EP1271591B1 - Optical sensor for accidental arc - Google Patents

Optical sensor for accidental arc Download PDF

Info

Publication number
EP1271591B1
EP1271591B1 EP02004482A EP02004482A EP1271591B1 EP 1271591 B1 EP1271591 B1 EP 1271591B1 EP 02004482 A EP02004482 A EP 02004482A EP 02004482 A EP02004482 A EP 02004482A EP 1271591 B1 EP1271591 B1 EP 1271591B1
Authority
EP
European Patent Office
Prior art keywords
optical
sensor according
arc sensor
accidental arc
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02004482A
Other languages
German (de)
French (fr)
Other versions
EP1271591A3 (en
EP1271591A2 (en
Inventor
Dirk Ehlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Industries GmbH
Original Assignee
Moeller GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moeller GmbH filed Critical Moeller GmbH
Publication of EP1271591A2 publication Critical patent/EP1271591A2/en
Publication of EP1271591A3 publication Critical patent/EP1271591A3/en
Application granted granted Critical
Publication of EP1271591B1 publication Critical patent/EP1271591B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/26Means for detecting the presence of an arc or other discharge

Definitions

  • the invention relates to an optical arc fault sensor.
  • arc fault sensors especially for use in switchgear known.
  • An example is in the CH 676 174 A5 shown.
  • an optical waveguide is wound several times; the radiation coupling takes place radially through the sheathing of the optical waveguide.
  • the optical fiber is held in a plastic arm.
  • the arrangement can be covered with a transparent protective cover.
  • This arc fault sensor has a substantially punctiform detection range.
  • Such sensors are preferably used in electrical switchgear, especially in low-voltage switchgear, but also in medium-voltage and high-voltage switchgear to deliver there as a sensor when an arc fault a shutdown signal.
  • the essence of the invention is that the base body is associated with an optical element.
  • This increases the radiation yield or the sensitivity in a certain wavelength range.
  • the optical element can have a ray-enhancing effect, it can be a ray reflector, a beam-bundling element (in the simplest case a lens, also a Fresnel lens) or a body in which fluorescence centers for absorbable radiation are introduced. These alternatives can also be combined as desired.
  • the optical waveguide has a defined installation position.
  • One or more arc fault sensors may be located at a suitable point for detecting arcing faults in the substation.
  • the optical element is intended to be a transparent body in which radiation-absorbing, fluorescent dye molecules are present. Such materials have been on the market for some time. The one emitted by the fluorescence centers has a longer wavelength than the absorbed radiation. If the transparent body is chosen to be very thin (as a foil), the radiation remains 'trapped' by total reflection in the foil. At the edges - or on the surface introduced ruffles (scratches or engravings) the radiation emerges and is directed into the main body and into the optical waveguide.
  • the fluorescence wavelength range of the fluorescence centers is preferably matched to the sensitivity of the Störlichtauswertesciens (or the associated receiving diode). Such a range may be approximately between 400 and 600 nm. By tuning for a specific wavelength range light effects can be excluded, which otherwise also fall on the arc fault sensor. Such disturbing influences can come from industrial lighting or from nearby welding units.
  • An optical reflector used as an optical element should preferably be arranged on the base body opposite the detection area.
  • the surface of the arc fault sensor (or a transparent cover placed on it) should be within the detection range be provided with a reflection-reducing surface.
  • conventional optical means in question like lambda quarter anti-reflective coating or microstructured surface (moth or fly-eye structure).
  • the main body should have optically favorable geometry for optimal detection of an arc fault, which depends essentially on the arrangement, shape or size of the arcs critical contacts. Shown as embodiments are: ball, cylinder, or prism.
  • the optical waveguide is in grooves on the surface of the body spiral or helical.
  • the optical waveguide can also be embedded in the base body made of plastic. It may be provided that in a base body made of cast resin of the optical waveguide is firmly cast, where it hardens together with the plastic in the fabrication.
  • the optical waveguide can be arranged spatially in one plane, or spatially in several planes as a spiral or meander.
  • the fault arc sensor may preferably have a detection range up to a solid angle of 180 degrees.
  • FIG Fig. 1 An arc fault sensor with a cylindrical geometry (46) of the basic body 5 with a diameter of a few cm is shown in FIG Fig. 1 shown.
  • An optical waveguide 2 is coiled in the interior of the main body 5.
  • the optical waveguide 2 leads the light via fiber optic connector 3 to an interference light detection circuit, not shown.
  • the main body is a transparent plastic in which fluorescent molecules 52 can be incorporated.
  • the molecules Upon irradiation of the body, the molecules absorb the radiation and emit radiation in a specific wavelength range, so that the embedded optical waveguide receives the radiation twice, once as direct radiation from the detection area, which may preferably be a top surface of the cylinder and the other by Radiation emitted by the molecules.
  • the coupled into the optical waveguide radiation enters a receiving diode and is evaluated in a Störlichter conductedsscrien.
  • the receiving diode is preferably designed for a narrow-band wavelength range. With a narrow-band receiving diode, it is possible to switch off stray light in other wavelength ranges and thus make the detection of an arc-fault safer. Fault arcs usually burn on copper contacts, so that in this case excited green spectral lines - ie in the range 400 to 600 nm - are particularly suitable for detecting an arc fault.
  • FIGS. 2A, 2B and 2C indicate a possible position of the optical waveguide 2 in the main body. Thereafter, the optical waveguide is tightly wound in a spiral substantially in a plane E of the main body 5.
  • Another embodiment with a meander arrangement of the optical waveguide also in a plane shows the Fig. 3 in a prismatic base body 42. Not shown are possible layers in the base body, in which the optical waveguide is arranged in more than one plane. It is essential that the optical waveguide in the base body occupies a good space filling. As the FIGS.
  • the Fig. 4 shows a base body 44, in which an optical waveguide 2 is inserted spirally in a groove-shaped groove 8.
  • an optical waveguide 2 is shown, which is also wrapped around the main body in grooves 8 several times.
  • the radiation coupling takes place radially through the sheathing of the optical waveguide.
  • the detection range of the optical waveguide is the upper surface of the main body.
  • the detection area is relatively punctiform, as compared to rod or line-shaped sensors, which are arranged along busbar in a panel.
  • beam reflector 22 Opposite the detection area - ie below the body - a beam reflector (20) is arranged.
  • the in Fig. 7 shown beam reflector 22 is one of a plurality of angular mirrors (cat's eye) formed reflector. In the FIGS. 5 and 7 is also drawn this type of beam reflector.
  • the arc fault sensor can be covered with a radiation-transmissive element (hood or shell) which rests on or abuts the base body 5.
  • the covering element is not shown.
  • the radiation of the arc fault e.g. in the spectral range of the UV radiation, enters through the cover in the body.
  • the cover For attachment to a cabinet wall or other attachment point, the cover may be provided with a radially outwardly directed mounting collar.
  • the radiation-permeable cover member may be bolted to or otherwise secured to a cover member disposed on the bottom side.
  • mounting holes may be present in a mounting collar.
  • the main body 44 in Fig. 4 is hemispherical and the main body 46 in FIGS. 5, 6 and 7 is cylindrical designed as a disc.
  • the shape of the body is not limited to the geometries described above, but may have other shapes such as cones or domes.

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Glass Compositions (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Non-Adjustable Resistors (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The sensor has at least one light waveguide with multiple windings in the detection region. Stray light is coupled into the waveguide through the sleeving and passed to a sensor. The waveguide is held or fixed in a base body. At least one optical element (42',52) associated with the base body amplifies the stray light yield. The optical element is a transparent body (42') with fluorescence centers (52) for absorbable radiation.

Description

Die Erfindung betrifft einen optischen Störlichtbogensensor.The invention relates to an optical arc fault sensor.

Es sind verschiedene Störlichtbogensensoren, insbesondere zum Einsatz in Schaltanlagen bekannt. Ein Beispiel ist in der CH 676 174 A5 dargestellt. Im Erfassungsbereich ist ein Lichtwellenleiter mehrfach gewickelt; die Strahlungseinkopplung erfolgt radial durch die Ummantelung des Lichtwellenleiters. Der Lichtwellenleiter ist in einem Plastikarm gehalten. Die Anordnung kann mit einer transparenten Schutzhülle abgedeckt sein. Dieser Störlichtbogensensor hat einen im wesentlichen punktförmigen Erfassungsbereich.There are various arc fault sensors, especially for use in switchgear known. An example is in the CH 676 174 A5 shown. In the detection area, an optical waveguide is wound several times; the radiation coupling takes place radially through the sheathing of the optical waveguide. The optical fiber is held in a plastic arm. The arrangement can be covered with a transparent protective cover. This arc fault sensor has a substantially punctiform detection range.

Ein anderes Beispiel solcher Sensoren ist in DE-U-29 513 343 beschrieben.Another example of such sensors is in DE-U-29 513 343 described.

Solche Sensoren werden vorzugsweise in elektrischen Schaltanlagen, insbesondere in Niederspannungsschaltanlagen, aber ebenso in Mittelspannungsund Hochspannungsschaltanlagen verwendet, um dort als Sensor bei Auftreten eines Störlichtbogens ein Abschaltsignal zu liefern.Such sensors are preferably used in electrical switchgear, especially in low-voltage switchgear, but also in medium-voltage and high-voltage switchgear to deliver there as a sensor when an arc fault a shutdown signal.

Es ist Aufgabe der Erfindung, die Empfindlichkeit des Sensors bei unverändertem räumlichen Erfassungsbereich zu erhöhen, ohne die Aufnahmefläche oder Aufnahmelänge des Lichtwellenleiters zu vergrößern.It is an object of the invention to increase the sensitivity of the sensor with unchanged spatial detection range, without increasing the receiving surface or recording length of the optical waveguide.

Der Kern der Erfindung besteht darin, daß dem Grundkörper ein optisches Element zugeordnet ist. Damit wird die Strahlungsausbeute oder die Empfindlichkeit in einem bestimmten Wellenlängenbereich erhöht. Das optische Element kann strahlenverstärkend wirken, es kann ein Strahlenreflektor, ein strahlenbündelndes Element (im einfachsten Fall eine Linse, auch Fresnel-Linse) oder ein Körper sein, in dem Fluoreszenzzentren für absorbierbare Strahlung eingebracht sind. Diese Alternativen können auch beliebig kombiniert sein.The essence of the invention is that the base body is associated with an optical element. This increases the radiation yield or the sensitivity in a certain wavelength range. The optical element can have a ray-enhancing effect, it can be a ray reflector, a beam-bundling element (in the simplest case a lens, also a Fresnel lens) or a body in which fluorescence centers for absorbable radiation are introduced. These alternatives can also be combined as desired.

Mit einem strahlungsdurchlässigen vorzugsweise als Schale ausgebildeten Abdeckelement wird ein großer Erfassungswinkel bei einfacher Montage ermöglicht, wobei bewährte Lichtwellenleiter verwendet werden können. Dies ermöglicht eine universelle Verwendung des Störlichtbogensensors. In dem als Trägerelement für den Lichtwellenleiter in unterschiedlichen Geometrien ausgeführten Grundkörper hat der Lichtwellenleiter eine definierte Einbaulage. Ein oder auch mehrere Störlichtbogensensoren können an einem geeigneten Punkt zur Erfassung von Störlichtbögen in der Schaltanlage angeordnet werden.With a radiation-permeable preferably designed as a shell cover a large detection angle is made possible with simple installation, with proven optical fibers can be used. This allows a universal use of the Störlichtbogensensors. In the base body designed as a carrier element for the optical waveguide in different geometries, the optical waveguide has a defined installation position. One or more arc fault sensors may be located at a suitable point for detecting arcing faults in the substation.

In einer ersten Ausführungsform soll das optische Element ein transparenter Körper sein, in dem Strahlung absorbierende, fluoreszierende Farbstoff-Moleküle vorhanden sind. Solche Materialien sind seit einiger Zeit auf dem Markt. Das von den Fluoreszenzzentren emittierte hat eine größere Wellenlänge als die absorbierte Strahlung. Wenn der transparente Körper sehr dünn gewählt wird (als Folie), bleibt die Strahlung durch Totalreflexion in der Folie 'gefangen'. An den Rändern - oder an auf der Oberfläche eingebrachte Aufrauhungen (Einritzungen oder Eingravierungen) tritt die Strahlung aus und wird dort in den Grundkörper und in den Lichtwellenleiter gelenkt.In a first embodiment, the optical element is intended to be a transparent body in which radiation-absorbing, fluorescent dye molecules are present. Such materials have been on the market for some time. The one emitted by the fluorescence centers has a longer wavelength than the absorbed radiation. If the transparent body is chosen to be very thin (as a foil), the radiation remains 'trapped' by total reflection in the foil. At the edges - or on the surface introduced ruffles (scratches or engravings) the radiation emerges and is directed into the main body and into the optical waveguide.

Der Fluoreszenzwellenlängenbereich der Fluoreszenzzentren ist vorzugsweise auf die Empfindlichkeit der Störlichtauswerteschaltung (bzw. der zugehörigen Empfangsdiode) abgestimmt. Ein solcher Bereich kann etwa zwischen 400 und 600 nm liegen. Durch die Abstimmung für einen bestimmten Wellenlängenbereich können Lichteinflüsse ausgeschlossen werden, die sonst auch auf den Störlichtbogensensor fallen. Solche störenden Einflüssen können von Industriebeleuchtungen oder auch von in der Nähe vorhandenen Schweißaggregaten stammen.The fluorescence wavelength range of the fluorescence centers is preferably matched to the sensitivity of the Störlichtauswerteschaltung (or the associated receiving diode). Such a range may be approximately between 400 and 600 nm. By tuning for a specific wavelength range light effects can be excluded, which otherwise also fall on the arc fault sensor. Such disturbing influences can come from industrial lighting or from nearby welding units.

Ein als optisches Element eingesetzter Strahlenreflektor (Planspiegel, Retroreflektor, Katzenauge) sollte vorzugsweise am Grundkörper dem Erfassungsbereich gegenüber angeordnet sein. Die Oberfläche des Störlichtbogensensors (oder einer auf ihm angeordneten transparenten Abdeckung) sollte im Erfassungsbereich mit einer reflexionsmindernden Oberfläche versehen sein. Hierzu kommen übliche optische Mittel infrage; wie lambda-Viertel Anti-Reflexionsbeschichtung oder mikrostrukturierte Oberfläche (Motten- oder Fliegenaugenstruktur).An optical reflector used as an optical element (plane mirror, retroreflector, cat's eye) should preferably be arranged on the base body opposite the detection area. The surface of the arc fault sensor (or a transparent cover placed on it) should be within the detection range be provided with a reflection-reducing surface. For this purpose, conventional optical means in question; like lambda quarter anti-reflective coating or microstructured surface (moth or fly-eye structure).

Der Grundkörper sollte zur optimalen Erfassung eines Störlichtbogens eine optisch günstige Geometrie aufweisen, die sich im wesentlichen nach der Anordnung, Form oder Größe der für Lichtbögen kritischen Kontakte richtet. Vorgestellt werden als Ausführungsformen: Kugel, Zylinder, oder Prisma. Der Lichtwellenleiter liegt in Nuten auf der Oberfläche des Grundkörpers spiraloder wendelförmig. Der Lichtwellenleiter kann auch im aus Kunststoff hergestellten Grundkörper eingebettet sein. Vorgesehen kann sein, daß in einem aus Gießharz hergestellten Grundkörper der Lichtwellenleiter fest eingegossen ist, wo er zusammen mit dem Kunststoff bei der Fabrikation aushärtet. Der Lichtwellenleiters kann räumlich in einer Ebene, oder räumlich in mehreren Ebenen als Spirale oder Mäander angeordnet sein.The main body should have optically favorable geometry for optimal detection of an arc fault, which depends essentially on the arrangement, shape or size of the arcs critical contacts. Shown as embodiments are: ball, cylinder, or prism. The optical waveguide is in grooves on the surface of the body spiral or helical. The optical waveguide can also be embedded in the base body made of plastic. It may be provided that in a base body made of cast resin of the optical waveguide is firmly cast, where it hardens together with the plastic in the fabrication. The optical waveguide can be arranged spatially in one plane, or spatially in several planes as a spiral or meander.

Der Störlichtbogensensor kann vorzugsweise einen Erfassungsbereich bis zu einem Raumwinkel von 180 Grad aufweisen.The fault arc sensor may preferably have a detection range up to a solid angle of 180 degrees.

Anhand der Zeichnung, in der Ausführungsbeispiele dargestellt sind, sollen die Erfindung, Ausgestaltungen und Verbesserungen und weitere Vorteile näher beschrieben und erläutert werden.Reference to the drawing, are shown in the embodiments, the invention, refinements and improvements and other advantages will be described and explained in more detail.

Es zeigen:

  • Fig. 1 eine erste Ausführungsform des Störlichtbogensensors,
  • Fig. 2A, 2B, 2C drei Ansichten des Störlichtbogensensors aus Fig. 1,
  • Fig. 3 eine zweite (prismatische) Ausführungsform,
  • Fig. 4 eine Ausführungsform in Halbkugel-Form,
  • Fig. 5 eine zylindrische Ausführungsform,
  • Fig. 6 die Ausführungsform nach Fig. 5 mit Anti-Reflexbeschichtung und
  • Fig. 7 eine perspektivische Darstellung nach Fig. 5.
Show it:
  • Fig. 1 a first embodiment of the arc fault sensor,
  • Fig. 2A, 2B, 2C three views of the arc fault sensor Fig. 1 .
  • Fig. 3 a second (prismatic) embodiment,
  • Fig. 4 an embodiment in hemisphere shape,
  • Fig. 5 a cylindrical embodiment,
  • Fig. 6 the embodiment according to Fig. 5 with anti-reflective coating and
  • Fig. 7 a perspective view after Fig. 5 ,

Ein Störlichtbogensensor mit zylindrischer Geometrie (46) des Grundkörpers 5 mit einigen cm Durchmesser ist in Fig. 1 dargestellt. Ein Lichtwellenleiter 2 liegt gewendelt im Innern des Grundkörpers 5. Der Lichtwellenleiter 2 führt das Licht über LWL-Stecker 3 zu einer nicht dargestellten Störlichterfassungsschaltung. Der Grundkörper ist ein transparenter Kunststoff, in dem fluoreszierende Moleküle 52 eingebracht sein können.An arc fault sensor with a cylindrical geometry (46) of the basic body 5 with a diameter of a few cm is shown in FIG Fig. 1 shown. An optical waveguide 2 is coiled in the interior of the main body 5. The optical waveguide 2 leads the light via fiber optic connector 3 to an interference light detection circuit, not shown. The main body is a transparent plastic in which fluorescent molecules 52 can be incorporated.

Bei Durchstrahlung des Grundkörpers absorbieren die Moleküle die Strahlung und geben in einem spezifischen Wellenlängenbereich Strahlung ab, so daß der eingebettete Lichtwellenleiter die Strahlung zweifach aufnimmt, einmal als direkte Strahlung aus dem Erfassungsbereich, der vorzugsweise eine Kopffläche des Zylinders sein kann und zum anderen durch die von den Molekülen abgegebene Strahlung.Upon irradiation of the body, the molecules absorb the radiation and emit radiation in a specific wavelength range, so that the embedded optical waveguide receives the radiation twice, once as direct radiation from the detection area, which may preferably be a top surface of the cylinder and the other by Radiation emitted by the molecules.

Die in den Lichtwellenleiter eingekoppelte Strahlung tritt in eine Empfangsdiode und wird in einer Störlichterfassungsschaltung ausgewertet. Die Empfangsdiode ist vorzugsweise für einen schmalbandigen Wellenlängenbereich ausgelegt. Mit einer schmalbandigen Empfangsdiode kann man Störlicht in anderen Wellenlängenbereichen ausschalten und damit die Erkennung eines Störlichtbogens sicherer machen. Störlichtbögen brennen in der Regel auf Kupfer-Kontakten, so daß hierbei angeregte grüne Spektrallinien - also im Bereich 400 bis 600 nm - besonders für das Erkennen eines Störlichtbogens geeignet sind.The coupled into the optical waveguide radiation enters a receiving diode and is evaluated in a Störlichterfassungsschaltung. The receiving diode is preferably designed for a narrow-band wavelength range. With a narrow-band receiving diode, it is possible to switch off stray light in other wavelength ranges and thus make the detection of an arc-fault safer. Fault arcs usually burn on copper contacts, so that in this case excited green spectral lines - ie in the range 400 to 600 nm - are particularly suitable for detecting an arc fault.

Die drei Figuren 2A, 2B und 2C (Schnitt A-A aus Fig. 2A) geben eine mögliche Lage des Lichtwellenleiters 2 im Grundkörper wieder. Hiernach liegt der Lichtwellenleiter eng in einer Spirale gewickelt im wesentlichen in einer Ebene E des Grundkörpers 5. Eine weitere Ausführungsform mit Mäander-Anordnung des Lichtwellenleiters ebenfalls in einer Ebene zeigt die Fig. 3 in einem prismatischen Grundkörper 42. Nicht dargestellt sind mögliche Lagen im Grundkörper, bei denen der Lichtwellenleiter in mehr als einer Ebene angeordnet ist. Wesentlich ist, dass der Lichtwellenleiter im Grundkörper eine gute Raumfüllung einnimmt. Wie die Figuren 2B, 2C und 3 ausweisen, liegen die Eintrittsstrecken 3' des Lichtwellenleiters von den LWL-Steckern 3 kommend nicht in der zuvor angesprochenen Haupt-Lageebene E des Lichtwellenleiters 2. Die Eintrittsstrecken 3' können jedoch auch in derselben Ebene wie eine der Haupt-Lageebenen E liegen.The three FIGS. 2A, 2B and 2C (Section AA off Fig. 2A ) indicate a possible position of the optical waveguide 2 in the main body. Thereafter, the optical waveguide is tightly wound in a spiral substantially in a plane E of the main body 5. Another embodiment with a meander arrangement of the optical waveguide also in a plane shows the Fig. 3 in a prismatic base body 42. Not shown are possible layers in the base body, in which the optical waveguide is arranged in more than one plane. It is essential that the optical waveguide in the base body occupies a good space filling. As the FIGS. 2B, 2C and 3 identify, are the entry routes 3 'of the optical waveguide coming from the fiber optic plugs 3 not in the previously mentioned main layer plane E of the optical waveguide 2. The entrance sections 3', however, can also lie in the same plane as one of the main layer levels E.

Die Fig. 4 zeigt einen Grundkörper 44, bei dem ein Lichtwellenleiter 2 spiralförmig in einer rinnenförmigen Nut 8 eingelegt ist. In den Figuren 2 und 4 ist ein Lichtwellenleiter 2 gezeigt, der um den Grundkörper ebenfalls in Nuten 8 mehrfach herumgelegt ist. Hierdurch ist der Lichtwellenleiter genau positioniert. Die Strahlungseinkopplung erfolgt radial durch die Ummantelung des Lichtwellenleiters. Der Erfassungsbereich des Lichtwellenleiters ist die obere Fläche des Grundkörpers. Der Erfassungsbereich ist relativ punktförmig, im Vergleich zu stab- oder linienförmigen Sensoren, die entlang von Stromschiene in einem Schaltfeld angeordnet werden.The Fig. 4 shows a base body 44, in which an optical waveguide 2 is inserted spirally in a groove-shaped groove 8. In the Figures 2 and 4 an optical waveguide 2 is shown, which is also wrapped around the main body in grooves 8 several times. As a result, the optical waveguide is accurately positioned. The radiation coupling takes place radially through the sheathing of the optical waveguide. The detection range of the optical waveguide is the upper surface of the main body. The detection area is relatively punctiform, as compared to rod or line-shaped sensors, which are arranged along busbar in a panel.

Gegenüber dem Erfassungsbereich - also unterhalb des Grundkörpers - ist ein Strahlenreflektor (20) angeordnet. Der in Fig. 7 dargestellte Strahlenreflektor 22 ist ein aus einer Vielzahl von Winkelspiegeln (Katzenauge) gebildeter Reflektor. In den Figuren 5 und 7 ist ebenfalls dieser Typ eines Strahlenreflektors gezeichnet.Opposite the detection area - ie below the body - a beam reflector (20) is arranged. The in Fig. 7 shown beam reflector 22 is one of a plurality of angular mirrors (cat's eye) formed reflector. In the FIGS. 5 and 7 is also drawn this type of beam reflector.

Der Störlichtbogensensor kann mit einem strahlungsdurchlässigen Element (Haube oder Schale) abgedeckt sein, das dem Grundkörper 5 auf- oder anliegt. Das abdeckende Element ist nicht dargestellt. Die Strahlung des Störlichtbogens, z.B. im Spektralbereich der UV-Strahlung, tritt durch das Abdeckelement in den Grundkörper ein.The arc fault sensor can be covered with a radiation-transmissive element (hood or shell) which rests on or abuts the base body 5. The covering element is not shown. The radiation of the arc fault, e.g. in the spectral range of the UV radiation, enters through the cover in the body.

Zur Befestigung an einer Schaltschrankwand oder einer anderen Befestigungsstelle kann das Abdeckelement mit einem radial nach außen gerichteten Befestigungskragen versehen sein. Das strahlungsdurchlässige Abdeckelement kann mit einem bodenseitig angeordneten Abdeckteil verschraubt oder anderweitig befestigt sein. An dem Abdeckteil können Befestigungsbohrungen in einem Befestigungskragen vorhanden sein.For attachment to a cabinet wall or other attachment point, the cover may be provided with a radially outwardly directed mounting collar. The radiation-permeable cover member may be bolted to or otherwise secured to a cover member disposed on the bottom side. On the cover part mounting holes may be present in a mounting collar.

Der Grundkörper 44 in Fig. 4 ist halbkugelförmig und der Grundkörper 46 in Fig. 5, 6 und 7 ist zylindrisch als Scheibe gestaltet.The main body 44 in Fig. 4 is hemispherical and the main body 46 in FIGS. 5, 6 and 7 is cylindrical designed as a disc.

Die Form des Grundkörpers ist nicht auf die vorstehend beschriebenen Geometrien beschränkt, sondern kann auch andere Formen, wie Kegel oder Kuppeln haben.The shape of the body is not limited to the geometries described above, but may have other shapes such as cones or domes.

Claims (11)

  1. An optical accidental arc sensor for use in switchgears, which comprises at least one optical waveguide (2), the optical waveguide (2) being disposed in multiply wound arrangement in the sensing area and stray light being coupled in radially through the cladding of the optical waveguide and passed on to a sensor, the optical waveguide (2) being held or secured in a base member (5), characterised in that at least one optical element (20, 30, 52), with which the stray light efficiency is enhanced, is associated with the base member (5).
  2. An optical accidental arc sensor according to claim 1, characterised in that the optical element (20, 30, 52) is a transparent body (42), in which centres of fluorescence (52) for absorbable radiation are present.
  3. An optical accidental arc sensor according to claim 2, characterised in that the transparent body (42) is a sheet.
  4. An optical accidental arc sensor according to one of claims 2 to 3, characterised in that the fluorescent wavelength range of the centres of fluorescence (52) is matched to the sensitivity of a stray light evaluation circuit.
  5. An optical accidental arc sensor according to one of claims 2 to 4, characterised in that the transparent body (42) comprises surface roughening for radiation decoupling into the base member (46).
  6. An optical accidental arc sensor according to claim 1, characterised in that the optical element (20) is a beam reflector (22).
  7. An optical accidental arc sensor according to claim 6, characterised in that the beam reflector (20) is arranged on the base member (5) opposite the sensing area.
  8. An optical accidental arc sensor according to claim 6 or claim 7, characterised in that the beam reflector (20) is a corner reflector (22) or a retroreflector.
  9. An optical accidental arc sensor according to claim 1, characterised in that the optical element (20) takes the form of a radiation-concentrating means (30).
  10. An optical accidental arc sensor according to any of the preceding claims, characterised in that the surface of the optical element is provided with a reflection-reducing surface.
  11. An optical accidental arc sensor according to any of the preceding claims, characterised in that the base member (5) is of an optically favourable geometric shape and the optical waveguide (2) is arranged in spiral or helical manner in grooves (8) on the surface of the base member (5).
EP02004482A 2001-03-01 2002-02-27 Optical sensor for accidental arc Expired - Lifetime EP1271591B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10109952 2001-03-01
DE10109952A DE10109952A1 (en) 2001-03-01 2001-03-01 Stray light spark sensor, especially for switching systems, has optical element(s) with absorbable radiation fluorescence centers that amplifies stray light yield associated with base body

Publications (3)

Publication Number Publication Date
EP1271591A2 EP1271591A2 (en) 2003-01-02
EP1271591A3 EP1271591A3 (en) 2004-03-17
EP1271591B1 true EP1271591B1 (en) 2008-04-23

Family

ID=7675984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02004482A Expired - Lifetime EP1271591B1 (en) 2001-03-01 2002-02-27 Optical sensor for accidental arc

Country Status (4)

Country Link
EP (1) EP1271591B1 (en)
AT (1) ATE393462T1 (en)
DE (2) DE10109952A1 (en)
DK (1) DK1271591T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345183B4 (en) * 2003-09-29 2005-10-13 Siemens Ag Device for detecting contact erosion in switching devices
RU2459222C1 (en) * 2010-12-23 2012-08-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Fibre spark and electric arc sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE450862B (en) * 1981-09-04 1987-08-03 Asea Ab LIGHT BAG DETECTION
FR2668294B1 (en) * 1990-10-22 1993-09-24 Alsthom Gec ARC DETECTION CIRCUIT BREAKER.
DE29513343U1 (en) * 1995-08-19 1996-12-19 Kloeckner Moeller Gmbh Optical fiber arcing fault detector for switchgear for the distribution of electrical energy
DE19757844A1 (en) * 1997-12-24 1999-07-01 Moeller Gmbh Switch arcing detector with non-wound light guide
DE19815537A1 (en) * 1998-03-31 1999-10-07 Siemens Ag HV device with arcing monitor for encapsulation housing

Also Published As

Publication number Publication date
EP1271591A3 (en) 2004-03-17
ATE393462T1 (en) 2008-05-15
DE50212132D1 (en) 2008-06-05
DE10109952A1 (en) 2002-09-05
EP1271591A2 (en) 2003-01-02
DK1271591T3 (en) 2008-07-28

Similar Documents

Publication Publication Date Title
EP0818066B1 (en) Electrical connector with contact pins or sockets, like a plug or coupling
DE3231306C2 (en)
EP0976972B1 (en) Rotary knob for control apparatus
DE10149780B4 (en) Device for illuminating a measuring surface and device and method for determining the visual properties of bodies
DE3818229C1 (en)
EP0127042A2 (en) Optical cable
EP1271591B1 (en) Optical sensor for accidental arc
AT390698B (en) ENCLOSED, IN PARTICULAR METAL-ENCLOSED HIGH-VOLTAGE SYSTEM
DE602005005582T2 (en) Torque measuring device for a rotating part with a light-emitting element on the axis of rotation
DE102019216130A1 (en) Illumination reflector device for illuminating a sample, optical analysis device for analyzing light from a sample, and method for manufacturing an illumination reflector device
DE3725467A1 (en) PROTECTIVE DEVICE FOR A FLEXIBLE ELECTRICAL CABLE
EP2339602A1 (en) Switching device and fibre optic cable
WO2001007954A1 (en) Cable winder for video endoscope
DE102006017400A1 (en) Apparatus and method for non-contact measurement of at least one curved surface
DE102016117411A1 (en) System for lighting a motor vehicle with a laser light source
DE102006041085A1 (en) Advertising medium e.g. advertising pillar has advertising surface and a lighting system whereby lighting system is fiber optic cable based lighting system with a light outlet
EP1902246B1 (en) Reflector systems
DE19963024B4 (en) Optical fault arc sensor
DE19603025A1 (en) Light generator for feeding into optical fibers
DE4333827C2 (en) Power transmission cable with fiber optic element
DE19938032A1 (en) electric wire
DE102013201809B4 (en) medical instrument
DE102017217229B4 (en) Cavity inspection device
DE102013222360B3 (en) Automotive lighting device
DE102006009244A1 (en) Discharge lamp with reflector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040207

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: OPTICAL SENSOR FOR ACCIDENTAL ARC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50212132

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090126

BERE Be: lapsed

Owner name: MOELLER G.M.B.H.

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20150204

Year of fee payment: 14

Ref country code: DK

Payment date: 20150126

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150206

Year of fee payment: 14

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160229

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50212132

Country of ref document: DE