EP1268269B1 - Method and device for operating an underwater vehicle - Google Patents

Method and device for operating an underwater vehicle Download PDF

Info

Publication number
EP1268269B1
EP1268269B1 EP01927612A EP01927612A EP1268269B1 EP 1268269 B1 EP1268269 B1 EP 1268269B1 EP 01927612 A EP01927612 A EP 01927612A EP 01927612 A EP01927612 A EP 01927612A EP 1268269 B1 EP1268269 B1 EP 1268269B1
Authority
EP
European Patent Office
Prior art keywords
signal
pressure difference
pressure
setpoint
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01927612A
Other languages
German (de)
French (fr)
Other versions
EP1268269A1 (en
Inventor
Harald Freund
Rüdiger KUTZNER
Hauke-Hein Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1268269A1 publication Critical patent/EP1268269A1/en
Application granted granted Critical
Publication of EP1268269B1 publication Critical patent/EP1268269B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks

Definitions

  • the invention is directed to a method and a device for operating an underwater vehicle.
  • the suspended state of a submerged submarine is produced by the fact that by changing the weight of the resulting in the desired depth buoyancy buoyancy is maintained.
  • Cells recorded (flooding), while reducing the boat weight water from the (the) cell (s) is discharged to the outside (lenzen).
  • Control cells of coarse weight adjustment while provided for fine adjustment so-called. Tieflenzzellen. Therefore, the latter have a comparatively low volume, while the control cells can have a capacity of many hundreds of liters.
  • this provisional timing can only be reasonably accurate be determined when the flow rate in the relevant pipe connection to the control cell always at least at the beginning of the closing process has a known value and is subjected as possible no other fluctuations. Then by multiplying this flow value with the expected closing time of the flap and possibly a factor whose variable position taken into account the probably still flowing water volume reasonably accurately precalculated and thus the level in the relevant control cell can be predicted, in which the closing operation of the flap must be initiated .
  • the flow velocity in the said pipe connection to the control cell depends in particular on the pressure difference between the pressure within the control cell and the outboard water pressure and can therefore vary greatly not only with the depth, but also in particular with the level within the control cell.
  • the problem initiating the invention results in providing a way in which the fill level in a control cell of an underwater vehicle can be predetermined as precisely as possible, so that additionally required low-clearance cells with a comparatively small volume can be formed; In particular, this should be achieved by the Vorhaltezeittician for initiating the closing of a Flap in the pipe connection to and from a control cell can be determined as accurately as possible.
  • the solution to this problem is achieved in that the pressure difference between the pressure in a purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand is controlled to a predetermined target value.
  • volume flow rate in the flow of a viscous medium through a pipe can be created by regulating this pressure difference to a preferably fixed value optimal condition for the volume flow rate of the Water remains reasonably constant through the tube from and to the relevant control cell with unchanged flap position angle. Since the influence of the flap position angle on the volume flow rate can be determined experimentally, the lead time for the initiation of the closing operation of the flap in the pipe connection to and from the control cell can be determined very accurately.
  • the actual value of the pressure difference between the pressure in a vehicle for the purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand is measured.
  • this pressure difference can be detected by two sensors, from one of which is assigned to the outboard water pressure and the other to the internal pressure in the relevant control cell, these sensors would preferably be arranged approximately in the vicinity of the respective pipe mouth; In this case, the pressure difference could be generated by subtracting the sensor output signals applied to or converted to identical measuring ranges.
  • the measurement effort can be reduced by using a single pressure sensor for the pressure difference, the output signal of which can then be used directly as an actual value for the control loop according to the invention.
  • the measured actual value of the pressure difference is subtracted from the predetermined desired value in order to obtain a measure for the control deviation.
  • the further task of the control loop according to the invention can be simplified to the effect that the signal for the control deviation is adjusted as possible to zero.
  • a function which is proportional to the control deviation and whose integral and / or differential function are formed as a control signal allow a high precision of the control in relation to cheaper realizations such as, for example, two-point controls, which on the other hand may be applicable in individual cases.
  • the choice of the correct controller structure as well as the determination and optimization of the controller parameters can be made with regard to desired properties such as, for example, dynamics and stability of the control.
  • the invention allows a development to the effect that the control signal to improve the dynamics of setpoint changes is additively linked to a derived from the setpoint, in particular by differentiation signal to a dynamic control signal.
  • Such an arrangement makes it possible to form the actual control function without differential component, so that without setpoint changes a very quiet regulation takes place and thus the risk of instability is considerably reduced.
  • the possibly dynamized control signal is influenced by one or more signals. In this way, specific boundary conditions, which are to be observed in the track to be corrected, be met.
  • a first modification can experience the optionally dynamized control signal by a filling level measurement for the container to be filled in order to change the vehicle weight, in order thereby to obtain a level-corrected control signal.
  • This modification takes into account the fact that at a high level in the relevant control cell only a comparatively small volume of air is present, so that even the ventilation with a comparatively small amount of air leads to strong pressure changes in the control cell, while at low cell level this the movement of considerably larger amounts of air is required.
  • the modification could in this case be effected in such a way that the measured fill level is subtracted from the maximum fill level in order to provide a measure of the remaining air volume, and that this value proportional to the air volume is subsequently multiplied by the possibly dynamic controller output signal.
  • Another alternative or cumulative modification option may be derived from a pressure signal for outboard pressure to obtain a dive depth corrected control signal.
  • the possibly dynamized level-corrected and / or dipping depth-corrected control signal is limited in order to correspond to further setpoint values, in particular with regard to the noise requirement.
  • This limitation should also be understood in terms of a reduction of the proportionality factor at large amplitudes of the control signal, for example, to avoid strong and therefore loud control measures, which may be particularly important in military underwater vehicles.
  • control concept according to the invention can advantageously be supplemented by a lower-level control for the rate of change of the pressure difference, which is communicated as the desired value to the possibly dynamized, level-corrected, diving depth-corrected and / or limited pressure difference control signal.
  • This multi-part control structure can be used to avoid jumps in the rate of change of the pressure difference, which also causes a settling of the control loop, so that the noise generated by the arrangement can be minimized.
  • the actual value for the rate of change of the pressure difference required for the subordinate control loop can be determined by differentiation according to the teaching of the invention from the measured actual value of the pressure difference between the pressure in the relevant control cell on the one hand and the outboard water pressure on the other hand. Since such a differentiation can be easily implemented by means of inexpensive electronic components, a cascade control according to the invention is not a technological obstacle in the way.
  • a further step of the method according to the invention is that the rate of change of the pressure difference actual value is subtracted from the control signal of the higher-level control used for the pressure difference between control cell and outboard water pressure used as setpoint signal, by a measure of the control deviation of the subordinate control for the rate of change to get the pressure difference.
  • This method step serves to simplify downstream regulation by reducing its task to zeroing out the measure of the control deviation determined in this way for the subordinate control.
  • a correction of the control deviation signal of the subordinate control for the rate of change of the pressure difference on the basis of the pressure difference setpoint can be made to improve the dynamics at setpoint changes of the predetermined pressure difference setpoint, in particular by means of a differentiation derived from the pressure difference setpoint signal.
  • a differential component derived from the predefinable differential pressure set point can be looped in, since as a result of the subordinate control loop for the rate of change of the pressure difference actual value, a sudden change in this controlled variable can be avoided.
  • the subordinate control for the rate of change of the pressure difference can be advantageous to form the possibly dynamized control deviation whose integral and / or differential proportional function as a control signal for the rate of change of the pressure difference.
  • the differential component should not be too large or even omitted.
  • control signal in particular for the rate of change the pressure difference control signals for a valve disposed upstream of the container connection for a gaseous pressure medium vent valve on the one hand and for a downstream of the container port for the pressure medium arranged vent valve on the other hand are derived.
  • the controlled system according to the invention has the peculiarity that for an increase in the cell pressure, the vent valve must be opened, wherein a downstream thereof arranged vent valve should be closed to prevent pressure losses, while on the other hand should be closed when opening the vent valve in order to reduce the cell pressure, the vent valve. Accordingly, control signals for two actuators must be generated from the control signal relevant for influencing the route, one of the actuators designed as valves being associated with one of the two possible polarities of the relevant control signal.
  • the control signals to be generated from the relevant control signal should be such that they bring about a continuous adjustment of the relevant valve. As a result, the strength of the air flow can be continuously influenced, so that a very soulful and thus extremely stable control can be achieved.
  • the actual position of the ventilation valves to be actuated may in turn deviate from the desired position according to the control signals due to fluctuating boundary conditions, for example as a result of production-related tolerances, voltage fluctuations, corrosion-induced increase of friction coefficients, wear, etc. Nevertheless, the valves are exactly in the To be able to move desired position, the invention further provides that the current valve positions are detected. Thus, the regulation or control circuit according to the invention receives a feedback signal, which gives this information about whether the calculated valve position values have actually been approached.
  • the feedback of the current valve positions also allows mutual locking of the two valves, such that the control signals for one valve are linked to the current valve position of the other valve. This can ensure that one valve is opened only when the other is completely closed to avoid pressure losses.
  • control signals for the valves are obtained from the optionally modified by locking control signal in particular for the rate of change of the pressure difference by a respective subordinate valve position control.
  • Such a position control for the active part of the ventilation valve ensures a highly precise adjustment, wherein the respective required control signals are generated individually in the required for the relevant valve position amplitude by the respective control loop.
  • the detected valve position value should be subtracted from the control signal used as a setpoint, possibly modified by locking, in particular for the rate of change of the pressure difference in order to obtain a measure for the system deviation. If this signal for the control deviation is adjusted to zero, then the valve in question has taken the position determined by the higher-level control signal, and the higher-level control circuit can always assume optimum compliance with the required valve positions, even if in detail the electrical or mechanical parameters of affected valves differ from each other.
  • the control deviation can be minimized in particular by the fact that, as part of the valve position control, a function that is proportional to the control deviation of the valve position, its integral and / or differential as a control signal for the relevant valve is formed.
  • an integral component in this case means that the control signal is raised or lowered until the valve has assumed its predetermined position and thereby the control deviation has become zero.
  • an underwater vehicle according to the invention must be equipped with a correspondingly constructed device.
  • This is characterized by a circuit for controlling the pressure difference between the pressure in a purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand to a predetermined desired value.
  • Such a circuit arrangement can be realized in many different ways. On the one hand, it is possible to mechanically construct the individual components of this circuit; For weight and space savings, however, with the exception of the sensors and actuators and electrical or electronic components can be used, and finally, a summary of these components to an integrated circuit is possible, which may also be designed as a programmable device, its function by a receives special control program.
  • the internal pressure in the relevant control cell is influenced via one or more actuators such that it is always tracked to the outboard water pressure with an offset corresponding to the predefinable pressure difference setpoint.
  • the actuators and the deaeration valve for the relevant control cell serve as actuators influenced by this circuit, and an actual value signal required for the feedback is generated by one or more pressure sensors.
  • the pressure difference actual value can also be generated by means of separate pressure sensors for the control cell pressure on the one hand and the outboard water pressure on the other hand
  • the invention prefers the use of a single sensor for the pressure difference between the pressure in the control cell on the one hand and the outboard water pressure on the other hand. Since such differential pressure sensors only require a small additional design effort, on the other hand, the susceptibility is reduced by a reduction of components, this arrangement deserves the advantage. Also, the calibration effort is reduced and an electronic subtraction module is also eliminated.
  • a device for subtracting an output signal from the sensor for the pressure difference between the tank internal pressure and the outboard water pressure from a predetermined desired value signal This device thus generates a signal for the current control deviation, which can be adjusted to zero under control of the actual value.
  • the output signal of the subtraction device for the setpoint and actual value of the pressure difference can be fed to the input of a controller module whose output signal is proportional to its input signal whose integral and / or differential.
  • the integral component preferably serves to permanently correct the control difference exactly to zero, while a differential component, while improving the dynamics of the control loop, but on the other hand should be kept rather small to avoid instabilities or to dampen any oscillations triggered by the sea state, etc.
  • an addition device may be provided, in which the output signal of the pressure difference control module one of the pressure difference setpoint in particular by differentiation derived signal is added to obtain a dynamized control signal.
  • This measure can be used to generate a selectively responsive to setpoint changes dynamics, while rapid changes in the actual value, which can be faked in particular by the sea state are attenuated by omitting a differential component in the controller according to the invention or at least not amplified.
  • At least one module for modifying the control signal can be arranged downstream of the controller module or the addition unit connected to the output side by means of one or more signals ,
  • These modification modules can act on the control signal in a variety of ways: amplifying, attenuating, limiting, etc.
  • the control signal can, for example, be modified by a module to which the output signal of a sensor for the fill level in the relevant control cell is supplied.
  • this modification module receives information about the current level in the relevant control cell, this can adjust the control signal corresponding to the remaining air volume, and this module can be designed for this purpose as a multiplier, which multiplies the control signal with a proportional to the remaining air volume factor.
  • the output signal of a sensor for the outboard water pressure can be connected, whereby this Modtechnischsbaustein can determine at least approximately the current depth. Its task is to attenuate the control signal at low depths and thereby vibrations in the control loop, such as they are triggered by the sea state at such shallow diving depths, to dampen. It can therefore have a transfer function, which has the value 1 for larger diving depths, but smaller than 1 for smaller diving depths.
  • Another turn, another block, which is preferably used to limit the possibly modified control signal, has an input for a predetermined or specifiable setpoint signal with respect to the noise request.
  • the control signal can be throttled or attenuated by limiting, so that all actions of the control loop are carried out with reduced intensity and thereby both abrupt switching changes as well as strong air and / or water movements are avoided.
  • the invention provides a cascade control, with a subordinate circuit for controlling the rate of change of the pressure difference whose setpoint input is supplied to the possibly modified output signal of the pressure difference control module.
  • a controller structure has the advantage that the rate of change of the pressure difference is not largely left to itself, but is tracked as exactly as possible a possibly influenced by the various modification modules setpoint signal. In this way, a further intervention point is created, on the one hand, the above-described Modtechnischsbausteine can be coupled, and on the other hand, the management behavior of the respective control loops by optimized controller structures and / or parameters can be specified independently by a separation of the controller for the parent and subordinate control loop ,
  • the output signal of the sensor for the pressure difference between the pressure in the relevant control cell on the one hand and the outboard side water pressure is supplied to a module which calculates the time differential therefrom.
  • this module it is possible to determine from the preferably continuously measured actual value of the pressure difference between the control cell and outboard water pressure an actual value for the rate of change of this pressure difference.
  • this block can be designed as an analog differentiator, so that the differential is determined almost instantaneously and at any time, on the other hand, it is also possible to take samples of the Druckdifferenzistwertsignal at short intervals, to digitize them and from the difference of successive digital values, the differential determine.
  • this actual value signal for the rate of change of the pressure difference takes place in a subtraction device, where this signal is subtracted from the possibly modified output signal of the pressure difference control module to obtain a signal for the control deviation of the lower-level control circuit for the rate of change of the pressure difference.
  • a signal is created whose absolute value of the amplitude is a criterion for the distance of the actual operating point from the desired operating point and is to be adjusted by a controller module by changing the operating point of the track to zero.
  • the cascade control according to the invention offers the further possibility of adding to the signal for the control deviation of the subordinate control circuit for the rate of change of the pressure difference a signal derived from the pressure difference setpoint signal, in particular by differentiation, in order to obtain a dynamized control deviation signal for the subordinate control loop.
  • This is preferably performed in an adder to which the respective signals are supplied; If necessary, this addition device can also be used with the subtraction device for the formation of the control deviation be integrated by the lower-level control loop, for example.
  • the controller module of the subordinate control circuit can be constructed such that its output signal is proportional to the applied at its input, possibly dynamized control deviation signal for the rate of change of the pressure difference; alternatively or cumulatively thereto, a proportion proportional to the integral and / or differential of its input signal can also be contained in the output signal.
  • Such control structures are known in the art and studied well.
  • the controller can be adapted to the relevant route; For example, in order to avoid jumps in the controller output signal, the differential and possibly also the proportional component may be provided with a small weighting factor.
  • the pressure in the control cell can be increased by opening a compressed air valve upstream of the container connection for filling it with a gaseous pressure medium, in particular compressed air, so that the pressure medium can flow from a reservoir pressure vessel into the relevant control cell;
  • the pressure in the control cell can be by lowering a vent valve disposed downstream of the tank port for venting thereof, so that the compressed air in the control cell can escape into the boat atmosphere.
  • These valves are controlled by signals which are generated by a module corresponding to the output signal of the controller module, in particular for the rate of change of the pressure difference. It is thus the task of this module to convert the amplitude value of the controller output signal into signals adapted in terms of potential and power to the valves.
  • the opening cross-section of the valves in question can be changed continuously, so that a quick response is possible without this one or both valves would have to be completely switched.
  • a correspondingly continuous adjustability of the valves is absolutely essential, since the time constant of the air flow which builds up or breaks down is small compared to the actuation time of a valve.
  • sensors for detecting the current valve positions of the loading and the vent valve provide information as to whether the actuated valves have assumed the desired position, or whether, for example due to parameter variations, increased friction coefficients, etc., a deviation from the predetermined value has occurred.
  • lower control loops for the valve position of the loading and / or the venting valve should be provided within the control module for generating control signals for the loading and venting valve.
  • the upstream control loop may presuppose an idealized function of the actuators. This is also important insofar as aging phenomena such as, for example, corrosion caused by the aggressive sea air in the area of the valves, etc., are eliminated from the controlled system.
  • the first component of a control circuit according to the invention for the valve position of the supply and / or vent valve is in each case a block for subtracting the output signal of the relevant valve position sensor from the setpoint used for the valve position, possibly locked control signal in particular for the rate of change of the pressure difference, which provides at its output a signal for the deviation of the position of the valve in question.
  • the amplitude of this output signal contains information about the distance between the current valve position relative to the desired valve position can thus be used for correction.
  • control deviation signal of the subordinate control circuit for the valve position is supplied to the input of a controller module whose output signal is particularly proportional to its input signal whose integral and / or differential.
  • the invention thus provides a continuously operating controller, which provides with sufficient dynamics, but without overshoot for an identity between Ventil thoroughlyssoll- and actual value.
  • the boat hull 1 separates the interior 2 of the underwater vehicle from the surrounding masses of water 3.
  • At least one control cell 4 is provided.
  • control cell 4 also other, in particular the fine adjustment serving Weglenzzellen, which are not shown in the drawing, may be present.
  • the control cell 4 has a volume of many hundreds of liters, and it is via a pipe 5 with an opening 6 in the boat hull 1, so that it can be filled with water 7.
  • the inflow is made possible by the opening of a flap 8 in the tube 5, and the amount of water flowing through can be monitored by a also arranged in the tube 5 flow meter 9.
  • the filling of the control cell 4 with water 7 increases their weight and thus the weight of the underwater vehicle 1, 2, so that an increased buoyancy in larger depths of the balance can be maintained.
  • the control cell 4 can be emptied (Lenzen), thereby reducing their weight and thus the weight of the underwater vehicle 1, 2.
  • the desired mass movement is effected at each open flap 8 by adjusting the pressure in an air cushion 10, which is located above the water level 11 in the control cell 4.
  • an air inlet or outlet 13 is provided in the top 12 of the control cell 4, which is connected via a closable with a valve 14 vent pipe 15 with a leading into the boat atmosphere 2 pipe mouth 16.
  • the air 10 can escape from the control cell 4, so that a pressure equalization with the pressure in the boat atmosphere 2 can take place down to the prevailing atmospheric pressure there. If now the flap 8 is opened, then the contrast increased, outboard water pressure through the pipe connection 5 presses water 7 into the control cell 4, so that it is flooded.
  • the air inlet and outlet 13 of the control cell 4 is connected to a further, closable by a valve 17 tube 18, which is coupled via a pressure reducer 19 with one or more compressed air storage tanks 20.
  • a reservoir 20 may be, for example, a group of compressed air cylinders which, in the surfaced state of the underwater vehicle, are connected by means of a compressor can be filled.
  • a pressure of about 180 to 250 bar which is reduced by the pressure reducer 19 to an air pressure of about 50 bar in the vent tube 18.
  • compressed air 20 flows into the control cell 4 when the venting valve 17 is open and increases the pressure in the air cushion 10 there. If this pressure exceeds the outboard water pressure 3, the water 7 flows out of the control cell 4 when the flap 8 is open (Lenzen) ,
  • valves 14, 17 An important boundary condition for the actuation of the valves 14, 17 is that never both valves 14, 17 should be opened at the same time, since in such a case the compressed air 20 would escape at high speed into the boat atmosphere 2 and thus the compressed air reservoir 20 could quickly exhaust itself.
  • the flap 8 which is arranged in the tube 5 "from and to the control cell" represents a comparatively sluggish structure which requires several seconds (for example 10 seconds) to close completely or open, during the even large amounts of water 7 can flow into or out of the control cell 4, so that in particular the closing operation of the flap 8 already has to be initiated at a time to which the level 11 in the control cell 4 does not yet correspond to the desired value.
  • the time offset by which the closing command must be preferred is largely constant, but the amount of water 7 still flowing through during this closing phase also depends in particular on the pressure difference between the internal pressure of the control cell 4 and the outboard side 3 water pressure.
  • the invention provides to keep this pressure difference within a control as constant as possible, so for the residual flow 9 when closing the flap 8, an experimentally determined value can be used, which can also be converted into a level deviation, in which then the closing operation of the flap 8 is to be initiated.
  • a differential pressure sensor 21 is provided which communicates for this purpose via pipe connections 22, 23 with the control cell 4 on the one hand and an opening 24 in the boat hull 1 on the other hand and thereby of two Pages with the different pressure levels 3, 4 is applied.
  • the tube 23 may be connected to the mouth portion 6 of the tube 5 instead of the boat hull 1.
  • the task of the control is, depending on the measured pressure difference 21 by actuation of the ventilation valves 17, 14, the pressure of the air cushion 10 in the control cell 4 the outboard water pressure 3 nachlien so that the pressure difference 21 always corresponds to a predetermined setpoint 25. If this succeeds, the residual flow rate 9 through the tube 5 when closing the flap 8 is independent of the level 11 in the control cell 4 constant, and when using an experimentally determined Vorhalte learners for initiating the closing of the flap 8 can be achieved with good approximation that the final adjusting control cell level 11 corresponds fairly accurately to the desired level. Thus, there is no difficulty to adjust the weight of the underwater vehicle 1, 2 in a defined extent and thereby bring about stabilization at different depths.
  • control circuit 26 for the pressure difference between the control cell 4 and the outboard water pressure 3 is shown in FIG FIG. 2 played.
  • a setpoint generator 25 which can either be set manually or fixed or, for example. From the output signal of a higher-level control loop for the flow rate or volume 9 in the tube 5 from and to the control cell 4 can be tapped.
  • the actual value delivered by the differential pressure transducer 21 is subtracted 27 in order to generate a signal 28 proportional to the current control deviation. If a downstream controller 29 succeeds in correcting this control deviation signal 28 to zero, optimum conditions for a defined actuation of the flap 8 from and to the control cell 4 are created.
  • control module 29 different structures can be used, but preferably a controller with proportional and integral component is used here, since such a sufficient dynamics is capable of a control deviation permanently to zero. It may be possible to dispense with a differential component at this point in order to calm the control as far as possible.
  • the output signal 30 of the controller 29, the signal of a feedforward block 31 are superposed additively 32, whereby, for example, the dynamics of changes in the setpoint 25 is improved.
  • the feedforward control 31 may, for example, be designed as a differentiating component.
  • the thus dynamized control signal 33 can be modified in further, downstream modules and thereby adapted to the current boundary conditions.
  • a first modification module 34 it is possible within the scope of a first modification module 34 to link with the output signal 35 of a sensor 36 for the filling level 11 in the control cell 4.
  • the volume of the air cushion 10 decreases and therefore already contribute smaller, inflowing or outflowing amounts of air to each increased pressure changes in the control cell 4.
  • a correction can be achieved by the volume of the air cushion 10 is calculated by subtracting the currently measured level 36 of the maximum filling state of the control cell 4 and then this value, for example. Multiplicatively linked to the control signal 33, so with large air cushion 10 with a correspondingly large control signal 37, a correspondingly wide modulation of the valves 14, 17 is effected, while at high level 36, the valve control is withdrawn accordingly.
  • a second, preferably connected in series modification module 38 receives in addition to the level-corrected control signal 27, the output signal 39 of a sensor 40 for the outboard water pressure 3. With this information, the modification module 38 can estimate about the current depth of the underwater vehicle 1, 2. Its predominant task is to effect a weakening of the control signal 41 at low depths, so that the regulation does not start to oscillate despite the influence of the swell, which is very noticeable in this area.
  • Another modification module 42 is coupled with the diving depth-corrected control signal 41 on the one hand and with a desired value generator 43, to which the current noise requirement is adjustable, on the other hand.
  • the control signal 44 can be additionally limited so that the valves 14, 17 are opened only to a limited extent and thus produce only a minimal noise.
  • the thus modified control signal 44 is not used directly to drive the valves 14, 17, but rather as a setpoint for controlling the rate of change of the pressure difference 21.
  • a current comparison value is of the measured pressure difference 21st formed in a downstream block 45, a differential function to receive in this way an actual value signal 46 for the rate of change of the pressure difference 21.
  • This actual value 46 is subtracted by a subtraction module 47 from the modified control signal 44 used as a setpoint in order to provide a signal 48 for the system deviation.
  • this can also be additively added to the system deviation signal 48, preferably at an input of the subtraction module 47 parallel to the setpoint signal 44.
  • the thus possibly dynamized control deviation signal 48 is communicated to the input 50 of a subordinate regulator 51, which is responsible for acting on the controlled system 4 by generating a suitable control signal 52 such that the actual value 46 for the rate of change of the pressure difference 21 in the stationary state is as accurate as possible the setpoint signal 44 matches.
  • the controller 51 of the subordinate speed change control loop 46 of the pressure difference 21 may be constructed with a proportional and integral and possibly also a differential component, but the latter can also be omitted for reassurance of the control loop behavior.
  • control assembly 53 Connected downstream of the controller 51 is a control assembly 53 whose task is to convert the control signal 52 of the subordinate regulator 51 into activation signals 54, 55 for the adjusting devices 56, 57 of the air control valves 14, 17.
  • a valve position sensor is assigned to each of the two valves 14, 17 whose output signals 58, 59 are fed back to the control module 53. There, they may be used by a latch assembly 60 to release a valve opening set point 61, 62 derived from the controller output signal 52 only when the respective other valve 14, 17 has been definitively closed before the relevant feedback signal 58, 59.
  • valve opening setpoint value 61, 62 generated in this way is not switched directly to the adjusting device 56, 57 of the relevant valve 14, 17, but as a setpoint to a valve position controller 63, 64, which also receives the feedback signal 58, 59 of the relevant valve position sensor , From this, the valve position regulator 63, 64 can determine the deviation of the current valve position 58, 59 from the valve opening setpoint 61, 62 originating from the lock assembly 60 and generate corresponding control signals 54, 55 for the actuating device 56, 57 of the relevant valve 14, 17 in accordance with a defined control function , This makes it possible to always maintain the desired valve position value, regardless of whether the valves due to aging, corrosion or other influences show different characteristics.
  • the subordinate valve position controllers 63, 64 also receive an integral component in addition to a proportional component, it is ensured that the actual valve positions 58, 59 coincide with the predetermined position reference values 61, 62 in the stationary state, so that the higher-level controller 51 determines the rate of change of the pressure difference 21 thereof can assume that its regulator output signal 52 the air control valves 14, 17 is impressed. Aging phenomena of the valves or other devices are therefore excluded, and the control circuit 26 of the invention operates over many years of extremely reliable.
  • analog operating electronic modules can be used, but also an implementation of one, several or all signal processing modules as a computer program in a data processing system is possible.
  • the mostly analog signals of the sensors 21, 36, 40, 58, 59 as well as the desired values 25, 43 predetermined by means of potentiometers, for example can be digitized via analog-to-digital converters and then read in bitwise.
  • the output signals, for example, the valve position controller 63, 64 can then be converted by means of digital-to-analog converters into corresponding voltage levels, which are then adjusted by means of downstream amplifier performance of the adjusting devices 56, 57.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Fluid Pressure (AREA)
  • Feedback Control In General (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

Die Erfindung richtet sich auf ein Verfahren und eine Vorrichtung zum Betrieb eines Unterwasserfahrzeugs.The invention is directed to a method and a device for operating an underwater vehicle.

Der Schwebezustand eines getauchten U-Bootes wird dadurch hergestellt, dass durch Veränderung des Gewichtes dem sich in der gewünschten Tauchtiefe ergebenden Auftrieb die Waage gehalten wird. Zur Erhöhung des Bootsgewichtes wird hierbei Wasser in einen oder mehrere Behälter des U-Bootes, sog. Zellen, aufgenommen (fluten), während zur Verringerung des Bootsgewichtes Wasser von der (den) Zelle(n) nach außen abgegeben wird (lenzen). Hierbei dienen sog. Regelzellen der groben Gewichtseinstellung, während für den Feinabgleich sog. Tieflenzzellen vorgesehen sind. Deshalb haben letztere ein vergleichsweise niedriges Volumen, während die Regelzellen ein Fassungsvermögen von vielen hundert Litern aufweisen können. Entsprechend groß ist der Querschnitt einer Rohrverbindung zwischen einer Regelzelle und einer Öffnung in der Bootshülle bemessen, so dass eine schnelle Veränderung des Füllstands in der betreffenden Regelzelle möglich ist. Andererseits soll der Füllstand in einer derartigen Regelzelle möglichst exakt einstellbar sein, so dass das Volumen der zusätzlichen Tieflenzzellen so klein als möglich gehalten werden kann. Dieser Anforderung steht das Problem im Weg, dass eine Beginn und Ende des Flut- bzw. Lenzvorganges einer Regelzelle bestimmende Klappe in der oben genannten Rohrverbindung nur mit einer vergleichsweise geringen Geschwindigkeit in der Größenordnung von einigen bis etwa zehn Sekunden geöffnet und geschlossen werden kann. Der jeweilige Betätigungsvorgang muss insbesondere beim Schließen dieser Klappe daher frühzeitig begonnen werden, lange bevor der gewünschte Füllstand in der Regelzelle erreicht ist. Dieser Vorhaltezeitpunkt kann jedoch überhaupt nur dann einigermaßen genau bestimmt werden, wenn die Strömungsgeschwindigkeit in der betreffenden Rohrverbindung zu der Regelzelle wenigstens zu Beginn des Schließvorgangs stets einen bekannten Wert aufweist und möglichst keinen sonstigen Schwankungen unterworfen ist. Sodann kann durch Multiplikation dieses Durchflusswertes mit der voraussichtlichen Schließzeit der Klappe sowie ggf. eines deren veränderliche Stellung berücksichtigenden Faktors das voraussichtlich noch durchströmende Wasservolumen einigermaßen genau vorausberechnet und damit derjenige Füllstand in der betreffenden Regelzelle vorhergesagt werden kann, bei welchem der Schließvorgang der Klappe eingeleitet werden muss. Andererseits hängt die Strömungsgeschwindigkeit in der besagten Rohrverbindung zu der Regelzelle insbesondere von der Druckdifferenz zwischen dem Druck innerhalb der Regelzelle und dem außenbordseitigen Wasserdruck ab und kann daher nicht nur mit der Tauchtiefe, sondern insbesondere auch mit dem Füllstand innerhalb der Regelzelle stark schwanken. So steigt bei geschlossenem Entlüftungsventil der Druck in der Regelzelle beim Fluten beständig an, der außenbordseitige Wasserdruck wird insbesondere bei niedrigen Tauchtiefen durch den Wellengang erheblich beeinflusst, etc., so dass eine Vielzahl von Faktoren auf die aktuelle Strömungsgeschwindigkeit in der Rohrverbindung zu und von der Regelzelle einwirken. Daher bereitet es bislang größte Schwierigkeiten, den richtigen Zeitpunkt zum Einleiten des Schließvorgangs für die Klappe in der Rohrverbindung von und nach der Regelzelle zu bestimmen.The suspended state of a submerged submarine is produced by the fact that by changing the weight of the resulting in the desired depth buoyancy buoyancy is maintained. In order to increase the weight of the boat in this case water in one or more containers of the submarine, so-called. Cells, recorded (flooding), while reducing the boat weight water from the (the) cell (s) is discharged to the outside (lenzen). Here are so-called. Control cells of coarse weight adjustment, while provided for fine adjustment so-called. Tieflenzzellen. Therefore, the latter have a comparatively low volume, while the control cells can have a capacity of many hundreds of liters. Correspondingly large is the cross-section of a pipe connection between a control cell and an opening in the boat hull dimensioned, so that a rapid change of the level in the relevant control cell is possible. On the other hand, the level in such a control cell should be as accurately as possible, so that the volume of the additional low-voltage cells can be kept as small as possible. This requirement is the problem in the way that a start and end of the flood or Lenzvorganges a control cell-determining flap in the above-mentioned pipe connection can be opened and closed only at a relatively low speed on the order of a few to about ten seconds. The respective actuation process must therefore be started early, especially when closing this flap, long before the desired level is reached in the control cell. However, this provisional timing can only be reasonably accurate be determined when the flow rate in the relevant pipe connection to the control cell always at least at the beginning of the closing process has a known value and is subjected as possible no other fluctuations. Then by multiplying this flow value with the expected closing time of the flap and possibly a factor whose variable position taken into account the probably still flowing water volume reasonably accurately precalculated and thus the level in the relevant control cell can be predicted, in which the closing operation of the flap must be initiated , On the other hand, the flow velocity in the said pipe connection to the control cell depends in particular on the pressure difference between the pressure within the control cell and the outboard water pressure and can therefore vary greatly not only with the depth, but also in particular with the level within the control cell. Thus, when the vent valve is closed, the pressure in the control cell constantly increases during the flooding, the outboard water pressure is considerably influenced by the waves, especially at low depths, etc., so that a multiplicity of factors affect the current flow velocity in the pipe connection to and from the control cell act. Therefore, it has so far been very difficult to determine the right time to initiate the closing process for the flap in the pipe joint to and from the control cell.

Ein solches Verfahren und eine solche Vorrichtung sind aus der US 5 129 348 bekannt.Such a method and such a device are known from US 5,129,348 known.

Aus den Nachteilen des beschriebenen Stands der Technik resultiert das die Erfindung initiierende Problem, eine Möglichkeit zu schaffen, wie der Füllstand in einer Regelzelle eines Unterwasserfahrzeugs möglichst genau vorgegeben werden kann, so dass zusätzlich erforderliche Tieflenzzellen mit einem vergleichsweise geringen Volumen ausgebildet werden können; insbesondere soll dies erreicht werden, indem der Vorhaltezeitpunkt für das Einleiten des Schließvorgangs einer Klappe in der Rohrverbindung von und nach einer Regelzelle so exakt als möglich bestimmt werden kann.From the disadvantages of the described prior art, the problem initiating the invention results in providing a way in which the fill level in a control cell of an underwater vehicle can be predetermined as precisely as possible, so that additionally required low-clearance cells with a comparatively small volume can be formed; In particular, this should be achieved by the Vorhaltezeitpunkt for initiating the closing of a Flap in the pipe connection to and from a control cell can be determined as accurately as possible.

Die Lösung dieses Problems gelingt dadurch, dass die Druckdifferenz zwischen dem Druck in einem zwecks Veränderung des Fahrzeuggewichts mit Wasser und/oder einem Gas, insbesondere Luft, befüllbaren Behälter einerseits und dem außenbordseitigen Wasserdruck andererseits auf einen vorgebbaren Sollwert geregelt wird.The solution to this problem is achieved in that the pressure difference between the pressure in a purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand is controlled to a predetermined target value.

Da der Volumendurchsatz bei der Strömung eines viskosen Mediums durch ein Rohr gemäß dem Gesetz von Hagen und Poiseuille proportional zu der Druckdifferenz zwischen den Rohrenden ist, kann durch Regelung dieser Druckdifferenz auf einen vorzugsweise fest vorgegebenen Wert eine optimale Voraussetzung dafür geschaffen werden, dass der Volumendurchsatz des Wassers durch das Rohr von und nach der betreffenden Regelzelle bei unverändertem Klappenstellungswinkel einigermaßen konstant bleibt. Da der Einfluss des Klappenstellungswinkels auf den Volumendurchsatz experimentell ermittelt werden kann, lässt sich die Vorhaltezeit für die Einleitung des Schließvorgangs der Klappe in der Rohrverbindung von und nach der Regelzelle sehr exakt bestimmen. Unter der Voraussetzung einer etwa konstanten Druckdifferenz kann aus dem experimentell ermittelten Wert das während des Schließvorgangs noch durch die Klappe strömende Wasser abgeschätzt und daraus ein Vorhaltewert für den Füllstand festgelegt werden, bei welchem der Schließvorgang für die Klappe einzuleiten ist, so dass sich am Ende desselben möglichst exakt der gewünschte Füllstand in der Regelzelle einstellt.Since the volume flow rate in the flow of a viscous medium through a pipe according to the law of Hagen and Poiseuille is proportional to the pressure difference between the pipe ends, can be created by regulating this pressure difference to a preferably fixed value optimal condition for the volume flow rate of the Water remains reasonably constant through the tube from and to the relevant control cell with unchanged flap position angle. Since the influence of the flap position angle on the volume flow rate can be determined experimentally, the lead time for the initiation of the closing operation of the flap in the pipe connection to and from the control cell can be determined very accurately. Assuming an approximately constant pressure difference can be estimated from the experimentally determined value during the closing process still flowing through the valve water and from this a reserve value for the level are set, in which the closing operation for the flap is to be initiated so that at the end of the same as exactly as possible sets the desired level in the control cell.

Es hat sich als günstig erwiesen, dass der Istwert der Druckdifferenz zwischen dem Druck in einem zwecks Veränderung des Fahrzeuggewichts mit Wasser und/oder einem Gas, insbesondere Luft, befüllbaren Behälter einerseits und dem außenbordseitigen Wasserdruck andererseits gemessen wird. Natürlich kann diese Druckdifferenz durch zwei Sensoren erfasst werden, von denen einer dem außenbordseitigen Wasserdruck und der andere dem Innendruck in der betreffenden Regelzelle zugeordnet ist, wobei diese Sensoren vorzugsweise etwa in der Nähe der betreffenden Rohrmündung anzuordnen wären; solchenfalls könnte die Druckdifferenz durch Subtraktion der auf identische Messbereiche gereichten oder umgerechneten Sensorausgangssignale erzeugt werden. Andererseits kann der Messaufwand dadurch verringert werden, dass ein einziger Drucksensor für die Druckdifferenz verwendet wird, dessen Ausgangssignal sodann direkt als Istwert für die erfindungsgemäße Regelschleife verwendet werden kann.It has proved to be advantageous that the actual value of the pressure difference between the pressure in a vehicle for the purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand is measured. Of course, this pressure difference can be detected by two sensors, from one of which is assigned to the outboard water pressure and the other to the internal pressure in the relevant control cell, these sensors would preferably be arranged approximately in the vicinity of the respective pipe mouth; In this case, the pressure difference could be generated by subtracting the sensor output signals applied to or converted to identical measuring ranges. On the other hand, the measurement effort can be reduced by using a single pressure sensor for the pressure difference, the output signal of which can then be used directly as an actual value for the control loop according to the invention.

Es liegt im Rahmen der Erfindung, dass der gemessene Istwert der Druckdifferenz von dem vorgegebenen Sollwert subtrahiert wird, um ein Maß' für die Regelabweichung zu erhalten. Durch diese Differenzbildung kann die weitere Aufgabenstellung des erfindungsgemäße Regelkreises dahingehend vereinfacht werden, dass das Signal für die Regelabweichung möglichst zu null abgeglichen wird.It is within the scope of the invention that the measured actual value of the pressure difference is subtracted from the predetermined desired value in order to obtain a measure for the control deviation. By this subtraction, the further task of the control loop according to the invention can be simplified to the effect that the signal for the control deviation is adjusted as possible to zero.

Zu diesem Zweck kann im Rahmen der erfindungsgemäßen Regelung für die Druckdifferenz eine zu der Regelabweichung, deren Integral und/oder Differential proportionale Funktion als Regelsignal gebildet werden. Derartige Regelungsfunktionen erlauben eine hohe Präzision der Regelung im Verhältnis zu preiswerteren Realisierungen wie bspw. Zweipunktregelungen, die andererseits in Einzelfällen auch anwendbar sein können. Die Wahl der richtigen Reglerstruktur wie auch die Ermittlung und Optimierung der Reglerparameter kann dabei im Hinblick auf gewünschte Eigenschaften wie bspw. Dynamik und Stabilität der Regelung vorgenommen werden.For this purpose, in the context of the pressure difference control according to the invention, a function which is proportional to the control deviation and whose integral and / or differential function are formed as a control signal. Such control functions allow a high precision of the control in relation to cheaper realizations such as, for example, two-point controls, which on the other hand may be applicable in individual cases. The choice of the correct controller structure as well as the determination and optimization of the controller parameters can be made with regard to desired properties such as, for example, dynamics and stability of the control.

Die Erfindung erlaubt eine Weiterbildung dahingehend, dass das Regelsignal zur Verbesserung der Dynamik bei Sollwertänderungen additiv mit einem von dem Sollwert insbesondere durch Differentiation abgeleiteten Signal zu einem dynamisierten Regelsignal verknüpft wird. Eine derartige Anordnung erlaubt es, die eigentliche Regelfunktion ohne Differentialanteil zu bilden, so dass ohne Sollwertänderungen eine sehr ruhige Regelung erfolgt und damit die Gefahr von Instabilitäten beträchtlich gemindert ist.The invention allows a development to the effect that the control signal to improve the dynamics of setpoint changes is additively linked to a derived from the setpoint, in particular by differentiation signal to a dynamic control signal. Such an arrangement makes it possible to form the actual control function without differential component, so that without setpoint changes a very quiet regulation takes place and thus the risk of instability is considerably reduced.

Ferner hat es sich bewährt, dass das ggf. dynamisierte Regelsignal durch ein oder mehrere Signale beeinflusst wird. Hierdurch kann spezifischen Randbedingungen, welche in der auszuregelnden Strecke zu beachten sind, entsprochen werden.Furthermore, it has been proven that the possibly dynamized control signal is influenced by one or more signals. In this way, specific boundary conditions, which are to be observed in the track to be corrected, be met.

Eine erste Modifikation kann das ggf. dynamisierte Regelsignal durch einen Füllstandsmesswert für den zwecks Veränderung des Fahrzeuggewichts befüllbaren Behälter erfahren, um dadurch ein füllstandskorrigiertes Regelsignal zu erhalten. Diese Modifikation berücksichtigt die Tatsache, dass bei einem hohen Füllstand in der betreffenden Regelzelle nur noch ein vergleichsweise geringes Luftvolumen vorhanden ist, so dass bereits die Be- oder Entlüftung mit einer vergleichsweise geringen Luftmenge zu starken Druckänderungen in der Regelzelle führt, während bei niedrigem Zellenfüllstand hierzu die Bewegung erheblich größerer Luftmengen erforderlich ist. Die Modifikation könnte hierbei derart bewirkt werden, dass der gemessene Füllstand von dem maximalen Füllstand subtrahiert wird, um ein Maß für das noch vorhandene Luftvolumen zur Verfügung zu stellen, und dass dieser zu dem Luftvolumen proportionale Wert anschließend mit dem ggf. dynamisierten Reglerausgangssignal multipliziert wird.A first modification can experience the optionally dynamized control signal by a filling level measurement for the container to be filled in order to change the vehicle weight, in order thereby to obtain a level-corrected control signal. This modification takes into account the fact that at a high level in the relevant control cell only a comparatively small volume of air is present, so that even the ventilation with a comparatively small amount of air leads to strong pressure changes in the control cell, while at low cell level this the movement of considerably larger amounts of air is required. The modification could in this case be effected in such a way that the measured fill level is subtracted from the maximum fill level in order to provide a measure of the remaining air volume, and that this value proportional to the air volume is subsequently multiplied by the possibly dynamic controller output signal.

Eine weitere, alternative oder kumulative Modifikationsmöglichkeit kann von einem Drucksignal für den außenbordseitigen Druck hergeleitet werden, um ein tauchtiefenkorrigiertes Regelsignal zu erhalten. Hierbei soll vor allem der Tatsache entsprochen werden, dass bei niedrigen Tauchtiefen die von dem Wellengang hervorgerufenen Schwankungen des Außendrucks möglicherweise in der Größenordnung der gewünschten Druckdifferenz liegen und somit zu extremen Schwingungen innerhalb des erfindungsgemäßen Regelkreises Anlass geben könnten. Da sich in ungünstigen Fällen hieraus Instabilitäten ergeben könnten, kann im Rahmen einer derartigen Tauchtiefenkorrektur bei niedrigen Tauchtiefen eine Abschwächung des Regelsignals vorgenommen werden, um dadurch den Regelkreis zu beruhigen.Another alternative or cumulative modification option may be derived from a pressure signal for outboard pressure to obtain a dive depth corrected control signal. This should be met especially the fact that at low depths of the waves caused by the fluctuations of the external pressure may be in the order of magnitude of the desired pressure difference and thus could give rise to extreme vibrations within the control loop according to the invention. There In unfavorable cases, this could result in instabilities, a weakening of the control signal can be made in the context of such immersion depth correction at low depths, thereby calming the control loop.

Schließlich kann weiterhin vorgesehen sein, dass das ggf. dynamisierte, füllstandskorrigierte und/oder tauchtiefenkorrigierte Regelsignal begrenzt wird, um weiteren Sollwerten, insbesondere hinsichtlich der Geräuschanforderung, zu entsprechen. Hierbei soll Begrenzung auch im Sinne von einer Minderung des Proportionalitätsfaktors bei großen Amplituden des Regelsignals verstanden werden, um bspw. starke und damit laute Regelungsmaßnahmen zu vermeiden, was insbesondere bei militärischen Unterwasserfahrzeugen wichtig sein kann.Finally, it may further be provided that the possibly dynamized level-corrected and / or dipping depth-corrected control signal is limited in order to correspond to further setpoint values, in particular with regard to the noise requirement. This limitation should also be understood in terms of a reduction of the proportionality factor at large amplitudes of the control signal, for example, to avoid strong and therefore loud control measures, which may be particularly important in military underwater vehicles.

Das erfindungsgemäße Regelungskonzept lässt sich vorteilhaft durch eine unterlagerte Regelung für die Änderungsgeschwindigkeit der Druckdifferenz ergänzen, der das ggf. dynamisierte, füllstandskorrigierte, tauchtiefenkorrigierte und/oder begrenzte Druckdifferenz-Regelsignal als Sollwert mitgeteilt wird. Diese mehrteilige Regelungsstruktur kann dazu verwendet werden, um Sprünge in der Änderungsgeschwindigkeit der Druckdifferenz zu vermeiden, wodurch ebenfalls eine Besänftigung des Regelkreises erreicht wird, so dass die von der Anordnung erzeugten Geräusche auf ein Minimum abgesenkt werden können.The control concept according to the invention can advantageously be supplemented by a lower-level control for the rate of change of the pressure difference, which is communicated as the desired value to the possibly dynamized, level-corrected, diving depth-corrected and / or limited pressure difference control signal. This multi-part control structure can be used to avoid jumps in the rate of change of the pressure difference, which also causes a settling of the control loop, so that the noise generated by the arrangement can be minimized.

Der für die unterlagerte Regelschleife benötigte Istwert für die Änderungsgeschwindigkeit der Druckdifferenz lässt sich nach der Lehre der Erfindung aus dem gemessenen Istwert der Druckdifferenz zwischen dem Druck in der betreffenden Regelzelle einerseits und dem außenbordseitigen Wasserdruck andererseits durch Differentiation bestimmen. Da eine derartige Differentiation mittels preiswerter Elektronikbausteine problemlos realisiert werden kann, steht einer erfindungsgemäßen Kaskadenregelung kein technologisches Hindernis im Wege.The actual value for the rate of change of the pressure difference required for the subordinate control loop can be determined by differentiation according to the teaching of the invention from the measured actual value of the pressure difference between the pressure in the relevant control cell on the one hand and the outboard water pressure on the other hand. Since such a differentiation can be easily implemented by means of inexpensive electronic components, a cascade control according to the invention is not a technological obstacle in the way.

Ein weiterer Schritt des erfindungsgemäßen Verfahrens besteht darin, dass die Änderungsgeschwindigkeit des Druckdifferenzistwerts von dem als Sollwertsignal verwendeten, ggf. modifizierten Regelsignal der überlagerten Regelung für die Druckdifferenz zwischen Regelzelle und außenbordseitigem Wasserdruck subtrahiert wird, um ein Maß für die Regelabweichung der unterlagerten Regelung für die Änderungsgeschwindigkeit der Druckdifferenz zu erhalten. Dieser Verfahrensschritt dient der Vereinfachung einer nachgeschalteten Regelung, indem deren Aufgabe darauf reduziert wird, das solchermaßen bestimmte Maß für die Regelabweichung der unterlagerten Regelung auf null abzugleichen.A further step of the method according to the invention is that the rate of change of the pressure difference actual value is subtracted from the control signal of the higher-level control used for the pressure difference between control cell and outboard water pressure used as setpoint signal, by a measure of the control deviation of the subordinate control for the rate of change to get the pressure difference. This method step serves to simplify downstream regulation by reducing its task to zeroing out the measure of the control deviation determined in this way for the subordinate control.

Weiterhin kann zur Verbesserung der Dynamik bei Sollwertänderungen des vorgebbaren Druckdifferenzsollwertes eine Korrektur des Regelabweichungssignals der unterlagerten Regelung für die Änderungsgeschwindigkeit der Druckdifferenz anhand des Druckdifferenzsollwertes vorgenommen werden, insbesondere mittels eines durch Differentiation aus dem Druckdifferenzsollwert abgeleiteten Signals. Auch an dieser Stelle kann ein von dem vorgebbaren Druckdifferenzsollwert abgeleiteter Differentialanteil eingeschleift werden, da infolge der untergeordneten Regelschleife für die Änderungsgeschwindigkeit des Druckdifferenzistwertes ggf. eine sprungartige Veränderung dieser Regelgröße vermieden werden kann.Furthermore, a correction of the control deviation signal of the subordinate control for the rate of change of the pressure difference on the basis of the pressure difference setpoint can be made to improve the dynamics at setpoint changes of the predetermined pressure difference setpoint, in particular by means of a differentiation derived from the pressure difference setpoint signal. At this point too, a differential component derived from the predefinable differential pressure set point can be looped in, since as a result of the subordinate control loop for the rate of change of the pressure difference actual value, a sudden change in this controlled variable can be avoided.

Auch im Rahmen der unterlagerten Regelung für die Änderungsgeschwindigkeit der Druckdifferenz lässt sich vorteilhaft eine zu der ggf. dynamisierten Regelabweichung, deren Integral und/oder Differential proportionale Funktion als Regelsignal für die Änderungsgeschwindigkeit der Druckdifferenz bilden. Um sprunghafte Änderungen der Regelgrößen zu vermeiden, sollte der Differentialanteil hierbei nicht zu groß gewählt oder gar weggelassen werden.Also in the context of the subordinate control for the rate of change of the pressure difference can be advantageous to form the possibly dynamized control deviation whose integral and / or differential proportional function as a control signal for the rate of change of the pressure difference. To avoid sudden changes in the controlled variables, the differential component should not be too large or even omitted.

In Weiterbildung des Erfindungsgedankens kann ferner vorgesehen sein, dass aus dem Regelsignal insbesondere für die Änderungsgeschwindigkeit der Druckdifferenz Ansteuersignale für ein stromaufwärts des Behälteranschlusses für ein gasförmiges Druckmedium angeordnetes Belüftungsventil einerseits sowie für ein stromabwärts des Behälteranschlusses für das Druckmedium angeordnetes Entlüftungsventil andererseits abgeleitet werden. Die erfindungsgemäße Regelstrecke hat die Besonderheit, dass für eine Erhöhung des Zellendrucks das Belüftungsventil geöffnet werden muss, wobei ein stromabwärts desselben angeordnetes Entlüftungsventil geschlossen sein sollte, um Druckverluste zu vermeiden, während andererseits bei Öffnung des Entlüftungsventils zwecks Senkung des Zellendrucks das Belüftungsventil geschlossen sein sollte. Aus dem für die Einflussnahme auf die Strecke relevanten Regelsignal müssen demnach Ansteuersignale für zwei Stellglieder erzeugt werden, wobei je eines der als Ventile ausgebildeten Stellglieder je einer der beiden, möglichen Polaritäten des relevanten Regelsignals zugeordnet ist.In a further development of the concept of the invention, it can further be provided that the control signal in particular for the rate of change the pressure difference control signals for a valve disposed upstream of the container connection for a gaseous pressure medium vent valve on the one hand and for a downstream of the container port for the pressure medium arranged vent valve on the other hand are derived. The controlled system according to the invention has the peculiarity that for an increase in the cell pressure, the vent valve must be opened, wherein a downstream thereof arranged vent valve should be closed to prevent pressure losses, while on the other hand should be closed when opening the vent valve in order to reduce the cell pressure, the vent valve. Accordingly, control signals for two actuators must be generated from the control signal relevant for influencing the route, one of the actuators designed as valves being associated with one of the two possible polarities of the relevant control signal.

Die aus dem relevanten Regelsignal zu generierenden Ansteuersignale sollten dabei derart beschaffen sein, dass sie eine kontinuierliche Verstellung des betreffenden Ventils bewirken. Dadurch kann die Stärke des Luftstroms kontinuierlich beeinflusst werden, so dass eine sehr gefühlvolle und damit äußerst stabile Regelung erzielt werden kann.The control signals to be generated from the relevant control signal should be such that they bring about a continuous adjustment of the relevant valve. As a result, the strength of the air flow can be continuously influenced, so that a very soulful and thus extremely stable control can be achieved.

Die tatsächliche Stellung der zu betätigenden Be- und Entlüftungsventile kann wiederum durch schwankende Randbedingungen verursacht von der gemäß den Ansteuersignalen gewünschten Stellung abweichen, bspw. infolge von herstellungsbedingten Toleranzen, Spannungsschwankungen, korrosionsbedingter Erhöhung von Reibungsbeiwerten, Verschleiß, etc. Um dennoch die Ventile exakt in die gewünschte Stellung verfahren zu können, ist erfindungsgemäß ferner vorgesehen, dass die aktuellen Ventilstellungen erfasst werden. Somit erhält die erfindungsgemäße Regelung bzw. Ansteuerschaltung ein Rückmeldesignal, welches dieser Aufschluss darüber ergibt, ob die berechneten Ventilstellungswerte auch tatsächlich angefahren worden sind.The actual position of the ventilation valves to be actuated may in turn deviate from the desired position according to the control signals due to fluctuating boundary conditions, for example as a result of production-related tolerances, voltage fluctuations, corrosion-induced increase of friction coefficients, wear, etc. Nevertheless, the valves are exactly in the To be able to move desired position, the invention further provides that the current valve positions are detected. Thus, the regulation or control circuit according to the invention receives a feedback signal, which gives this information about whether the calculated valve position values have actually been approached.

Die Rückmeldung der aktuellen Ventilstellungen erlaubt ferner eine gegenseitige Verriegelung der beiden Ventile, derart, dass die Ansteuersignale für ein Ventil mit der aktuellen Ventilstellung des jeweils anderen Ventils verknüpft werden. Dadurch kann gewährleistet werden, dass ein Ventil erst geöffnet wird, sobald das andere vollständig geschlossen ist, um Druckverluste zu vermeiden.The feedback of the current valve positions also allows mutual locking of the two valves, such that the control signals for one valve are linked to the current valve position of the other valve. This can ensure that one valve is opened only when the other is completely closed to avoid pressure losses.

Ein weiteres, bevorzugtes Merkmal der Erfindung liegt darin, dass die Ansteuersignale für die Ventile aus dem ggf. durch Verriegelung modifizierten Regelsignal insbesondere für die Änderungsgeschwindigkeit der Druckdifferenz durch je eine unterlagerte Ventilstellungsregelung gewonnen werden. Eine derartige Positionsregelung für den aktiven Teil des Be- und Entlüftungsventils gewährleistet eine höchst präzise Verstellung, wobei die jeweils erforderlichen Ansteuersignale in der für die betreffende Ventilstellung erforderlichen Amplitude durch die betreffende Regelschleife individuell erzeugt werden.Another, preferred feature of the invention is that the control signals for the valves are obtained from the optionally modified by locking control signal in particular for the rate of change of the pressure difference by a respective subordinate valve position control. Such a position control for the active part of the ventilation valve ensures a highly precise adjustment, wherein the respective required control signals are generated individually in the required for the relevant valve position amplitude by the respective control loop.

Auch im Rahmen einer Ventilstellungsregelung sollte der erfasste Ventilstellungswert von dem als Sollwert verwendeten, ggf. durch Verriegelung modifizierten Regelsignal insbesondere für die Änderungsgeschwindigkeit der Druckdifferenz subtrahiert werden, um ein Maß für die Regelabweichung zu erhalten. Wenn dieses Signal für die Regelabweichung zu null abgeglichen ist, so hat das betreffende Ventil die von dem übergeordneten Regelsignal bestimmte Stellung eingenommen, und der übergeordnete Regelungskreis kann stets von einer optimalen Einhaltung der angeforderten Ventilstellungen ausgehen, auch wenn im Einzelnen die elektrischen oder mechanischen Parameter der betroffenen Ventile voneinander abweichen.Also in the context of a valve position control, the detected valve position value should be subtracted from the control signal used as a setpoint, possibly modified by locking, in particular for the rate of change of the pressure difference in order to obtain a measure for the system deviation. If this signal for the control deviation is adjusted to zero, then the valve in question has taken the position determined by the higher-level control signal, and the higher-level control circuit can always assume optimum compliance with the required valve positions, even if in detail the electrical or mechanical parameters of affected valves differ from each other.

Die Regelabweichung kann insbesondere dadurch minimiert werden, dass im Rahmen der Ventilstellungsregelung eine zu der Regelabweichung der Ventilstellung, deren Integral und/oder Differential proportionale Funktion als Ansteuersignal für das betreffende Ventil gebildet wird. Insbesondere ein Integralanteil führt hierbei dazu, dass das Ansteuersignal solange angehoben bzw. abgesenkt wird, bis das Ventil seine ihm vorbestimmte Stellung eingenommen hat und dadurch die Regelabweichung zu null geworden ist.The control deviation can be minimized in particular by the fact that, as part of the valve position control, a function that is proportional to the control deviation of the valve position, its integral and / or differential as a control signal for the relevant valve is formed. In particular, an integral component in this case means that the control signal is raised or lowered until the valve has assumed its predetermined position and thereby the control deviation has become zero.

Zur Durchführung des erfindungsgemäßen Verfahrens muss ein erfindungsgemäßes Unterwasserfahrzeug mit einer entsprechend konstruierten Vorrichtung ausgerüstet sein. Diese zeichnet sich aus durch einen Schaltkreis zur Regelung der Druckdifferenz zwischen dem Druck in einem zwecks Veränderung des Fahrzeuggewichts mit Wasser und/oder einem Gas, insbesondere Luft, befüllbaren Behälter einerseits und dem außenbordseitigen Wasserdruck andererseits auf einen vorgegebenen Sollwert.To carry out the method according to the invention, an underwater vehicle according to the invention must be equipped with a correspondingly constructed device. This is characterized by a circuit for controlling the pressure difference between the pressure in a purpose of changing the vehicle weight with water and / or a gas, in particular air, fillable container on the one hand and the outboard water pressure on the other hand to a predetermined desired value.

Eine derartige Schaltkreisanordnung kann auf unterschiedlichste Art realisiert sein. Einerseits besteht die Möglichkeit, die einzelnen Komponenten dieses Schaltkreises mechanisch aufzubauen; zur Gewichts- und Platzersparnis können jedoch mit Ausnahme der Sensoren und Stellglieder auch elektrische oder elektronische Komponenten verwendet werden, und schließlich ist auch eine Zusammenfassung dieser Komponenten zu einem integrierten Schaltkreis möglich, wobei dieser auch als programmierbarer Baustein konzipiert sein kann, der seine Funktion durch ein spezielles Steuerprogramm erhält. Allen derartigen Regelungskonzepten gemeinsam ist, dass der Innendruck in der betreffenden Regelzelle über ein oder mehrere Stellglieder derart beeinflusst wird, dass er stets dem außenbordseitigen Wasserdruck mit einem dem vorgebbaren Druckdifferenzsollwert entsprechenden Offset nachgeführt wird. Als von diesem Schaltkreis beeinflusste Stellglieder dienen hierbei das Be- und das Entlüftungsventil für die betreffende Regelzelle, und ein für die Rückkopplung erforderliches Istwertsignal wird durch einen oder mehrere Drucksensoren erzeugt.Such a circuit arrangement can be realized in many different ways. On the one hand, it is possible to mechanically construct the individual components of this circuit; For weight and space savings, however, with the exception of the sensors and actuators and electrical or electronic components can be used, and finally, a summary of these components to an integrated circuit is possible, which may also be designed as a programmable device, its function by a receives special control program. Common to all such control concepts is that the internal pressure in the relevant control cell is influenced via one or more actuators such that it is always tracked to the outboard water pressure with an offset corresponding to the predefinable pressure difference setpoint. In this case, the actuators and the deaeration valve for the relevant control cell serve as actuators influenced by this circuit, and an actual value signal required for the feedback is generated by one or more pressure sensors.

Obzwar der Druckdifferenzistwert auch mittels getrennter Drucksensoren für den Regelzellendruck einerseits und den außenbordseitigen Wasserdruck andererseits erzeugt werden kann, bevorzugt die Erfindung die Verwendung eines einzigen Sensors für die Druckdifferenz zwischen dem Druck in der Regelzelle einerseits und dem außenbordseitigen Wasserdruck andererseits. Da derartige Differenzdrucksensoren nur einen geringen konstruktiven Mehraufwand bedingen, andererseits die Störanfälligkeit durch eine Verminderung der Bauteile reduziert wird, verdient diese Anordnung den Vorzug. Auch wird dabei der Kalibrierungsaufwand reduziert und ein elektronischer Subtraktionsbaustein entfällt ebenfalls.Although the pressure difference actual value can also be generated by means of separate pressure sensors for the control cell pressure on the one hand and the outboard water pressure on the other hand, the invention prefers the use of a single sensor for the pressure difference between the pressure in the control cell on the one hand and the outboard water pressure on the other hand. Since such differential pressure sensors only require a small additional design effort, on the other hand, the susceptibility is reduced by a reduction of components, this arrangement deserves the advantage. Also, the calibration effort is reduced and an electronic subtraction module is also eliminated.

Weitere Vorteile bietet eine Einrichtung zur Subtraktion eines Ausgangssignals des Sensors für die Druckdifferenz zwischen dem Behälterinnendruck und dem außenbordseitigen Wasserdruck von einem vorgegebenen Sollwertsignal. Diese Einrichtung erzeugt solchermaßen ein Signal für die aktuelle Regelabweichung, das unter Ausregelung des Istwertes auf null abgeglichen werden kann.Further advantages are provided by a device for subtracting an output signal from the sensor for the pressure difference between the tank internal pressure and the outboard water pressure from a predetermined desired value signal. This device thus generates a signal for the current control deviation, which can be adjusted to zero under control of the actual value.

Im Rahmen des erfindungsgemäßen Regelkreises kann das Ausgangssignal der Subtraktionseinrichtung für den Soll- und Istwert der Druckdifferenz dem Eingang eines Reglerbausteins zugeführt sein, dessen Ausgangssignal proportional zu seinem Eingangssignal, dessen Integral und/oder Differential ist. Hierbei dient der Integralanteil vorzugsweise dazu, die Regeldifferenz dauerhaft exakt auf null auszuregeln, während ein Differentialanteil zwar die Dynamik des Regelkreises verbessert, andererseits aber zur Vermeidung von Instabilitäten bzw. zur Dämpfung von evtl. durch den Seegang etc. angestoßenen Schwingungen eher klein gehalten werden sollte.In the context of the control circuit according to the invention, the output signal of the subtraction device for the setpoint and actual value of the pressure difference can be fed to the input of a controller module whose output signal is proportional to its input signal whose integral and / or differential. In this case, the integral component preferably serves to permanently correct the control difference exactly to zero, while a differential component, while improving the dynamics of the control loop, but on the other hand should be kept rather small to avoid instabilities or to dampen any oscillations triggered by the sea state, etc. ,

Als weiterer Bestandteil des erfindungsgemäßen Regelkreises kann eine Additionseinrichtung vorgesehen sein, in welcher dem Ausgangssignal des Druckdifferenz-Regelbausteins ein von dem Druckdifferenz-Sollwert insbesondere durch Differentiation abgeleitetes Signal hinzugefügt wird, um ein dynamisiertes Regelsignal zu erhalten. Diese Maßnahme kann dazu verwendet werden, um eine selektiv auf Sollwertänderungen reagierende Dynamik zu erzeugen, während schnelle Istwertänderungen, welche insbesondere auch durch den Seegang vorgetäuscht werden können, durch Weglassen eines Differentialanteils bei dem erfindungsgemäßen Regler gedämpft oder zumindest nicht verstärkt werden.As a further component of the control circuit according to the invention, an addition device may be provided, in which the output signal of the pressure difference control module one of the pressure difference setpoint in particular by differentiation derived signal is added to obtain a dynamized control signal. This measure can be used to generate a selectively responsive to setpoint changes dynamics, while rapid changes in the actual value, which can be faked in particular by the sea state are attenuated by omitting a differential component in the controller according to the invention or at least not amplified.

Wie oben bereits ausgeführt, werden die Eigenschaften der Regelstrecke von einer Vielzahl weiterer Faktoren beeinflusst, und um hier eine Adaption des Regelsignals vorzunehmen, kann dem Reglerbaustein oder der ausgangsseitig an diesen angeschlossenen Additionseinrichtung wenigstens ein Baustein zur Modifikation des Regelsignals anhand eines oder mehrerer Signale nachgeordnet sein. Diese Modifikationsbausteine können auf den unterschiedlichsten Wegen auf das Regelsignal einwirken: Verstärkend, abschwächend, begrenzend, etc.As already explained above, the properties of the controlled system are influenced by a large number of further factors, and in order to adapt the control signal here, at least one module for modifying the control signal can be arranged downstream of the controller module or the addition unit connected to the output side by means of one or more signals , These modification modules can act on the control signal in a variety of ways: amplifying, attenuating, limiting, etc.

Das Regelsignal kann bspw. von einem Baustein modifiziert werden, dem das Ausgangssignal eines Sensors für den Füllstand in der betreffenden Regelzelle zugeführt ist. Indem dieser Modifikationsbaustein Informationen über den aktuellen Füllstand in der betreffenden Regelzelle erhält, kann dieser das Regelsignal dem verbleibenden Luftvolumen entsprechend anpassen, und dieser Baustein kann zu diesem Zweck als Multiplikator ausgebildet sein, der das Regelsignal mit einem zu dem verbleibenden Luftvolumen proportionalen Faktor multipliziert.The control signal can, for example, be modified by a module to which the output signal of a sensor for the fill level in the relevant control cell is supplied. By this modification module receives information about the current level in the relevant control cell, this can adjust the control signal corresponding to the remaining air volume, and this module can be designed for this purpose as a multiplier, which multiplies the control signal with a proportional to the remaining air volume factor.

An dem Signaleingang eines anderen Bausteins zur ggf. weiteren Modifikation des Regelsignals lässt sich das Ausgangssignal eines Sensors für den außenbordseitigen Wasserdruck anschließen, wodurch dieser Modifikationsbaustein zumindest näherungsweise die aktuelle Tauchtiefe ermitteln kann. Seine Aufgabe ist es, bei niedrigen Tauchtiefen das Regelsignal abzuschwächen und dadurch Schwingungen in dem Regelkreis, wie sie durch den Seegang bei derart geringen Tauchtiefen angestoßen werden, abzudämpfen. Er kann daher eine Übertragungsfunktion haben, die bei größeren Tauchtiefen etwa den Wert 1 besitzt, bei kleineren Tauchtiefen dagegen kleiner als 1 ist.At the signal input of another block for possibly further modification of the control signal, the output signal of a sensor for the outboard water pressure can be connected, whereby this Modifikationsbaustein can determine at least approximately the current depth. Its task is to attenuate the control signal at low depths and thereby vibrations in the control loop, such as they are triggered by the sea state at such shallow diving depths, to dampen. It can therefore have a transfer function, which has the value 1 for larger diving depths, but smaller than 1 for smaller diving depths.

Ein wiederum anderer Baustein, der vorzugsweise zur Begrenzung des ggf. modifizierten Regelsignals verwendet wird, verfügt über einen Eingang für ein vorgegebenes oder vorgebbares Sollwertsignal hinsichtlich der Geräuschanforderung. Entsprechend diesem Geräuschsollwert kann das Regelsignal durch Begrenzung gedrosselt oder abgeschwächt werden, so dass sämtliche Aktionen des Regelkreises mit verminderter Intensität ausgeführt werden und dadurch sowohl abrupte Schaltveränderungen wie auch starke Luft- und/oder Wasserbewegungen vermieden werden.Another turn, another block, which is preferably used to limit the possibly modified control signal, has an input for a predetermined or specifiable setpoint signal with respect to the noise request. According to this noise target value, the control signal can be throttled or attenuated by limiting, so that all actions of the control loop are carried out with reduced intensity and thereby both abrupt switching changes as well as strong air and / or water movements are avoided.

Zur Verbesserung der Regeleigenschaften sieht die Erfindung eine Kaskadenregelung vor, mit einem unterlagerten Schaltkreis zur Regelung der Änderungsgeschwindigkeit der Druckdifferenz, dessen Sollwerteingang das ggf. modifizierte Ausgangssignal des Druckdifferenz-Reglerbausteins zugeführt ist. Eine derartige Reglerstruktur bietet den Vorteil, dass die Änderungsgeschwindigkeit der Druckdifferenz nicht weitgehend sich selbst überlassen bleibt, sondern möglichst exakt einem ggf. durch die verschiedensten Modifikationsbausteine beeinflussten Sollwertsignal nachgeführt wird. Hierdurch ist eine weitere Eingriffsstelle geschaffen, an der einerseits die oben bereits beschriebenen Modifikationsbausteine angekoppelt werden können, und andererseits kann durch eine Trennung der Regler für den übergeordneten und unterlagerten Regelkreis das Führungsverhalten der betreffenden Regelkreise durch optimierte Reglerstrukturen und/oder -parameter unabhängig voneinander vorgegeben werden.To improve the control characteristics, the invention provides a cascade control, with a subordinate circuit for controlling the rate of change of the pressure difference whose setpoint input is supplied to the possibly modified output signal of the pressure difference control module. Such a controller structure has the advantage that the rate of change of the pressure difference is not largely left to itself, but is tracked as exactly as possible a possibly influenced by the various modification modules setpoint signal. In this way, a further intervention point is created, on the one hand, the above-described Modifikationsbausteine can be coupled, and on the other hand, the management behavior of the respective control loops by optimized controller structures and / or parameters can be specified independently by a separation of the controller for the parent and subordinate control loop ,

Es liegt im Rahmen der Erfindung, dass das Ausgangssignal des Sensors für die Druckdifferenz zwischen dem Druck in der betreffenden Regelzelle einerseits und dem außenbordseitigen Wasserdruck andererseits einem Baustein zugeführt wird, der daraus das Zeitdifferential berechnet. Mit diesem Baustein ist es möglich, aus dem vorzugsweise kontinuierlich gemessenen Istwert der Druckdifferenz zwischen Regelzelle und außenbordseitigem Wasserdruck einen Istwert für die Änderungsgeschwindigkeit dieser Druckdifferenz zu bestimmen. Dabei kann dieser Baustein als analoger Differentiator ausgebildet sein, so dass das Differential nahezu verzögerungsfrei sowie zu jedem Zeitpunkt bestimmt wird, andererseits ist es auch möglich, dem Druckdifferenzistwertsignal in kurzen Zeitabständen Abtastwerte zu entnehmen, diese zu digitalisieren und aus der Differenz aufeinanderfolgender Digitalwerte das Differential zu bestimmen.It is within the scope of the invention that the output signal of the sensor for the pressure difference between the pressure in the relevant control cell on the one hand and the outboard side On the other hand, water pressure is supplied to a module which calculates the time differential therefrom. With this module, it is possible to determine from the preferably continuously measured actual value of the pressure difference between the control cell and outboard water pressure an actual value for the rate of change of this pressure difference. In this case, this block can be designed as an analog differentiator, so that the differential is determined almost instantaneously and at any time, on the other hand, it is also possible to take samples of the Druckdifferenzistwertsignal at short intervals, to digitize them and from the difference of successive digital values, the differential determine.

Die weitere Verarbeitung dieses Istwertsignals für die Änderungsgeschwindigkeit der Druckdifferenz findet in einer Subtraktionseinrichtung statt, wo dieses Signal von dem ggf. modifizierten Ausgangssignal des Druckdifferenz-Reglerbausteins subtrahiert wird, um ein Signal für die Regelabweichung des unterlagerten Regelkreises für die Änderungsgeschwindigkeit der Druckdifferenz zu erhalten. Hierdurch wird ein Signal geschaffen, dessen Absolutwert der Amplitude ein Kriterium für den Abstand des tatsächlichen Betriebspunkts von dem gewünschten Betriebspunkt darstellt und von einem Reglerbaustein durch Veränderung des Betriebspunktes der Strecke auf null abzugleichen ist.The further processing of this actual value signal for the rate of change of the pressure difference takes place in a subtraction device, where this signal is subtracted from the possibly modified output signal of the pressure difference control module to obtain a signal for the control deviation of the lower-level control circuit for the rate of change of the pressure difference. As a result, a signal is created whose absolute value of the amplitude is a criterion for the distance of the actual operating point from the desired operating point and is to be adjusted by a controller module by changing the operating point of the track to zero.

Die erfindungsgemäße Kaskadenregelung bietet die weitere Möglichkeit, dem Signal für die Regelabweichung des unterlagerten Regelkreises für die Änderungsgeschwindigkeit der Druckdifferenz ein von dem Druckdifferenz-Sollwertsignal insbesondere durch Differentiation abgeleitetes Signal hinzuzufügen, um ein dynamisiertes Regelabweichungs-Signal für den unterlagerten Regelkreis zu erhalten. Dies wird bevorzugt in einer Additionseinrichtung durchgeführt, der die betreffenden Signale zugeführt sind; ggf. kann diese Additionseinrichtung auch mit der Subtraktionseinrichtung für die Bildung der Regelabweichung des unterlagerten Regelkreises integriert sein, bspw. durch parallelen Anschluss mehrerer Eingänge an dem invertierenden und/oder nicht invertierenden Eingang eines Operationsverstärkers. Indem hier eine Ankopplungsmöglichkeit für ein aus dem Druckdifferenz-Sollwertsignal gewonnenen Differentialanteil geschaffen ist, kann dieser einerseits an dem übergeordneten Regler vorbeigeführt sein, um dessen Schwingungsneigung zu reduzieren, andererseits können von diesem Differentialanteil herrührende Sprünge des Regelabweichungssignals für den unterlagerten Regelkreis durch eine entsprechende Auslegung des unterlagerten Reglers von den Stellgliedern weitgehend ferngehalten werden, so dass deren Betätigungsgeschwindigkeit einen vorgegebenen Wert nicht überschreitet.The cascade control according to the invention offers the further possibility of adding to the signal for the control deviation of the subordinate control circuit for the rate of change of the pressure difference a signal derived from the pressure difference setpoint signal, in particular by differentiation, in order to obtain a dynamized control deviation signal for the subordinate control loop. This is preferably performed in an adder to which the respective signals are supplied; If necessary, this addition device can also be used with the subtraction device for the formation of the control deviation be integrated by the lower-level control loop, for example. By parallel connection of multiple inputs to the inverting and / or non-inverting input of an operational amplifier. By providing a coupling possibility for a differential component obtained from the pressure difference setpoint signal, this can be passed on the one hand to the higher-order controller to reduce its tendency to oscillate, on the other hand jumps of the control deviation signal for the subordinate control loop resulting from this differential component can be replaced by a corresponding design of the subordinate controller are largely kept away from the actuators so that their operating speed does not exceed a predetermined value.

In Weiterbildung des Erfindungsgedankens kann der Reglerbaustein des unterlagerten Regelkreises derart aufgebaut sein, dass sein Ausgangssignal proportional zu dem an seinem Eingang anliegenden, ggf. dynamisierten Regelabweichungs-Signal für die Änderungsgeschwindigkeit der Druckdifferenz ist; alternativ oder kumulativ hierzu kann in dem Ausgangssignal auch ein zu dem Integral und/oder Differential seines Eingangssignals proportionaler Anteil enthalten sein. Derartige Reglerstrukturen sind im Stand der Technik bekannt und hinlänglich untersucht. Durch unterschiedliche Gewichtung der verschiedenen Anteile in der Reglerfunktion kann der Regler an die betreffende Strecke angepasst werden; bspw. kann zur Vermeidung von Sprüngen des Reglerausgangssignals der Differential- und ggf. auch der Proportionalanteil mit einem kleinen Gewichtsfaktor versehen sein.In a further development of the concept of the invention, the controller module of the subordinate control circuit can be constructed such that its output signal is proportional to the applied at its input, possibly dynamized control deviation signal for the rate of change of the pressure difference; alternatively or cumulatively thereto, a proportion proportional to the integral and / or differential of its input signal can also be contained in the output signal. Such control structures are known in the art and studied well. By different weighting of the different parts in the controller function, the controller can be adapted to the relevant route; For example, in order to avoid jumps in the controller output signal, the differential and possibly also the proportional component may be provided with a small weighting factor.

Der Druck in der Regelzelle kann erhöht werden, indem stromaufwärts des Behälteranschlusses für die Befüllung desselben mit einem gasförmigen Druckmedium, insbesondere Druckluft, ein Druckluftventil geöffnet wird, so dass das Druckmedium aus einem Vorratsdruckbehälter in die betreffende Regelzelle strömen kann; andererseits lässt sich der Druck in der Regelzelle dadurch senken, dass ein stromabwärts des Behälteranschlusses für dessen Entlüftung angeordnetes Entlüftungsventil geöffnet wird, so dass die in der Regelzelle befindliche komprimierte Luft in die Bootsatmosphäre entweichen kann. Diese Ventile werden gesteuert durch Signale, die von einer Baugruppe entsprechend dem Ausgangssignal des Reglerbausteins insbesondere für die Änderungsgeschwindigkeit der Druckdifferenz erzeugt werden. Dieser Baugruppe obliegt es somit, den Amplitudenwert des Reglerausgangssignals in potential- und leistungsmäßig den Ventilen angepasste Signale umzusetzen.The pressure in the control cell can be increased by opening a compressed air valve upstream of the container connection for filling it with a gaseous pressure medium, in particular compressed air, so that the pressure medium can flow from a reservoir pressure vessel into the relevant control cell; On the other hand, the pressure in the control cell can be by lowering a vent valve disposed downstream of the tank port for venting thereof, so that the compressed air in the control cell can escape into the boat atmosphere. These valves are controlled by signals which are generated by a module corresponding to the output signal of the controller module, in particular for the rate of change of the pressure difference. It is thus the task of this module to convert the amplitude value of the controller output signal into signals adapted in terms of potential and power to the valves.

Indem - wie die Erfindung weiterhin vorsieht - das Be- und das Entlüftungsventil kontinuierlich verstellbar ausgebildet ist, kann der Öffnungsquerschnitt der betreffenden Ventile kontinuierlich verändert werden, so dass eine schnelle Reaktion möglich ist, ohne dass hierbei eines oder beide Ventile vollständig umgeschalten werden müssten. Für eine Regelungsstruktur mit unterlagertem Regler für die Änderungsgeschwindigkeit der Druckdifferenz ist eine entsprechend kontinuierliche Verstellbarkeit der Ventile geradezu essentiell, da die Zeitkonstante der sich auf- oder abbauenden Luftströmung klein gegenüber der Betätigungszeit eines Ventils ist.By - as the invention further provides - the loading and the vent valve is continuously adjustable, the opening cross-section of the valves in question can be changed continuously, so that a quick response is possible without this one or both valves would have to be completely switched. For a control structure with a subordinate regulator for the rate of change of the pressure difference, a correspondingly continuous adjustability of the valves is absolutely essential, since the time constant of the air flow which builds up or breaks down is small compared to the actuation time of a valve.

Weitere Vorteile lassen sich erzielen durch Verwendung von Sensoren zur Erfassung der aktuellen Ventilstellungen des Be-und des Entlüftungsventils. Die Ausgangssignale dieser Sensoren geben Aufschluss darüber, ob die angesteuerten Ventile die gewünschte Stellung eingenommen haben, oder ob bspw. infolge von Parameterstreuungen, erhöhten Reibungskoeffizenten, etc. eine Abweichung gegenüber dem vorgegebenen Wert eingetreten ist.Further advantages can be achieved by using sensors for detecting the current valve positions of the loading and the vent valve. The output signals of these sensors provide information as to whether the actuated valves have assumed the desired position, or whether, for example due to parameter variations, increased friction coefficients, etc., a deviation from the predetermined value has occurred.

Die Verwendung von zwei getrennten Ventilen für die Be- und Entlüftung der betreffenden Regelzelle bietet gegenüber einem umschaltbaren Ventil den Vorteil, dass ein Überströmen der unter Wasser kostbaren Luft aus den Druckluftvorratsbehältern direkt in die Bootsatmosphäre vermieden werden kann. Dies gelingt jedoch nur dann, wenn sichergestellt ist, dass niemals gleichzeitig beide Ventile geöffnet sind. Diesem Zweck dient eine im Rahmen der Baugruppe zur Erzeugung von Ansteuersignalen für das Be- und das Entlüftungsventil vorgesehene Schaltung, welche die Ansteuersignale für ein Ventil mit dem Sensorsignal für die aktuelle Ventilstellung des jeweils anderen Ventils verriegelt. Diese Schaltung sorgt dafür, dass beim Umschalten des Strömungspfads von einem Ventil auf das andere erst das vollständige Schließen des bisher geöffneten Ventils abgewartet wird, bis sodann das andere Ventil einen Öffnungsbefehl erhält.The use of two separate valves for the ventilation of the respective control cell offers over a reversible valve the advantage that an overflow of precious water under the compressed air reservoirs can be avoided directly in the boat atmosphere. This succeeds however, only if it is ensured that both valves are never opened at the same time. This purpose is served in the context of the assembly for generating drive signals for the loading and the vent valve circuit provided which locks the control signals for a valve with the sensor signal for the current valve position of the other valve. This circuit ensures that when switching the flow path from one valve to the other, only the complete closing of the previously opened valve is awaited, until then the other valve receives an opening command.

Um durch die vielfältigsten Faktoren bedingte Abweichungen der tatsächlichen Ventilstellung gegenüber dem jeweils vorgegebenen Wert zu kompensieren, sollten im Rahmen der Ansteuerbaugruppe zur Erzeugung von Ansteuersignalen für das Be- und das Entlüftungsventil unterlagerte Regelkreise für die Ventilstellung des Be- und/oder des Entlüftungsventils vorgesehen sein. Durch eine geeignete Auslegung dieser unterlagerten Regelkreise kann sichergestellt werden, dass die tatsächliche Ventilstellung stets und in ausreichendem Umfang mit dem vorgegebenen Wert übereinstimmt, so dass der vorgeordnete Regelkreis eine idealisierte Funktion der Stellglieder voraussetzen darf. Dies ist auch insofern von Bedeutung, als hierdurch Alterungserscheinungen wie bspw. durch die aggressive Seeluft bedingte Korrosion im Bereich der Ventile, etc. aus der Regelstrecke eliminiert werden.In order to compensate for the variations of the actual valve position relative to the respective predetermined value due to the manifold factors, lower control loops for the valve position of the loading and / or the venting valve should be provided within the control module for generating control signals for the loading and venting valve. By a suitable design of these subordinate control loops, it can be ensured that the actual valve position always and to a sufficient extent coincides with the predetermined value, so that the upstream control loop may presuppose an idealized function of the actuators. This is also important insofar as aging phenomena such as, for example, corrosion caused by the aggressive sea air in the area of the valves, etc., are eliminated from the controlled system.

Die erste Komponente eines erfindungsgemäßen Regelkreises für die Ventilstellung des Be- und/oder Entlüftungsventils ist jeweils ein Baustein zur Subtraktion des Ausgangssignals des betreffenden Ventilstellungs-Sensors von dem als Sollwert für die Ventilstellung verwendeten, ggf. verriegelten Regelsignal insbesondere für die Änderungsgeschwindigkeit der Druckdifferenz, welcher an seinem Ausgang ein Signal für die Regelabweichung der Stellung des betreffenden Ventils liefert. Die Amplitude dieses Ausgangssignals enthält eine Information über den Abstand der aktuellen Ventilstellung gegenüber der gewünschten Ventilstellung kann damit zur Korrektur verwendet werden.The first component of a control circuit according to the invention for the valve position of the supply and / or vent valve is in each case a block for subtracting the output signal of the relevant valve position sensor from the setpoint used for the valve position, possibly locked control signal in particular for the rate of change of the pressure difference, which provides at its output a signal for the deviation of the position of the valve in question. The amplitude of this output signal contains information about the distance between the current valve position relative to the desired valve position can thus be used for correction.

Schließlich entspricht es der Lehre der Erfindung, dass das Regelabweichungs-Signal des unterlagerten Regelkreises für die Ventilstellung dem Eingang eines Reglerbausteins zugeführt ist, dessen Ausgangssignal insbesondere proportional zu seinem Eingangssignal, dessen Integral und/oder Differential ist. Auch hier sieht die Erfindung demnach einen kontinuierlich arbeitenden Regler vor, der mit einer ausreichenden Dynamik, jedoch ohne Überschwingen für eine Identität zwischen Ventilstellungssoll- und -istwert sorgt.Finally, it is the teaching of the invention that the control deviation signal of the subordinate control circuit for the valve position is supplied to the input of a controller module whose output signal is particularly proportional to its input signal whose integral and / or differential. Again, the invention thus provides a continuously operating controller, which provides with sufficient dynamics, but without overshoot for an identity between Ventilstellungssoll- and actual value.

Weitere Merkmale, Einzelheiten, Vorteile und Wirkungen auf der Basis der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung sowie anhand der Zeichnung. Hierbei zeigt:

FIG 1
einen Verrohrungsplan mit den für die Erfindung wichtigen Komponenten eines Unterwasserfahrzeugs; sowie
FIG 2
ein Blockschaltbild des erfindungsgemäßen Regelschaltkreises.
Further features, details, advantages and effects on the basis of the invention will become apparent from the following description of a preferred embodiment of the invention and from the drawing. Hereby shows:
FIG. 1
a piping plan with the components of an underwater vehicle important to the invention; such as
FIG. 2
a block diagram of the control circuit according to the invention.

Die Bootshülle 1 trennt den Innenraum 2 des Unterwasserfahrzeugs von den umgebenden Wassermassen 3.The boat hull 1 separates the interior 2 of the underwater vehicle from the surrounding masses of water 3.

Um das Unterwasserfahrzeug 1, 2 auf einer gewünschten Tauchtiefe in einem Schwebezustand zu stabilisieren, ist wenigstens eine Regelzelle 4 vorgesehen. Neben dieser dem groben Gewichtsausgleich des Unterwasserfahrzeugs 1, 2 dienenden Regelzelle 4 können auch weitere, insbesondere dem Feinabgleich dienende Tieflenzzellen, welche in der Zeichnung nicht dargestellt sind, vorhanden sein.In order to stabilize the underwater vehicle 1, 2 at a desired depth in a suspended state, at least one control cell 4 is provided. In addition to the rough weight compensation of the underwater vehicle 1, 2 serving control cell 4 also other, in particular the fine adjustment serving Tieflenzzellen, which are not shown in the drawing, may be present.

Die Regelzelle 4 hat ein Volumen von vielen hundert Litern, und sie ist über ein Rohr 5 mit einer Öffnung 6 in der Bootshülle 1 verbunden, so dass sie mit Wasser 7 gefüllt werden kann. Der Zufluss wird ermöglicht durch das Öffnen einer Klappe 8 in dem Rohr 5, und die durchströmende Wassermenge kann durch einen ebenfalls in dem Rohr 5 angeordneten Durchflussgeber 9 überwacht werden. Das Füllen der Regelzelle 4 mit Wasser 7 (Fluten) erhöht deren Gewicht und damit das Gewicht des Unterwasserfahrzeugs 1, 2, so dass einem erhöhten Auftrieb in größeren Tauchtiefen das Gleichgewicht gehalten werden kann. Andererseits kann zur Stabilisierung des Unterwasserfahrzeugs 1, 2 in niedrigeren Tauchtiefen die Regelzelle 4 entleert werden (Lenzen), um dadurch deren Gewicht und damit das Gewicht des Unterwasserfahrzeugs 1, 2 zu reduzieren.The control cell 4 has a volume of many hundreds of liters, and it is via a pipe 5 with an opening 6 in the boat hull 1, so that it can be filled with water 7. The inflow is made possible by the opening of a flap 8 in the tube 5, and the amount of water flowing through can be monitored by a also arranged in the tube 5 flow meter 9. The filling of the control cell 4 with water 7 (flooding) increases their weight and thus the weight of the underwater vehicle 1, 2, so that an increased buoyancy in larger depths of the balance can be maintained. On the other hand, to stabilize the underwater vehicle 1, 2 in lower depths the control cell 4 can be emptied (Lenzen), thereby reducing their weight and thus the weight of the underwater vehicle 1, 2.

Die gewünschte Massebewegung (Fluten oder Lenzen der Regelzelle 4) wird bei jeweils geöffneter Klappe 8 durch die Einstellung des Druckes in einem Luftpolster 10 bewirkt, welches sich oberhalb des Wasserpegels 11 in der Regelzelle 4 befindet. Hierzu ist in der Oberseite 12 der Regelzelle 4 ein Luftein- bzw. -auslass 13 vorgesehen, der über ein mit einem Ventil 14 verschließbares Entlüftungsrohr 15 mit einer in die Bootsatmosphäre 2 führenden Rohrmündung 16 verbunden ist. Durch Öffnen dieses Entlüftungsventils 14 kann die Luft 10 aus der Regelzelle 4 entweichen, so dass ein Druckausgleich mit dem Druck in der Bootsatmosphäre 2 bis herab zu dem dort herrschenden atmosphärischen Druck stattfinden kann. Wird nun die Klappe 8 geöffnet, so drückt der demgegenüber erhöhte, außenbordseitige Wasserdruck durch die Rohrverbindung 5 Wasser 7 in die Regelzelle 4, so dass diese geflutet wird.The desired mass movement (flooding or Lenzen the control cell 4) is effected at each open flap 8 by adjusting the pressure in an air cushion 10, which is located above the water level 11 in the control cell 4. For this purpose, an air inlet or outlet 13 is provided in the top 12 of the control cell 4, which is connected via a closable with a valve 14 vent pipe 15 with a leading into the boat atmosphere 2 pipe mouth 16. By opening this vent valve 14, the air 10 can escape from the control cell 4, so that a pressure equalization with the pressure in the boat atmosphere 2 can take place down to the prevailing atmospheric pressure there. If now the flap 8 is opened, then the contrast increased, outboard water pressure through the pipe connection 5 presses water 7 into the control cell 4, so that it is flooded.

Andererseits ist der Luftein- und -auslass 13 der Regelzelle 4 mit einem weiteren, durch ein Ventil 17 absperrbaren Rohr 18 verbunden, welches über einen Druckminderer 19 mit einem oder mehreren Druckluftvorratsbehältern 20 gekoppelt ist. Bei einem derartigen Vorratsbehälter 20 kann es sich bspw. um eine Gruppe von Druckluftflaschen handeln, welche in aufgetauchtem Zustand des Unterwasserfahrzeugs mittels eines Kompressors gefüllt werden können. Dadurch herrscht in dem Druckluft-Vorratsspeicher 20 je nach Füllungsgrad ein Druck von etwa 180 bis 250 bar, der durch den Druckminderer 19 auf einen Luftdruck von etwa 50 bar in dem Belüftungsrohr 18 herabgesetzt wird. Unter der Wirkung dieses Überdruckes strömt bei geöffnetem Belüftungsventil 17 Druckluft 20 in die Regelzelle 4 und erhöht den Druck in dem dortigen Luftpolster 10. Übersteigt dieser Druck den außenbordseitigen Wasserdruck 3, fließt bei geöffneter Klappe 8 das Wasser 7 aus der Regelzelle 4 ab (Lenzen).On the other hand, the air inlet and outlet 13 of the control cell 4 is connected to a further, closable by a valve 17 tube 18, which is coupled via a pressure reducer 19 with one or more compressed air storage tanks 20. Such a reservoir 20 may be, for example, a group of compressed air cylinders which, in the surfaced state of the underwater vehicle, are connected by means of a compressor can be filled. As a result, prevails in the compressed air storage reservoir 20 depending on the degree of filling a pressure of about 180 to 250 bar, which is reduced by the pressure reducer 19 to an air pressure of about 50 bar in the vent tube 18. Under the action of this overpressure, compressed air 20 flows into the control cell 4 when the venting valve 17 is open and increases the pressure in the air cushion 10 there. If this pressure exceeds the outboard water pressure 3, the water 7 flows out of the control cell 4 when the flap 8 is open (Lenzen) ,

Eine wichtige Randbedingung für die Betätigung der Ventile 14, 17 ist, dass niemals beide Ventile 14, 17 gleichzeitig geöffnet sein sollen, da solchenfalls die Druckluft 20 mit hoher Geschwindigkeit in die Bootsatmosphäre 2 entweichen würde und damit der Druckluftvorrat 20 sich schnell erschöpfen könnte.An important boundary condition for the actuation of the valves 14, 17 is that never both valves 14, 17 should be opened at the same time, since in such a case the compressed air 20 would escape at high speed into the boat atmosphere 2 and thus the compressed air reservoir 20 could quickly exhaust itself.

Zu beachten ist ferner, dass das Fluten der Regelzelle 4 in entlüftetem Zustand vermieden werden sollte, da solchenfalls das Wasser 7 mit sehr hoher Geschwindigkeit und damit auch mit hoher Geräuschentwicklung durch das Rohr 5 strömt.It should also be noted that the flooding of the control cell 4 should be avoided in a vented state, since in such case the water 7 flows through the tube 5 at a very high speed and thus also with high noise.

Schließlich ist auch zu beachten, dass die Klappe 8, welche in dem Rohr 5 "von und nach Regelzelle" angeordnet ist, ein vergleichsweise träges Gebilde darstellt, welches zum vollständigen Schließen bzw. Öffnen mehrere Sekunden (bspw. 10 Sekunden) benötigt, während der noch große Wassermengen 7 in die oder aus der Regelzelle 4 strömen können, so dass insbesondere der Schließvorgang der Klappe 8 bereits zu einem Zeitpunkt eingeleitet werden muss, zu dem der Füllstand 11 in der Regelzelle 4 noch nicht dem gewünschten Wert entspricht. Der zeitliche Versatz, um den der Schließbefehl vorgezogen werden muss, ist zwar weitgehend konstant, jedoch hängt die Menge des während dieser Schließphase noch durchströmenden Wassers 7 insbesondere auch von der Druckdifferenz zwischen dem Innendruck der Regelzelle 4 und dem außenbordseitigen Wasserdruck 3 ab. Je größer diese Druckdifferenz ist, um so größer wird die Strömungsgeschwindigkeit in dem Rohr 5 sein und demzufolge wird auch die noch durchströmende Wassermenge 7 variieren. Aufgrund einer Vielzahl von Faktoren kann die Rest-Durchflussmenge 9 nicht ohne großen mathematischen Aufwand berechnet werden, und dennoch ist keine Gewähr dafür gegeben, dass nicht trotzdem noch erhebliche Abweichungen auftreten.Finally, it should also be noted that the flap 8, which is arranged in the tube 5 "from and to the control cell", represents a comparatively sluggish structure which requires several seconds (for example 10 seconds) to close completely or open, during the even large amounts of water 7 can flow into or out of the control cell 4, so that in particular the closing operation of the flap 8 already has to be initiated at a time to which the level 11 in the control cell 4 does not yet correspond to the desired value. The time offset by which the closing command must be preferred is largely constant, but the amount of water 7 still flowing through during this closing phase also depends in particular on the pressure difference between the internal pressure of the control cell 4 and the outboard side 3 water pressure. The greater this pressure difference, the greater will be the flow velocity in the tube 5 and, consequently, the still flowing amount of water 7 will vary. Due to a variety of factors, the residual flow rate 9 can not be calculated without great mathematical effort, and yet there is no guarantee that not still significant deviations occur.

Da die Druckdifferenz zwischen der Regelzelle 4 und dem außerbordseitigen Wasserdruck 3 von entscheidender Bedeutung für die Rest-Durchflussmenge 9 beim Schließen der Klappe 8 ist, sieht die Erfindung vor, diese Druckdifferenz im Rahmen einer Regelung möglichst konstant zu halten, damit für den Rest-Durchfluss 9 beim Schließen der Klappe 8 ein experimentell ermittelter Wert verwendet werden kann, der auch in eine Füllstandsabweichung umgerechnet werden kann, bei welcher sodann der Schließvorgang der Klappe 8 einzuleiten ist.Since the pressure difference between the control cell 4 and the outboard water pressure 3 is of crucial importance for the residual flow rate 9 when closing the flap 8, the invention provides to keep this pressure difference within a control as constant as possible, so for the residual flow 9 when closing the flap 8, an experimentally determined value can be used, which can also be converted into a level deviation, in which then the closing operation of the flap 8 is to be initiated.

Um die Druckdifferenz zwischen der Regelzelle 4 und dem außerbordseitigen Wasserdruck 3 einregeln zu können, ist ein Differenzdrucksensor 21 vorgesehen, der zu diesem Zweck über Rohrverbindungen 22, 23 mit der Regelzelle 4 einerseits und einer Öffnung 24 in der Bootshülle 1 andererseits kommuniziert und dadurch von zwei Seiten mit den unterschiedlichen Druckpegeln 3, 4 beaufschlagt wird. Natürlich kann das Rohr 23 anstelle mit der Bootshülle 1 auch mit dem Mündungsbereich 6 des Rohrs 5 verbunden sein.In order to adjust the pressure difference between the control cell 4 and the outboard water pressure 3, a differential pressure sensor 21 is provided which communicates for this purpose via pipe connections 22, 23 with the control cell 4 on the one hand and an opening 24 in the boat hull 1 on the other hand and thereby of two Pages with the different pressure levels 3, 4 is applied. Of course, the tube 23 may be connected to the mouth portion 6 of the tube 5 instead of the boat hull 1.

Aufgabe der Regelung ist es, in Abhängigkeit von der gemessenen Druckdifferenz 21 durch Betätigung der Be- und Entlüftungsventile 17, 14 den Druck des Luftpolsters 10 in der Regelzelle 4 dem außenbordseitigen Wasserdruck 3 derart nachzuführen, dass die Druckdifferenz 21 stets einem vorgegebenen Sollwert 25 entspricht. Gelingt dies, so ist die Rest-Durchflussmenge 9 durch das Rohr 5 beim Schließen der Klappe 8 unabhängig von dem Füllstand 11 in der Regelzelle 4 konstant, und bei Verwendung eines experimentell bestimmten Vorhaltewertes für das Einleiten des Schließvorgangs der Klappe 8 kann mit guter Näherung erreicht werden, dass der endgültig sich einstellende Regelzellenfüllstand 11 ziemlich exakt dem gewünschten Füllstand entspricht. Somit bereitet es keine Schwierigkeiten, das Gewicht des Unterwasserfahrzeugs 1, 2 in definiertem Umfang zu verstellen und dadurch eine Stabilisierung in unterschiedlichen Tauchtiefen herbeizuführen.The task of the control is, depending on the measured pressure difference 21 by actuation of the ventilation valves 17, 14, the pressure of the air cushion 10 in the control cell 4 the outboard water pressure 3 nachzuführen so that the pressure difference 21 always corresponds to a predetermined setpoint 25. If this succeeds, the residual flow rate 9 through the tube 5 when closing the flap 8 is independent of the level 11 in the control cell 4 constant, and when using an experimentally determined Vorhaltewertes for initiating the closing of the flap 8 can be achieved with good approximation that the final adjusting control cell level 11 corresponds fairly accurately to the desired level. Thus, there is no difficulty to adjust the weight of the underwater vehicle 1, 2 in a defined extent and thereby bring about stabilization at different depths.

Die Struktur des erfindungsgemäßen Regelkreises 26 für die Druckdifferenz zwischen der Regelzelle 4 und dem außerbordseitigem Wasserdruck 3 ist in FIG 2 wiedergegeben.The structure of the control circuit 26 according to the invention for the pressure difference between the control cell 4 and the outboard water pressure 3 is shown in FIG FIG. 2 played.

Man erkennt einen Sollwertgeber 25, der entweder manuell oder fest eingestellt sein kann oder bspw. von dem Ausgangssignal eines übergeordneten Regelkreises für die Durchflussgeschwindigkeit oder -menge 9 in dem Rohr 5 von und nach der Regelzelle 4 abgegriffen werden kann.It can be seen a setpoint generator 25, which can either be set manually or fixed or, for example. From the output signal of a higher-level control loop for the flow rate or volume 9 in the tube 5 from and to the control cell 4 can be tapped.

Von diesem Sollwertsignal 25 wird der von dem Differenzdruckgeber 21 gelieferte Istwert subtrahiert 27, um ein zu der aktuellen Regelabweichung proportionales Signal 28 zu erzeugen. Sofern es einem nachgeschalteten Regler 29 gelingt, dieses Regelabweichungssignal 28 auf null auszuregeln, sind optimale Voraussetzungen für ein definiertes Betätigen der Klappe 8 von und nach der Regelzelle 4 geschaffen.From this setpoint signal 25, the actual value delivered by the differential pressure transducer 21 is subtracted 27 in order to generate a signal 28 proportional to the current control deviation. If a downstream controller 29 succeeds in correcting this control deviation signal 28 to zero, optimum conditions for a defined actuation of the flap 8 from and to the control cell 4 are created.

Im Rahmen des Regelbausteins 29 können unterschiedliche Strukturen Verwendung finden, vorzugsweise wird hier jedoch ein Regler mit Proportional- und Integralanteil eingesetzt, da ein solcher bei ausreichender Dynamik in der Lage ist, eine Regelabweichung dauerhaft auf null auszuregeln. Auf einen Differentialanteil kann an dieser Stelle evtl. verzichtet werden, um die Regelung so weit als möglich zu beruhigen. Stattdessen kann dem Ausgangssignal 30 des Reglers 29 das Signal eines Vorsteuerungsblockes 31 additiv überlagert 32 werden, wodurch bspw. die Dynamik bei Änderungen des Sollwertes 25 verbessert wird. Zu diesem Zweck kann die Vorsteuerung 31 bspw. als differenzierender Baustein ausgebildet sein.In the context of the control module 29 different structures can be used, but preferably a controller with proportional and integral component is used here, since such a sufficient dynamics is capable of a control deviation permanently to zero. It may be possible to dispense with a differential component at this point in order to calm the control as far as possible. Instead, the output signal 30 of the controller 29, the signal of a feedforward block 31 are superposed additively 32, whereby, for example, the dynamics of changes in the setpoint 25 is improved. For this purpose, the feedforward control 31 may, for example, be designed as a differentiating component.

Ferner kann das solchermaßen dynamisierte Regelsignal 33 in weiteren, nachgeschalteten Baugruppen modifiziert und dadurch an die aktuellen Randbedingungen angepasst werden.Furthermore, the thus dynamized control signal 33 can be modified in further, downstream modules and thereby adapted to the current boundary conditions.

Hierbei besteht die Möglichkeit im Rahmen eines ersten Modifikationsbausteins 34 eine Verknüpfung mit dem Ausgangssignal 35 eines Sensors 36 für den Füllstand 11 in der Regelzelle 4 vorzunehmen. Damit kann die Tatsache berücksichtigt werden, dass mit steigendem Füllstand 11 das Volumen des Luftpolsters 10 abnimmt und daher bereits geringere, zu- oder abströmende Luftmengen zu jeweils verstärkten Druckänderungen in der Regelzelle 4 beitragen. Hier lässt sich eine Korrektur erreichen, indem durch Subtraktion des aktuell gemessenen Füllstandes 36 von dem maximalen Füllungszustand der Regelzelle 4 das Volumen des Luftpolsters 10 berechnet wird und sodann dieser Wert bspw. multiplikativ mit dem Regelsignal 33 verknüpft wird, damit bei großem Luftpolster 10 mit einem entsprechend großen Regelsignal 37 eine entsprechend weite Aussteuerung der Ventile 14, 17 bewirkt wird, während bei hohem Füllstand 36 die Ventilaussteuerung entsprechend zurückgenommen wird.In this context, it is possible within the scope of a first modification module 34 to link with the output signal 35 of a sensor 36 for the filling level 11 in the control cell 4. Thus, the fact can be taken into account that with increasing level 11, the volume of the air cushion 10 decreases and therefore already contribute smaller, inflowing or outflowing amounts of air to each increased pressure changes in the control cell 4. Here, a correction can be achieved by the volume of the air cushion 10 is calculated by subtracting the currently measured level 36 of the maximum filling state of the control cell 4 and then this value, for example. Multiplicatively linked to the control signal 33, so with large air cushion 10 with a correspondingly large control signal 37, a correspondingly wide modulation of the valves 14, 17 is effected, while at high level 36, the valve control is withdrawn accordingly.

Ein zweiter, vorzugsweise in Reihe geschalteter Modifikationsbaustein 38 erhält neben dem füllstandkorrigierten Regelsignal 27 das Ausgangssignal 39 eines Sensors 40 für den außenbordseitigen Wasserdruck 3. Mit dieser Information kann der Modifikationsbaustein 38 etwa die aktuelle Tauchtiefe des Unterwasserfahrzeugs 1, 2 abschätzen. Seine vorwiegende Aufgabe liegt darin, bei niedrigen Tauchtiefen eine Abschwächung des Regelsignals 41 zu bewirken, damit trotz des in diesem Bereich stark spürbaren Einflusses des Wellenganges die Regelung nicht ins Schwingen gerät.A second, preferably connected in series modification module 38 receives in addition to the level-corrected control signal 27, the output signal 39 of a sensor 40 for the outboard water pressure 3. With this information, the modification module 38 can estimate about the current depth of the underwater vehicle 1, 2. Its predominant task is to effect a weakening of the control signal 41 at low depths, so that the regulation does not start to oscillate despite the influence of the swell, which is very noticeable in this area.

Ein weitere Modifikationsbaustein 42 ist mit dem tauchtiefenkorrigierten Regelsignal 41 einerseits und mit einem Sollwertgeber 43, an welchem die aktuelle Geräuschanforderung einstellbar ist, andererseits gekoppelt. Gemäß der hier vorwählbaren Geräuschreduzierung kann das Regelsignal 44 zusätzlich begrenzt werden, damit die Ventile 14, 17 nur in beschränktem Umfang geöffnet werden und somit nur ein minimales Geräusch erzeugen.Another modification module 42 is coupled with the diving depth-corrected control signal 41 on the one hand and with a desired value generator 43, to which the current noise requirement is adjustable, on the other hand. According to the herein preselectable noise reduction, the control signal 44 can be additionally limited so that the valves 14, 17 are opened only to a limited extent and thus produce only a minimal noise.

Gemäß der Lehre der Erfindung wird das solchermaßen modifizierte Regelsignal 44 jedoch nicht zum Ansteuern der Ventile 14, 17 direkt verwendet, sondern vielmehr als Sollwert für eine Regelung der Änderungsgeschwindigkeit der Druckdifferenz 21. Um hier einen aktuellen Vergleichswert zu erhalten, wird von der gemessenen Druckdifferenz 21 in einem nachgeschalteten Baustein 45 eine Differentialfunktion gebildet, um auf diesem Weg ein Istwertsignal 46 für die Änderungsgeschwindigkeit der Druckdifferenz 21 zu erhalten. Dieser Istwert 46 wird von einem Subtraktionsbaustein 47 von dem als Sollwert verwendeten, modifizierten Regelsignal 44 subtrahiert, um ein Signal 48 für die Regelabweichung zur Verfügung zu stellen.According to the teachings of the invention, however, the thus modified control signal 44 is not used directly to drive the valves 14, 17, but rather as a setpoint for controlling the rate of change of the pressure difference 21. To obtain a current comparison value here, is of the measured pressure difference 21st formed in a downstream block 45, a differential function to receive in this way an actual value signal 46 for the rate of change of the pressure difference 21. This actual value 46 is subtracted by a subtraction module 47 from the modified control signal 44 used as a setpoint in order to provide a signal 48 for the system deviation.

Alternativ oder kumulativ zu der Einschleifung des Ausgangssignals 49 der Vorsteuerbaugruppe 31 an dem Ausgang 30 des Reglers 29 kann dieses auch dem Regelabweichungssignal 48 additiv hinzugefügt werden, vorzugsweise an einem zu dem Sollwertsignal 44 parallelen Eingang des Subtraktionsbausteins 47.Alternatively or cumulatively to the looping-in of the output signal 49 of the pilot control module 31 at the output 30 of the controller 29, this can also be additively added to the system deviation signal 48, preferably at an input of the subtraction module 47 parallel to the setpoint signal 44.

Das solchermaßen ggf. dynamisierte Regelabweichungssignal 48 wird dem Eingang 50 eines unterlagerten Reglers 51 mitgeteilt, welchem es obliegt, durch Erzeugung eines geeigneten Regelsignals 52 derart auf die Regelstrecke 4 einzuwirken, dass der Istwert 46 für die Änderungsgeschwindigkeit der Druckdifferenz 21 im stationären Zustand möglichst exakt mit dem Sollwertsignal 44 übereinstimmt. Auch der Regler 51 des unterlagerten Regelkreises für die Änderungsgeschwindigkeit 46 der Druckdifferenz 21 kann mit einem Proportional- und Integral- sowie ggf. auch einem Differential-Anteil aufgebaut sein, jedoch kann letzterer zur Beruhigung des Regelkreisverhaltens auch weggelassen werden.The thus possibly dynamized control deviation signal 48 is communicated to the input 50 of a subordinate regulator 51, which is responsible for acting on the controlled system 4 by generating a suitable control signal 52 such that the actual value 46 for the rate of change of the pressure difference 21 in the stationary state is as accurate as possible the setpoint signal 44 matches. Also, the controller 51 of the subordinate speed change control loop 46 of the pressure difference 21 may be constructed with a proportional and integral and possibly also a differential component, but the latter can also be omitted for reassurance of the control loop behavior.

Dem Regler 51 nachgeschaltet ist eine Ansteuerbaugruppe 53, deren Aufgabe es ist, das Regelsignal 52 des unterlagerten Reglers 51 in Ansteuersignale 54, 55 für die Stelleinrichtungen 56, 57 der Luftsteuerventile 14, 17 umzusetzen.Connected downstream of the controller 51 is a control assembly 53 whose task is to convert the control signal 52 of the subordinate regulator 51 into activation signals 54, 55 for the adjusting devices 56, 57 of the air control valves 14, 17.

Hierbei muss wie bereits erwähnt darauf geachtet werden, dass die beiden Ventile 14, 17 niemals gleichzeitig geöffnet sind, da ansonsten die Druckluft 20 ungenutzt in die Bootsatmosphäre 2 entweichen würde. Zu diesem Zweck ist jedem der beiden Ventile 14, 17 ein Ventilstellungssensor zugeordnet, deren Ausgangssignale 58, 59 zu der Ansteuerbaugruppe 53 zurückgeführt sind. Dort können sie von einer Verriegelungsbaugruppe 60 dazu verwendet werden, einen von dem Reglerausgangssignal 52 abgeleiteten Ventilöffnungssollwert 61, 62 erst dann frei zugeben, wenn das jeweils andere Ventil 14, 17 vorher nachweislich des betreffenden Rückmeldesignals 58, 59 definitiv geschlossen worden ist.Here, as already mentioned, care must be taken that the two valves 14, 17 are never opened at the same time, since otherwise the compressed air 20 would escape unused into the boat atmosphere 2. For this purpose, a valve position sensor is assigned to each of the two valves 14, 17 whose output signals 58, 59 are fed back to the control module 53. There, they may be used by a latch assembly 60 to release a valve opening set point 61, 62 derived from the controller output signal 52 only when the respective other valve 14, 17 has been definitively closed before the relevant feedback signal 58, 59.

Des Weiteren wird der solchermaßen erzeugte Ventilöffnungssollwert 61, 62 nicht direkt auf die Stelleinrichtung 56, 57 des betreffenden Ventils 14, 17 geschalten, sondern als Sollwert einem Ventilstellungsregler 63, 64, zugeleitet, der darüber hinaus auch das Rückmeldesignal 58, 59 des betreffenden Ventilstellungssensors erhält. Hieraus kann der Ventilsstellungsregler 63, 64 die Abweichung der aktuellen Ventilstellung 58, 59 gegenüber dem von der Verriegelungsbaugruppe 60 stammenden Ventilöffnungssollwert 61, 62 bestimmen und nach einer festgelegten Regelfunktion entsprechende Ansteuersignale 54, 55 für die Stelleinrichtung 56, 57 des betreffenden Ventils 14, 17 erzeugen. Dadurch ist es möglich, stets den gewünschten Ventilstellungswert einhalten zu können, unabhängig davon, ob die Ventile durch Alterung, Korrosion oder sonstige Einflüsse abweichende Eigenschaften zeigen. Sofern die unterlagerten Ventilstellungsregler 63, 64 neben einem Proportionalanteil auch einen Integralanteil erhalten, ist sichergestellt, dass im stationären Zustand die tatsächlichen Ventilstellungen 58, 59 mit den vorgegebenen Stellungssollwerten 61, 62 übereinstimmen, so dass der übergeordnete Regler 51 für die Änderungsgeschwindigkeit der Druckdifferenz 21 davon ausgehen kann, dass sein Reglerausgangssignal 52 den Luftsteuerventilen 14, 17 eingeprägt wird. Alterungserscheinungen der Ventile oder sonstiger Einrichtungen werden daher ausgeschlossen, und der erfindungsgemäße Regelkreis 26 arbeitet über viele Jahre hinweg äußerst zuverlässig.Furthermore, the valve opening setpoint value 61, 62 generated in this way is not switched directly to the adjusting device 56, 57 of the relevant valve 14, 17, but as a setpoint to a valve position controller 63, 64, which also receives the feedback signal 58, 59 of the relevant valve position sensor , From this, the valve position regulator 63, 64 can determine the deviation of the current valve position 58, 59 from the valve opening setpoint 61, 62 originating from the lock assembly 60 and generate corresponding control signals 54, 55 for the actuating device 56, 57 of the relevant valve 14, 17 in accordance with a defined control function , This makes it possible to always maintain the desired valve position value, regardless of whether the valves due to aging, corrosion or other influences show different characteristics. If the subordinate valve position controllers 63, 64 also receive an integral component in addition to a proportional component, it is ensured that the actual valve positions 58, 59 coincide with the predetermined position reference values 61, 62 in the stationary state, so that the higher-level controller 51 determines the rate of change of the pressure difference 21 thereof can assume that its regulator output signal 52 the air control valves 14, 17 is impressed. Aging phenomena of the valves or other devices are therefore excluded, and the control circuit 26 of the invention operates over many years of extremely reliable.

Für die verschiedenen Baugruppen der Regelung 26 können diskrete, analog arbeitende Elektronikbausteine verwendet werden, daneben ist jedoch auch eine Implementierung einer, mehrerer oder aller Signalverarbeitungsbaugruppen als Rechenprogramm in einer Datenverarbeitungsanlage möglich. Solchenfalls können die zumeist analogen Signale der Sensoren 21, 36, 40, 58, 59 wie auch die bspw. mittels Potentiometer vorgegebenen Sollwerte 25, 43 über Analog-Digital-Wandler digitalisiert und sodann bitweise eingelesen werden. Die Ausgangssignale bspw. der Ventilstellungsregler 63, 64 können sodann mit Hilfe von Digital-Analog-Wandlern in entsprechende Spannungspegel umgesetzt werden, welche sodann mittels nachgeschalteter Verstärker leistungsmäßig den Stelleinrichtungen 56, 57 angepasst werden.For the various modules of the controller 26 discrete, analog operating electronic modules can be used, but also an implementation of one, several or all signal processing modules as a computer program in a data processing system is possible. In this case, the mostly analog signals of the sensors 21, 36, 40, 58, 59 as well as the desired values 25, 43 predetermined by means of potentiometers, for example, can be digitized via analog-to-digital converters and then read in bitwise. The output signals, for example, the valve position controller 63, 64 can then be converted by means of digital-to-analog converters into corresponding voltage levels, which are then adjusted by means of downstream amplifier performance of the adjusting devices 56, 57.

Claims (42)

  1. Method for operating an underwater vehicle (1, 2), characterized in that the pressure difference (21) between, on the one hand, the pressure in a container (4) that can be filled with water (7) and/or a gas, in particular air (10), for the purpose of varying the vehicle weight and, on the other hand, the outboard water pressure (3) is regulated (26) to a prescribable setpoint (25).
  2. Method according to Claim 1, characterized in that the actual value of the pressure difference (21) between, on the one hand, the pressure in a container (4) that can be filled with water (7) and/or a gas, in particular air (10), for the purpose of varying the vehicle weight and, on the other hand, the outboard water pressure (3) is measured.
  3. Method according to Claim 1 or 2, characterized in that the measured actual value (21) of the pressure difference is subtracted (27) from the prescribed setpoint (25) in order to obtain a measure (28) of the system deviation.
  4. Method according to one of Claims 1 to 3, characterized in that, in the course of the regulation (26) for the pressure difference (21), a function proportional to the system deviation (28), its integral and/or differential is formed (29) as regulating signal (30).
  5. Method according to one of the preceding claims, characterized in that, in order to improve the dynamics in the event of setpoint changes (25), the regulating signal (30) is combined additively (32) with a signal (49), derived from the setpoint (25) in particular by differentiation (31), to form a dynamized regulating signal (33).
  6. Method according to one of the preceding claims, characterized in that the, if appropriate dynamized, regulating signal (30; 33) is influenced by one or more signals (35; 39; 43).
  7. Method according to one of the preceding claims, characterized in that the, if appropriate dynamized, regulating signal (30; 33) is modified (34) by a filling level measured value (35, 36) for the container (4) that can be filled for the purpose of varying the vehicle weight, in order to obtain a regulating signal (37) corrected for filling level.
  8. Method according to one of the preceding claims, characterized in that the regulating signal (30; 33; 37), if appropriate dynamized and/or corrected for filling level, is modified (38) by a pressure signal (39, 40) for the outboard pressure (3), in order to obtain a regulating signal (41) corrected for diving depth.
  9. Method according to one of the preceding claims, characterized in that the regulating signal (30; 33; 37; 41), if appropriate dynamized, corrected for filling and/or corrected for diving level, is bounded (42) in order to correspond to further setpoints (43), in particular with regard to the noise requirement.
  10. Method according to one of the preceding claims, characterized in that the pressure difference regulating signal (30; 33; 37; 41; 44), if appropriate dynamized, corrected for filling level, corrected for diving depth, and/or bounded, is used as setpoint for a lower-level regulation (51) for the rate of change (46) of the pressure difference (21).
  11. Method according to one of the preceding claims, characterized in that the rate of change (46) of the pressure difference actual value (21) is calculated by differentiation (45) from the measured actual value (21) of the pressure difference between, on the one hand, the pressure in the relevant container (4) and, on the other hand, the outboard water pressure (3).
  12. Method according to one of the preceding claims, characterized in that, in order to obtain a measure (48) of the system deviation of the lower-level regulation (51) for the rate of change (46) of the pressure difference (21), the rate of change (46) of the pressure difference actual value (21) is subtracted from the regulating signal (44), used as setpoint signal and modified, if appropriate, of the higher-level regulation (29) for the pressure difference (21) between, on the one hand, the pressure in a container (4) that can be filled for the purpose of varying the vehicle weight, and, on the other hand, the outboard water pressure (3).
  13. Method according to one of the preceding claims, characterized in that, in order to improve the dynamics in the event of setpoint changes (25), the system deviation (48) of the lower-level regulation (51) for the rate of change (46) of the pressure difference (21) is combined additively (47) with a signal (49) derived from the pressure difference setpoint (25), in particular by differentiation (21), to form a dynamized system deviation signal (48).
  14. Method according to one of the preceding claims, characterized in that, in the course of the lower-level regulation (51) for the rate of change (46) in the pressure difference (21), a function proportional to the possibly dynamized system deviation (48), its integral and/or differential is formed (51) as regulating signal (52) for the rate of change in the pressure difference.
  15. Method according to one of the preceding claims, characterized in that the regulating signal (52), in particular for the rate of change in the pressure difference is used to derive (53) drive signals (54, 55) on the one hand for a ventilation valve (17) arranged upstream of the container connection (13) for a gaseous pressure medium (20), and on the other hand for a bleed valve (14) arranged downstream of the container connection for the pressure medium (10).
  16. Method according to one of the preceding claims, characterized in that the drive signals (54, 55) for the valves (14, 17) effect a continuous adjustment (56, 57) of the same.
  17. Method according to one of the preceding claims, characterized in that the current valve positions are detected (58, 59).
  18. Method according to one of the preceding claims, characterized in that the drive signals (54, 55) for the valves (14, 17) are interlocked (60) with the current valve position (59, 58) of the respective other valve (17, 14).
  19. Method according to one of the preceding claims, characterized in that the drive signals (54, 55) for the valves (14, 17) are obtained from the regulating signal (52), if appropriate modified by interlocking (60), in particular for the rate of change in the pressure difference by one lower-level valve position regulation (63, 64) each.
  20. Method according to one of the preceding claims, characterized in that, in the course of a valve position regulation (63, 64), the detected valve position value (58, 59) is subtracted from the regulating signal used as setpoint (61, 62) and modified by interlocking, if appropriate, in particular for the rate of change in the pressure difference, in order to obtain a measure of the system deviation.
  21. Method according to one of the preceding claims, characterized in that, in the course of the valve position regulation (63, 64), a function proportional to the system deviation of the valve position (58, 59), its integral and/or differential is formed as drive signal (54, 55) for the relevant valve (14, 17).
  22. Apparatus for carrying out the method according to one of the preceding claims, characterized by a circuit (26) which regulates the pressure difference (21) between, on the one hand, the pressure in a container (4) that can be filled with water (7) and/or a gas, in particular air (10), for the purpose of varying the vehicle weight and, on the other hand, the outboard water pressure (3) to a prescribable setpoint (25).
  23. Apparatus according to Claim 22, characterized by a sensor (21) for the pressure difference between, on the one hand, the pressure in a container (4) that can be filled with water (7) and/or a gas, in particular air (10), for the purpose of varying the vehicle weight, and, on the other hand, the outboard water pressure (3).
  24. Apparatus according to Claim 23, characterized by a device (27) for subtracting the output signal of a sensor (21) for the pressure difference between the container internal pressure (4) and the outboard water pressure (3) from a prescribable setpoint signal (25).
  25. Apparatus according to Claim 24, characterized in that the output signal (28) of the subtraction device (27) for the setpoint and actual value (25, 21) of the pressure difference is fed to the input of a controller module (29) whose output signal (30) is proportional to its input signal (28), the integral and/or differential thereof.
  26. Apparatus according to Claim 25, characterized in that a signal (49) derived from the pressure difference setpoint (25), in particular by differentiation (31), is added in an addition device (32) to the output signal (30) of the pressure difference controller module (29) in order to obtain a dynamized regulating signal (33).
  27. Apparatus according to one of Claims 22 to 26, characterized by at least one module (34, 38, 42), connected downstream of the controller module (29) or the addition device (32) connected to the latter on the output side (30) thereof, for modifying the regulating signal (30; 33) with the aid of one or more signals (35, 39, 43).
  28. Apparatus according to Claim 27, characterized by a sensor (36) for the filling level (11) in the container (4), whose output signal (35) is fed to a module (34) for the, if appropriate further, modification of the regulating signal (30; 33).
  29. Apparatus according to one of Claims 27 or 28, characterized by a sensor (40) for the outboard water pressure (3), whose output signal (39) is fed to a module (38) for the, if appropriate further, modification of the regulating signal (30; 33; 37).
  30. Apparatus according to one of Claims 27 to 29, characterized by a prescribed or prescribable setpoint signal (43) with regard to the noise requirement, that is fed to a module (42) for bounding the, if appropriate modified, regulating signal (30; 33; 37; 41).
  31. Apparatus according to one of Claims 22 to 30, characterized in that the, if appropriate modified (34, 38, 42), output signal (30; 33; 37 41; 44) of the pressure difference controller module (29) is fed to the setpoint input valve a lower-level circuit for regulating (51) the rate of change in the pressure difference.
  32. Apparatus according to Claim 31, characterized in that the output signal of the sensor (21) for the pressure difference between, on the one hand, the pressure in a container (4) that can be filled with water (7) and/or a gas, in particular air (10), for the purpose of varying the vehicle weight and, on the other hand, the outboard water pressure (3) is fed to a module (45) that calculates the differential (46) therefrom.
  33. Apparatus according to Claim 32, characterized by a device (47) for subtracting the output signal (46) of the module (45) for determining the differential of the pressure difference actual value (21) from the, if appropriate modified, output signal (30; 33; 37; 41; 44) of the pressure difference controller module (29), in order to obtain a signal (48) for the system deviation in the lower-level regulating circuit (51) for the rate of change in the pressure difference.
  34. Apparatus according to Claim 33, characterized in that a signal (49) derived from the pressure difference setpoint signal (25), in particular by differentiation (31), is added in an addition device (47) to the signal (48) for the system deviation in the lower-level regulating circuit (51) for the rate of change in the pressure difference, in order to obtain a dynamized system deviation signal (48) of the lower-level regulating circuit (51) for the rate of change in the pressure difference.
  35. Apparatus according to one of Claims 33 or 34, characterized in that the, if appropriate dynamized, system deviation signal (48) of the lower-level regulating circuit (51) for the rate of change in the pressure difference is fed to the input of a controller module (51) whose output signal (52) is proportional to its input signal (50), the integral and/or differential thereof.
  36. Apparatus according to one of Claims 22 to 35, characterized in that a ventilation valve (17) is provided upstream of the container connection (13) for filling the same with a gaseous pressure medium, in particular compressed air (20), and a bleed valve (14) is provided downstream of the container connection (13) for bleeding the latter, and in that the output signal (52) of the controller module (51) in particular for the rate of change in the pressure difference is fed to an assembly (53) for generating drive signals (54, 55) for the ventilation and the bleed valves (14, 17).
  37. Apparatus according to Claim 36, characterized in that the ventilation and the bleed valves (17, 14) are continuously adjustable valves.
  38. Apparatus according to Claim 37, characterized by sensors for detecting the current positions (58, 59) of the ventilation and the bleed valves (17, 14).
  39. Apparatus according to Claim 38, characterized in that provided within the scope of the assembly (53) for generating drive signals (54, 55) for the ventilation and the bleed valves (17, 14) is a circuit (60) that interlocks the drive signals (61, 62) for a valve (14, 17) with the sensor signal (59, 58) for the current valve position of the respective other valve (17, 14).
  40. Apparatus according to one of Claims 38 to 39, characterized in that, within the scope of the assembly (53) lower-level regulating circuits (63, 64) for the valve position of the ventilation and/or the bleed valves (17, 14) are provided for generating drive signals (54, 55) for the ventilation and the bleed valves (17, 14).
  41. Apparatus according to Claim 40, characterized by a module for subtracting the output signal (58, 59) of the relevant valve position sensor from the, if appropriate interlocked (60), regulating signal (61, 62) in particular for the rate of change in the pressure difference, in order to obtain a signal for the system deviation of the position of the relevant valve (14, 17).
  42. Apparatus according to Claim 41, characterized in that the system deviation signal of the lower-level regulating circuit (63, 64) for the valve position (56, 57) is fed to the input of a controller module whose output signal (54, 55) is, in particular, proportional to its input signal, the integral and/or differential thereof.
EP01927612A 2000-04-07 2001-03-26 Method and device for operating an underwater vehicle Expired - Lifetime EP1268269B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10017376 2000-04-07
DE10017376A DE10017376A1 (en) 2000-04-07 2000-04-07 Method and device for operating an underwater vehicle
PCT/DE2001/001163 WO2001076937A1 (en) 2000-04-07 2001-03-26 Method and device for operating an underwater vehicle

Publications (2)

Publication Number Publication Date
EP1268269A1 EP1268269A1 (en) 2003-01-02
EP1268269B1 true EP1268269B1 (en) 2009-09-30

Family

ID=7637957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01927612A Expired - Lifetime EP1268269B1 (en) 2000-04-07 2001-03-26 Method and device for operating an underwater vehicle

Country Status (9)

Country Link
US (1) US7036450B2 (en)
EP (1) EP1268269B1 (en)
KR (1) KR100842951B1 (en)
AR (1) AR028318A1 (en)
AT (1) ATE444227T1 (en)
DE (2) DE10017376A1 (en)
ES (1) ES2332035T3 (en)
WO (1) WO2001076937A1 (en)
ZA (1) ZA200208775B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047677A1 (en) * 2010-10-06 2012-04-12 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Device for pressing a buoyancy tank

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017376A1 (en) 2000-04-07 2001-10-11 Siemens Ag Method and device for operating an underwater vehicle
US6851381B1 (en) * 2003-03-25 2005-02-08 The United States Of America As Represented By The Secretary Of The Navy Airborne mine neutralization system, neutralizer pressure relief valve
DE102004048311B4 (en) * 2004-10-05 2008-08-21 Howaldtswerke-Deutsche Werft Gmbh Blower for a submarine
DE102006025803A1 (en) * 2006-06-02 2007-12-06 Howaldtswerke-Deutsche Werft Gmbh submarine
KR101304579B1 (en) * 2011-07-15 2013-09-05 삼성중공업 주식회사 Device and method for measuring position of moving object in water
CN109229317B (en) * 2018-10-12 2022-06-14 上海彩虹鱼深海装备科技有限公司 Submersible

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126559A (en) * 1964-03-31 Sensor
DE1220282B (en) 1962-08-29 1966-06-30 Harland Engineering Company Lt Device for continuously regulating the buoyancy of a submarine, by means of which the boat is kept floating at a desired, predetermined depth
US3515133A (en) * 1967-08-30 1970-06-02 Gen Electric Diving helmet and air supply system
ES349747A1 (en) * 1968-01-25 1969-04-01 Ferrer Munguet Fluid pressure regulating device
US4246955A (en) * 1972-10-04 1981-01-27 Skala Stephen F Pressure cooking appliance with thermal exchange fluid
US3946685A (en) * 1974-07-11 1976-03-30 The United States Of America As Represented By The Secretary Of The Navy Hover control valve for submarine hovering system
US5129348A (en) 1983-12-27 1992-07-14 United Technologies Corporation Submergible vehicle
US5249933A (en) * 1992-10-01 1993-10-05 The United States Of America As Represented By The Secretary Of The Navy Submarine external hydraulic fluid - isolated system
DE29501112U1 (en) * 1995-01-25 1995-03-23 Heinrich Baumgarten KG, Spezialfabrik für Beschlagteile, 57290 Neunkirchen Pressure indicator
US6273019B1 (en) * 1999-04-28 2001-08-14 Eli Shmid Regulated pressurized system and pressure regulator for use in an ambient fluid environment, and method of pressure regulation
DE10017376A1 (en) 2000-04-07 2001-10-11 Siemens Ag Method and device for operating an underwater vehicle
US6772705B2 (en) * 2001-09-28 2004-08-10 Kenneth J. Leonard Variable buoyancy apparatus for controlling the movement of an object in water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047677A1 (en) * 2010-10-06 2012-04-12 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Device for pressing a buoyancy tank
DE102010047677B4 (en) * 2010-10-06 2012-09-13 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Device for pressing a buoyancy tank

Also Published As

Publication number Publication date
ATE444227T1 (en) 2009-10-15
US20030154900A1 (en) 2003-08-21
DE50115137D1 (en) 2009-11-12
US7036450B2 (en) 2006-05-02
ES2332035T3 (en) 2010-01-25
ZA200208775B (en) 2003-10-28
DE10017376A1 (en) 2001-10-11
WO2001076937A1 (en) 2001-10-18
KR20030007506A (en) 2003-01-23
AR028318A1 (en) 2003-05-07
EP1268269A1 (en) 2003-01-02
KR100842951B1 (en) 2008-07-01

Similar Documents

Publication Publication Date Title
DE102005031732B4 (en) Method and device for controlling pneumatic cylinders
DE3207392C2 (en) Device for self-adapting position control of an actuator
DE2227703C2 (en) Ship steering system
DE1263146C2 (en) Self-adapting control system
DE102017103056A1 (en) Fuel cell system and control method for the same
DE4406235A1 (en) Pressure control device
DE69020171T2 (en) Method and device for obtaining parameters in process control.
DE1906836A1 (en) Adaptive control device for control loops with actuators
DE3432131A1 (en) METHOD AND DEVICE FOR REGULATING A LIQUID LEVEL
DE3311048A1 (en) CONTROL PROCEDURE AND SETUP
DE1274908B (en) Device for the automatic control and stabilization of hydrofoil boats
DE112006000036T5 (en) Motor controller
EP1268269B1 (en) Method and device for operating an underwater vehicle
DE102004064143B3 (en) scanner system
EP3642856A1 (en) Method and device for controlling a part movable by means of a coil, and solenoid valve
EP3376626A1 (en) Method for controlling the power output of a wind farm and corresponding wind farm
EP1069314A1 (en) Control of a compressor unit
DE19830341C1 (en) Method for operating a control device and device for carrying out the method
DE102010041999A1 (en) Method for correcting actual position of sensor parameter e.g. charge pressure sensor, for detecting pressure of gaseous or liquid medium in air system of motor car, involves correcting parameter by pressurizing with compensation parameter
DE102017222954B4 (en) Brake system with a correction device of an opening time of a valve and method for correcting the opening time of the valve
WO1999037533A1 (en) Stabilising device for the movements of a ship
DE102008043869A1 (en) Control system for fuel cell system, has measurement system for determining state variable of control path, and secondary controller for influencing maximal variable limit and minimal variable limit based on state variable
EP0768237B1 (en) method and device to control the hovering of submerged watercraft
DE3419725A1 (en) METHOD FOR REGULATING A HYDRAULIC DEVICE
EP1607325A1 (en) Device and Method for attenuating at least one rigid body mode and/or at least one elastic mode of an aircraft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUTZNER, RUEDIGER

Inventor name: FREUND, HARALD

Inventor name: SCHULZ, HAUKE-HEIN

17P Request for examination filed

Effective date: 20020920

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50115137

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090402993

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2332035

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100201

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100701

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115137

Country of ref document: DE

Ref country code: DE

Ref legal event code: R409

Ref document number: 50115137

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 50115137

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100326

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160311

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20170327

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170329

Year of fee payment: 17

Ref country code: TR

Payment date: 20170313

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170519

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170426

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115137

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181003

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180326

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180326