EP1280383B9 - Verfahren und Anordnung zur Fernüberwachung von LED Leuchten - Google Patents

Verfahren und Anordnung zur Fernüberwachung von LED Leuchten Download PDF

Info

Publication number
EP1280383B9
EP1280383B9 EP02022506A EP02022506A EP1280383B9 EP 1280383 B9 EP1280383 B9 EP 1280383B9 EP 02022506 A EP02022506 A EP 02022506A EP 02022506 A EP02022506 A EP 02022506A EP 1280383 B9 EP1280383 B9 EP 1280383B9
Authority
EP
European Patent Office
Prior art keywords
current
voltage
resistor
lines
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02022506A
Other languages
English (en)
French (fr)
Other versions
EP1280383B1 (de
EP1280383A1 (de
Inventor
Nicolas St-Germain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gelcore Co
Original Assignee
Gelcore Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25681345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1280383(B9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CA002290203A external-priority patent/CA2290203A1/en
Application filed by Gelcore Co filed Critical Gelcore Co
Publication of EP1280383A1 publication Critical patent/EP1280383A1/de
Application granted granted Critical
Publication of EP1280383B1 publication Critical patent/EP1280383B1/de
Publication of EP1280383B9 publication Critical patent/EP1280383B9/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders
    • B61L5/1809Daylight signals
    • B61L5/1881Wiring diagrams for power supply, control or testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2207/00Features of light signals
    • B61L2207/02Features of light signals using light-emitting diodes (LEDs)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Definitions

  • the present invention relates to the electric supply of light-emitting loads, in particular light-emitting diode (LED) lamps. More specifically, the present invention is concerned with electric circuits and methods required for remote monitoring of LED lamps.
  • LED light-emitting diode
  • LED lamps are becoming more and more popular in automotive traffic lights, railway signal lights and other applications. Their lower power consumption is an attractive feature, but the main reason for their popularity is their long life (100 000 hours) compared to standard incandescent lamps (5 000 hours). Manifestly, these features allow important reduction in maintenance costs.
  • these lamps may be used, as those skilled in the art would know, for main line signalling and/or grade crossing signalling.
  • Grade crossing signals are usually situated in populated areas such as road intersections. Remote monitoring of the LED lamps in grade crossing signals is therefore not necessary.
  • Main line signals can be installed in remote areas, which are not easily accessible. Remote monitoring for checking the integrity of the lamps signals is therefore common practice.
  • LED current is controlled by a power supply. Current characteristics are therefore not identical in a LED lamp and in an incandescent lamp.
  • alternative current (ac) line voltage is rectified and then converted to a suitable level by a dc-dc (direct current) converter, which also regulates LED current.
  • ac alternative current
  • dc-dc direct current converter
  • the resulting characteristic is that a LED lamp will effectively light up when the power applied to it reaches a first high level while it will be turned off only when the power reaches a second lower level.
  • the resulting problem is that if a certain power is induced by, for example, other nearby cables, the LED lamp could remain on while in fact it should be off. This could also lead to dangerous situations.
  • LED lamps limit their widespread use in situations where they need to be remotely monitored such as in railway main line signalling applications.
  • CA-A-2,225,005 discloses a LED lamp with a fault-indicating impedance changing circuit.
  • An object of the present invention is therefore to allow LED lamps to become compatible with remote detection systems designed for monitoring of incandescent lamps.
  • Another object of the invention is to provide LED lamp circuitry which will emulate an incandescent lamp's behaviour upon remote monitoring of the LED lamp.
  • Yet another object of the invention is to provide a control circuit for enabling/disabling the power supply to LED lamps in relation to the level of the line voltage.
  • the present invention relates to a system as defined in enclosed claim 1.
  • an ac (alternating current) line voltage is supplied to a LED lamp 8 by a voltage and current supply source 10 through a line 11.
  • the AC line voltage is EMI (Electromagnetic Interference) filtered and surge suppressed by means of functional block 12 including an EMI filter, a surge suppressor and an input fuse.
  • the line voltage is rectified through a rectifier 14 and subsequently converted to a DC voltage through a DC-DC converter 20.
  • the DC voltage from the converter 20 is supplied on line 21 to light up a series/parallel LED (light-emitting diodes) array 22.
  • LEDs are also more generally referred to in the present specification as light-emitting loads.
  • the current flowing through the series/parallel LED array 22 is sensed by a current sensor 100.
  • This current sensor 100 produces a LED current sense signal 23 supplied to a power factor controller 28.
  • the function of the power factor controller 28 is to control the DC-DC converter 20 through a line 27, which in turn controls the DC current and voltage on line 21.
  • the series/parallel LED array 22 is formed of a plurality of subsets 26 of five (5) serially interconnected light-emitting diodes 24. Each subset 26 of serially interconnected light-emitting diodes 24 are connected in parallel to form the series/paratlel LED array 22.
  • a particularity is that the anodes of the first light-emitting diodes of the subsets 26 are interconnected, the cathodes the first light-emitting diodes of the subsets 26 and the anodes of the second light-emitting diodes of the subsets 26 are interconnected, the cathodes of the second light-emitting diodes of the subsets 26 and the anodes of the third light-emitting diodes of the subsets 26 are interconnected, the cathodes of the third light-emitting diodes of the subsets 26 and the anodes of fourth light-emitting diodes of the subsets 26 are interconnected, the cathodes of the fourth light-emitting diodes of the subsets 26 and the anodes of the fifth light-emitting diodes of the subsets 26 are interconnected, and the cathodes of the fifth light-emitting diodes of the subsets 26 are interconnected.
  • other types of arrangements compris
  • EMI filter block 12
  • surge suppressor block 12
  • input fuse block 12
  • rectifier 14 DC-DC converter 20
  • IC integrated circuit
  • Figure 1 shows a fuse blow-out circuit 16, a cold filament detection circuit 18 and a turn-off voltage circuit 30. These circuits will be described in greater detail hereinafter.
  • a fuse blow-out circuit is shown and generally designated by the reference 16.
  • the fuse blow-out circuit 16 receives the rectified voltage from output terminal 15 of the rectifier 14 on an input 48.
  • the fuse blow-out circuit 16 also comprises a second input 49 to receive the LED current sense signal 23 from the current sensor 100.
  • a FET Field-Effect Transistor
  • transistor 42 While transistor 42 is turned off, capacitor 34 is being charged through resistor 31 and diode 32 from the voltage supplied on the input 48. Concurrently, capacitor 41 is being charged through resistor 31, diode 32 and resistor 37.
  • silicon bilateral switch (or triac) 38 turns on to supply a current to a trigger electrode 103 of a thyristor 39 to thereby trigger this thyristor 39. Triggering of the thyristor 39 into conduction creates a short-circuit between output terminal 15 of rectifier 14 (see Figures 1 and 2A ) and a ground output terminal 101 of the same rectifier 14.
  • This short-circuit will effectively blow out the input fuse of functional block 12, thereby opening the circuit. Detection of that open circuit will indicate that the lamp is defective thereby emulating the open circuit of a defective incandescent lamp.
  • a LED current sense signal 23 is supplied to the input 49 prior to the end of the above mentioned given period of time, this LED current sense signal 23 is applied to the gate electrode 102 of FET transistor 42 through resistor 43 to turn this transistor 42 on.
  • Capacitor 41 then discharges to the ground 101 through resistor 36 and the source/drain junction of transistor 42. Accordingly, capacitor 41 will never become fully charged, the breakdown voltage of Zener diode 40 will never be reached, and no short circuit will be created between the terminals 15 and 101 of rectifier 14. Then, the input fuse of functional block 12 will remain intact.
  • a second fuse blow-out circuit is shown and still designated by the reference 16.
  • the fuse blow-out circuit 16 comprises the input 48 to receive the rectified voltage from terminal 15 of the rectifier 14.
  • the fuse blow-out circuit 16 also comprises the second input 49 receiving the LED current sense signal 23 from the current sensor 100 ( Figure 1 ). As long as no LED current sense signal 23 appears on the input 49, FET transistor 42 is turned off. When transistor 42 is turned off, capacitor 34 is being charged through resistor 31 and diode 32 from the voltage supplied on the input 48.
  • Zener diode 44 When the voltage across the capacitor 34 reaches the breakdown voltage of the Zener diode 44, (while transistor 42 is still turned off) Zener diode 44 starts conducting current A current is then supplied to the base of a PNP transistor 45 through resistor 31, diode 32 and Zener diode 44 to turn this transistor 45 on. When turned on, the collector/emitter junction of the transistor 45 becomes conductive to supply a current to the gate electrode of a FET transistor 46. This turns the FET transistor 46 on to establish a short circuit between output terminals 15 and 101 of the rectifier 14 through the source/drain junction of the FET transistor 46. As illustrated, the emitter of the transistor 45 and the gate electrode of the transistor 46 are both connected to the ground through a resistor 47.
  • This short circuit will effectively blow out the input fuse of block 12, thereby opening the circuit. Detection of that open circuit will indicate that the LED lamp 8 is defective thereby emulating the open circuit of a defective incandescent lamp.
  • the LED current sense signal 23 appears on the input 49 prior to lapsing of the above mentioned given period of time, this signal 23 is supplied to the gate electrode 102 of FET transistor 42 to thereby turn transistor 42 on. This connects the positive terminal of capacitor 34 to ground 101 through resistor 36 to thereby discharge capacitor 34. In this case, the breakdown voltage of Zener diode 44 will never be reached, transistor 45 will remain turned off, and no short circuit will be created between output terminals 15 and 101 of rectifier 14. The input fuse of block 12 will, in this case, remain intact.
  • the "fuse blow-out time” must be longer than the "LED current set up time”.
  • the LED current set up time is approximately 100 msec.
  • the "LED current set up time” is the period of time between switching the LED lamp on and appearance of the LED current sense signal 23 at input 49.
  • the cold filament detection circuit 18 of Figure 3 is used to simulate an incandescent lamp as seen by a lamp proving system.
  • Lamp proving is usually performed by sending a voltage pulse on the voltage supply line 11, and verifying that current rises to a certain level, within a certain period of time. This represents the behaviour of an incandescent lamp, which is equivalent to a simple resistor.
  • a LED lamp uses a power supply which has a current set up time. Therefore, when sending a pulse on line 11, the current will not rise immediately, but only after the power factor controller 28 is turned on (for example after about 100 msec in an embodiment).
  • the cold filament detection circuit 18 of Figure 3 solves this problem.
  • the LED current sense signal 23 When power is applied on line 11 for a period of time which is longer than the LED current set up time, the LED current sense signal 23 will be supplied on an input 57 of the cold filament detection circuit 18. This signal 23 is applied to the base 105 of a PNP transistor 54 to turn on this transistor 54 thereby turning transistor 53 off by forcing its gate electrode 104 to the ground 101. The cold filament detection circuit 18 is thereby disabled to enable the LED lamp 8 to operate normally.
  • Biasing resistor 50 and Zener diode 55 are connected in series between the input 56 and the base electrode 105. Biasing resistor 50 is also used for overvoltage protection.
  • the cold filament detection circuit 18 also serves as a back up for the fuse blow-out circuit 16. If fuse blow-out circuit 16 was to fail (that is, it does not cause a short circuit to blow out the input fuse of block 12 when in fact it should), transistor 53 would remain turned on since no LED current sense signal 23 would appear on input 57. The current draw through resistor 52 is sufficiently high to blow out the input fuse of block 12 after a certain period of time. For example, in an embodiment of the invention, this time period is of a few minutes.
  • the turn-off voltage circuit 30 of Figure 4 simply inhibits the power factor controller 28 (see Figure 1 ) when the input voltage on fine 11 of the circuit 30 is below a first predetermined trigger voltage.
  • the turn-off voltage circuit 30 comprises an input 70 supplied with the voltage on the output terminal 15 of the rectifier 14.
  • the first predetermined trigger voltage 72 is determined by a voltage divider comprising resistors 60 and 69 serially connected between the input 70 of the turn-off voltage circuit 30 and the ground 101.
  • the first predetermined trigger voltage is established after a capacitor 68 has been charged through the resistor 60 and the diode 61, i.e. after a given period of time following application of the voltage on the input 70. This period of time is determined by the values of the resistors 60, 69 and 107 and of the capacitor 68.
  • the first predetermined trigger voltage 72 is applied to a gate electrode 106 of a FET transistor 65 through the diode 61. When the first trigger voltage 72 reaches the breakdown voltage of the gate electrode 106 of the FET transistor 65, transistor 65 is turned on.
  • the turn-off voltage circuit 30 comprises a terminal 71 connected to a control terminal 29 of the power factor controller 28.
  • the power factor controller 28 produces a voltage drop across high impedance resistor 62, to thereby produce a second trigger voltage 73, which in turn turns on a FET transistor 63.
  • This in turn creates a low impedance path comprising resistor 67 between terminal 29 of the power factor controller 2 and the ground 101.
  • transistor 63 is turned on, the voltage on terminal 29 of power factor controller 28 will be lower than the voltage level required to turn on the power factor controller 28.
  • transistor 65 When transistor 65 is turned on, this will modify the second trigger voltage 73 thereby turning off transistor 63. The voltage on terminal 29 will then reach the level required to turn on the power factor controller 28, due to the high impedance value of the resistor 62.
  • the LED lamp 8 will not be turned on until the first trigger voltage 72 is reached and once the lamp 8 is lit, it will stay on until the voltage on input 70 produces a first trigger voltage 72 which is below the transistor 65 trigger voltage (breakdown voltage of the gate electrode 106).

Claims (6)

  1. System, bestehend aus einer Spannungs- und Stromquelle (10), die Spannung und Strom über eine erste und zweite Leitung an eine Lichtlast (22) liefert, die erst nach einer auf die Stromanlegung folgende Abstimmungszeit mit Strom versorgt wird, und aus einer Schaltung zur Kaltfadenüberwachung (18), die zwischen der ersten und der zweiten Leitung geschaltet ist, wobei die Schaltung zur Kaltfadenüberwachung (18) folgendes umfasst:
    a) einen ersten Widerstand (51),
    b) einen zweiten Widerstand (52),
    c) ein Schaltelement (53), das serienmässig mit dem zweiten Widerstand (52) geschaltet ist,
    d) eine Schaltkontrolleinrichtung (54), die den On/Off-Zustand des Schaltelements (53) überwacht,
    e) Mittel (18, 23), die den zweiten Widerstand (52) zwischen der ersten und der zweiten Leitung (15, 101) durch Einschalten des Schaltelements (53) schalten, sobald Spannung und Strom durch den ersten Widerstand (51) fließen, um dadurch zwischen der ersten und der zweiten Leitung durch den zweiten Widerstand (52) einen Strompfad zu erstellen und
    f) Mittel (18, 23) zum Abschalten des zweiten Widerstands (52) zwischen der ersten und der zweiten Leitung (15, 21) wenn Strom länger als die Abstimmungszeit fließt, durch Einschalten der Schaltkontrolleinrichtung (54), wodurch das Schaltelement (53) ausgeschaltet wird, wobei die Lichtlast (22) während der Abstimmungszeit nicht mit Strom versorgt wird und der Strompfad durch den zweiten Widerstand (52) fließt, um den Scheinwiderstand einer Glühlampe nachzubilden, und wenn die Lichtlast (22) mit Strom versorgt wird, der zweite Widerstand (52) von der ersten und zweiten Leitung (15, 101) getrennt ist.
  2. System nach Anspruch 1, dadurch gekennzeichnet, dass das Schaltelement (53) einen stromleitenden Übergang umfasst, der auf die Spannung der ersten und der zweiten Leitung anspricht, um dadurch durch den zweiten Widerstand (52) einen Strompfad zwischen der ersten und der zweiten Leitung zu erstellen und
    dass die Schaltskontrolleinrichtung (54) den stromleitenden Übergang daran verhindert, eine Verbindung zu erstellen, wenn die Lichtlast (22) mit Strom versorgt wird.
  3. System nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Lichtlast (22) eine Leuchtdiode umfasst.
  4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Schaltelement (53) ein steuerbares Schaltorgan beinhaltet, das einen ersten Transistor (53) mit einer Steuerelektrode (104) umschließt, die auf die Spannung der ersten und der zweiten Leitung anspricht.
  5. System nach Anspruch 4, dadurch gekennzeichnet, dass die Schaltkontrolleinrichtung (54) eine Sperrschaltung umfasst, die einen zweiten Transistor (54) beinhaltet, der zwischen der Steuerelektrode (104) des ersten Transistors (53) und einer der ersten oder zweiten Leitung zwischengeschaltet ist, wobei der zweite Transistor mit einer Steuerelektrode versehen ist, die auf den der Lichtlast zugeführten Strom anspricht.
  6. System nach einem der vorangehenden Ansprüche, das außerdem folgendes beinhaltet:
    a) eine Gleichrichterstation (14), die Wechselspannung aus einer Wechselspannungsquelle korrigiert und die korrigierte Wechselspannung der ersten und der zweiten Spannungsleitung sowie der Stromleitung zuführt,
    b) einen Wandler (20), der die korrigierte Wechselspannung in die der Lichtlast gelieferte Gleichspannung umwandelt,
    c) einen Regler (28) des Wandlers (20), der auf die korrigierte Spannung auf der ersten und zweiten Leitung anspricht.
EP02022506A 1999-11-19 2000-11-17 Verfahren und Anordnung zur Fernüberwachung von LED Leuchten Expired - Lifetime EP1280383B9 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CA002290203A CA2290203A1 (en) 1999-11-19 1999-11-19 Method and device for remote verification of led lamps
CA2290203 1999-11-19
US54324000A 2000-04-05 2000-04-05
US543240 2000-04-05
EP00979299A EP1147687B1 (de) 1999-11-19 2000-11-17 Anordnung zur Fernüberwachung von Led Leuchten

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP00979299A Division EP1147687B1 (de) 1999-11-19 2000-11-17 Anordnung zur Fernüberwachung von Led Leuchten
EP00979299.5 Division 2000-11-17

Publications (3)

Publication Number Publication Date
EP1280383A1 EP1280383A1 (de) 2003-01-29
EP1280383B1 EP1280383B1 (de) 2009-10-14
EP1280383B9 true EP1280383B9 (de) 2010-05-19

Family

ID=25681345

Family Applications (3)

Application Number Title Priority Date Filing Date
EP02022507A Ceased EP1274285A1 (de) 1999-11-19 2000-11-17 Verfahren und Anordnung zur Fernüberwachung von LED Leuchten
EP00979299A Expired - Lifetime EP1147687B1 (de) 1999-11-19 2000-11-17 Anordnung zur Fernüberwachung von Led Leuchten
EP02022506A Expired - Lifetime EP1280383B9 (de) 1999-11-19 2000-11-17 Verfahren und Anordnung zur Fernüberwachung von LED Leuchten

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP02022507A Ceased EP1274285A1 (de) 1999-11-19 2000-11-17 Verfahren und Anordnung zur Fernüberwachung von LED Leuchten
EP00979299A Expired - Lifetime EP1147687B1 (de) 1999-11-19 2000-11-17 Anordnung zur Fernüberwachung von Led Leuchten

Country Status (4)

Country Link
EP (3) EP1274285A1 (de)
AU (1) AU1684601A (de)
DE (2) DE60017709T2 (de)
WO (1) WO2001039553A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762563B2 (en) * 1999-11-19 2004-07-13 Gelcore Llc Module for powering and monitoring light-emitting diodes
US6392553B1 (en) 2000-08-22 2002-05-21 Harmon Industries, Inc. Signal interface module
ATE315884T1 (de) * 2001-03-10 2006-02-15 Siemens Plc Elektrisches gerät und dazugehöriges verfahren
GB2408834B (en) 2001-12-11 2005-07-20 Westinghouse Brake & Signal Signal lamps and apparatus
JP2004009825A (ja) * 2002-06-05 2004-01-15 Koito Mfg Co Ltd 車両用灯具装置
WO2009136322A1 (en) 2008-05-05 2009-11-12 Philips Intellectual Property & Standards Gmbh Light emitting diode system
DE102008029725A1 (de) * 2008-06-23 2010-01-07 Siemens Aktiengesellschaft Signalgeber
DE102008044525B4 (de) * 2008-09-15 2014-02-13 Werner Turck Gmbh & Co. Kg Eine oder mehrere LEDs aufweisende Lampe, insbesondere Blinklampe für ein Kraftfahrzeug
CZ2010450A3 (cs) * 2010-06-07 2011-12-14 Ažd Praha S. R. O. Systém pro elektronické ovládání svetlo emitujících diod LED
CN102256413B (zh) * 2011-04-08 2014-09-17 西安电子科技大学 电力载波点灯控制系统
CN102230956A (zh) * 2011-06-21 2011-11-02 天津市顺通电子有限公司 工频市电灯组通断实时检测方法
US8974077B2 (en) 2012-07-30 2015-03-10 Ultravision Technologies, Llc Heat sink for LED light source
DE102012019861B4 (de) * 2012-10-10 2021-03-11 Bbr Verkehrstechnik Gmbh Verfahren zurn Betreiben eines Signalgebers und Signalgeber
CN102892238B (zh) * 2012-10-30 2015-02-04 四川新力光源股份有限公司 交流电直接驱动led模块的调光驱动电路
US9345088B2 (en) * 2013-06-07 2016-05-17 Texas Instruments Incorporated LED control circuits and methods
CN106304512B (zh) * 2016-11-03 2018-03-30 成都锦瑞芯科技有限公司 一种用于可控硅调光的线性led 驱动电路
CN106954317B (zh) * 2017-05-15 2018-05-04 中国矿业大学 一种太阳能照明智能控制电路
EP3813489A1 (de) * 2019-10-26 2021-04-28 Graphene Lighting PLC Mehrwege-led-treiberschaltung
CN110913527B (zh) * 2019-11-12 2022-06-21 上海铁大电信科技股份有限公司 监督驱动电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724749A1 (fr) * 1994-09-15 1996-03-22 Sofrela Sa Lampe a del pour bloc de signalisation routiere, comprenant des moyens de controle de son fonctionnement
US6150771A (en) * 1997-06-11 2000-11-21 Precision Solar Controls Inc. Circuit for interfacing between a conventional traffic signal conflict monitor and light emitting diodes replacing a conventional incandescent bulb in the signal
DE69816958C5 (de) * 1997-08-01 2019-05-23 Koninklijke Philips N.V. Schaltungsanordnung mit dabei passender signalleuchte
CA2225005A1 (en) * 1997-12-17 1999-06-17 Gelcore Llc Led lamp with a fault-indicating empedance-changing circuit
WO1999056504A1 (en) * 1998-04-29 1999-11-04 Koninklijke Philips Electronics N.V. Circuit arrangement for a semiconductor light source

Also Published As

Publication number Publication date
DE60017709D1 (de) 2005-03-03
EP1147687B1 (de) 2005-01-26
WO2001039553A1 (en) 2001-05-31
AU1684601A (en) 2001-06-04
EP1280383B1 (de) 2009-10-14
EP1147687A1 (de) 2001-10-24
EP1280383A1 (de) 2003-01-29
EP1274285A1 (de) 2003-01-08
DE60043160D1 (de) 2009-11-26
DE60017709T2 (de) 2006-04-06

Similar Documents

Publication Publication Date Title
US6608485B2 (en) Method and device for remote monitoring of led lamps
EP1280383B9 (de) Verfahren und Anordnung zur Fernüberwachung von LED Leuchten
US6762563B2 (en) Module for powering and monitoring light-emitting diodes
EP2076095B1 (de) Dreifarbige LED Lichtsignalanlage
US7327051B2 (en) Lighting control circuit for vehicle lamps
US20220283212A1 (en) Trailer lighting outage detection circuit
US20060055244A1 (en) Lighting control circuit for vehicle lighting equipment
US6927683B2 (en) Vehicular turn signal indicator system and flasher circuit for the same
JP2007022104A (ja) 車両用灯具の点灯制御装置
US6583731B2 (en) Fault detection for traffic light systems using electronic lighting elements
EP1916879B1 (de) Sichere opto-elektronische Ausfallerkennung für Hochleistungsleuchtdioden
EP0373713B1 (de) Halbleiterschaltung mit einer Überspannungsschutzschaltung
CA2404905A1 (en) Method and device for remote monitoring of led lamps
JP2004026010A (ja) 車両用ランプ駆動装置
JP2003170829A (ja) Led信号灯器制御回路
WO2005038476A1 (en) Non-linear dummy load for monitored ac loads
KR102016718B1 (ko) 차량용 램프 제어 장치
US6008585A (en) Apparatus and method for preventing from a short load excessive current flow through a field effect transistor that delivers current to a daytime running light on a vehicle
JP6589377B2 (ja) 照明制御装置及び屋外灯
JP2024047822A (ja) 点灯回路
JP2008130990A (ja) 断線検出方法
JPH05316060A (ja) 通信機器用電圧監視回路
KR20170101341A (ko) 단일 광원 고장 법규를 충족하는 자동차용 램프회로
WO2007002978A1 (en) Switched dummy load for monitored ac loads
CA2290203A1 (en) Method and device for remote verification of led lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1147687

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030714

AKX Designation fees paid

Designated state(s): DE FR GB NL SE

17Q First examination report despatched

Effective date: 20070220

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APBV Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1147687

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60043160

Country of ref document: DE

Date of ref document: 20091126

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 60043160

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191022

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191022

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: S117

Free format text: REQUEST FILED; REQUEST FOR CORRECTION UNDER SECTION 117 FILED ON 15 JULY 2020

REG Reference to a national code

Ref country code: GB

Ref legal event code: S117

Free format text: REQUEST FOR CORRECTION UNDER SECTION 117 FILED ON 15 JULY 2020 NOT PROCEEDED WITH ON 19 OCTOBER 2020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60043160

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20201116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201116