EP1264227A1 - Verfahren und vorrichtung zum ermitteln eines massenstromes über ein steuerventil und zum ermitteln eines modellierten saugrohrdrucks - Google Patents

Verfahren und vorrichtung zum ermitteln eines massenstromes über ein steuerventil und zum ermitteln eines modellierten saugrohrdrucks

Info

Publication number
EP1264227A1
EP1264227A1 EP01913510A EP01913510A EP1264227A1 EP 1264227 A1 EP1264227 A1 EP 1264227A1 EP 01913510 A EP01913510 A EP 01913510A EP 01913510 A EP01913510 A EP 01913510A EP 1264227 A1 EP1264227 A1 EP 1264227A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
valve
mass flow
partial pressure
modeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01913510A
Other languages
German (de)
English (en)
French (fr)
Inventor
Leonhard Milos
Ernst Wild
Jochen Gross
Oliver Schlesiger
Kristina Eberle
Roland Herynek
Patrick Janin
Manfred Pfitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10041073A external-priority patent/DE10041073A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1264227A1 publication Critical patent/EP1264227A1/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method and a device for determining a mass flow via a control valve and for determining a modeled intake manifold pressure in an internal combustion engine with exhaust gas recirculation, the sum being formed from the partial pressure of the fresh gas and the partial pressure of the recirculated exhaust gas.
  • An external exhaust gas recirculation system is particularly necessary for Otto engines with gasoline direct injection in order to comply with the legally required limit values for NOx emissions in the exhaust gas.
  • Increased raw NOx emissions in the exhaust gas occur predominantly in stratified engine operation with an air / fuel ratio ⁇ > 1.
  • the exhaust gas recirculation in which an exhaust gas mass flow is removed from the exhaust system and fed back to the internal combustion engine in metered quantities via an exhaust gas recirculation valve, reduces the peak temperature of the combustion process and thus reduces the raw NOx emission.
  • the partial pressure of the recirculated exhaust gas cannot be measured in the exhaust gas recirculation line. Therefore, only a model of the recirculated exhaust gas can be determined. In order to be able to implement a robust intake manifold pressure model which is as error-free as possible and which depends on the partial pressure of the recirculated exhaust gas, it is crucial to form a model for the partial pressure of the recirculated exhaust gas which is as free from errors as possible.
  • the valve flow characteristic from which the mass flow over the valve is determined as a function of the valve position, is adapted to improve accuracy by means of an offset value which is related to the valve position of the valve.
  • This offset value is constant over the valve position with different degrees of contamination of the valve.
  • an offset value related to the mass flow on the other hand, a decrease in the offset value for a certain degree of contamination can be observed as the valve opening becomes smaller.
  • a modeled partial pressure of the recirculated exhaust gas is derived from a flow characteristic of a valve located in an exhaust gas recirculation line depending on the valve position and that the modeled partial pressure of the recirculated exhaust gas derived from the flow characteristic is adaptive, depending on the difference from the modeled intake manifold pressure and a measured intake manifold pressure is corrected.
  • the mass flow via the exhaust gas recirculation valve is determined as a function of the flow characteristic of the exhaust gas recirculation valve, that a relative charge in the intake manifold is then calculated from the mass flow by dividing it by the engine speed, and finally from the relative one Filling in the intake pipe the partial pressure of the recirculated exhaust gas is derived.
  • Fresh air filling the partial pressure of the fresh gas is derived.
  • FIG. 1 shows a schematic illustration of an internal combustion engine with exhaust gas recirculation
  • FIG. 2 shows a functional diagram for calculating a modeled intake manifold pressure
  • FIG. 3 shows a detail from the functional diagram of FIG. 2 for adaptively adapting the flow characteristic of the exhaust gas recirculation valve
  • FIG. 4 shows a flow chart for the offset correction of the flow characteristic with an offset value related to the valve position.
  • FIG. 1 schematically shows an internal combustion engine 1 with an exhaust gas duct 2 and an intake manifold 3.
  • An exhaust gas recirculation line 4 branches off from the exhaust gas duct 2 and opens into the intake manifold 3.
  • a valve 5 is located in the exhaust gas recirculation line 4. Via this exhaust gas recirculation valve 5, the recirculated exhaust gas mass or the partial pressure pagr of the recirculated exhaust gas can be controlled.
  • Behind the mouth of the exhaust gas recirculation line 4, a pressure sensor 6 is arranged in the intake manifold 3, which measures the intake manifold pressure psaug.
  • a throttle valve 7 Before the opening of the exhaust gas recirculation line 4 there is a throttle valve 7 with a potentiometer 8 which detects the throttle valve position wdk.
  • an air mass sensor 9 is arranged in the intake manifold 3, which measures the air mass flow msdk via the throttle valve 7. Furthermore, are in the intake manifold 3 in front of the throttle valve 7, a pressure sensor 10, which measures the pressure pvdk in the intake manifold in front of the throttle valve, and a temperature sensor 11, which measures the intake air temperature TANS.
  • a pressure sensor 12, which measures the exhaust gas pressure pvagr upstream of the exhaust gas recirculation valve 5, and a temperature sensor 13, which detects the temperature Tabg of the exhaust gas upstream of the exhaust gas recirculation valve 5, are arranged in the exhaust gas recirculation line 4 upstream of the exhaust gas recirculation valve.
  • a control unit 14 is supplied with all of the sensed quantities mentioned. These include the measured intake manifold pressure psaug, the throttle valve position wdk, the air mass flow msdk in front of the throttle valve, the pressure pvdk in front of the throttle valve, the intake air temperature Tans, the position vs the exhaust gas recirculation valve 5, the engine speed nmot detected by a sensor 15, and the exhaust gas pressure pvagr in front of the exhaust gas recirculation valve and the temperature tab of the exhaust gas in front of the exhaust gas recirculation valve.
  • the sizes pvdk, Tabg and pvagr can also be determined by model calculations from other operating sizes of the engine.
  • the control unit 14 determines, among other things, the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas from the input variables mentioned.
  • the desired modeled intake manifold pressure psaugm arises from an additive combination 16 of the partial pressure pfg of the fresh gas and the modeled partial pressure pagr of the recirculated exhaust gas. It is described below how the control unit 14 derives the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas.
  • the mass flow msagr is first calculated via the exhaust gas recirculation valve according to equation (1).
  • msagr fkmsag ⁇ - ⁇ [msnagr (vs) + msnagr o] ⁇ pvagr / 1013 bR ⁇ • -273 / Tagr ⁇ KLAF (psaug I pvagr) (1)
  • This standard mass flow msnagr corresponds to the flow characteristic of the exhaust gas recirculation valve 5, which is usually provided by the valve manufacturer and is stored in the function block 17 (see FIG. 2).
  • This standard mass flow msnagr (vs) is therefore a variable derived from the flow characteristic as a function of the valve position vs.
  • the flow characteristic only takes into account the function of the exhaust gas recirculation valve 5, but not flow changes due to manufacturing tolerances and aging and also not the flow properties of the exhaust gas recirculation line 4. For this reason, in the equation (1) for the mass flow msagr via the exhaust gas recirculation valve, corrective heat fkmsagr and msnagro are provided, which can be changed adaptively.
  • the correction term msnagro takes into account an offset of the flow characteristic.
  • KLAF is a value taken from a characteristic curve, which shows the flow velocity over the exhaust gas recirculation valve in relation to the speed of sound as a function of the pressure ratio between the pressure psaug after the exhaust gas recirculation valve and the pressure pvagr upstream of the exhaust gas recirculation valve. If psaug / pvagr ⁇ 0.52 the speed of sound is set and if psaug / pvagr> 0.52 the flow speed drops below the speed of sound.
  • the constant K depends on the cylinder stroke volume and the standard density of the air.
  • the partial pressure pagr is calculated according to equation (3) from the relative filling rfagr resulting from the recirculated exhaust gas in the intake manifold on the basis of the recirculated exhaust gas.
  • the map size KFURL indicates the ratio of the effective cylinder stroke volume to the cylinder stroke volume.
  • the size ftsr reflects the temperature ratio of 273K to the gas temperature in the combustion chamber.
  • a relative fresh air charge rlfg in the intake manifold is first determined in accordance with equation (4).
  • the relative fresh air charge rlfg in the intake manifold can be calculated from the air mass flow msdk upstream of the throttle valve by division by the engine speed nrnot and the constant K (see equation (2)).
  • the partial pressure pfg of the fresh gas is derived therefrom in function block 18 according to equation (5).
  • the air mass flow msdk upstream of the throttle valve can either be measured with the sensor 9 or can be derived from other operating variables in accordance with equation (6).
  • msdk msndk (wdk) ⁇ pvdk / 1013hPa A / 273 / Tans • KLAF (psaug I pvdk) (6)
  • the KLAF value comes from a characteristic curve and provides the flow velocity over the throttle valve in relation to the speed of sound as a function of the pressure ratio psaug / pvdk at the throttle valve. If psaug / pvdk ⁇ 0.52 the speed of sound is set and if psaug / pvdk> 0.52 the flow rate drops below the speed of sound.
  • the partial pressure pagr of the recirculated exhaust gas derived from the flow characteristic in function block 17 is subject to errors, because this throughflow characteristic of the exhaust gas recirculation valve 5 does not take into account manufacturing tolerances, flow changes due to aging and also the flow properties of the exhaust gas recirculation line 4.
  • a function block 19 is provided, in which the partial pressure pagr of the recirculated exhaust gas is corrected.
  • the aim is that the modeled partial pressure pagr of the recirculated exhaust gas that is available after the correction is corresponds exactly to the real partial pressure in the exhaust gas recirculation line, so that the modeled intake manifold pressure psaugm resulting from the sum of the partial pressure pfg of the fresh gas and the partial pressure pagr of the recirculated exhaust gas is as unadulterated as possible.
  • a correction variable ⁇ ps is formed by forming the difference 20 from the modeled intake manifold pressure psaugm and the intake manifold pressure psaug measured by the pressure sensor 6, which is fed to a function block 19.
  • the correction variable ⁇ ps is fed via a switch 21 to either an integrator 22 or an integrator 23.
  • the integrator 22 provides the correction term fkmsagr occurring in equation (1)
  • the integrator 23 provides the offset correction term msnagro.
  • the integrators 22 and 23 increase the correction terms fkmsagr and msnagro to the extent that the correction variable ⁇ ps specifies.
  • the partial pressure pagr of the recirculated exhaust gas is thus adaptively changed in function block 20 until the deviation between the measured intake manifold pressure psaug and the modeled intake manifold pressure psaugm becomes minimal.
  • a threshold value decision takes place in switching block 21, which determines whether the measured intake manifold pressure psaug exceeds the threshold of 400 hPa. At a measured intake manifold pressure psaug that lies above the threshold of 400 hPa, only the integrator 23 for the correction term msnagro is controlled by the correction variable ⁇ ps. If the measured intake manifold pressure psaug is below the threshold of 400hPa, the correction variable ⁇ ps is switched over to the integrator 22 for the correction term fkmsagr.
  • the mass flow via the valve is required to determine the partial pressure. This is based on an adap- animal characteristic is determined depending on the valve position. Such a characteristic curve can also be essential in connection with other applications, so that the characteristic curve adaptation described cannot only be used in exhaust gas recirculation.
  • the air mass flow via a throttle valve is also determined in accordance with a flow characteristic, which can also be changed by valve contamination.
  • the offset value is formed from the deviation of a value calculated using the characteristic curve with a measured value, for example by integration.
  • FIG. 4 shows a flow chart for the adaptation of such a flow characteristic.
  • the input variable is the valve position vp.
  • the determined offset value off in the exemplary embodiment of an EGR valve ofvpagr, see e.g. FIG. 3, offset value msnagro
  • the result is used to address the flow characteristic MSNTAG 26, the output variable of which is the standard mass flow msnv (in the exemplary embodiment of an EGR valve msnagrv) via the control valve, which if necessary by linking 27 (division) with a slope adaptation factor to the standard mass flow msn (in the exemplary embodiment of an EGR - valve msnagr) is linked.
  • the offset value is related to the mass flow as described in equation 1. It is cheaper to refer to the valve position here as well.
  • the following calculation equation for the mass flow then results:
EP01913510A 2000-02-09 2001-01-18 Verfahren und vorrichtung zum ermitteln eines massenstromes über ein steuerventil und zum ermitteln eines modellierten saugrohrdrucks Ceased EP1264227A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10005569 2000-02-09
DE10005569 2000-02-09
DE10041073A DE10041073A1 (de) 2000-02-09 2000-08-22 Verfahren und Vorrichtung zum Ermitteln eines Massenstromes über ein Steuerventil und zum Ermitteln eines modellierten Saugrohrdrucks
DE10041073 2000-08-22
PCT/DE2001/000200 WO2001059536A1 (de) 2000-02-09 2001-01-18 Verfahren und vorrichtung zum ermitteln eines massenstromes über ein steuerventil und zum ermitteln eines modellierten saugrohrdrucks

Publications (1)

Publication Number Publication Date
EP1264227A1 true EP1264227A1 (de) 2002-12-11

Family

ID=26004240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01913510A Ceased EP1264227A1 (de) 2000-02-09 2001-01-18 Verfahren und vorrichtung zum ermitteln eines massenstromes über ein steuerventil und zum ermitteln eines modellierten saugrohrdrucks

Country Status (5)

Country Link
US (1) US20030075158A1 (zh)
EP (1) EP1264227A1 (zh)
JP (1) JP2003522888A (zh)
CN (1) CN1416541A (zh)
WO (1) WO2001059536A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065122A1 (de) * 2000-12-28 2002-08-14 Bosch Gmbh Robert Verfahren zur Erfassung von Stand der Technik Massenströmen zum Saugrohr einer Brennkraftmaschine
DE10225306B4 (de) * 2002-06-07 2017-03-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines mit einem gasförmigen Kraftstoff betriebenen Fahrzeugs
DE102004033845A1 (de) * 2004-07-13 2006-02-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
DE102005049535A1 (de) * 2005-10-17 2007-04-19 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einer Abgasrückführung und Vorrichtung zur Durchführung des Verfahrens
SG140513A1 (en) * 2006-09-05 2008-03-28 Yokogawa Electric Corp A method to evaluate a performance of a control valve and a system thereof
US7533658B2 (en) * 2007-02-06 2009-05-19 Gm Global Technology Operations, Inc. Coordinated control of throttle and EGR valve
US7739027B2 (en) * 2007-08-17 2010-06-15 Gm Global Technology Operations, Inc. Method and apparatus for monitoring an EGR valve in an internal combustion engine
DE102008027762B3 (de) * 2008-06-11 2010-02-11 Continental Automotive Gmbh Verfahren und Vorrichtung zum Diagnostizieren eines Ansaugtrakts einer Brennkraftmaschine
US8108128B2 (en) * 2009-03-31 2012-01-31 Dresser, Inc. Controlling exhaust gas recirculation
FR2959775B1 (fr) * 2010-05-07 2012-05-25 Peugeot Citroen Automobiles Sa Procede d'estimation d'une quantite d'air frais, support d'enregistrement et estimateur pour ce procede, vehicule equipe de cet estimateur
KR101241219B1 (ko) * 2010-12-06 2013-03-13 한양대학교 산학협력단 엔진의 이지알시스템 제어방법
US9068502B2 (en) * 2011-09-13 2015-06-30 Caterpillar Inc. EGR flow measurement
US9062635B2 (en) 2011-09-25 2015-06-23 Cummins Inc. System and method for estimating engine exhaust manifold operating parameters
CN102606320B (zh) * 2012-03-23 2014-05-28 潍柴动力股份有限公司 解决egr特性曲线变化的方法和系统
US9267453B2 (en) 2013-08-22 2016-02-23 Ford Global Technologies, Llc Learning of EGR valve lift and EGR valve flow transfer function
DE102014013284A1 (de) * 2014-09-12 2016-03-17 Man Truck & Bus Ag Brennkraftmaschine, insbesondere Gasmotor, für ein Fahrzeug, insbesondere für ein Nutzfahrzeug
US9951701B2 (en) 2014-09-22 2018-04-24 General Electric Company Method and systems for EGR control
DE102017205829A1 (de) * 2017-04-05 2018-10-11 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen einer Gassystemgröße in einem Verbrennungsmotor
CN113091043B (zh) * 2021-03-02 2023-03-21 杭州华电半山发电有限公司 一种余热锅炉汽包水位全程自动控制的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413402B1 (ko) * 1995-04-10 2004-04-28 지멘스 악티엔게젤샤프트 모델을이용하여내연기관실린더내측으로의공기질량을측정하는방법
KR100462458B1 (ko) * 1996-03-15 2005-05-24 지멘스 악티엔게젤샤프트 외부배기가스를재순환하는내연기관의실린더로유입되는맑은공기의질량을모델을이용하여결정하는방법
DE19625688B4 (de) * 1996-06-27 2006-06-08 Robert Bosch Gmbh Verfahren zur Bestimmung des Lastsignals einer Brennkraftmaschine mit externer Abgasrückführung
DE19756619B4 (de) * 1997-04-01 2007-03-15 Robert Bosch Gmbh System zum Betreiben einer Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP0962638B1 (en) * 1998-06-05 2006-01-11 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0159536A1 *

Also Published As

Publication number Publication date
CN1416541A (zh) 2003-05-07
WO2001059536A1 (de) 2001-08-16
JP2003522888A (ja) 2003-07-29
US20030075158A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
EP1264227A1 (de) Verfahren und vorrichtung zum ermitteln eines massenstromes über ein steuerventil und zum ermitteln eines modellierten saugrohrdrucks
EP0886725B1 (de) Verfahren zum modellgestützten bestimmen der in die zylinder einer brennkraftmaschine einströmenden frischluftmasse bei externer abgasrückführung
EP1789665B1 (de) Verfahren zur modellbasierten bestimmung der während einer ansaugphase in die zylinderbrennkammer einer brennkraftmaschine einstr\menden frischluftmasse
WO1996032579A1 (de) Verfahren zum modellgestützten bestimmen der in die zylinder einer brennkraftmaschine einströmenden luftmasse
DE19740916A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102016101210A1 (de) System und verfahren zum betreiben eines abgasrückführungsventils basierend auf einer temperaturdifferenz des ventils
WO2006069853A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102007009689B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
DE102005022691A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP1115964B1 (de) Verfahren zum steuern einer brennkraftmaschine abhängig von einem abgasdruck
WO2001077509A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE10041076B4 (de) Verfahren zur Erkennung von fehlerhaften Veränderungen des Gasdurchflusses durch eine Abgasrückführleitung einer Brennkraftmaschine
WO2009033950A2 (de) Verfahren zum regeln eines verbrennungsvorganges und steuergerät
WO2007036377A1 (de) Verfahren zum erfassen des umgebungsdrucks in einer brennkraftmaschine
DE102004038733A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10356713B4 (de) Verfahren zur Regelung bzw. Steuerung einer in einem Kreisprozess arbeitenden Brennkraftmaschine
DE102007012340B3 (de) Verfahren zum Ermitteln und Einregeln des Luftmassenstroms im Saugrohr eines Verbrennungsmotors sowie zugehöriges Steuergerät
DE102007021469A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10041073A1 (de) Verfahren und Vorrichtung zum Ermitteln eines Massenstromes über ein Steuerventil und zum Ermitteln eines modellierten Saugrohrdrucks
WO1994002730A1 (de) Verfahren zur anpassung der luftwerte aus einem ersatzkennfeld, das bei pulsationen der luft im ansaugrohr einer brennkraftmaschine zur steuerung der gemischaufbereitung verwendet wird, an die aktuell herrschenden zustandsgrössen der aussenluft
WO2017157580A1 (de) Verfahren und steuervorrichtung zum bestimmen einer menge einer füllungskomponente in einem zylinder einer verbrennungskraftmaschine
EP0928366B1 (de) Sekundärluftsystem für eine brennkraftmaschine
EP0719383B1 (de) Verfahren und vorrichtung zum berechnen des durch ein ventil an einem verbrennungsmotor strömenden gasvolumens
DE102017209525A1 (de) Verfahren zur Berechnung einer Füllung einer Brennkraftmaschine
DE102004047099B3 (de) Verfahren zur Bestimmung der Frischluftmasse eines Verbrennungsmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MILOS, LEONHARD

Inventor name: EBERLE, KRISTINA

Inventor name: JANIN, PATRICK

Inventor name: SCHLESIGER, OLIVER

Inventor name: PFITZ, MANFRED

Inventor name: GROSS, JOCHEN

Inventor name: HERYNEK, ROLAND

Inventor name: WILD, ERNST

17Q First examination report despatched

Effective date: 20030207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20030530

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT