EP1268269B1 - Procede et dispositif permettant de faire fonctionner un submersible - Google Patents

Procede et dispositif permettant de faire fonctionner un submersible Download PDF

Info

Publication number
EP1268269B1
EP1268269B1 EP01927612A EP01927612A EP1268269B1 EP 1268269 B1 EP1268269 B1 EP 1268269B1 EP 01927612 A EP01927612 A EP 01927612A EP 01927612 A EP01927612 A EP 01927612A EP 1268269 B1 EP1268269 B1 EP 1268269B1
Authority
EP
European Patent Office
Prior art keywords
signal
pressure difference
pressure
setpoint
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01927612A
Other languages
German (de)
English (en)
Other versions
EP1268269A1 (fr
Inventor
Harald Freund
Rüdiger KUTZNER
Hauke-Hein Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1268269A1 publication Critical patent/EP1268269A1/fr
Application granted granted Critical
Publication of EP1268269B1 publication Critical patent/EP1268269B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks

Definitions

  • the invention is directed to a method and a device for operating an underwater vehicle.
  • the suspended state of a submerged submarine is produced by the fact that by changing the weight of the resulting in the desired depth buoyancy buoyancy is maintained.
  • Cells recorded (flooding), while reducing the boat weight water from the (the) cell (s) is discharged to the outside (lenzen).
  • Control cells of coarse weight adjustment while provided for fine adjustment so-called. Tieflenzzellen. Therefore, the latter have a comparatively low volume, while the control cells can have a capacity of many hundreds of liters.
  • this provisional timing can only be reasonably accurate be determined when the flow rate in the relevant pipe connection to the control cell always at least at the beginning of the closing process has a known value and is subjected as possible no other fluctuations. Then by multiplying this flow value with the expected closing time of the flap and possibly a factor whose variable position taken into account the probably still flowing water volume reasonably accurately precalculated and thus the level in the relevant control cell can be predicted, in which the closing operation of the flap must be initiated .
  • the flow velocity in the said pipe connection to the control cell depends in particular on the pressure difference between the pressure within the control cell and the outboard water pressure and can therefore vary greatly not only with the depth, but also in particular with the level within the control cell.
  • the problem initiating the invention results in providing a way in which the fill level in a control cell of an underwater vehicle can be predetermined as precisely as possible, so that additionally required low-clearance cells with a comparatively small volume can be formed; In particular, this should be achieved by the Vorhaltezeittician for initiating the closing of a Flap in the pipe connection to and from a control cell can be determined as accurately as possible.
  • the solution to this problem is achieved in that the pressure difference between the pressure in a purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand is controlled to a predetermined target value.
  • volume flow rate in the flow of a viscous medium through a pipe can be created by regulating this pressure difference to a preferably fixed value optimal condition for the volume flow rate of the Water remains reasonably constant through the tube from and to the relevant control cell with unchanged flap position angle. Since the influence of the flap position angle on the volume flow rate can be determined experimentally, the lead time for the initiation of the closing operation of the flap in the pipe connection to and from the control cell can be determined very accurately.
  • the actual value of the pressure difference between the pressure in a vehicle for the purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand is measured.
  • this pressure difference can be detected by two sensors, from one of which is assigned to the outboard water pressure and the other to the internal pressure in the relevant control cell, these sensors would preferably be arranged approximately in the vicinity of the respective pipe mouth; In this case, the pressure difference could be generated by subtracting the sensor output signals applied to or converted to identical measuring ranges.
  • the measurement effort can be reduced by using a single pressure sensor for the pressure difference, the output signal of which can then be used directly as an actual value for the control loop according to the invention.
  • the measured actual value of the pressure difference is subtracted from the predetermined desired value in order to obtain a measure for the control deviation.
  • the further task of the control loop according to the invention can be simplified to the effect that the signal for the control deviation is adjusted as possible to zero.
  • a function which is proportional to the control deviation and whose integral and / or differential function are formed as a control signal allow a high precision of the control in relation to cheaper realizations such as, for example, two-point controls, which on the other hand may be applicable in individual cases.
  • the choice of the correct controller structure as well as the determination and optimization of the controller parameters can be made with regard to desired properties such as, for example, dynamics and stability of the control.
  • the invention allows a development to the effect that the control signal to improve the dynamics of setpoint changes is additively linked to a derived from the setpoint, in particular by differentiation signal to a dynamic control signal.
  • Such an arrangement makes it possible to form the actual control function without differential component, so that without setpoint changes a very quiet regulation takes place and thus the risk of instability is considerably reduced.
  • the possibly dynamized control signal is influenced by one or more signals. In this way, specific boundary conditions, which are to be observed in the track to be corrected, be met.
  • a first modification can experience the optionally dynamized control signal by a filling level measurement for the container to be filled in order to change the vehicle weight, in order thereby to obtain a level-corrected control signal.
  • This modification takes into account the fact that at a high level in the relevant control cell only a comparatively small volume of air is present, so that even the ventilation with a comparatively small amount of air leads to strong pressure changes in the control cell, while at low cell level this the movement of considerably larger amounts of air is required.
  • the modification could in this case be effected in such a way that the measured fill level is subtracted from the maximum fill level in order to provide a measure of the remaining air volume, and that this value proportional to the air volume is subsequently multiplied by the possibly dynamic controller output signal.
  • Another alternative or cumulative modification option may be derived from a pressure signal for outboard pressure to obtain a dive depth corrected control signal.
  • the possibly dynamized level-corrected and / or dipping depth-corrected control signal is limited in order to correspond to further setpoint values, in particular with regard to the noise requirement.
  • This limitation should also be understood in terms of a reduction of the proportionality factor at large amplitudes of the control signal, for example, to avoid strong and therefore loud control measures, which may be particularly important in military underwater vehicles.
  • control concept according to the invention can advantageously be supplemented by a lower-level control for the rate of change of the pressure difference, which is communicated as the desired value to the possibly dynamized, level-corrected, diving depth-corrected and / or limited pressure difference control signal.
  • This multi-part control structure can be used to avoid jumps in the rate of change of the pressure difference, which also causes a settling of the control loop, so that the noise generated by the arrangement can be minimized.
  • the actual value for the rate of change of the pressure difference required for the subordinate control loop can be determined by differentiation according to the teaching of the invention from the measured actual value of the pressure difference between the pressure in the relevant control cell on the one hand and the outboard water pressure on the other hand. Since such a differentiation can be easily implemented by means of inexpensive electronic components, a cascade control according to the invention is not a technological obstacle in the way.
  • a further step of the method according to the invention is that the rate of change of the pressure difference actual value is subtracted from the control signal of the higher-level control used for the pressure difference between control cell and outboard water pressure used as setpoint signal, by a measure of the control deviation of the subordinate control for the rate of change to get the pressure difference.
  • This method step serves to simplify downstream regulation by reducing its task to zeroing out the measure of the control deviation determined in this way for the subordinate control.
  • a correction of the control deviation signal of the subordinate control for the rate of change of the pressure difference on the basis of the pressure difference setpoint can be made to improve the dynamics at setpoint changes of the predetermined pressure difference setpoint, in particular by means of a differentiation derived from the pressure difference setpoint signal.
  • a differential component derived from the predefinable differential pressure set point can be looped in, since as a result of the subordinate control loop for the rate of change of the pressure difference actual value, a sudden change in this controlled variable can be avoided.
  • the subordinate control for the rate of change of the pressure difference can be advantageous to form the possibly dynamized control deviation whose integral and / or differential proportional function as a control signal for the rate of change of the pressure difference.
  • the differential component should not be too large or even omitted.
  • control signal in particular for the rate of change the pressure difference control signals for a valve disposed upstream of the container connection for a gaseous pressure medium vent valve on the one hand and for a downstream of the container port for the pressure medium arranged vent valve on the other hand are derived.
  • the controlled system according to the invention has the peculiarity that for an increase in the cell pressure, the vent valve must be opened, wherein a downstream thereof arranged vent valve should be closed to prevent pressure losses, while on the other hand should be closed when opening the vent valve in order to reduce the cell pressure, the vent valve. Accordingly, control signals for two actuators must be generated from the control signal relevant for influencing the route, one of the actuators designed as valves being associated with one of the two possible polarities of the relevant control signal.
  • the control signals to be generated from the relevant control signal should be such that they bring about a continuous adjustment of the relevant valve. As a result, the strength of the air flow can be continuously influenced, so that a very soulful and thus extremely stable control can be achieved.
  • the actual position of the ventilation valves to be actuated may in turn deviate from the desired position according to the control signals due to fluctuating boundary conditions, for example as a result of production-related tolerances, voltage fluctuations, corrosion-induced increase of friction coefficients, wear, etc. Nevertheless, the valves are exactly in the To be able to move desired position, the invention further provides that the current valve positions are detected. Thus, the regulation or control circuit according to the invention receives a feedback signal, which gives this information about whether the calculated valve position values have actually been approached.
  • the feedback of the current valve positions also allows mutual locking of the two valves, such that the control signals for one valve are linked to the current valve position of the other valve. This can ensure that one valve is opened only when the other is completely closed to avoid pressure losses.
  • control signals for the valves are obtained from the optionally modified by locking control signal in particular for the rate of change of the pressure difference by a respective subordinate valve position control.
  • Such a position control for the active part of the ventilation valve ensures a highly precise adjustment, wherein the respective required control signals are generated individually in the required for the relevant valve position amplitude by the respective control loop.
  • the detected valve position value should be subtracted from the control signal used as a setpoint, possibly modified by locking, in particular for the rate of change of the pressure difference in order to obtain a measure for the system deviation. If this signal for the control deviation is adjusted to zero, then the valve in question has taken the position determined by the higher-level control signal, and the higher-level control circuit can always assume optimum compliance with the required valve positions, even if in detail the electrical or mechanical parameters of affected valves differ from each other.
  • the control deviation can be minimized in particular by the fact that, as part of the valve position control, a function that is proportional to the control deviation of the valve position, its integral and / or differential as a control signal for the relevant valve is formed.
  • an integral component in this case means that the control signal is raised or lowered until the valve has assumed its predetermined position and thereby the control deviation has become zero.
  • an underwater vehicle according to the invention must be equipped with a correspondingly constructed device.
  • This is characterized by a circuit for controlling the pressure difference between the pressure in a purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand to a predetermined desired value.
  • Such a circuit arrangement can be realized in many different ways. On the one hand, it is possible to mechanically construct the individual components of this circuit; For weight and space savings, however, with the exception of the sensors and actuators and electrical or electronic components can be used, and finally, a summary of these components to an integrated circuit is possible, which may also be designed as a programmable device, its function by a receives special control program.
  • the internal pressure in the relevant control cell is influenced via one or more actuators such that it is always tracked to the outboard water pressure with an offset corresponding to the predefinable pressure difference setpoint.
  • the actuators and the deaeration valve for the relevant control cell serve as actuators influenced by this circuit, and an actual value signal required for the feedback is generated by one or more pressure sensors.
  • the pressure difference actual value can also be generated by means of separate pressure sensors for the control cell pressure on the one hand and the outboard water pressure on the other hand
  • the invention prefers the use of a single sensor for the pressure difference between the pressure in the control cell on the one hand and the outboard water pressure on the other hand. Since such differential pressure sensors only require a small additional design effort, on the other hand, the susceptibility is reduced by a reduction of components, this arrangement deserves the advantage. Also, the calibration effort is reduced and an electronic subtraction module is also eliminated.
  • a device for subtracting an output signal from the sensor for the pressure difference between the tank internal pressure and the outboard water pressure from a predetermined desired value signal This device thus generates a signal for the current control deviation, which can be adjusted to zero under control of the actual value.
  • the output signal of the subtraction device for the setpoint and actual value of the pressure difference can be fed to the input of a controller module whose output signal is proportional to its input signal whose integral and / or differential.
  • the integral component preferably serves to permanently correct the control difference exactly to zero, while a differential component, while improving the dynamics of the control loop, but on the other hand should be kept rather small to avoid instabilities or to dampen any oscillations triggered by the sea state, etc.
  • an addition device may be provided, in which the output signal of the pressure difference control module one of the pressure difference setpoint in particular by differentiation derived signal is added to obtain a dynamized control signal.
  • This measure can be used to generate a selectively responsive to setpoint changes dynamics, while rapid changes in the actual value, which can be faked in particular by the sea state are attenuated by omitting a differential component in the controller according to the invention or at least not amplified.
  • At least one module for modifying the control signal can be arranged downstream of the controller module or the addition unit connected to the output side by means of one or more signals ,
  • These modification modules can act on the control signal in a variety of ways: amplifying, attenuating, limiting, etc.
  • the control signal can, for example, be modified by a module to which the output signal of a sensor for the fill level in the relevant control cell is supplied.
  • this modification module receives information about the current level in the relevant control cell, this can adjust the control signal corresponding to the remaining air volume, and this module can be designed for this purpose as a multiplier, which multiplies the control signal with a proportional to the remaining air volume factor.
  • the output signal of a sensor for the outboard water pressure can be connected, whereby this Modtechnischsbaustein can determine at least approximately the current depth. Its task is to attenuate the control signal at low depths and thereby vibrations in the control loop, such as they are triggered by the sea state at such shallow diving depths, to dampen. It can therefore have a transfer function, which has the value 1 for larger diving depths, but smaller than 1 for smaller diving depths.
  • Another turn, another block, which is preferably used to limit the possibly modified control signal, has an input for a predetermined or specifiable setpoint signal with respect to the noise request.
  • the control signal can be throttled or attenuated by limiting, so that all actions of the control loop are carried out with reduced intensity and thereby both abrupt switching changes as well as strong air and / or water movements are avoided.
  • the invention provides a cascade control, with a subordinate circuit for controlling the rate of change of the pressure difference whose setpoint input is supplied to the possibly modified output signal of the pressure difference control module.
  • a controller structure has the advantage that the rate of change of the pressure difference is not largely left to itself, but is tracked as exactly as possible a possibly influenced by the various modification modules setpoint signal. In this way, a further intervention point is created, on the one hand, the above-described Modtechnischsbausteine can be coupled, and on the other hand, the management behavior of the respective control loops by optimized controller structures and / or parameters can be specified independently by a separation of the controller for the parent and subordinate control loop ,
  • the output signal of the sensor for the pressure difference between the pressure in the relevant control cell on the one hand and the outboard side water pressure is supplied to a module which calculates the time differential therefrom.
  • this module it is possible to determine from the preferably continuously measured actual value of the pressure difference between the control cell and outboard water pressure an actual value for the rate of change of this pressure difference.
  • this block can be designed as an analog differentiator, so that the differential is determined almost instantaneously and at any time, on the other hand, it is also possible to take samples of the Druckdifferenzistwertsignal at short intervals, to digitize them and from the difference of successive digital values, the differential determine.
  • this actual value signal for the rate of change of the pressure difference takes place in a subtraction device, where this signal is subtracted from the possibly modified output signal of the pressure difference control module to obtain a signal for the control deviation of the lower-level control circuit for the rate of change of the pressure difference.
  • a signal is created whose absolute value of the amplitude is a criterion for the distance of the actual operating point from the desired operating point and is to be adjusted by a controller module by changing the operating point of the track to zero.
  • the cascade control according to the invention offers the further possibility of adding to the signal for the control deviation of the subordinate control circuit for the rate of change of the pressure difference a signal derived from the pressure difference setpoint signal, in particular by differentiation, in order to obtain a dynamized control deviation signal for the subordinate control loop.
  • This is preferably performed in an adder to which the respective signals are supplied; If necessary, this addition device can also be used with the subtraction device for the formation of the control deviation be integrated by the lower-level control loop, for example.
  • the controller module of the subordinate control circuit can be constructed such that its output signal is proportional to the applied at its input, possibly dynamized control deviation signal for the rate of change of the pressure difference; alternatively or cumulatively thereto, a proportion proportional to the integral and / or differential of its input signal can also be contained in the output signal.
  • Such control structures are known in the art and studied well.
  • the controller can be adapted to the relevant route; For example, in order to avoid jumps in the controller output signal, the differential and possibly also the proportional component may be provided with a small weighting factor.
  • the pressure in the control cell can be increased by opening a compressed air valve upstream of the container connection for filling it with a gaseous pressure medium, in particular compressed air, so that the pressure medium can flow from a reservoir pressure vessel into the relevant control cell;
  • the pressure in the control cell can be by lowering a vent valve disposed downstream of the tank port for venting thereof, so that the compressed air in the control cell can escape into the boat atmosphere.
  • These valves are controlled by signals which are generated by a module corresponding to the output signal of the controller module, in particular for the rate of change of the pressure difference. It is thus the task of this module to convert the amplitude value of the controller output signal into signals adapted in terms of potential and power to the valves.
  • the opening cross-section of the valves in question can be changed continuously, so that a quick response is possible without this one or both valves would have to be completely switched.
  • a correspondingly continuous adjustability of the valves is absolutely essential, since the time constant of the air flow which builds up or breaks down is small compared to the actuation time of a valve.
  • sensors for detecting the current valve positions of the loading and the vent valve provide information as to whether the actuated valves have assumed the desired position, or whether, for example due to parameter variations, increased friction coefficients, etc., a deviation from the predetermined value has occurred.
  • lower control loops for the valve position of the loading and / or the venting valve should be provided within the control module for generating control signals for the loading and venting valve.
  • the upstream control loop may presuppose an idealized function of the actuators. This is also important insofar as aging phenomena such as, for example, corrosion caused by the aggressive sea air in the area of the valves, etc., are eliminated from the controlled system.
  • the first component of a control circuit according to the invention for the valve position of the supply and / or vent valve is in each case a block for subtracting the output signal of the relevant valve position sensor from the setpoint used for the valve position, possibly locked control signal in particular for the rate of change of the pressure difference, which provides at its output a signal for the deviation of the position of the valve in question.
  • the amplitude of this output signal contains information about the distance between the current valve position relative to the desired valve position can thus be used for correction.
  • control deviation signal of the subordinate control circuit for the valve position is supplied to the input of a controller module whose output signal is particularly proportional to its input signal whose integral and / or differential.
  • the invention thus provides a continuously operating controller, which provides with sufficient dynamics, but without overshoot for an identity between Ventil thoroughlyssoll- and actual value.
  • the boat hull 1 separates the interior 2 of the underwater vehicle from the surrounding masses of water 3.
  • At least one control cell 4 is provided.
  • control cell 4 also other, in particular the fine adjustment serving Weglenzzellen, which are not shown in the drawing, may be present.
  • the control cell 4 has a volume of many hundreds of liters, and it is via a pipe 5 with an opening 6 in the boat hull 1, so that it can be filled with water 7.
  • the inflow is made possible by the opening of a flap 8 in the tube 5, and the amount of water flowing through can be monitored by a also arranged in the tube 5 flow meter 9.
  • the filling of the control cell 4 with water 7 increases their weight and thus the weight of the underwater vehicle 1, 2, so that an increased buoyancy in larger depths of the balance can be maintained.
  • the control cell 4 can be emptied (Lenzen), thereby reducing their weight and thus the weight of the underwater vehicle 1, 2.
  • the desired mass movement is effected at each open flap 8 by adjusting the pressure in an air cushion 10, which is located above the water level 11 in the control cell 4.
  • an air inlet or outlet 13 is provided in the top 12 of the control cell 4, which is connected via a closable with a valve 14 vent pipe 15 with a leading into the boat atmosphere 2 pipe mouth 16.
  • the air 10 can escape from the control cell 4, so that a pressure equalization with the pressure in the boat atmosphere 2 can take place down to the prevailing atmospheric pressure there. If now the flap 8 is opened, then the contrast increased, outboard water pressure through the pipe connection 5 presses water 7 into the control cell 4, so that it is flooded.
  • the air inlet and outlet 13 of the control cell 4 is connected to a further, closable by a valve 17 tube 18, which is coupled via a pressure reducer 19 with one or more compressed air storage tanks 20.
  • a reservoir 20 may be, for example, a group of compressed air cylinders which, in the surfaced state of the underwater vehicle, are connected by means of a compressor can be filled.
  • a pressure of about 180 to 250 bar which is reduced by the pressure reducer 19 to an air pressure of about 50 bar in the vent tube 18.
  • compressed air 20 flows into the control cell 4 when the venting valve 17 is open and increases the pressure in the air cushion 10 there. If this pressure exceeds the outboard water pressure 3, the water 7 flows out of the control cell 4 when the flap 8 is open (Lenzen) ,
  • valves 14, 17 An important boundary condition for the actuation of the valves 14, 17 is that never both valves 14, 17 should be opened at the same time, since in such a case the compressed air 20 would escape at high speed into the boat atmosphere 2 and thus the compressed air reservoir 20 could quickly exhaust itself.
  • the flap 8 which is arranged in the tube 5 "from and to the control cell" represents a comparatively sluggish structure which requires several seconds (for example 10 seconds) to close completely or open, during the even large amounts of water 7 can flow into or out of the control cell 4, so that in particular the closing operation of the flap 8 already has to be initiated at a time to which the level 11 in the control cell 4 does not yet correspond to the desired value.
  • the time offset by which the closing command must be preferred is largely constant, but the amount of water 7 still flowing through during this closing phase also depends in particular on the pressure difference between the internal pressure of the control cell 4 and the outboard side 3 water pressure.
  • the invention provides to keep this pressure difference within a control as constant as possible, so for the residual flow 9 when closing the flap 8, an experimentally determined value can be used, which can also be converted into a level deviation, in which then the closing operation of the flap 8 is to be initiated.
  • a differential pressure sensor 21 is provided which communicates for this purpose via pipe connections 22, 23 with the control cell 4 on the one hand and an opening 24 in the boat hull 1 on the other hand and thereby of two Pages with the different pressure levels 3, 4 is applied.
  • the tube 23 may be connected to the mouth portion 6 of the tube 5 instead of the boat hull 1.
  • the task of the control is, depending on the measured pressure difference 21 by actuation of the ventilation valves 17, 14, the pressure of the air cushion 10 in the control cell 4 the outboard water pressure 3 nachlien so that the pressure difference 21 always corresponds to a predetermined setpoint 25. If this succeeds, the residual flow rate 9 through the tube 5 when closing the flap 8 is independent of the level 11 in the control cell 4 constant, and when using an experimentally determined Vorhalte learners for initiating the closing of the flap 8 can be achieved with good approximation that the final adjusting control cell level 11 corresponds fairly accurately to the desired level. Thus, there is no difficulty to adjust the weight of the underwater vehicle 1, 2 in a defined extent and thereby bring about stabilization at different depths.
  • control circuit 26 for the pressure difference between the control cell 4 and the outboard water pressure 3 is shown in FIG FIG. 2 played.
  • a setpoint generator 25 which can either be set manually or fixed or, for example. From the output signal of a higher-level control loop for the flow rate or volume 9 in the tube 5 from and to the control cell 4 can be tapped.
  • the actual value delivered by the differential pressure transducer 21 is subtracted 27 in order to generate a signal 28 proportional to the current control deviation. If a downstream controller 29 succeeds in correcting this control deviation signal 28 to zero, optimum conditions for a defined actuation of the flap 8 from and to the control cell 4 are created.
  • control module 29 different structures can be used, but preferably a controller with proportional and integral component is used here, since such a sufficient dynamics is capable of a control deviation permanently to zero. It may be possible to dispense with a differential component at this point in order to calm the control as far as possible.
  • the output signal 30 of the controller 29, the signal of a feedforward block 31 are superposed additively 32, whereby, for example, the dynamics of changes in the setpoint 25 is improved.
  • the feedforward control 31 may, for example, be designed as a differentiating component.
  • the thus dynamized control signal 33 can be modified in further, downstream modules and thereby adapted to the current boundary conditions.
  • a first modification module 34 it is possible within the scope of a first modification module 34 to link with the output signal 35 of a sensor 36 for the filling level 11 in the control cell 4.
  • the volume of the air cushion 10 decreases and therefore already contribute smaller, inflowing or outflowing amounts of air to each increased pressure changes in the control cell 4.
  • a correction can be achieved by the volume of the air cushion 10 is calculated by subtracting the currently measured level 36 of the maximum filling state of the control cell 4 and then this value, for example. Multiplicatively linked to the control signal 33, so with large air cushion 10 with a correspondingly large control signal 37, a correspondingly wide modulation of the valves 14, 17 is effected, while at high level 36, the valve control is withdrawn accordingly.
  • a second, preferably connected in series modification module 38 receives in addition to the level-corrected control signal 27, the output signal 39 of a sensor 40 for the outboard water pressure 3. With this information, the modification module 38 can estimate about the current depth of the underwater vehicle 1, 2. Its predominant task is to effect a weakening of the control signal 41 at low depths, so that the regulation does not start to oscillate despite the influence of the swell, which is very noticeable in this area.
  • Another modification module 42 is coupled with the diving depth-corrected control signal 41 on the one hand and with a desired value generator 43, to which the current noise requirement is adjustable, on the other hand.
  • the control signal 44 can be additionally limited so that the valves 14, 17 are opened only to a limited extent and thus produce only a minimal noise.
  • the thus modified control signal 44 is not used directly to drive the valves 14, 17, but rather as a setpoint for controlling the rate of change of the pressure difference 21.
  • a current comparison value is of the measured pressure difference 21st formed in a downstream block 45, a differential function to receive in this way an actual value signal 46 for the rate of change of the pressure difference 21.
  • This actual value 46 is subtracted by a subtraction module 47 from the modified control signal 44 used as a setpoint in order to provide a signal 48 for the system deviation.
  • this can also be additively added to the system deviation signal 48, preferably at an input of the subtraction module 47 parallel to the setpoint signal 44.
  • the thus possibly dynamized control deviation signal 48 is communicated to the input 50 of a subordinate regulator 51, which is responsible for acting on the controlled system 4 by generating a suitable control signal 52 such that the actual value 46 for the rate of change of the pressure difference 21 in the stationary state is as accurate as possible the setpoint signal 44 matches.
  • the controller 51 of the subordinate speed change control loop 46 of the pressure difference 21 may be constructed with a proportional and integral and possibly also a differential component, but the latter can also be omitted for reassurance of the control loop behavior.
  • control assembly 53 Connected downstream of the controller 51 is a control assembly 53 whose task is to convert the control signal 52 of the subordinate regulator 51 into activation signals 54, 55 for the adjusting devices 56, 57 of the air control valves 14, 17.
  • a valve position sensor is assigned to each of the two valves 14, 17 whose output signals 58, 59 are fed back to the control module 53. There, they may be used by a latch assembly 60 to release a valve opening set point 61, 62 derived from the controller output signal 52 only when the respective other valve 14, 17 has been definitively closed before the relevant feedback signal 58, 59.
  • valve opening setpoint value 61, 62 generated in this way is not switched directly to the adjusting device 56, 57 of the relevant valve 14, 17, but as a setpoint to a valve position controller 63, 64, which also receives the feedback signal 58, 59 of the relevant valve position sensor , From this, the valve position regulator 63, 64 can determine the deviation of the current valve position 58, 59 from the valve opening setpoint 61, 62 originating from the lock assembly 60 and generate corresponding control signals 54, 55 for the actuating device 56, 57 of the relevant valve 14, 17 in accordance with a defined control function , This makes it possible to always maintain the desired valve position value, regardless of whether the valves due to aging, corrosion or other influences show different characteristics.
  • the subordinate valve position controllers 63, 64 also receive an integral component in addition to a proportional component, it is ensured that the actual valve positions 58, 59 coincide with the predetermined position reference values 61, 62 in the stationary state, so that the higher-level controller 51 determines the rate of change of the pressure difference 21 thereof can assume that its regulator output signal 52 the air control valves 14, 17 is impressed. Aging phenomena of the valves or other devices are therefore excluded, and the control circuit 26 of the invention operates over many years of extremely reliable.
  • analog operating electronic modules can be used, but also an implementation of one, several or all signal processing modules as a computer program in a data processing system is possible.
  • the mostly analog signals of the sensors 21, 36, 40, 58, 59 as well as the desired values 25, 43 predetermined by means of potentiometers, for example can be digitized via analog-to-digital converters and then read in bitwise.
  • the output signals, for example, the valve position controller 63, 64 can then be converted by means of digital-to-analog converters into corresponding voltage levels, which are then adjusted by means of downstream amplifier performance of the adjusting devices 56, 57.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Fluid Pressure (AREA)
  • Feedback Control In General (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Control Of Non-Electrical Variables (AREA)

Claims (42)

  1. Procédé pour faire fonctionner un véhicule (1,2) sous-marin, caractérisé en ce que l'on règle (26), à une valeur (25) de consigne pouvant être prescrite, la différence (21) de pression entre la pression dans un ballast (4) pouvant, en vue de modifier le poids du véhicule, être rempli d'eau (7) et/ou d'un gaz, notamment d'air (10), d'une part et la pression (3) de l'eau hors bord d'autre part.
  2. Procédé suivant la revendication 1, caractérisé en ce que l'on mesure la valeur réelle de la différence (21) de pression entre la pression dans un ballast (4) pouvant, en vue de modifier le poids du véhicule, être rempli d'eau (7) et/ou d'un gaz, notamment d'air (10), d'une part et la pression (3) de l'eau hors bord d'autre part.
  3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que l'on soustrait la valeur (21) réelle mesurée de la différence de pression de la valeur (25) de consigne prescrite pour obtenir une mesure (28) de l'écart de réglage.
  4. Procédé suivant l'une des revendications 1 à 3, caractérisé en que, dans le cadre du réglage (26) de la différence (21) de pression, on forme comme signal (30) de réglage une fonction proportionnelle à l'écart (28) de réglage à son intégrale et/ou à sa différentielle.
  5. Procédé suivant l'une des revendications précédentes, caractérisé en que l'on combine, en un signal (33) de réglage dynamisé, le signal (30) de réglage pour améliorer la dynamique, lors de variations (25) de la valeur de consigne, additivement (32) avec un signal (49) dérivé de la valeur (25) de consigne, notamment par différentiation (31).
  6. Procédé suivant l'une des revendications précédentes, caractérisé en que l'on influe sur le signal (30 ;33) de réglage éventuellement dynamisé par un signal ou par plusieurs signaux (35 ; 39 ; ;43).
  7. Procédé suivant l'une des revendications précédentes, caractérisé en que l'on modifie le signal (30 ;33) de réglage éventuellement dynamisé par une valeur (35 ;36) de mesure de niveau pour le ballast (4) pouvant être rempli en vue de modifier le poids du véhicule, pour obtenir un signal (37) de réglage corrigé en niveau.
  8. Procédé suivant l'une des revendications précédentes, caractérisé en que l'on modifie (38) le signal (30 ;33 ;37) de réglage éventuellement dynamisé et/ou corrigé en niveau par un signal (39 ;40) de la pression (3) hors bord, pour obtenir un signal (41) de réglage corrigé en profondeur de plongée.
  9. Procédé suivant l'une des revendications précédentes, caractérisé en que l'on limite (42) le signal (30 ;33 ;37 ;41) de réglage éventuellement dynamisé, corrigé en niveau et/ou corrigé en profondeur de plongée, pour satisfaire à d'autres valeurs (43) de consigne, notamment du point de vue de l'exigence de bruit.
  10. Procédé suivant l'une des revendications précédentes, caractérisé en que l'on utilise le signal (30 ;33 ;37 ;41 ;44) de réglage de la différence de pression, éventuellement dynamisé, corrigé en niveau, corrigé en profondeur de plongée et/ou limité, comme valeur de consigne pour un réglage (51) subordonné de la vitesse (46) de variation de la différence (21) de pression, .
  11. Procédé suivant l'une des revendications précédentes, caractérisé en ce que l'on calcule par différentiation (45) la vitesse (46) de variation de la valeur (21) réelle de la différence de pression à partir de la valeur (21) réelle mesurée de la différence de pression entre la pression dans le ballast (4) concerné d'une part et la pression (3) de l'eau hors bord d'autre part.
  12. procédé suivant l'une des revendications précédentes, caractérisé en ce que l'on soustrait la vitesse (46) de variation de la valeur (21) réelle de la différence de pression du signal (44) de régulation, utilisé comme valeur de consigne et éventuellement modifié, du réglage (29) superposé de la différence (21) de pression, entre la pression dans un ballast (4) pouvant être rempli en vue de modifier le poids du véhicule d'une part et la pression (3) de l'eau hors bord d'autre part, pour obtenir une mesure (48) de l'écart de réglage du réglage (51) subordonné de la vitesse (46) de variation de la différence (21) de pression.
  13. Procédé suivant l'une des revendications précédentes, caractérisé en ce que l'on combine, en un signal (48) d'écart de réglage dynamisé, l'écart (48) de réglage du réglage (51) subordonné de la vitesse (46) de variation de la différence (21) de pression, pour améliorer la dynamique lorsqu'il y a des variations (25) de valeur de consigne, additivement (47) à un signal (49) dérivé, notamment par différentiation (31), de la valeur (25) de consigne de la différence de pression.
  14. Procédé suivant l'une des revendications précédentes, caractérisé en ce que, dans le cadre du réglage (51) subordonné de la vitesse (46) de variation de la différence (21) de pression, on forme, comme signal (52) de réglage de la vitesse de variation de la différence de pression, une fonction proportionnelle à l'écart (48) de réglage, éventuellement dynamisé, à son intégrale et/ou à sa différentielle.
  15. Procédé suivant l'une des revendications précédentes, caractérisé en ce qu'à partir du signal (52) de réglage, notamment de la vitesse de variation de la différence de pression, on déduit des signaux (54, 55) de commande d'une soupape (17) d'introduction d'air, montée en aval du raccord (13) du ballast pour un fluide (20) gazeux sous pression d'une part ainsi que d'une soupape (14) d'évacuation d'air montée en aval du raccord du ballast pour le fluide (10) sous pression d'autre part.
  16. Procédé suivant l'une des revendications précédentes, caractérisé en ce les signaux (54, 55) de commande des soupapes (14, 17) en provoquent un réglage (56, 57) continu.
  17. Procédé suivant l'une des revendications précédentes, caractérisé en ce l'on détecte (58, 59) les positions instantanées des soupapes.
  18. Procédé suivant l'une des revendications précédentes, caractérisé en ce l'on verrouille (60) les signaux (54, 55) de commande des soupapes (14, 17) par la position (59, 58) instantanée de respectivement l'autre soupape (17, 14).
  19. Procédé suivant l'une des revendications précédentes, caractérisé en ce que l'on obtient, par respectivement un réglage (53, 54) subordonné de position des soupapes, les signaux (54, 55) de commande des soupapes (14, 17) à partir du signal (52) de réglage, éventuellement modifié par verrouillage (60), notamment pour la vitesse de variation de la différence de pression.
  20. Procédé suivant l'une des revendications précédentes, caractérisé en ce que, dans le cadre d'un réglage (63, 64) de position des soupapes, on soustrait la valeur (58, 59) de position de soupape, qui est détectée, du signal de réglage utilisé comme valeur (61, 62) de consigne, le cas échéant modifié par verrouillage notamment de la vitesse de variation de la différence de pression, pour obtenir une mesure de l'écart de réglage.
  21. Procédé suivant l'une des revendications précédentes, caractérisé en ce que, dans le cadre du réglage (63, 64) de la position des soupapes, on forme, comme signal (54, 55) de commande de la soupape (14, 17) concernée, une fonction proportionnelle à l'écart de réglage de la position (58, 59) des soupapes à son intégrale et/ou à sa différentielle.
  22. Dispositif pour la mise en oeuvre du procédé suivant l'une des revendications précédentes, caractérisé par un circuit (26) qui règle, à une valeur (25) de consigne pouvant être prescrite, la différence (21) de pression entre la pression dans un ballast (4) pouvant en vue de modifier le poids du véhicule être rempli d'eau (7) et/ou d'un gaz, notamment d'air (10), d'une part et la pression (3) de l'eau hors bord d'autre part.
  23. Dispositif suivant la revendication 22, caractérisé par un capteur (21) de la différence de pression entre la pression dans un ballast (4) pouvant en vue de modifier le poids du véhicule et être rempli d'eau (7) et/ou d'un gaz, notamment d'air (10), d'une part et la pression (3) de l'eau hors bord.
  24. Dispositif suivant la revendication 23, caractérisé par un dispositif (27) de soustraction du signal de sortie du capteur (21) de la différence de pression entre la pression (4) à l'intérieur du ballast et la pression (3) de l'eau hors bord.
  25. Dispositif suivant la revendication 24, caractérisé en ce que le signal (28) de sortie du dispositif (27) de soustraction de la valeur (25, 21) de consigne réelle de la différence de pression est envoyé à l'entrée d'un module (29) de régulateur, dont le signal (30) de sortie est proportionnel à son signal (28) d'entrée, à son intégrale et/ou à sa différentielle.
  26. Dispositif suivant la revendication 25, caractérisé en ce qu'au signal (30) de sortie du module (29) de régulateur de différence de pression, on ajoute dans un dispositif (32) d'addition un signal (49) dérivé de la valeur (25) de consigne de la différence de pression, notamment par différentiation (31), pour obtenir un signal (33) de réglage dynamisé.
  27. Dispositif suivant la revendication 22 à 26, caractérisée par au moins un module (34, 38, 42) qui est monté en aval du module (29) de régulateur ou du dispositif (32) d'addition raccordé à celui-ci du côté (30) de la sortie et qui est destiné à modifier le signal (30, 33) de réglage au moyen d'un signal ou de plusieurs signaux (35, 39, 43).
  28. Dispositif suivant la revendication 27, caractérisé par un capteur (36) du niveau (11) dans le ballast (4), dont le signal (35) de sortie est envoyé à un module (34) pour modification supplémentaire éventuelle du signal (30, 33) de réglage.
  29. Dispositif suivant l'une des revendications 27 ou 28, caractérisé par un capteur (40) de la pression (3) de l'eau hors bord, dont le signal (39) de sortie est envoyé à un module (38) pour une modification supplémentaire éventuelle du signal (30, 33, 37) de réglage.
  30. Dispositif suivant l'une des revendications 27 à 29, caractérisé par un signal (43) de valeur de consigne prescrit ou pouvant l'être concernant l'exigence de bruit, qui est envoyé à un module (42) de limitation du signal (30, 33, 37, 41) de réglage éventuellement modifié.
  31. Dispositif suivant l'une des revendications 22 à 30, caractérisé en ce que le signal (30, 33, 37, 431, 44) de sortie, éventuellement modifié (34, 38, 42), du module (29) de régulateur de la différence de pression est envoyé à l'entrée de valeur de consigne d'un circuit subordonné de réglage (51) de la vitesse de variation de la différence de pression.
  32. Dispositif suivant la revendication 31, caractérisé en ce que le signal de sortie du capteur (21) de la différence de pression entre la pression dans un ballast (4) pouvant pour modifier le poids du véhicule être rempli d'eau (7) et/ou d'un gaz, notamment d'air (10), d'une part et la pression (3) de l'eau hors bord d'autre part est envoyé à un module (45) qui en calcule la différentielle (46).
  33. Dispositif suivant la revendication 32, caractérisé par un dispositif (47) de soustraction du signal (46) de sortie du module (45), pour la détermination de la différentielle de la valeur (21) réelle, de la différence de pression du signal (30, 33, 37, 41, 44) de sortie, éventuellement modifié, du module (29) de régulateur de la différence de pression, pour obtenir un signal (48) de l'écart de réglage du circuit (51) subordonné de la vitesse de variation de la différence de pression.
  34. Dispositif suivant la revendication 33, caractérisé en ce qu'au signal (48) d'écart de réglage du circuit (51) subordonné de la vitesse de variation de la différence de pression, on ajoute dans un dispositif (47) d'addition une valeur (25) de valeur de consigne de la différence de pression, notamment un signal (49) déduit par différentiation (31), pour obtenir un signal (48) d'écart de réglage dynamisé du circuit (51) de réglage subordonné de la vitesse de variation de différence de pression.
  35. Dispositif suivant la revendication 33 ou 34, caractérisé en ce que le signal (48) d'écart de réglage, éventuellement dynamisé, du circuit (51) de réglage subordonné de la vitesse de variation de la différence de pression est envoyé à l'entrée d'un module (51) de régulateur, dont le signal (52) de sortie est proportionnel à son signal (50) d'entrée, à son intégrale et/ou à sa différentielle.
  36. Dispositif suivant la revendication 22 à 35, caractérisé en ce qu'en amont du raccord (13) du ballast, il est prévu, pour le remplissage de celui-ci par un fluide gazeux sous pression, notamment par de l'air (20) comprimé, une soupape (17) d'introduction d'air et en aval du raccord (13) du ballast pour son évacuation une soupape (14) d'évacuation et en ce que le signal (52) de sortie du module (51) du régulateur, notamment de la vitesse de variation de la différence de pression, est envoyé à un module (53) de production de signaux (54, 55) de commande de la soupape (14) d'introduction d'air et de la soupape (17) d'évacuation.
  37. Dispositif suivant la revendication 36, caractérisé en ce que la soupape (17) d'introduction d'air et la soupape (14) d'évacuation sont des soupapes pouvant être réglées en continu.
  38. Dispositif suivant la revendication 37, caractérisé par des détecteurs de détection des positions (58, 59) instantanées de la soupape (17) d'introduction d'air et de la soupape (14) d'évacuation.
  39. Dispositif suivant la revendication 38, caractérisé en ce que dans le cadre du module (53) pour la production de signaux (54, 55) de commande de la soupape (17) d'introduction d'air et de la soupape (14) d'évacuation, il est prévu un circuit (60) qui verrouille les signaux (61, 62) de commande d'une soupape (14, 17) par le signal (59, 58) de capteur de la position instantanée de respectivement l'autre soupape (17, 14).
  40. Dispositif suivant l'une des revendications 38 ou 39, caractérisé en ce que, dans le cadre du module (53) de production de signaux (54, 55) de commande de la vanne (17) d'introduction d'air et de la vanne (14) d'évacuation, il est prévu des circuits (63, 64) de réglage subordonnés de la position de la vanne (17) d'introduction d'air et de la vanne (14) d'évacuation.
  41. Dispositif suivant la revendication 40, caractérisé par un module de soustraction du signal (58, 59) de sortie du capteur concerné de position de soupape du signal (61, 62) de réglage éventuellement verrouillé (60), notamment de la vitesse de variation de la différence de pression, pour obtenir un signal de l'écart de réglage de la position de la soupape (14, 17) concernée.
  42. Dispositif suivant la revendication 41, caractérisé en ce que le signal d'écart de réglage du circuit (63, 64) de réglage subordonné de la position (56, 57) de soupape est envoyé à l'entrée d'un module de régulateur, dont le signal (54, 55) de sortie est notamment proportionnel à son signal d'entrée, à son intégrale et/ou à sa différentielle.
EP01927612A 2000-04-07 2001-03-26 Procede et dispositif permettant de faire fonctionner un submersible Expired - Lifetime EP1268269B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10017376 2000-04-07
DE10017376A DE10017376A1 (de) 2000-04-07 2000-04-07 Verfahren und Vorrichtung zum Betrieb eines Unterwasserfahrzeugs
PCT/DE2001/001163 WO2001076937A1 (fr) 2000-04-07 2001-03-26 Procede et dispositif permettant de faire fonctionner un submersible

Publications (2)

Publication Number Publication Date
EP1268269A1 EP1268269A1 (fr) 2003-01-02
EP1268269B1 true EP1268269B1 (fr) 2009-09-30

Family

ID=7637957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01927612A Expired - Lifetime EP1268269B1 (fr) 2000-04-07 2001-03-26 Procede et dispositif permettant de faire fonctionner un submersible

Country Status (9)

Country Link
US (1) US7036450B2 (fr)
EP (1) EP1268269B1 (fr)
KR (1) KR100842951B1 (fr)
AR (1) AR028318A1 (fr)
AT (1) ATE444227T1 (fr)
DE (2) DE10017376A1 (fr)
ES (1) ES2332035T3 (fr)
WO (1) WO2001076937A1 (fr)
ZA (1) ZA200208775B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047677A1 (de) * 2010-10-06 2012-04-12 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Vorrichtung zum Bedrücken eines Auftriebstanks

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017376A1 (de) 2000-04-07 2001-10-11 Siemens Ag Verfahren und Vorrichtung zum Betrieb eines Unterwasserfahrzeugs
US6851381B1 (en) * 2003-03-25 2005-02-08 The United States Of America As Represented By The Secretary Of The Navy Airborne mine neutralization system, neutralizer pressure relief valve
DE102004048311B4 (de) * 2004-10-05 2008-08-21 Howaldtswerke-Deutsche Werft Gmbh Anblasvorrichtung für ein Unterseeboot
DE102006025803A1 (de) * 2006-06-02 2007-12-06 Howaldtswerke-Deutsche Werft Gmbh Unterseeboot
KR101304579B1 (ko) * 2011-07-15 2013-09-05 삼성중공업 주식회사 수중 이동체 위치측정장치 및 그 방법
CN109229317B (zh) * 2018-10-12 2022-06-14 上海彩虹鱼深海装备科技有限公司 一种潜水器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126559A (en) * 1964-03-31 Sensor
DE1220282B (de) 1962-08-29 1966-06-30 Harland Engineering Company Lt Einrichtung zum kontinuierlichen Regeln des Auftriebes eines Unterseebootes, durch die das Boot in einer gewuenschten, vorbestimmten Tiefe schwebend gehalten wird
US3515133A (en) * 1967-08-30 1970-06-02 Gen Electric Diving helmet and air supply system
ES349747A1 (es) * 1968-01-25 1969-04-01 Ferrer Munguet Dispositivo regulador de las presiones y de los volumenes de una masa gaseosa o fluida con relacion a un ambiente o masa fluida exterior.
US4246955A (en) * 1972-10-04 1981-01-27 Skala Stephen F Pressure cooking appliance with thermal exchange fluid
US3946685A (en) * 1974-07-11 1976-03-30 The United States Of America As Represented By The Secretary Of The Navy Hover control valve for submarine hovering system
US5129348A (en) 1983-12-27 1992-07-14 United Technologies Corporation Submergible vehicle
US5249933A (en) * 1992-10-01 1993-10-05 The United States Of America As Represented By The Secretary Of The Navy Submarine external hydraulic fluid - isolated system
DE29501112U1 (de) * 1995-01-25 1995-03-23 Heinrich Baumgarten KG, Spezialfabrik für Beschlagteile, 57290 Neunkirchen Druckanzeiger
US6273019B1 (en) * 1999-04-28 2001-08-14 Eli Shmid Regulated pressurized system and pressure regulator for use in an ambient fluid environment, and method of pressure regulation
DE10017376A1 (de) 2000-04-07 2001-10-11 Siemens Ag Verfahren und Vorrichtung zum Betrieb eines Unterwasserfahrzeugs
US6772705B2 (en) * 2001-09-28 2004-08-10 Kenneth J. Leonard Variable buoyancy apparatus for controlling the movement of an object in water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047677A1 (de) * 2010-10-06 2012-04-12 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Vorrichtung zum Bedrücken eines Auftriebstanks
DE102010047677B4 (de) * 2010-10-06 2012-09-13 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Vorrichtung zum Bedrücken eines Auftriebstanks

Also Published As

Publication number Publication date
ATE444227T1 (de) 2009-10-15
US20030154900A1 (en) 2003-08-21
DE50115137D1 (de) 2009-11-12
US7036450B2 (en) 2006-05-02
ES2332035T3 (es) 2010-01-25
ZA200208775B (en) 2003-10-28
DE10017376A1 (de) 2001-10-11
WO2001076937A1 (fr) 2001-10-18
KR20030007506A (ko) 2003-01-23
AR028318A1 (es) 2003-05-07
EP1268269A1 (fr) 2003-01-02
KR100842951B1 (ko) 2008-07-01

Similar Documents

Publication Publication Date Title
DE102005031732B4 (de) Verfahren und Vorrichtung zur Regelung von Pneumatikzylindern
DE3207392C2 (de) Vorrichtung zur selbstanpassenden Stellungsregelung eines Stellgliedes
DE2227703C2 (de) Schiffssteueranlage
DE1263146C2 (de) Selbstanpassendes Regelsystem
DE102017103056A1 (de) Brennstoffzellensystem und Steuerverfahren für selbiges
DE4406235A1 (de) Druckregeleinrichtung
DE69020171T2 (de) Verfahren und Vorrichtung zur Gewinnung von Parametern in der Prozesssteuerung.
DE1906836A1 (de) Adaptivregeleinrichtung fuer Regelkreise mit Stellantrieben
DE3432131A1 (de) Verfahren und vorrichtung zur regelung eines fluessigkeitsspiegels
DE3311048A1 (de) Regelverfahren und -einrichtung
DE1274908B (de) Einrichtung zur automatischen Steuerung und Stabilisierung von Tragflaechenbooten
DE112006000036T5 (de) Motorsteuervorrichtung
EP1268269B1 (fr) Procede et dispositif permettant de faire fonctionner un submersible
DE102004064143B3 (de) Scanner-System
EP3642856A1 (fr) Procédé et dispositif pour commander une pièce pouvant être déplacée au moyen d'une bobine et électrovanne
EP3376626A1 (fr) Procédé de réglage de la puissance active d'un parc éolien et un tel parc éolien
EP1069314A1 (fr) Commande d'une unité-compresseur
DE19830341C1 (de) Verfahren zum Betreiben einer Regelungseinrichtung und Vorrichtung zur Durchführung des Verfahrens
DE102010041999A1 (de) Verfahren und Vorrichtung zum Korrigieren einer Sensorgröße eines Sensors und zum Betreiben einer Regelung für ein Stellglied
DE102017222954B4 (de) Bremssystem mit einer Korrekturvorrichtung einer Öffnungszeit eines Ventils und Verfahren zum Korrigieren der Öffnungszeit des Ventils
WO1999037533A1 (fr) Dispositif de stabilisation pour mouvements d'un bateau
DE102008043869A1 (de) Regelungssystem für eine Regelstrecke
EP0768237B1 (fr) Méthode et appareil pour contrôler des engins submersibles en plongée stationnaire
DE3419725A1 (de) Verfahren zum regeln einer hydraulischen vorrichtung
EP1607325A1 (fr) Dispositif et procédé pour amortir au moins un mode d'un corps rigide et/ou au moins un mode élastique d'un aéronef

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUTZNER, RUEDIGER

Inventor name: FREUND, HARALD

Inventor name: SCHULZ, HAUKE-HEIN

17P Request for examination filed

Effective date: 20020920

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50115137

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090402993

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2332035

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100201

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100701

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115137

Country of ref document: DE

Ref country code: DE

Ref legal event code: R409

Ref document number: 50115137

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 50115137

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100326

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160311

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20170327

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170329

Year of fee payment: 17

Ref country code: TR

Payment date: 20170313

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170519

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170426

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115137

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181003

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180326

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180326