischen LED-Displays verwendet werden. Ausserdem führt die erhöhte Oberflächenrauhigkeit zu einer verminderten Effizienz von derartigen organischen LED-Zellen. Ein weiterer Nachteil ist darin zu sehen, dass die ITO-Spikes bei der Herstellung von organischen LED-Displays dazu führen können, dass bei der Abscheidung der organischen Materialien auf der ITO-Schicht die Spitzen nicht mit dem organischen Material bedeckt werden und anschliessend im Einsatz dann zu Kurzschlüssen führen können.However, although the layers produced by the above methods have a low specific resistance, they have the disadvantage that they have a high surface roughness. In particular, the surface structure of such ITO layers is characterized by a domain structure with grains of different crystal orientation within the domains, with individual grains having peaks protruding from the surface (so-called spikes). The rough surface and the so-called ITO spikes mean that when the ITO layer is used as an electrode they act as field tips and thus reduce the lifespan of organic LED cells, for example, if such ITO layers as electrodes in organic LED Displays are used. In addition, the increased surface roughness leads to a reduced efficiency of such organic LED cells. Another disadvantage can be seen in the fact that the ITO spikes in the manufacture of organic LED displays can lead to the fact that when the organic materials are deposited on the ITO layer, the tips are not covered with the organic material and then used can then lead to short circuits.
Aufgabe der vorliegenden Erfindung ist es deshalb, ITO-Schichten und ein Verfahren zur Abscheidung von ITO-Schichten bereitzustellen, bei dem ITO-Schichten erzeugt werden können, die eine geringe Oberflächenrauhigkeit, von vorzugsweise unter 1 nm, und einen geringen spezifischen Widerstand, von vorzugsweise weniger als 200 μΩcm, aufweisen, wobei die Abscheidetemperatur bzw. Temperatur des Substrats, auf dem die ITO-Schichten abgeschieden werden sollen, niedrig sein soll, insbesondere unter 250°C, vorzugsweise unter 200°C, liegen soll. Insbesondere sollen bei einem industriell einsetzbaren Verfahren bzw. entsprechenden ITO-Schichten, d. h., unter Berücksichtigung einer einfachen und kostengünstigen Realisation, insbesondere die sog. ITO-Spikes vermieden werden.It is therefore an object of the present invention to provide ITO layers and a method for depositing ITO layers, in which ITO layers can be produced which have a low surface roughness, preferably below 1 nm, and a low specific resistance, preferably have less than 200 μΩcm, the deposition temperature or temperature of the substrate on which the ITO layers are to be deposited should be low, in particular below 250 ° C., preferably below 200 ° C. In particular, in the case of an industrially usable process or corresponding ITO layers, i. i.e., taking into account a simple and inexpensive implementation, in particular the so-called ITO spikes can be avoided.
Diese Aufgabe wird gelöst mit dem Verfahren nach Anspruch 1, sowie der ITO-Schicht nach Anspruch 7. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.This object is achieved with the method according to claim 1 and the ITO layer according to claim 7. Advantageous refinements are the subject of the subclaims.
Das erfindungsgemässe Verfahren zur Abscheidung von transparenten und leitfähigen Indium-Zinn-Oxid (ITO)-Schichten, bei denen die Schichten insbesondere einen niedrigen spezifischen Widerstand und eine sehr glatte Oberfläche aufweisen, umfasst ein kombiniertes Hochfrequenz/Gleichstrom (HF/DC)-Sputter- Verfahren in einer Atmosphäre, die als Reaktionsgas ein ArgonWasserstoff-Gemisch aufweist. Durch die Verwendung eines HF- Leistungsanteils im für den Fachmann bekannten Hochfrequenzbereich beim Sputtern wird für das gewählte Reaktivgas-Gemisch Argon/Wasserstoff eine Reaktivgas-Aktivierung im HF-Plasma erzielt, die sich positiv auf die Eigenschaften der abgeschiedenen ITO-Schicht auswirkt. Insbesondere wird die Oberflächenrauhigkeit und der spezifische Widerstand der Schicht deutlich verringert, wobei die Substrat-Temperatur auf einem niedrigen Wert von weniger als 250°C, vorzugsweise ≤ 200°C gehalten werden kann. Durch die geringere O- berflächenrauhigkeit kann bei Verwendung derartig abgeschiedener ITO-Schichten für organische LED-Zellen eine grössere Effizienz, grössere Ausbeute und höhere Lebensdauer für organische LED-Displays erzielt werden. Ausserdem führt die Verringerung des spezifischen Widerstands dazu, dass für bestimmte Anwendungen bei einem festgesetzten Flächenwiderstand für die ITO-Schicht eine geringere notwendige Schicht-Dicke gewählt werden kann, so dass ein geringerer Materialbedarf an Indium-Zinn-Oxid erforderlich wird.The inventive method for the deposition of transparent and conductive indium tin oxide (ITO) layers, in which the layers in particular have a low specific resistance and a very smooth surface, comprises a combined high frequency / direct current (HF / DC) sputtering Process in an atmosphere which has an argon-hydrogen mixture as the reaction gas. By using an RF As part of the power in the high-frequency range for sputtering known to the person skilled in the art, a reactive gas activation is achieved in the HF plasma for the selected reactive gas mixture argon / hydrogen, which has a positive effect on the properties of the deposited ITO layer. In particular, the surface roughness and the specific resistance of the layer are significantly reduced, the substrate temperature being able to be kept at a low value of less than 250 ° C., preferably ≤ 200 ° C. Due to the lower surface roughness, when using such deposited ITO layers for organic LED cells, greater efficiency, greater yield and longer service life can be achieved for organic LED displays. In addition, the reduction in the specific resistance means that, for certain applications with a fixed sheet resistance for the ITO layer, a smaller necessary layer thickness can be selected, so that a lower material requirement for indium tin oxide is required.
Zum Sputtern werden üblicherweise bekannte ITO-Targets verwendet, die vorzugsweise 90 % In O3 und 10 % SnO2 umfassen. Der HF-Leistungsanteil an der Gesamtleistung beim Sputtern, wird vorzugsweise auf mindestens 30%, insbesondere 60 % und mehr eingestellt, wobei bevorzugte Bereiche im Bereich von 40 bis 90 % HF-Leistungsanteil, insbesondere 60 bis 80 % HF-Leistungsanteile liegen.Known ITO targets are used for sputtering, which preferably comprise 90% In O 3 and 10% SnO 2 . The HF power component of the total power during sputtering is preferably set to at least 30%, in particular 60% and more, preferred ranges being in the range from 40 to 90% HF power component, in particular 60 to 80% HF power components.
Das erfmdungsgemäss dem Prozessgas zugegebene Ar/H -Gemisch liegt vorzugsweise im Mischungsverhältnis von 80 % Argon und 20 % Wasserstoff vor. In vorteilhafter Weise wird ein derartiges Ar/H2-Gemisch einem üblicherweise aus Argon bestehenden Prozessgas in der Grössenordnung von 0,1 - 30 %, insbesondere 5 - 15 %, bevorzugt jedoch im Bereich von 8 - 10 % zugegeben.The Ar / H mixture added to the process gas according to the invention is preferably in a mixing ratio of 80% argon and 20% hydrogen. Such an Ar / H 2 mixture is advantageously added to a process gas usually made of argon in the order of 0.1-30%, in particular 5-15%, but preferably in the range 8-10%.
Für die Abscheidung der ITO-Schichten kann weiterhin auch der Gesamtdruck des Prozessgases eine Rolle spielen. Hier hat sich gezeigt, dass insbesondere im Bereich eines Gesamtdrucks von 0,5 bis 5 μbar, vorzugsweis 1 bis 3 μbar und höchstvorzugsweise von 1 ,5 bis 2 μbar besonders gute Ergebnisse erzielt werden.The total pressure of the process gas can also play a role in the deposition of the ITO layers. It has been shown here that particularly good results are achieved, in particular in the range of a total pressure of 0.5 to 5 μbar, preferably 1 to 3 μbar and most preferably 1.5 to 2 μbar.
Bei einer bevorzugten Ausföhrungsform, die insbesondere bei der Abscheidung von ITO- Schichten auf Kunststoffen gewählt wird, wird die Substrat-Temperatur bei der Abscheidung der ITO-Schicht auf max. 250° C, vorzugsweise jedoch ≤ 200°C gesetzt. Dies hat den Vorteil, dass weder das Substrat, noch die Schicht selbst durch eine zu hohe Temperatur beschädigt werden. Obgleich das beschriebene Verfahren nicht auf die Anwendung von Magnetron-Sputter- Anlagen beschränkt ist, ist es jedoch bevorzugt, die Sputter- Abscheidung durch eine entsprechende Magnetron- Anordnung zu Untersätzen.In a preferred embodiment, which is chosen in particular when depositing ITO layers on plastics, the substrate temperature is reduced to a max. 250 ° C, but preferably set to ≤ 200 ° C. This has the advantage that neither the substrate nor the layer itself is damaged by an excessively high temperature. Although the method described is not limited to the use of magnetron sputter systems, it is preferred, however, to use a corresponding magnetron arrangement to undersize the sputter deposition.
Die erfindungsgemässen ITO-Schichten, die insbesondere mit dem oben beschriebenen Verfahren hergestellt werden, weisen eine glatte Oberfläche mit einer Oberfiächenrauhigkeit von weniger als 1 nm auf und besitzen einen spezifischen Widerstand, der unter 200 μΩcm liegt, und zwar insbesondere im Bereich von 140 bis 160 μΩcm.The ITO layers according to the invention, which are produced in particular using the method described above, have a smooth surface with a surface roughness of less than 1 nm and have a specific resistance which is below 200 μΩcm, in particular in the range from 140 to 160 μΩcm.
Weitere Vorteile, Kennzeichen und Merkmale der Erfindung werden anhand der nachfolgenden detaillierten Beschreibung bevorzugter Ausführungsbeispiele deutlich. Dabei zeigen die Diagramme inFurther advantages, characteristics and features of the invention will become apparent from the following detailed description of preferred exemplary embodiments. The diagrams show in
Fig.l die Abhängigkeit der Oberfiächenrauhigkeit (RMS -Rauhigkeit) von ITO-Fig.l the dependence of the surface roughness (RMS roughness) of ITO
Schichten vom HF-Leistungsanteil bei der Abscheidung mit einer Leistungsdichte von P = 2 W/cm2 und einer Substrat-Temperatur von Tsub = 200° C;Layers of the RF power component during the deposition with a power density of P = 2 W / cm 2 and a substrate temperature of T sub = 200 ° C;
Fig.2 die Abhängigkeit des spezifischen Widerstands p von ITO-Schichten vom HF-2 shows the dependence of the specific resistance p of ITO layers on the HF
Leistungsanteil bei der Abscheidung mit einer Leistungsdichte von P = 2 W/cm2 und einer Substrat-Temperatur von TSUb = 200° C; und inPower share in the deposition with a power density of P = 2 W / cm 2 and a substrate temperature of T SUb = 200 ° C; and in
Fig. 3 rasterkraftmikroskopische (AFM)-Aufhahmen in 60.000-facher Vergrößerung von ITO-Schichten, die mit verschiedenem HF-Leistungsanteil bei einer Substrat-Temperatur von TSUb = 200°C abgeschieden wurden. ausschließlich DC-Sputtern,Fig. 3 atomic force microscopic (AFM) recordings in 60,000 times magnification of ITO layers, which were deposited with different HF power components at a substrate temperature of T SUb = 200 ° C. only DC sputtering,
33 % HF-Leistungsanteil beim HF/DC-Sputtern33% HF power share in HF / DC sputtering
66 % HF Leistungsanteil, ausschließlich HF-Sputtern.66% HF power share, only HF sputtering.
Fig. 1 zeigt die Abhängigkeit der Oberflächen-Rauhigkeit vom HF-Leistungsanteil bei der erfindungsgemässen Abscheidung von ITO-Schichten. Mit zunehmendem HF- Leistungsanteil beim kombinierten HF/DC-Sputtern wird eine zunehmend glattere Oberfläche erzielt. Insbesondere ab einem HF-Leistungsanteil von ca. 30 % und mehr wird eine signifikante Reduzierung der Oberfiächenrauhigkeit beobachtet. Ab einem HF- Leistungsanteil von ca. 65 % tritt eine Sättigung bezüglich des Einflusses auf die Oberfiächenrauhigkeit ein.1 shows the dependence of the surface roughness on the HF power component in the inventive deposition of ITO layers. With increasing HF power share in the combined HF / DC sputtering, an increasingly smoother surface is achieved. A significant reduction in surface roughness is observed in particular from an HF power component of approx. 30% and more. From an HF power component of approx. 65%, there is a saturation with regard to the influence on the surface roughness.
Fig. 2 zeigt die Abhängigkeit des spezifischen Widerstands p von ITO-Schichten, die mit einem zunehmenden HF-Leistungsanteil abgeschieden wurden. Auch hier ist zu erkennen, dass mit zunehmendem HF-Leistungsanteil der spezifische Widerstand abnimmt. Eine besonders deutliche Reduzierung wird bis zu einem HF-Leistungsanteil von ca. 30 % beobachtet, während ab diesem Punkt mit zunehmendem HF-Leistungsanteil nur noch eine geringe kontinuierliche Abnahme des spezifischen Widerstands zu beobachten ist.FIG. 2 shows the dependence of the specific resistance p on ITO layers, which were deposited with an increasing HF power component. It can also be seen here that the specific resistance decreases with increasing HF power share. A particularly significant reduction is observed up to an RF power component of approx. 30%, while from this point only a small, continuous decrease in the specific resistance can be observed with an increasing RF power component.
Fig. 3 zeigt den Einfluss des HF-Leistungsanteils beim kombinierten HF/DC-Sputtem auf Oberflächen von ITO-Schichten, die bei einer Substrat-Temperatur von 200°C abgeschieden werden.3 shows the influence of the HF power component in the combined HF / DC sputtering on surfaces of ITO layers which are deposited at a substrate temperature of 200 ° C.
Die in Fig. 3 dargestellten Abbildungen zeigen AFM-Aufnahmen von ITO-Schichten mit einer 60.000-fachen Vergrösserung, die ausschließlich durch DC-Sputtern (a), mit kombiniertem HF/DC-Sputtern mit einem HF-Leistungsanteil von 33 % (b), mit einem HF- Leistungsanteil von 66 % (c) und durch ausschließliches HF-Sputtern abgeschieden worden sind. Die AFM-Aufnahmen zeigen deutlich, dass mit zunehmendem HF-Leistungsanteil eine deutlich glattere Oberflächenstruktur erzielt werden kann, wobei insbesondere bei einem HF-Leistungsanteil von 66 % ein Optimum bezüglich der Oberfiächenrauhigkeit festzustellen ist.The illustrations shown in FIG. 3 show AFM images of ITO layers with a magnification of 60,000 times, which can only be obtained by DC sputtering (a), with combined HF / DC sputtering with an HF power share of 33% (b). , with an RF power share of 66% (c) and have been separated using only HF sputtering. The AFM images clearly show that a significantly smoother surface structure can be achieved with an increasing HF power component, an optimum in terms of surface roughness being found in particular with an HF power component of 66%.
Erfmdungsgemäss wurde bei einem bevorzugten Ausführungsbeispiel eine ITO-Schicht auf Floatglas mit den folgenden Parametern abgeschieden:According to the invention, in a preferred exemplary embodiment, an ITO layer was deposited on float glass with the following parameters:
Target: ITO-Mitsui (90 % In203/10% SnO2)Target: ITO Mitsui (90% In 2 0 3 /10% SnO 2 )
Reinheit: 4N, Dichte > 98%Purity: 4N, density> 98%
Gesamt-Sputter-Leistung: 860 W (570 W HF/290 W DC)Total sputtering power: 860 W (570 W HF / 290 W DC)
HF-Leistungsanteil: 66 %HF power share: 66%
Prozessdruck: 1,5 μbar, Ar/H2-Anteil (80 %/20%-Gemisch): 8 %Process pressure: 1.5 μbar, Ar / H 2 content (80% / 20% mixture): 8%
Depositionstemperatur: 200°CDeposition temperature: 200 ° C
Magnetfeldstärke: 1200 GMagnetic field strength: 1200 G.
Substrat: FloatglasSubstrate: float glass
Schichtdicke: 72 nmLayer thickness: 72 nm
Bei einer ITO-Schicht, die mit den obigen Prozessparametern durch Magnetron-Sputtem abgeschieden worden ist, wurde mittels AFM (T asterkraftmikroskop) eine RMS-Rauhigkeit von 0.623 nm bestimmt. Die RMS-Rauhigkeit (root mean Square roughness) ist definiert als die Standardabweichung der Z- Werte (Höhenweite), die bei der Messung mit dem Rasterkraftmikroskop ermittelt wurden. Der spezifische Widerstand der Schicht betrug 152 μΩcm. Die Transmission bei 550 nm Wellenlänge betrug gegenüber der Referenz Luft 81 %. Diese Ergebnisse zeigen, dass mit dem oben beschriebenen Verfahren erfindungsgemässe Schichten hergestellt werden können, die insbesondere bezüglich Oberfiächenrauhigkeit und spezifischem Widerstand hervorragende Eigenschaften zur Verwendung in organischen LED-Displays aufweisen. In the case of an ITO layer which was deposited by magnetron sputtering using the above process parameters, an RMS roughness of 0.623 nm was determined using AFM (probe force microscope). The RMS roughness (root mean square roughness) is defined as the standard deviation of the Z values (height range), which were determined during the measurement with the atomic force microscope. The specific resistance of the layer was 152 μΩcm. The transmission at 550 nm wavelength was 81% compared to the reference air. These results show that the method described above can be used to produce layers according to the invention which, in particular with regard to surface roughness and specific resistance, have excellent properties for use in organic LED displays.

Claims

Patentansprüche claims
1. Verfahren zur Abscheidung von transparenten und leitfähigen Indium-Zinn-Oxid (ITO)-Schichten mit insbesondere niedrigem Widerstand von vorzugsweise unter 200 μΩcm und geringer Oberfiächenrauhigkeit von vorzugsweise weniger als 1 nm auf einem Substrat, gekennzeichnet durch kombiniertes HF/DC-Sputtern eines Indium- Zinn-Oxid (ITO)-Targets, wobei dem Prozessgas beim Sputtern ein Ar/ΕL-Gemisch als Reaktionsgas zugegeben wird.1. A method for the deposition of transparent and conductive indium tin oxide (ITO) layers with in particular a low resistance of preferably below 200 μΩcm and a low surface roughness of preferably less than 1 nm on a substrate, characterized by combined HF / DC sputtering Indium-tin-oxide (ITO) targets, whereby an Ar / ΕL mixture is added as the reaction gas to the process gas during sputtering.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der HF-Leistungsanteil an der Gesamtleistung beim Sputtern mindestens 30 %, vorzugsweise 60 % und mehr, insbesondere 40 % bis 90 %, bevorzugt 60 bis 80 %, beträgt.2. The method according to claim 1, characterized in that the HF power share of the total power during sputtering is at least 30%, preferably 60% and more, in particular 40% to 90%, preferably 60 to 80%.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mischungsverhältnis des Ar/H2-Gemisches 80:20 beträgt und der Anteil des Ar/H2-Gemisches am Prozessgas 0,1 bis 30 %, insbesondere 5 bis 15 %, vorzugsweise 8 bis 10 % beträgt.3. The method according to any one of the preceding claims, characterized in that the mixing ratio of the Ar / H 2 mixture is 80:20 and the proportion of the Ar / H 2 mixture in the process gas 0.1 to 30%, in particular 5 to 15% , preferably 8 to 10%.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Druck des Prozessgases beim Sputtern 0,5 bis 5 μbar, vorzugsweise 1 bis 3 μbar, insbesondere 1,5 bis 3 μbar, beträgt.4. The method according to any one of the preceding claims, characterized in that the pressure of the process gas during sputtering is 0.5 to 5 μbar, preferably 1 to 3 μbar, in particular 1.5 to 3 μbar.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Sputtern Magnetron-Sputtem eingesetzt wird.5. The method according to any one of the preceding claims, characterized in that magnetron sputtering is used for sputtering.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeiclinet, dass die Substrat-Temperatur bei der Abscheidung der ITO-Schicht 250° C, vorzugsweise 200°C, nicht übersteigt.6. The method according to any one of the preceding claims, characterized gekennzeiclinet that the substrate temperature during the deposition of the ITO layer does not exceed 250 ° C, preferably 200 ° C.
7. Indium-Zinn-Oxid (ITO)-Schicht zur Verwendung als transparente, leitfähige Elektrode, insbesondere bei organischen LED-Displays, auf einem Substrat, insbesondere hergestellt nach dem Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schicht einen spezifischen Widerstand von weniger als 200 μΩcm und eine Oberfiächenrauhigkeit von unter 1 nm aufweist.7. indium tin oxide (ITO) layer for use as a transparent, conductive electrode, in particular in organic LED displays, on a substrate, in particular produced by the method according to any one of the preceding claims, characterized in that the layer has a specific Resistance of less than 200 μΩcm and a surface roughness of less than 1 nm.
8. ITO-Schicht nach Anspruch 7, dadurch gekennzeichnet, dass der spezifische Widerstand 120 bis 180 μΩcm beträgt. 8. ITO layer according to claim 7, characterized in that the specific resistance is 120 to 180 μΩcm.
EP01933932A 2000-05-12 2001-05-04 Indium-tin-oxide (ito) layer and method for producing the same Withdrawn EP1282919A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10023459A DE10023459A1 (en) 2000-05-12 2000-05-12 Depositing transparent conducting indium-tin oxide layers on substrate used in the production of transparent conducting electrodes in organic LED displays comprises using combined HF/DC sputtering of indium-tin oxide target
DE10023459 2000-05-12
PCT/EP2001/005060 WO2001086731A1 (en) 2000-05-12 2001-05-04 Indium-tin-oxide (ito) layer and method for producing the same

Publications (1)

Publication Number Publication Date
EP1282919A1 true EP1282919A1 (en) 2003-02-12

Family

ID=7641904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01933932A Withdrawn EP1282919A1 (en) 2000-05-12 2001-05-04 Indium-tin-oxide (ito) layer and method for producing the same

Country Status (7)

Country Link
US (2) US6849165B2 (en)
EP (1) EP1282919A1 (en)
JP (1) JP5144868B2 (en)
KR (1) KR100821353B1 (en)
DE (1) DE10023459A1 (en)
TW (1) TWI253477B (en)
WO (1) WO2001086731A1 (en)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5668663A (en) 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US6891563B2 (en) * 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US6326613B1 (en) * 1998-01-07 2001-12-04 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
US6124886A (en) 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
US8294975B2 (en) 1997-08-25 2012-10-23 Donnelly Corporation Automotive rearview mirror assembly
US6172613B1 (en) 1998-02-18 2001-01-09 Donnelly Corporation Rearview mirror assembly incorporating vehicle information display
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6445287B1 (en) * 2000-02-28 2002-09-03 Donnelly Corporation Tire inflation assistance monitoring system
US6329925B1 (en) 1999-11-24 2001-12-11 Donnelly Corporation Rearview mirror assembly with added feature modular display
US6477464B2 (en) 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
US7370983B2 (en) 2000-03-02 2008-05-13 Donnelly Corporation Interior mirror assembly with display
US7167796B2 (en) 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
US7004593B2 (en) 2002-06-06 2006-02-28 Donnelly Corporation Interior rearview mirror system with compass
AU2001243285A1 (en) 2000-03-02 2001-09-12 Donnelly Corporation Video mirror systems incorporating an accessory module
US7255451B2 (en) * 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
US7581859B2 (en) 2005-09-14 2009-09-01 Donnelly Corp. Display device for exterior rearview mirror
AU2002251807A1 (en) 2001-01-23 2002-08-19 Donnelly Corporation Improved vehicular lighting system for a mirror assembly
WO2006124682A2 (en) 2005-05-16 2006-11-23 Donnelly Corporation Vehicle mirror assembly with indicia at reflective element
KR100810400B1 (en) * 2001-10-15 2008-03-04 에스케이케미칼주식회사 Method for preparing conductive oxide thin film using PETG plastic substrate
WO2003050324A1 (en) * 2001-12-03 2003-06-19 Nippon Sheet Glass Company, Limited Method for forming thin film, substrate having thin film formed by the method, and photoelectric conversion device using the substrate
US7378356B2 (en) * 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US6918674B2 (en) 2002-05-03 2005-07-19 Donnelly Corporation Vehicle rearview mirror system
US7329013B2 (en) 2002-06-06 2008-02-12 Donnelly Corporation Interior rearview mirror system with compass
US7274501B2 (en) 2002-09-20 2007-09-25 Donnelly Corporation Mirror reflective element assembly
US7310177B2 (en) 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
JP4524577B2 (en) * 2003-04-24 2010-08-18 東ソー株式会社 Transparent conductive film and sputtering target
US8728285B2 (en) * 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US7238628B2 (en) * 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
DE10327897B4 (en) * 2003-06-20 2010-04-01 Applied Materials Gmbh & Co. Kg Process for the preparation of smooth indium tin oxide layers on substrates, and substrate coating of indium tin oxide and organic light emitting diode
US7446924B2 (en) 2003-10-02 2008-11-04 Donnelly Corporation Mirror reflective element assembly including electronic component
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
JP2005175160A (en) * 2003-12-10 2005-06-30 Sanyo Electric Co Ltd Photovoltaic device
DE102004022004B4 (en) * 2004-05-03 2007-07-05 Novaled Ag Layer arrangement for an organic light emitting diode
US7864398B2 (en) 2004-06-08 2011-01-04 Gentex Corporation Electro-optical element including metallic films and methods for applying the same
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
KR101021536B1 (en) * 2004-12-08 2011-03-16 섬모픽스, 인코포레이티드 Deposition of ??????
KR100707960B1 (en) 2005-03-31 2007-04-16 (주)플라웍스 An Inline sputter apparatus for manufacturing a multi-layered ITO for transparent electrode
JP5138873B2 (en) * 2005-05-19 2013-02-06 日亜化学工業株式会社 Nitride semiconductor device
US7838133B2 (en) * 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
EP1949666B1 (en) * 2005-11-01 2013-07-17 Magna Mirrors of America, Inc. Interior rearview mirror with display
JP4599595B2 (en) * 2005-12-05 2010-12-15 学校法人金沢工業大学 Method and apparatus for producing transparent conductive film
US8845866B2 (en) * 2005-12-22 2014-09-30 General Electric Company Optoelectronic devices having electrode films and methods and system for manufacturing the same
EP2426552A1 (en) 2006-03-03 2012-03-07 Gentex Corporation Electro-optic elements incorporating improved thin-film coatings
US8274729B2 (en) * 2006-03-03 2012-09-25 Gentex Corporation Thin-film coatings, electro-optic elements and assemblies incorporating these elements
CN101395521B (en) * 2006-03-03 2010-09-29 金泰克斯公司 Improved thin-film coatings, electro-optic elements and assemblies incorporating these elements
US7746534B2 (en) * 2006-12-07 2010-06-29 Gentex Corporation Thin-film coatings, electro-optic elements and assemblies incorporating these elements
US7688495B2 (en) * 2006-03-03 2010-03-30 Gentex Corporation Thin-film coatings, electro-optic elements and assemblies incorporating these elements
US8169681B2 (en) * 2006-03-03 2012-05-01 Gentex Corporation Thin-film coatings, electro-optic elements and assemblies incorporating these elements
US8368992B2 (en) * 2006-03-03 2013-02-05 Gentex Corporation Electro-optical element including IMI coatings
CA2644218C (en) * 2006-03-03 2014-12-02 Gentex Corporation Improved thin-film coatings, electro-optic elements and assemblies incorporating these elements
US8649083B2 (en) 2007-03-05 2014-02-11 Gentex Corporation Multi-zone mirrors
US9274394B2 (en) 2007-03-05 2016-03-01 Gentex Corporation Multi-zone mirrors
US8035881B2 (en) * 2007-03-05 2011-10-11 Gentex Corporation Multi-zone mirrors
US10017847B2 (en) 2007-03-05 2018-07-10 Gentex Corporation Method and apparatus for ion milling
JP4420932B2 (en) * 2007-03-09 2010-02-24 株式会社沖データ Flexible display body and article with flexible display body
US20080233291A1 (en) * 2007-03-23 2008-09-25 Chandrasekaran Casey K Method for depositing an inorganic layer to a thermal transfer layer
US20080138600A1 (en) * 2007-10-26 2008-06-12 National University Of Ireland, Galway Soluble Metal Oxides and Metal Oxide Solutions
DE102008027045A1 (en) * 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Semiconductor light-emitting diode and method for producing a semiconductor light-emitting diode
US8154418B2 (en) * 2008-03-31 2012-04-10 Magna Mirrors Of America, Inc. Interior rearview mirror system
JP5580972B2 (en) * 2008-06-06 2014-08-27 デクセリアルズ株式会社 Sputtering composite target
US20110089026A1 (en) * 2008-07-09 2011-04-21 Ulvac, Inc. Touch panel manufacturing method and film formation apparatus
JP5492479B2 (en) * 2009-07-10 2014-05-14 ジオマテック株式会社 Method for producing transparent conductive film
US10000965B2 (en) 2010-01-16 2018-06-19 Cardinal Cg Company Insulating glass unit transparent conductive coating technology
US11155493B2 (en) 2010-01-16 2021-10-26 Cardinal Cg Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods
US10000411B2 (en) 2010-01-16 2018-06-19 Cardinal Cg Company Insulating glass unit transparent conductivity and low emissivity coating technology
US9862640B2 (en) 2010-01-16 2018-01-09 Cardinal Cg Company Tin oxide overcoat indium tin oxide coatings, coated glazings, and production methods
RU2558063C2 (en) 2010-01-16 2015-07-27 КАРДИНАЛ СиДжи КОМПАНИ High-quality low-emission coatings, low-emission insulated glazing and methods for production thereof
US10060180B2 (en) 2010-01-16 2018-08-28 Cardinal Cg Company Flash-treated indium tin oxide coatings, production methods, and insulating glass unit transparent conductive coating technology
KR102220018B1 (en) * 2010-03-08 2021-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
JP6261988B2 (en) * 2013-01-16 2018-01-17 日東電工株式会社 Transparent conductive film and method for producing the same
CN104919541B (en) * 2013-01-16 2017-05-17 日东电工株式会社 Transparent conductive film and production method therefor
JP6215062B2 (en) * 2013-01-16 2017-10-18 日東電工株式会社 Method for producing transparent conductive film
JP6261987B2 (en) 2013-01-16 2018-01-17 日東電工株式会社 Transparent conductive film and method for producing the same
GB201405012D0 (en) * 2014-03-20 2014-05-07 Asociaci N Ct De Investigaci N Cooperativa En Biomateriales Sample slides for laser desorption ionisation (LDI) mass spectrometry and optical microscopy
US9988707B2 (en) 2014-05-30 2018-06-05 Ppg Industries Ohio, Inc. Transparent conducting indium doped tin oxide
CN104109839A (en) * 2014-07-04 2014-10-22 宜昌南玻显示器件有限公司 ITO film and preparation method thereof
EP2977202A1 (en) * 2014-07-25 2016-01-27 AGC Glass Europe Heating glass
US11674217B2 (en) * 2016-03-29 2023-06-13 Ulvac, Inc. Method of manufacturing substrate with a transparent conductive film, manufacturing apparatus of substrate with transparent conductive film, substrate with transparent conductive film, and solar cell
US11028012B2 (en) 2018-10-31 2021-06-08 Cardinal Cg Company Low solar heat gain coatings, laminated glass assemblies, and methods of producing same
EP4012004A1 (en) 2020-12-11 2022-06-15 Merck Patent GmbH Liquid crystal device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127598A (en) * 1978-03-27 1979-10-03 Sharp Corp Process for fabricating transparent conductive film
JPS62254793A (en) * 1986-04-28 1987-11-06 ジューキ株式会社 Apparatus for automatically altering cloth feed amount of sewing machine
JPH0726195B2 (en) * 1988-08-19 1995-03-22 日本真空技術株式会社 Method for producing transparent conductive film
JP2881425B2 (en) * 1989-07-31 1999-04-12 京セラ株式会社 Method for forming transparent conductive film
JP2936276B2 (en) * 1990-02-27 1999-08-23 日本真空技術株式会社 Method and apparatus for manufacturing transparent conductive film
US5135581A (en) * 1991-04-08 1992-08-04 Minnesota Mining And Manufacturing Company Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas
JPH059724A (en) * 1991-07-09 1993-01-19 Shinkuron:Kk Formation of transparent conductive thin film
JPH05239635A (en) * 1992-02-26 1993-09-17 Shimadzu Corp Production of transparent conductive film
JPH05239636A (en) 1992-02-28 1993-09-17 Sony Corp Sputtering device
JP3298055B2 (en) * 1992-05-01 2002-07-02 株式会社アルバック Method for forming transparent conductive film
JP2912506B2 (en) * 1992-10-21 1999-06-28 シャープ株式会社 Method for forming transparent conductive film
JPH06330283A (en) * 1993-05-20 1994-11-29 Hitachi Ltd Film forming apparatus and film formation of transparent conductive film
JPH09293693A (en) * 1996-04-25 1997-11-11 Semiconductor Energy Lab Co Ltd Forming method for transparent conductive film
JPH11264071A (en) * 1998-03-18 1999-09-28 Matsushita Electron Corp Formation of thin film
JP2000128698A (en) * 1998-10-22 2000-05-09 Toyota Motor Corp Ito material, ito film and its formation, and el element
US6787989B2 (en) * 2000-06-21 2004-09-07 Nippon Sheet Glass Co., Ltd. Substrate with transparent conductive film and organic electroluminescence device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0186731A1 *

Also Published As

Publication number Publication date
US6849165B2 (en) 2005-02-01
US7285342B2 (en) 2007-10-23
DE10023459A1 (en) 2001-11-15
JP2003532997A (en) 2003-11-05
US20050175862A1 (en) 2005-08-11
US20030170449A1 (en) 2003-09-11
KR20030024665A (en) 2003-03-26
TWI253477B (en) 2006-04-21
JP5144868B2 (en) 2013-02-13
WO2001086731A1 (en) 2001-11-15
KR100821353B1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
WO2001086731A1 (en) Indium-tin-oxide (ito) layer and method for producing the same
DE60029706T2 (en) TRANSPARENT LIQUID LAMINATE, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE WITH TRANSPARENT CONDUCTIVE LAMINATE
DE60002464T2 (en) TOUCH-SENSITIVE PANEL WITH HIGH RELIABILITY
DE69305794T2 (en) Transparent, conductive film and target and material for vapor deposition for its manufacture
EP2179426B1 (en) Multilayer system comprising contact elements, and method for the production of a contact element for a multilayer system
JP2003532997A5 (en)
DE102020132742A1 (en) ELECTRIC
DE102006005019A1 (en) Highly-conductive, transparent and mechanically-stable metal oxide layers, are formed from nanoparticles and metal salts dispersed in organic solvent, by evaporation and sintering
CN111087844A (en) Coating liquid for nano-silver conductive film
DE112014001540T5 (en) Zinc oxide-based sintered body, process for its production, as well as sputtering target and transparent, electrically conductive film
DE2102243A1 (en)
KR20140007221A (en) Optical film with improved visibility of ag nanowire
EP1831759A1 (en) Electronic component comprising an electrode protection layer
DE112009000156T5 (en) Process for producing a liquid crystal display device
DE102008028140B3 (en) Process for producing a transparent and conductive metal oxide layer by pulsed, high-ionization magnetron sputtering
EP1458822A2 (en) Particulate coating
DE102014210303A1 (en) Nanostructure dispersions and transparent conductors
DE68922518T2 (en) Electro-optical device.
KR20080058106A (en) Method of manufacturing indium tin oxide target
DE19710698A1 (en) Liquid crystal display for low voltage operation, avoiding uneven display at high temperature
KR101638572B1 (en) Transparent and Electrically Conductive Polyester Film Comprising ZnO Rod Particles
KR20090055727A (en) Processing method of transparent polyester film having electroconductive and film thereby
DE2940789A1 (en) Liquid crystal display electrode prodn. from indium tin oxide mixt. - by vacuum evapn. of partly reduced oxide, etching and tempering until transparent
DE102012203055B4 (en) Sputtering target made of a gallium-doped zinc-containing material and process for its preparation
JPH04322219A (en) Black matrix and production thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021211

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON DEUTSCHLAND HOLDING GMBH

17Q First examination report despatched

Effective date: 20070306

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160914