EP1269094B1 - Procede et installation de generation d'energie - Google Patents

Procede et installation de generation d'energie Download PDF

Info

Publication number
EP1269094B1
EP1269094B1 EP01917197A EP01917197A EP1269094B1 EP 1269094 B1 EP1269094 B1 EP 1269094B1 EP 01917197 A EP01917197 A EP 01917197A EP 01917197 A EP01917197 A EP 01917197A EP 1269094 B1 EP1269094 B1 EP 1269094B1
Authority
EP
European Patent Office
Prior art keywords
air
compressor
combustion chamber
sent
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP01917197A
Other languages
German (de)
English (en)
Other versions
EP1269094A2 (fr
Inventor
Jean-Renaud Brugerolle
François Fuentes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8848322&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1269094(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1269094A2 publication Critical patent/EP1269094A2/fr
Application granted granted Critical
Publication of EP1269094B1 publication Critical patent/EP1269094B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/38Processes or apparatus using separation by rectification using pre-separation or distributed distillation before a main column system, e.g. in a at least a double column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2

Definitions

  • EP-A-0465193 discloses a method in which the compressor coupled to the expansion machine does not send air to the air separation apparatus.
  • An object of the present invention is to simplify the design of the combustion chamber.
  • Another object of the invention is to reduce the production of NO x by the gas turbine.
  • a gasifier means for supplying an oxygen-enriched gas from the air separation apparatus to the gasifier, and means for supplying fuel from the gasifier to the combustion chamber.
  • the oxidant may be an ASU waste nitrogen mixture and makeup air to control the oxygen content.
  • a compressor 1 coupled to an expansion machine 3 compresses air at a pressure between 8 and 20 bar.
  • the waste nitrogen is warmed to room temperature and compressed in a compressor 13 at a pressure between 8 and 30 bar.
  • the air separation apparatus can separate the air by permeation or adsorption.
  • At least a portion of the compressed nitrogen gas is supplied with a natural gas flow rate 17 to a combustion chamber 19.
  • the oxygen contained in the nitrogen gas serves as a fuel.
  • Another air flow 23 of this compressor and / or a compressed residual nitrogen flow 27 can cool the inter-stages of the expansion machine 3 or the nitrogen compressor 13.
  • the combustion chamber does not receive air from the compressor 1.
  • Another air flow 37 of this compressor and / or a compressed residual nitrogen flow 39 can cool the rotor 41 of the expansion machine 3 or the walls of the combustion chamber 19.
  • Part of the air 35 of the makeup compressor 21 can be separated in the air separation apparatus 5. In this way, the apparatus can be supplied with air when the compressor 1 is not operating. Otherwise, this additional air flow of the compressor 21 can make it possible to increase the oxygen production of the apparatus 5.
  • the air separation apparatus can be powered totally or partially by air from a dedicated compressor, at least for startup.
  • the air of the compressor 1 is purified and divided in two 105,107.
  • a flow 105 cools in the main heat exchanger 109 and is sent to the top of the first column 101 as the sole supply.
  • the other flow 107 is supercharged in the booster 127 (which may be a cold booster) and cooled in the exchanger 109; then it is sent to the bottom reboiler 111 of the first column 101 where it condenses at least partially before being sent after relaxation to the second column.
  • the second column is tank fed a few theoretical trays below the partially condensed air by a liquid flow from the tank of the first column 101.
  • the overhead gas of the first column is depleted air 115, so this flow enriched in nitrogen can be for the compressor 13 because it is almost at the same pressure as the supply air.
  • the bottom liquid of the second column is expanded and sent to an intermediate level of the third column as the sole feed.
  • the tank of the third column is thermally connected with the head of the second column by means of a vaporizer-condenser 113.
  • Gaseous oxygen 121 is withdrawn in the vat from the column 103.
  • this flow can be withdrawn in liquid form, pressurized and vaporized in the exchanger 109.
  • a top gas 117 of the third column is a low pressure nitrogen enriched stream and can be used to cool various elements such as turbine interstages, rotor, etc. rather than the depleted air 115 which itself is at high pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Air Supply (AREA)

Abstract

Dans un procédé de génération d'énergie, l'air d'un compresseur (1) couplé à une machine de détente (3) est envoyé à un appareil de séparation d'air (5). Un débit gazeux enrichi en azote (11) contenant entre 3 et 18 % d'oxygène est envoyé à une chambre de combustion (19) avec un débit combustible (17) et les gaz de combustion (33) sont détendus dans la machine de détente. Éventuellement de l'air d'un compresseur d'appoint (21) peut être envoyé à la chambre de combustion.

Description

  • La présente invention est relative à un procédé et une installation de génération d'énergie. En particulier elle est relative à un procédé et une installation de génération d'énergie dans lesquels un appareil de séparation d'air envoie un débit de gaz enrichi en azote en amont d'une machine de détente qui génère de l'énergie en détendant des gaz de combustion.
  • Différents schémas ont été proposés pour intégrer les turbines à gaz et les unités de séparation d'air par distillation cryogénique, en particulier dans le cadre des IGCC et des unités de séparation d'air par distillation cryogénique fonctionnant à haute pression.
  • Typiquement tel que décrit dans US-A-4224045, de l'air est prélevé sur le compresseur d'air de la turbine à gaz pour alimenter au moins partiellement l'unité de séparation d'air qui en retour envoie de l'azote soit dans le combustible destiné à la chambre de combustion soit en amont de la machine de détente de la turbine.
  • Dans US-A-4382366, qui constitue l'art antérieur le plus proche, tout l'air comprimé dans un compresseur couplé à une turbine à gaz est envoyé à une simple colonne. La chambre de combustion est alimentée par du carburant et de l'azote impur provenant des échangeurs réversibles de l'appareil de séparation d'air.
  • EP-A-0465193 décrit un procédé dans lequel le compresseur couplé à la machine de détente n'envoie pas d'air à l'appareil de séparation d'air.
  • Un but de la présente invention est de simplifier la conception de la chambre de combustion.
  • Un autre but de l'invention est de réduire la production des NOx par la turbine à gaz.
  • Selon un objet de l'invention il est prévu un procédé selon la revendication 1.
  • Ainsi comme tout l'air du compresseur de la turbine à gaz est envoyé à l'appareil de séparation d'air, la chambre de combustion est simplifiée.
  • La combustion avec l'oxygne cotnenu dans un débit de gaz de l'air enrichi en azote provenant d'un appareil de séparation d'air permet une très faible production de NOx.
  • Selon d'autres aspects facultatifs de l'invention :
    • l'air du compresseur est envoyée à l'appareil de séparation d'air;
    • une partie de l'air du compresseur est envoyé à l'appareil de séparation d'air et le reste de l'air comprimé dans le compresseur sert à refroidir au moins un élément de l'appareil autre que la chambre de combustion ;
    • l'air envoyé à l'appareil de séparation d'air provient du compresseur ;
    • une partie de l'air envoyé à l'appareil de séparation d'air provient d'un compresseur d'appoint ou d'une source d'air sous pression ;
    • l'air du compresseur d'appoint est mélangé avec au moins une partie du gaz enrichi en azote avant d'être envoyé à la chambre de combustion;
    • on envoie au moins une partie du gaz enrichi en oxygène pour effectuer la gazéification d'un combustible contenant du carbone de façon à générer un débit de combustible ;
    • le gaz enrichi en azote contient au moins 5% molaires et au plus 18% molaires d'oxygéne ;
    • le gaz enrichi en azote contient moins de 5% molaires d'oxygène ;
    • l'air est comprimé par le compresseur jusqu'à entre 8 et 20 bar ;
  • Selon un autre objet de l'invention, il est prévu une installation selon la revendication 11.
  • Selon un autre aspect optionnel, il est prévu
    un gazéifieur, des moyens pour envoyer un gaz enrichi en oxygène de l'appareil de séparation d'air au gazéifieur et des moyens pour envoyer du combustible du gazéifieur à la chambre de combustion.
  • De manière à optimiser le fonctionnement de la chambre de combustion, la comburant peut être un mélange d'azote résiduaire d'un ASU et d'air d'appoint afin de contrôler la teneur en oxygène.
  • L'invention sera maintenant décrite en plus de détail en se référant aux figures 1 et 2.
    • La Figure 1 est un schéma d'une installation de production d'énergie selon l'invention.
    • La Figure 2 est un schéma d'une installation de séparation d'air (ASU) pouvant typiquement servir dans une installation de production d'energie comme celle de la Figure 1.
  • Dans la Figure 1 un compresseur 1 couplé à une machine de détente 3 comprime de l'air à une pression entre 8 et 20 bar.
  • Tout cet air est refroidi, épuré et envoyé à un appareil de séparation d'air par distillation cryogénique 5 qui produit un débit d'oxygène gazeux ou liquide 7. un débit d'azote gazeux ou liquide 9 et un débit d'azote résiduaire gazeux 11 contenant 91% molaires d'azote et 9% molaires d'oxygène à entre 3 et 11 bar. L'azote résiduaire est réchauffé à la température ambiante et comprimé dans un compresseur 13 à une pression entre 8 et 30 bar.
  • En variante, l'appareil de séparation d'air peut séparer l'air par perméation ou adsorption.
  • Au moins une partie de l'azote gazeux comprimé 15 est envoyé avec un débit de gaz naturel 17 à une chambre de combustion 19. L'oxygène contenu dans l'azote gazeux sert de carburant.
  • Un débit d'air 25 à une pression entre 8 et 30 bar provenant d'un compresseur d'appoint 21 ou d'un autre source d'air sous pression est envoyé à la chambre de combustion 19.
  • Dans ce cas, comme l'air contient de l'oxygène, le contenu en oxygène de l'azote résiduaire peut être plus bas selon la quantité d'air envoyé à la chambre de combustion 19; le débit enrichi en azote peut ne comprendre que entre 2 et 5% d'oxygène.
  • Un autre débit d'air 23 de ce compresseur et/ou un débit d'azote résiduaire comprimé 27 peut refroidir les inter-étage de la machine de détente 3 ou du compresseur d'azote 13.
  • Un autre débit d'air 29 de ce compresseur et/ou un débit d'azote résiduaire comprimé 31 peut être mélangé avec les gaz de combustion 33 et le tout est ensuite envoyé à la machine de détente.
  • La chambre de combustion ne reçoit pas d'air du compresseur 1.
  • Un autre débit d'air 37 de ce compresseur et/ou un débit d'azote résiduaire comprimé 39 peut refroidir le rotor 41 de la machine de détente 3 ou les parois de la chambre de combustion 19.
  • Une partie de l'air 35 du compresseur d'appoint 21 peut être séparée dans l'appareil de séparation d'air 5. De cette façon, l'appareil peut être alimenté en air quand le compresseur 1 ne fonctionne pas. Autrement ce débit supplémentaire d'air du compresseur 21 peut permettre d'augmenter la production d'oxygène de l'appareil 5.
  • Eventuellement de l'air du compresseur 1 peut ne pas être envoyé à l'appareil de séparation d'air 5 car il est utilisé pour refroidir divers éléments de la turbine à gaz. Cette partie de l'air peut représenter environ 25% de l'air comprimé.
  • L'appareil de séparation d'air peut être alimenté totalement ou partiellement par de l'air provenant d'un compresseur dédié, au moins pour le démarrage.
  • La Figure 2 montre un appareil de séparation d'air comprenant une première colonne 101 opérant entre 4 et 30 bar, une deuxième colonne 102 opérant entre 4 et 30 bar et une troisième colonne 103 opérant entre 1,3 et 10 bar. Cet appareil pourrait servir d'appareil de séparation 5 de la Figure 1. De préférence, les colonnes 101,102 opèrent au-dessus de 8 bar.
  • L'air du compresseur 1 est épuré et divisé en deux 105,107.Un débit 105 se refroidit dans l'échangeur principal 109 et est envoyé en tête de la première colonne 101 comme seule alimentation. L'autre débit 107 est surpressé dans le surpresseur 127 (qui peut être un surpresseur froid) et refroidi dans l'échangeur 109 ; ensuite il est envoyé au rebouilleur de cuve 111 de la première colonne 101 où il se condense au moins partiellement avant d'être envoyé après détente à la deuxième colonne. La deuxième colonne est alimentée en cuve quelques plateaux théoriques en dessous de l'air partiellement condensé par un débit de liquide provenant de la cuve de la première colonne 101. Le gaz de tête de la première colonne constitue de l'air appauvri 115, donc ce débit enrichi en azote peut être destiné au compresseur 13 car il est presque à la même pression que l'air d'alimentation.
  • Le liquide de cuve de la deuxième colonne est détendu et envoyé à un niveau intermédiaire de la troisième colonne comme seule alimentation. La cuve de la troisième colonne est reliée thermiquement avec la tête de la deuxième colonne au moyen d'un vaporiseur-condenseur 113.
  • Le gaz de tête de la deuxième colonne 102 est de l'azote à haute pression 119.
  • De l'oxygène gazeux 121 est soutiré en cuve de la colonne 103. Eventuellement ce débit peut être soutiré sous forme liquide, pressurisé et vaporisé dans l'échangeur 109.
  • Un gaz de tête 117 de la troisième colonne constitue un débit enrichi en azote à basse pression et peut servir à refroidir divers éléments tels que les inter-étages de la turbine, le rotor etc. plutôt que l'air appauvri 115 qui, lui, est à pression élevée.
  • Evidemment l'appareil doit être tenu en froid par un moyen non-illustré qui peut être une turbine Claude envoyant de l'air à la colonne 101,102, une turbine d'insuifilation envoyant de l'air à la colonne 103, une turbine d'azote résiduaire 117 si la colonne 103 est sous pression ou une turbine d'azote moyenne pression 119.
  • Les deuxième et troisième colonnes peuvent être remplacées par une triple colonne.
  • Le schéma de la Figure 2 a été décrit dans le contexte d'un procédé intégré dans lequel tout l'air du compresseur de la turbine à gaz est envoyé à l'ASU mais il est évident que le schéma peut être utilisé dans des cas ou tout ou une partie de l'air de ce compresseur est envoyé à la chambre de combustion ou même dans le cas où l'ASU n'est pas intégré avec un autre appareil.
  • Les compresseurs 13,21 et 127 peuvent être couplés à une (des) turbine(s) de l'installation, par exemple une turbine à vapeur.

Claims (12)

  1. Procédé de génération d'énergie utilisant un appareil de génération d'énergie comprenant les étapes de :
    i) comprimer de l'air dans un compresseur (1) ;
    ii) envoyer au moins une partie de l'air comprimé dans le compresseur à un appareil de séparation d'air (5) pour produire au moins un fluide enrichi en oxygène (7) et au moins un gaz enrichi en azote (9,11) et contenant également de l'oxygène;
    iii) envoyer du combustible (17) et au moins une partie du gaz enrichi en azote (11) à une chambre de combustion afin de produire des gaz de combustion (33), l'air comprimé dans le compresseur (1) n'étant pas envoyé à la chambre de combustion ; et
    iv) détendre les gaz de combustion dans une machine de détente (3) couplée au compresseur pour récupérer de l'énergie ;
    caractérisé en ce que le gaz enrichi en azote est comprimé à une pression entre 8 et 30 bar avant d'être envoyé à la chambre de combustion et on envoie de l'air à une pression entre 8 et 30 bar d' un compresseur d'appoint (21) à la chambre de combustion (19) ou d'une source d'air sous pression autre que le compresseur (1).
  2. Procédé selon la revendication 1 dans lequel tout l'air du compresseur (1) est envoyé à l'appareil de séparation d'air (5).
  3. Procédé selon la revendication 1 dans lequel une partie de l'air du compresseur (1) est envoyé à l'appareil de séparation d'air (5) et le reste de l'air comprimé dans le compresseur sert à refroidir au moins un élément de l'appareil autre que la chambre de combustion (19).
  4. Procédé selon l'une des revendications 1 à 3 dans lequel tout l'air envoyé à l'appareil de séparation d'air (5) provient du compresseur (1).
  5. Procédé selon l'une des revendications 1 à 3 dans lequel une partie (35) de l'air envoyé à l'appareil de séparation d'air (5) provient d'un compresseur d'appoint (21) ou d'une source d'air sous pression.
  6. Procédé selon la revendication 1 à 5 dans lequel au moins une partie de l'air du compresseur d'appoint (21) est mélangé avec au moins une partie du gaz enrichi en azote (11) avant d'être envoyé à la chambre de combustion.
  7. Procédé selon une des revendications précédentes dans lequel on envoie au moins une partie du gaz enrichi en oxygène (1) pour effectuer la gazéification d'un combustible contenant du carbone de façon à générer un débit de combustible.
  8. Procède selon l'une des revendications précédentes dans lequel le gaz enrichi en azote (11,15) contient au moins 5% molaires et au plus 18% molaires d'oxygène ou est mélangé avec de l'air pour produire un gaz contenant au moins 5% molaires et au plus 18% molaires d'oxygène, ce gaz étant ensuite envoyé à la chambre de combustion (19).
  9. Procédé selon ta revendication 1 à 5 ou 7 dans lequel le gaz enrichi en azote (11,15) contient moins de 5% molaires d'oxygène.
  10. Procédé selon l'une des revendications précédentes dans lequel l'air est comprimé par le compresseur (1) jusqu'à entre 8 et 20 bar.
  11. Installation de génération d'énergie comprenant :
    i) un compresseur (1)
    ii) une machine de détente (3) couplée au compresseur ;
    iii) une chambre de combustion (19) ;
    iv) un appareil de séparation d'air (5) ;
    v) des moyens pour envoyer de l'air du compresseur à l'appareil de séparation d'air;
    vi) des moyens pour envoyer un gaz enrichi en azote (11,15) et contenant de l'oxygène de l'appareil de séparation d'air à la chambre de combustion et aucun moyen d'envoi d'air du compresseur à la chambre de combustion ;
    caractérisée en ce qu'elle comprend des moyens (13) pour comprimer le gaz enrichi en azote avant de l'envoyer à la chambre de combustion ainsi qu'un compresseur d'appoint (21) ou une source d'air sous pression autre que le compresseur (1) pour envoyer de l'air à la chambre de combustion.
  12. Installation selon la revendication 11 comprenant un gazéifieur, des moyens pour envoyer un gaz enrichi en oxygène de l'appareil de séparation d'air au gazéifieur et des moyens pour envoyer du combustible du gazéifieur à la chambre de combustion.
EP01917197A 2000-03-21 2001-03-21 Procede et installation de generation d'energie Revoked EP1269094B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0003583 2000-03-21
FR0003583A FR2806755B1 (fr) 2000-03-21 2000-03-21 Procede et installation de generation d'energie utilisant un appareil de separation d'air
PCT/FR2001/000839 WO2001071172A2 (fr) 2000-03-21 2001-03-21 Procede et installation de generation d'energie

Publications (2)

Publication Number Publication Date
EP1269094A2 EP1269094A2 (fr) 2003-01-02
EP1269094B1 true EP1269094B1 (fr) 2006-05-24

Family

ID=8848322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01917197A Revoked EP1269094B1 (fr) 2000-03-21 2001-03-21 Procede et installation de generation d'energie

Country Status (6)

Country Link
US (1) US6718794B2 (fr)
EP (1) EP1269094B1 (fr)
JP (1) JP4704655B2 (fr)
DE (1) DE60119916T2 (fr)
FR (1) FR2806755B1 (fr)
WO (1) WO2001071172A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059501A1 (fr) * 2015-02-20 2016-08-24 Siemens Aktiengesellschaft Procédé de commande d'un système de combustion

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284362B2 (en) * 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
WO2004033886A2 (fr) * 2002-10-10 2004-04-22 Combustion Science & Engineering, Inc. Systeme de vaporisation de combustibles liquides pour la combustion et procede d'utilisation
US7197894B2 (en) * 2004-02-13 2007-04-03 L'air Liquide, Societe Anonyme A' Directorie Et Conseil De Survelliance Pour L'etude Et, L'exploltation Des Procedes Georges, Claude Integrated process and air separation process
US20050256335A1 (en) * 2004-05-12 2005-11-17 Ovidiu Marin Providing gases to aromatic carboxylic acid manufacturing processes
ES2861061T3 (es) 2004-12-08 2021-10-05 Lpp Comb Llc Método y aparato para acondicionar combustibles de hidrocarburos líquidos
US20060123844A1 (en) * 2004-12-09 2006-06-15 Patrick Le Bot Integrated process for the separation of air and an integrated installation for the separation of air
US7650744B2 (en) * 2006-03-24 2010-01-26 General Electric Company Systems and methods of reducing NOx emissions in gas turbine systems and internal combustion engines
US8529646B2 (en) 2006-05-01 2013-09-10 Lpp Combustion Llc Integrated system and method for production and vaporization of liquid hydrocarbon fuels for combustion
US20090223201A1 (en) * 2008-03-10 2009-09-10 Anand Ashok K Methods of Injecting Diluent Into A Gas Turbine Assembly
US8186169B2 (en) * 2010-10-22 2012-05-29 General Electric Company Nitrogen cooled gas turbine with combustor nitrogen injection and partial nitrogen recycling
US9680350B2 (en) 2011-05-26 2017-06-13 Praxair Technology, Inc. Air separation power generation integration
US9527736B2 (en) * 2013-03-27 2016-12-27 General Electric Company System and method for generating nitrogen from a gas turbine
CN109059422A (zh) * 2018-07-12 2018-12-21 北京拓首能源科技股份有限公司 一种利用污氮冷能预冷空气的装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE560818A (fr) * 1956-10-18
US4224045A (en) 1978-08-23 1980-09-23 Union Carbide Corporation Cryogenic system for producing low-purity oxygen
US4382366A (en) 1981-12-07 1983-05-10 Air Products And Chemicals, Inc. Air separation process with single distillation column for combined gas turbine system
JPS60500972A (ja) * 1983-03-31 1985-06-27 エリクソン、ドナルド・シ− 多重潜熱交換による低温再循環蒸留
US4545787A (en) * 1984-07-30 1985-10-08 Air Products And Chemicals, Inc. Process for producing by-product oxygen from turbine power generation
US4854954A (en) * 1988-05-17 1989-08-08 Erickson Donald C Rectifier liquid generated intermediate reflux for subambient cascades
US5081845A (en) * 1990-07-02 1992-01-21 Air Products And Chemicals, Inc. Integrated air separation plant - integrated gasification combined cycle power generator
US5421166A (en) * 1992-02-18 1995-06-06 Air Products And Chemicals, Inc. Integrated air separation plant-integrated gasification combined cycle power generator
US5406786A (en) * 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
JPH07305607A (ja) * 1994-05-10 1995-11-21 Hitachi Ltd 石炭ガス化発電プラント
US5501078A (en) * 1995-04-24 1996-03-26 Praxair Technology, Inc. System and method for operating an integrated gas turbine and cryogenic air separation plant under turndown conditions
US5740673A (en) * 1995-11-07 1998-04-21 Air Products And Chemicals, Inc. Operation of integrated gasification combined cycle power generation systems at part load
US5901547A (en) * 1996-06-03 1999-05-11 Air Products And Chemicals, Inc. Operation method for integrated gasification combined cycle power generation system
US5839296A (en) * 1997-09-09 1998-11-24 Praxair Technology, Inc. High pressure, improved efficiency cryogenic rectification system for low purity oxygen production
GB9726954D0 (en) * 1997-12-19 1998-02-18 Wickham Michael Air separation
WO1999040304A1 (fr) * 1998-02-04 1999-08-12 Texaco Development Corporation Separation d'air cryogenique combinee avec une gazeification integree
US5979183A (en) * 1998-05-22 1999-11-09 Air Products And Chemicals, Inc. High availability gas turbine drive for an air separation unit
DE19846225C2 (de) * 1998-10-07 2002-05-29 Siemens Ag Gas- und Dampfturbinenanlage
US6276171B1 (en) * 1999-04-05 2001-08-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid, process for the operation thereof
US6487863B1 (en) * 2001-03-30 2002-12-03 Siemens Westinghouse Power Corporation Method and apparatus for cooling high temperature components in a gas turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059501A1 (fr) * 2015-02-20 2016-08-24 Siemens Aktiengesellschaft Procédé de commande d'un système de combustion
WO2016131634A1 (fr) * 2015-02-20 2016-08-25 Siemens Aktiengesellschaft Procédé de fonctionnement d'un système de combustion

Also Published As

Publication number Publication date
JP2003532824A (ja) 2003-11-05
DE60119916D1 (de) 2006-06-29
FR2806755A1 (fr) 2001-09-28
FR2806755B1 (fr) 2002-09-27
WO2001071172A3 (fr) 2002-04-18
US6718794B2 (en) 2004-04-13
EP1269094A2 (fr) 2003-01-02
DE60119916T2 (de) 2007-01-18
JP4704655B2 (ja) 2011-06-15
WO2001071172A2 (fr) 2001-09-27
US20030136147A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
EP1269094B1 (fr) Procede et installation de generation d'energie
CA2303668C (fr) Appareil integre pouvant produire de l'energie et/ou un fluide enrichi en oxygene, procede de fonctionnement de l'appareil et procede et dispositif de separation d'air
US6202442B1 (en) Integrated apparatus for generating power and/or oxygen enriched fluid and process for the operation thereof
JP3161696B2 (ja) 燃焼タービンを統合した空気分離方法
EP0676373B1 (fr) Procédé et installation de production de monoxyde de carbone
EP0628778A1 (fr) Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air
EP2847060A2 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
WO2018215716A1 (fr) Procédé et appareil pour la séparation de l'air par distillation cryogénique
EP3069091A2 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
CA2357302A1 (fr) Procede et installation de separation d'air par distillation cryogenique
FR2807150A1 (fr) Procede et appareil de production d'un fluide enrichi en oxygene par distillation cryogenique
FR2724011A1 (fr) Procede et installation de production d'oxygene par distillation cryogenique
FR3011916A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR2830928A1 (fr) Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
EP1063485B1 (fr) Appareil et procédé de séparation d'air par distillation cryogénique
EP1697690A2 (fr) Procede et installation d enrichissement d'un flux gazeux en l'un de ses constituants
EP3599438A1 (fr) Procede et appareil de separation cryogenique d'un melange de monoxyde de carbone, d'hydrogene et de methane pour la production de ch4
EP1132700A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR2782787A1 (fr) Procede et installation de production d'oxygene impur par distillation d'air
EP3913310A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR2825453A1 (fr) Procede et installation de separation par distillation
WO2009130430A2 (fr) Procede et appareil de separation d'air par distillation cryogenique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021021

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20040421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60119916

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060918

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 20070222

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130321

Year of fee payment: 13

Ref country code: DE

Payment date: 20130321

Year of fee payment: 13

Ref country code: FR

Payment date: 20130408

Year of fee payment: 13

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 60119916

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 60119916

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130327

Year of fee payment: 13

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20130710

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20130710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 60119916

Country of ref document: DE

Effective date: 20140102