EP1263865A1 - Polymergemische mit phosphaten - Google Patents

Polymergemische mit phosphaten

Info

Publication number
EP1263865A1
EP1263865A1 EP01919312A EP01919312A EP1263865A1 EP 1263865 A1 EP1263865 A1 EP 1263865A1 EP 01919312 A EP01919312 A EP 01919312A EP 01919312 A EP01919312 A EP 01919312A EP 1263865 A1 EP1263865 A1 EP 1263865A1
Authority
EP
European Patent Office
Prior art keywords
compound
polymer mixtures
formula
mixture
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01919312A
Other languages
English (en)
French (fr)
Inventor
Burkhard Reitze
Raimund Zimmermann
Wilfried Haese
Thomas Eckel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP1263865A1 publication Critical patent/EP1263865A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Definitions

  • the application relates to new thermoplastic polymer mixtures containing polycarbonate, mold release agents with OH groups and mixtures of oligomeric and monomeric phosphorus compounds and the use of such polymer mixtures for the production of optical data carriers, such as. B. compact disks, video disks and other one or more writable and erasable optical data carriers, and the optical data carriers that can be produced therefrom.
  • Polycarbonates are generally used as materials for injection molding or injection molding for optical data carriers due to their special combination of properties such as transparency, dimensional stability under heat, dimensional stability and thermal stability. To improve the processability, which generally takes place at temperatures above 300 ° C., additives such as
  • Aliphatic fatty acid partial esters of polyhydric alcohols such as. B. partial esters of glycerol with long-chain fatty acids, especially glycerol monostearate, are used.
  • the presence of free OH groups in the ester is apparently particularly advantageous for the release action, but these esters impair the thermostability of the mixture, so that there is a need to add stabilizers.
  • JP-A 01 242 660 uses phosphoric acid for stabilization, however there is a risk of corrosion of the storage layers on the optical data carriers under conditions with high air humidity and higher temperature. The same problem exists with the mixtures of different phosphoric acids used in JP-A 04 041 551.
  • JP-A 62 207 358 proposes the use of special phosphoric acid esters, the structure of the phosphoric acid esters being modified in such a way that they simultaneously have a demoulding effect and therefore the mold release agent can be dispensed with.
  • these phosphoric acid compounds are difficult to produce and have not proven themselves.
  • JP-A 62 184 639 proposes, inter alia, the use of triphenyl phosphate
  • the polymer mixtures according to the invention which contain at least one polycarbonate and at least one mold release agent contain a free OH group and a special mixture of phosphorus compounds, this is achieved.
  • the present application accordingly relates to thermoplastic polymer mixtures comprising at least one polycarbonate and at least one mold release agent with at least one free OH group and at least one monophosphorus compound and at least one oligomeric phosphorus compound as a special mixture of phosphorus compounds.
  • the invention furthermore relates to the use of such polymer mixtures for the production of optical data carriers, such as, for. B. compact disks, video disks and other one or more writable and erasable optical data carriers, as well as the optical data carriers themselves that can be produced from the polymer mixtures.
  • Thermoplastic polymer mixtures in the sense of the present invention containing predominantly aromatic polycarbonates.
  • Polycarbonates are understood to mean both homopolycarbonates and copolycarbonates; the polycarbonates can be linear or branched in a known manner.
  • polycarbonates are produced in a known manner from diphenols, carbonic acid derivatives, optionally chain terminators and optionally branching agents.
  • Diphenols suitable for the preparation of the polycarbonates are, for example, hydroquinone, resorcinol, dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ethers, Bis- (hydroxyphenyl) ketones, bis- (hydroxyphenyl) sulfones, bis- (hydroxyphenyl) sulfoxides, ⁇ , ⁇ '-bis- (hy (_roxyphenyl) diisopropylbenzenes, as well as their core alkylated and nuclear halogenated compounds.
  • Preferred diphenols are 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis- (4th -hydroxyphenyl) -p-diisopropylbenzene, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, bis- (3rd , 5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) sulfone, 2,4-bis (3,5-dimethyl-4-hydroxyphenyl) -2-methylbutane, l, l-bis- (3,5-dimethyl-4-hydroxyphenyl) -p-diisopropylbenzene, 2,2- Bis (3,5-dichloro-4-hydroxyphenyl) propane
  • diphenols are 2,2-bis (4-hydroxyphenyl) propane (BPA), 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3, 5-dichloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, 4,4 ⁇ - (m-phenylenediisopropylidene) bisphenol (CAS No. 13595 -25-0) (BPM), l, l-bis (4-hydroxyphenyl) cyclohexane and l, l-bis (4-hy (lroxyphenyl) -3,3,5-trimethylcyclohexane (TMC).
  • BPA 2,2-bis (4-hydroxyphenyl) propane
  • BPA 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane
  • 2,2-bis (3, 5-dichloro-4-hydroxyphenyl) propane 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane
  • Polymer mixtures are preferably used which have at least one polycarbonate
  • Diol units from BPA and / or trimethylcyclohexyl-bisphenol (TMC) contain, preferably selected from the group of the homopolymers of BPA, the copolymers of BPA with TMC or the copolymers with 5 to 60 wt .-% TMC.
  • Suitable carbonic acid derivatives are, for example, phosgene or diphenyl carbonate.
  • Suitable chain terminators are both monophenols and monocarboxylic acids.
  • Suitable monophenols are phenol itself, alkylphenols such as cresols, p-tert-butylphenol, pn-octylphenol, p-iso-octylphenol, pn-nonylphenol and p-iso-nonylphenol, p-cumylphenol, halophenols such as p-chlorophenol, 2 , 4-dichlorophenol, p-bromophenol, amylphenol and 2,4,6-tribromophenol and mixtures thereof.
  • Preferred chain terminators are the phenols of the formula (I)
  • R is hydrogen, tert-butyl or a branched or unbranched C 8 and / or C 9 alkyl radical.
  • p-cumylphenol can also be used with preference.
  • the amount of chain terminator to be used is 0.1 mol% to 5 mol%, based on moles of diphenols used in each case.
  • the chain terminators can be added before, during or after the phosgenation.
  • Suitable branching agents are the tri- or more than functional compounds known in polycarbonate chemistry, in particular those with three or more than three phenolic OH groups.
  • Suitable branching agents are, for example, phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hepten-2, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) - heptane, 1, 3,5-tri- (4-hydroxyphenyl) benzene, 1,1,1-tri- (4-hydroxyphenyl) ethane, tri- (4-hydroxyphenyl) phenylmethane, 2,2-bis [4,4-bis (4-hydroxyphenyl) cyclohexyl] propane, 2,4-bis (4-hydroxyphenyl-isopropyl) phenol, 2,6-bis (2-hydroxy-5'-methyl) benzyl) -4-methylphenol, 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphenyl) propane, hexa- (4- (4-hydroxyphenyl-isopropyl) phenyl) orthoterephthalic acid ester, t
  • the amount of branching agents which may be used is 0.01 mol% to 2 mol%, based in turn on moles of diphenols used in each case.
  • the branching agents can either be initially charged with the diphenols and the chain terminators in the aqueous alkaline phase, or added dissolved in an organic solvent.
  • the branching devices can be used together with the diphenols.
  • thermoplastic polycarbonates All of these measures for producing the thermoplastic polycarbonates are familiar to the person skilled in the art.
  • the compounds used as mold release agents are preferably esters of polyhydric alcohols with long-chain carboxylic acids which have not been completely esterified.
  • esters of saturated monohydric fatty acids with 16 to 22 carbon atoms with glycerin, trimethylolpropane, pentaerythritol or similar polyhydric alcohols.
  • glycerol monostearate, glycerol monopalmiate is particularly preferred.
  • saturated monovalent fatty acid esters of glycerol are used alone or as mixtures with two or more components.
  • the saturated monoesters of glycerol are usually produced by transesterifying hydrogenated animal or vegetable oil with glycerol.
  • the reaction product can also contain esters other than the glycerol esters, it is used as a mold release agent according to the invention.
  • the mixture may contain small or large amounts of diglycerides and triglycerides.
  • the optimum of the amount of mold release agent is determined on the one hand by a sufficient mold release effect, on the other hand by the formation of deposits on the tool.
  • concentrations are between 50 and 1000 ppm, more advantageously between 100 and 500 ppm of mold release agent.
  • the special mixtures of phosphorus compounds according to the invention contain a monophosphorus compound C.I and a phosphorus compound C.2.
  • Component C. 1 represents a phosphorus compound according to formula (II).
  • R 1 , R 2 and R 3 are independently d-Cs-alkyl, preferably C 1 -C -alkyl, C 6 -C 0 -aryl, preferably phenyl or naphthyl, and / or C 7 -C 12 - Aralkyl, preferably phenyl-C] -C -alkyl and m 0 or 1 and n 0 or 1.
  • the phosphorus compounds according to component C1 used according to the invention are generally known (see, for example, Ullmann's Encyclopedia of Industrial Chemistry, vol. 18, pp. 301ff, 1979; Houben-Weyl, Methods of Organic Chemistry, vol. 12/1, p. 43; Beilstein , Vol. 6, p.
  • Preferred substituents R 1 to R 3 are independently methyl, butyl, octyl, phenyl, cresyl, cumyl and naphthyl. Methyl, ethyl, butyl and phenyl optionally substituted by methyl or ethyl are particularly preferred.
  • Phosphorus compounds C.I of formula (II) are exemplary and preferably tri-butyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenylcresyl phosphate, diphenyloctyl phosphate, diphenyl-2-ethylcresyl phosphate, tri- (isopropylphenyl) phosphate, methylphosphonic acid, dimethylphosphonate, methylphenyl ether, methylphenylphosphonate, methylphenylphosphonate.
  • Component C.2 is a phosphorus compound of the formula (III).
  • R 4 , R 5 , R 6 , R 7 independently of one another are -Cs-alkyl, preferably d-Cj-alkyl, Cs-C o -cycloalkyl, C 6 -C 10 -aryl and or C 7 -C 12 Aralkyl, phenyl, naphthyl, benzyl are preferred.
  • the aromatic grapes R 4 , R 5 , R 6 and R 7 can in turn be substituted with alkyl groups.
  • Particularly preferred aryl radicals are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl.
  • X in the formula (III) denotes a mono- or polynuclear aromatic radical having 6 to 30 carbon atoms.
  • This aromatic residue is derived from the diphenols described above, for example and preferably BPA, resorcinol or hydroquinone.
  • the oligomeric phosphorus compounds of the formula (III) are preferably reaction products from the reaction of mixtures of phenol with hydroquinone or BPA or, in particular, resorcinol with phosphorus oxitrichloride or reaction products from the transesterification of triphenyl phosphate with hydrochmon or BPA or, in particular, resorcinol.
  • k has an average value of 1 to 5, preferably 1 or 2.
  • the polymer mixtures according to the invention contain a mixture of C.I and
  • the mixture generally consists of 10 to 90% by weight of component C.I and 90 to 10% by weight of component C.2 (in each case based on the total amount of phosphorus compounds). Particularly favorable properties are achieved with mixtures consisting of 12 to 50% by weight, in particular 14 to 40% by weight, very particularly preferably 15 to 40% by weight of component C.I and 88 to 50
  • % By weight, in particular 86 to 60% by weight, very particularly preferably 85 to 60% by weight of component C.2 (in each case based on the total amount of phosphorus compounds).
  • the polymer mixtures according to the invention preferably contain 0.01 to
  • the mold release agents and the oligomeric phosphorus compounds are added to the thermoplastic polymer mixtures by way of example and preferably by adding them after the preparation and during the processing of the polycarbonates, e.g. added to the polycarbonate polymer solution, or a melt of the thermoplastic polymer mixtures. Furthermore, it is also possible to dose the components independently of one another in different work steps, e.g. one of the components during the processing of the polymer solution and the other component (s) in the melt, as long as it is ensured that all components are included in the production of the end products (molded articles).
  • thermoplastic polymer mixtures according to the invention can also be used for thermoplastic polymer mixtures according to the invention.
  • Polycarbonates contain conventional additives in the known amounts, such as, for example and preferably, stabilizers against UV radiation, flame retardants, dyes, fillers, foaming agents, optical brighteners and antistatic agents. In optical applications, preference is given to using components which do not adversely affect the transparency of the material.
  • the polymer mixtures according to the invention are used in the manner known for polycarbonates for the production of moldings, preferably optical media, in particular optical media which are described or can be written once or several times, such as preferably optical data carriers, particularly preferably compact discs and DVDs.
  • the writable layers consist in particular of dyes or metallic layers, which in turn use the change from amorphous to crystalline state or have magnetic properties as the recording principle.
  • This optical media is preferably produced from the finished polymer mixtures according to the invention, which are obtained, for example, as granules.
  • the optical media can also be produced by incorporating the components into pure or commercially available polycarbonates and / or with the additives customary in the production of foam bodies from polycarbonates.
  • the invention accordingly furthermore relates to moldings, such as, in particular, optical data carriers, preferably compact discs and DVDs, which are obtainable from the thermoplastic polymer mixtures according to the invention.
  • thermoplastic polymer mixtures according to the invention have the advantage that they have better thermostability in the production of moldings and the end products (foils) obtained can be easily separated from the production tools and do not leave any impurities on the tools.
  • the product Loxiol EP 129 from Henkel KgaA is used as glycerol monostearate.
  • the product ADK Stab PFR from Asahi is an oligophosphate
  • Trioctyl phosphate and triphenyl phosphate come from Bayer AG Leverkusen.
  • CDs are measured on a Netstal Discjet 600 CD injection molding machine to measure product stability. written materials.
  • the CDs have a thickness of 1.2 mm and an outer diameter of 120 mm.
  • the product stability is checked under different machine conditions, hereinafter referred to as settings 1 to 4:
  • Cylinder temperatures (intake / compression / cylinder head nozzle) 315/320/320/320 ° C; maximum injection speed: 130 mm / sec; Tool (flow temperature): 55 ° C; Cycle time: 4.6 sec
  • Cylinder temperatures (intake / compression / cylinder head nozzle) 315/340/350/350 ° C; maximum injection speed: 110 mm / sec; Tool (flow temperature): 55 ° C; Cycle time: 4.9 sec
  • Cylinder temperatures (intake / compression / cylinder head nozzle) 315/360/380/380 ° C; maximum injection speed: 100 mm / sec; Tool (flow temperature): 55 ° C; Cycle time: 5.5 sec
  • Setting 4 corresponding to setting 2, but the cycle is interrupted by a 5-minute machine stop. The fifth plate after restarting the injection molding machine is taken for the subsequent measurements.
  • the glycerol monostearate is separated by gas chromatography on a capillary column and detected with a flame ionization detector.
  • the evaluation is carried out according to the internal standard method.
  • the limit of quantification is approx. 10 ppm. phenolic OH
  • the polycarbonate is dissolved in dichloromethane and mixed with titanium (IV) chloride to form an orange-red colored complex, the absorbance of which is determined photometrically at 546 nm.
  • the calibration is done with BPA as external

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Die Anmeldung beschreibt neue thermoplastische Polymergemische enthaltend Polycarbonat, Entformungsmittel mit OH-Gruppen und Mischungen von oligomeren und monomeren Phosphorverbindungen sowie die Verwendung solcher Polymergemische zur Herstellung von optischen Datenträgern, wie z. B. Compact Disks, Video Disks und weitere ein- oder mehrfach schreib- wie löschbare optische Datenträger, sowie die daraus herstellbaren optischen Datenträger.

Description

Polymergemische mit Phosphaten
Die Anmeldung betrifft neue thermoplastische Polymergemische enthaltend Polycarbonat, Entformungsmittel mit OH-Gruppen und Mischungen von oligomeren und monomeren Phosphorverbindungen sowie die Verwendung solcher Polymergemische zur Herstellung von optischen Datenträgern, wie z. B. Compact Disks, Video Disks und weitere ein- oder mehrfach schreib- wie löschbare optische Datenträger, sowie die daraus herstellbaren optischen Datenträger.
Polycarbonate werden generell wegen ihrer besonderen Eigenschaftskombination wie Transparenz, Wärmeformbeständigkeit, Dimensionsstabilität und Thermostabilität, als Materialien für den Spritzguss bzw. das Spritzprägen für optische Datenträger eingesetzt. Zur Verbesserung der Verarbeitbarkeit, die im allgemeinen bei Tem- peraturen oberhalb von 300°C stattfindet, werden dem Polycarbonat Additive, wie
Entformungsmittel und Stabilisatoren zugesetzt.
Als Entformungsmittel werden dabei bevorzugt aliphatische Fettsäureteilester mehrwertiger Alkohole, wie z. B. Teilester des Glycerins mit langkettigen Fettsäuren, ins- besondere Glycerinmonostearat, eingesetzt. Das Vorhandensein freier OH-Gruppen im Ester ist offenbar für die entformende Wirkung besonders vorteilhaft, allerdings verschlechtern diese Ester die Thermostabilität der Mischung so dass eine Notwendigkeit zum Zusatz von Stabilisatoren besteht. Vollveresterte Entformungsmittel dagegen besitzen eine höhere Stabilität, so dass der Zusatz von Stabilisatoren nicht mehr notwendig erscheint, wie die EP-A 628 957 lehrt, allerdings ist die Ent- formungswirkung solcher Ester bei niedrigen Konzentrationen deutlich schwächer als die von Estern mit freien OH-Gruppen. Werden höhere Mengen an vollver- esterten Entformungsmitteln eingesetzt, erhöht sich die Gefahr der Belagsbildung im Werkzeug, so dass beim Verarbeiten öfter die Werkzeuge und Matrizen zu reinigen sind, was nachteilig ist und zu einer schlechteren Plattenqualität führen kann. Zur Stabilisierung von Gemischen, welche Entformungsmittel mit OH-Gruppen enthalten, lehrt die EP-A 205 192 Gemische aus Trimethylphosphat und/oder Triethyl- phosphat in Kombination mit Phosphiten einzusetzen. Die stabilisierende Wirkung der Phosphorsäureester allein reicht demach nicht aus, so dass der Zusatz von Phos- phiten erforderlich ist, weiterhin sind die diese Phosphorsäureester als ökologisch bedenklich einzustufen.
Die JP-A 01 242 660 verwendet zur Stabilisierung Phosphorsäure, allerdings besteht damit die Gefahr der Korrosion der Speicherschichten auf den optischen Daten- trägem unter Bedingungen mit hoher Luftfeuchte und höherer Temperatur. Das gleiche Problem besteht bei den in der JP-A 04 041 551 eingesetzten Mischungen unterschiedlicher Phosphorsäuren.
Die JP-A 62 207 358 schlägt den Einsatz spezieller Phosphorsäureester vor, wobei die Struktur der Phosphorsäureester so modifiziert wurde, dass diese gleichzeitig entformende Wirkung aufweisen und damit auf das Entformungsmittel verzichtet werden kann. Diese Phosphorsäureverbindungen sind allerdings aufwendig herzustellen und haben sich nicht bewährt.
Die JP-A 62 184 639 schlägt unter anderem den Einsatz von Triphenylphosphat als
Stabilisator vor, welches jedoch in seiner Wirkung dem Trimethylphosphat unterlegen ist.
Es bestand daher die Aufgabe, Polymergemische zu entwickeln, die unter Her- stellungs- und Verarbeitungsbedingungen bei der Herstellung von Produkten für optische Anwendungen, wie Compact Discs und Digital Versatile Disks (DVDs), eine gute Entformungswirkung haben, thermostabil sind und zu einer geringen Belagsbildung im Werkzeug führen, so dass daraus eine verbesserte Qualität der Datenspeicher resultiert und die Verarbeitbarkeit des Materials im Spritzguss bzw. Spritz- prägeverfahren verbessert ist. Durch die erfindungsgemäßen Polymergemische, die mindestens ein Polycarbonat und mindestens ein Entformungsmittel mit mindestens einer freien OH-Gruppe sowie einer speziellen Mischung von Phosphorverbindungen enthalten, wird dies erreicht.
Gegenstand der vorliegenden Anmeldung sind demnach thermoplastische Polymer- gemische enthaltend mindestens ein Polycarbonat und mindestens ein Entformungsmittel mit mindestens einer freien OH-Gruppe sowie sowie mindestens eine Mono- phosphorverbindung und mindestens eine oligomere Phosphorverbindung als speziellen Mischung von Phosphorverbindungen. Weiterhin sind Gegenstand der Erfindung die Verwendung solcher Polymergemische zur Herstellung von optischen Datenträgem, wie z. B. Compact Disks, Video Disks und weitere ein- oder mehrfach schreib- wie löschbare optische Datenträger, sowie die aus den Polymermischungen herstellbaren optischen Datenträger selbst.
Thermoplastische Polymergemische im Sinne der vorliegenden Erfindung enthaltend überwiegend aromatische Polycarbonate. Unter Polycarbonate sind sowohl Homopoly- carbonate als auch Copolycarbonate zu verstehen; die Polycarbonate können in bekannter Weise linear oder verzweigt sein.
Die Herstellung dieser Polycarbonate erfolgt in bekannter Weise aus Diphenolen, Kohlensäurederivaten, gegebenenfalls Kettenabbrechern und gegebenenfalls Verzweigern.
Einzelheiten der Herstellung von Polycarbonaten sind in vielen Patentschriften seit etwa 40 Jahren niedergelegt. Beispielhaft sei hier nur auf Schnell, "Chemistry and Physics of Polycarbonates", Polymer Reviews, Volume 9, Literscience Publishers, New
York, London, Sydney 1964, auf D. Freitag, U. Grigo, P.R. Müller, H. Nouvertne', BAYER AG, "Polycarbonates" in Encyclopedia of Polymer Science and Engineering, Volume 11, Second Edition, 1988, Seiten 648-718 und schließlich auf Dres. U. Grigo, K. Kirchner und P.R. Müller "Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag
München, Wien 1992, Seiten 117-299 verwiesen. Für die Herstellung der Polycarbonate geeignete Diphenole sind beispielsweise Hy- drochinon, Resorcin, Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis(hydroxy- phenyl)-cycloalkane, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hy- droxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, α,α'-Bis-(hy(_roxyphenyl)-diisopropylbenzole, sowie deren kemalkylierte und kern- halogenierte Verbindungen.
Bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-pro- pan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, l,l-Bis-(4-hydroxyphenyl)-p-diiso- propylbenzol, 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3-chlor-4- hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, 2,2-Bis-(3,5-di- methyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon, 2,4- Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, l,l-Bis-(3,5-dimethyl-4-hydroxy- phenyl)-p-diisopropylbenzol, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan, 2,2-Bis-
(3,5-dibrom-4-hydroxyphenyl)-propan, 1 , 1 -Bis-(4-hydroxyphenyl)-3,3,5-trimethyl- cyclohexan und 4,4,-(m-Phenylendiisopropyliden)diphenol.
Besonders bevorzugte Diphenole sind 2,2-Bis-(4-hydroxyphenyl)-propan (BPA), 2,2- Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)- propan, 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan, 4,4Λ -(m-Phenylendiiso- propyliden) bisphenol (CAS-No. 13595-25-0) (BPM), l,l-Bis-(4-hydroxyphenyl)- cyclohexan und l,l-Bis-(4-hy(lroxyphenyl)-3,3,5-trimethylcyclohexan (TMC).
Diese und weitere geeignete Diphenole sind z.B. in den US-PS 3 028 635, 2 999 835,
3 148 172, 2 991 273, 3 271 367, 4 982 014 und 2 999 846, in den deutschen Offenlegungsschriften 1 570 703, 2 063 050, 2 036 052, 2 211 956 und 3 832 396, der französischen Patentschrift 1 561 518, in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964" sowie in den japanischen Offenlegungsschriften 62039/1986, 62040/1986 und 105550/1986 beschrieben. Im Falle der Homopolycarbonate ist nur ein Diphenol eingesetzt, im Falle der Co- polycarbonate sind mehrere Diphenole eingesetzt.
Bevorzugt werden Polymergemische verwendet, die mindestens ein Polycarbonat mit
Diolbausteinen aus BPA und/oder Trimethylcyclohexyl-bisphenol (TMC) enthalten, bevorzugt ausgewählt aus der Gruppe der Homopolymere des BPA, der Copolymere des BPA mit TMC oder der Copolymere mit 5 bis 60 Gew.-% TMC.
Geeignete Kohlensäurederivate sind beispielsweise Phosgen oder Diphenylcarbonat.
Geeignete Kettenabbrecher sind sowohl Monophenole als auch Monocarbonsäuren. Geeignete Monophenole sind Phenol selbst, Alkylphenole wie Kresole, p-tert.-Butyl- phenol, p-n-Octylphenol, p-iso-Octylphenol, p-n-Nonylphenol und p-iso-Nonylphenol, p-Cumylphenol, Halogenphenole wie p-Chlorphenol, 2,4-Dichlorphenol, p-Brom- phenol Amylphenol und 2,4,6-Tribromphenol sowie deren Mischungen.
Bevorzugte Kettenabbrecher sind die Phenole der Formel (I)
worin R Wasserstoff, tert-Butyl oder ein verzweigter oder unverzweigter C8- und/oder C9-Alkylrest ist. Aber auch p-Cumylphenol kann bevorzugt verwendet werden.
Die Menge an einzusetzendem Kettenabbrecher, bevorzugt im Phasengrenzflächenverfahren, beträgt 0,1 Mol-% bis 5 Mol-%, bezogen auf Mole an jeweils eingesetzten Diphenolen. Die Zugabe der Kettenabbrecher kann vor, während oder nach der Phosge- nierung erfolgen. Geeignete Verzweiger sind die in der Polycarbonatchemie bekannten tri- oder mehr als funktionellen Verbindungen, insbesondere solche mit drei oder mehr als drei phenolischen OH-Gruppen.
Geeignete Verzweiger sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4- hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan, 1 ,3,5-Tri- (4-hydroxyphenyl)-benzol, 1,1,1 -Tri-(4-hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)- phenylmethan, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan, 2,4-Bis-(4- hydroxyphenyl-isopropyl)-phenol, 2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methyl- phenol, 2-(4-Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Hexa-(4-(4-hydroxy- phenyl-isopropyl)-phenyl)-orthoterephthalsäureester, Tetra-(4-hydroxyphenyl)-methan, Tetra-(4-(4-hydroxyphenyl-isopropyl)-phenoxy)-methan und 1 ,4-Bis-(4',4"-dihydroxy- triphenyl)-methyl)-benzol sowie 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanur- chlorid und für einige Anwendungen sogar bevorzugt 3,3-Bis-(3-methyl-4-hydroxy- phenyl)-2-oxo-2,3-dihydroindol.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt 0,01 Mol-% bis 2 Mol-%, bezogen wiederum auf Mole an jeweils eingesetzten Diphenolen.
Die Verzweiger können im Phasengrenzflächenverfahren entweder mit den Diphenolen und den Kettenabbrechem in der wässrig alkalischen Phase vorgelegt werden, oder in einem organischen Lösungsmittel gelöst zugegeben werden. Im Falle des Umeste- rungsverfahrens können die Verzweiger zusammen mit den Diphenolen eingesetzt werden.
Alle diese Maßnahmen zur Herstellung der thermoplastischen Polycarbonate sind dem Fachmann geläufig.
Die als Entformungsmittel verwendeten Verbindungen sind vorzugsweise Ester mehrwertiger Alkohole mit langkettigen Carbonsäuren, die nicht vollständig ver- estert wurden. Vorzugsweise Ester von gesättigten einwertigen Fettsäuren mit 16 bis 22 Kohlenstoffatomen mit Glycerin, Trimethylolpropan, Pentaerythrit oder ähnlichen mehrwertigen Alkoholen. Insbesondere Glycerinmonostearat, Glycerinmonopalmiat.
Solche gesättigten einwertigen Fettsäureester des Glycerins werden alleine oder als Mischungen mit zwei oder mehr Komponenten emgesetzt. Die gesättigten Monoester des Glycerins werden üblicherweise über die Umesterung von hydriertem tierischem oder pflanzlichem Öl mit Glycerin hergestellt. Obwohl das Reaktionsprodukt auch andere Ester als die Glycerinester enthalten kann, wird es als erfindungsgemäßes Entformungsmittel eingesetzt. Beispielsweise kann die Mischung kleine oder größere Anteile von Diglyceriden und Triglyceriden enthalten.
Das Optimum der Entformungsmittelmenge ist einerseits durch eine ausreichende entformende Wirkung, andererseits durch Belagsbildung auf dem Werkzeug bestimmt. Üblicherweise eingesetzte Konzentrationen liegen zwischen 50 bis 1000 ppm, vorteilhafter zwischen 100 und 500 ppm an Entformungsmittel.
Die erfindungsgemäßen speziellen Mischungen von Phosphorverbindungen enthalten eine Monophosphorverbindung C.l und eine Phosphorverbindung C.2.
Komponente C. 1 stellt eine Phosphorverbindung gemäß Formel (II) dar.
In der Formel bedeuten R1, R2 und R3 unabhängig voneinander d-Cs-Alkyl, vorzugsweise C1-C -Alkyl, C6-C 0-Aryl, vorzugsweise Phenyl oder Naphthyl, und/oder C7-C12-Aralkyl, vorzugsweise Phenyl-C]-C -alkyl und m 0 oder 1 und n 0 oder 1. Die erfindungsgemäß eingesetzten Phosphorverbindungen gemäß Komponente C.l sind generell bekannt (s. beispielsweise Ullmanns Enzyklopädie der technischen Chemie, Bd. 18, S. 301ff, 1979; Houben-Weyl, Methoden der Organischen Chemie, Bd. 12/1, S. 43; Beilstein, Bd. 6, S. 177). Bevorzugte Substituenten R1 bis R3 sind unabhängig voneinander Methyl, Butyl, Octyl, Phenyl, Kresyl, Cumyl und Naphthyl. Besonders bevorzugt sind Methyl, Ethyl, Butyl und gegebenenfalls durch Methyl oder Ethyl substituiertes Phenyl.
Phosphorverbindungen C.l der Formel (II) sind beispielhaft und vorzugsweise Tri- butylphosphat, Triphenylphosphat, Trikresylphosphat, Diphenylkresylphosphat, Diphenyloctylphosphat, Diphenyl-2-ethylkresylphosphat, Tri-(isopropylphenyl)- phosphat, Methylphosphonsäuredimethylester, Methylphosphonsäurediphenylester, Phenylphosphonsäurediethylester, Triphenylphosphinoxid und Trikresylphosphin- oxid.
Komponente C.2 stellt eine Phosphorverbindung der Formel (III) dar.
In der Formel bedeuten R4, R5, R6, R7 unabhängig voneinander -Cs-Alkyl, vorzugsweise d-Cj-Alkyl, Cs-Cö-Cycloalkyl, C6-C10-Aryl und oder C7-C12-Aralkyl, bevorzugt sind Phenyl, Naphthyl, Benzyl. Die aromatischen Grappen R4, R5, R6 und R7 können ihrerseits mit Alkylgruppen substituiert sein. Besonders bevorzugte Aryl- Reste sind Kresyl, Phenyl, Xylenyl, Propylphenyl oder Butylphenyl. X in der Formel (III) bedeutet einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen.
Dieser aromatische Rest leitet sich von den oben beschriebenen Diphenolen wie beispielhaft und vorzugsweise BPA, Resorcin oder Hydrochinon ab.
In der Formel (III) kann "1" unabhängig voneinander 0 oder 1 sein, vorzugsweise ist "1" gleich 1; "k" hat einen Wert von 1 bis 5, vorzugsweise 1 oder 2.
Die oligomeren Phosphorverbindung der Formel (III) sind vorzugsweise Reaktionsprodukte der Umsetzung von Gemischen aus Phenol mit Hydrochinon oder BPA oder insbesondere Resorcin mit Phosphoroxitrichlorid oder Reaktionsprodukte aus der Umesterung von Phosphorsäuretriphenylester mit Hydrochmon oder BPA oder insbesondere Resorcin.
Als erfindungsgemäße Komponente C.2 können auch Mischungen verschiedener Phosphate eingesetzt werden. In diesem Fall hat "k" einen Durchschnittswert von 1 bis 5, vorzugsweise 1 oder 2.
Die erfindungsgemäßen Polymermischungen enthalten eine Mischung aus C.l und
C.2. Die Mischung besteht im allgemeinen aus 10 bis 90 Gew.-% der Komponente C.l und 90 bis 10 Gew.-% der Komponente C.2 (jeweils bezogen auf die Gesamtmenge an Phosphorverbindungen). Besonders günstige Eigenschaften werden mit Mischungen erzielt, die aus 12 bis 50 Gew.-%, insbesondere 14 bis 40 Gew.-%, ganz besonders bevorzugt 15 bis 40 Gew.-% der Komponente C.l und 88 bis 50
Gew.-%, insbesondere 86 bis 60 Gew.-%, ganz besonders bevorzugt 85 bis 60 Gew.-% der Komponente C.2 (jeweils bezogen auf die Gesamtmenge an Phosphorverbindungen) bestehen.
Die erfindungsgemäßen Polymermischungen enthalten vorzugsweise 0,01 bis
0,1 Gew-% an Entformungsmittel und 0,002 - 0,1 Gew-% der erfindungsgemäßen Mischung von Phosphorverbindungen. Besonders bevorzugt sind 0,01 - 0,05 Gew-% an Entformungsmittel und 0,005 bis 0,02 Gew-% der erfindungsgemäßen Mischung von Phosphorverbindungen.
Der Zusatz der Entformungsmittel und der oligomeren Phosphorverbindungen zu den thermoplastischen Polymergemischen erfolgt beispielhaft und vorzugsweise, indem man sie nach der Herstellung und während der Aufarbeitung der Polycarbonate, z.B. durch Zugabe zu der Polycarbonat-Polymerlösung, oder einer Schmelze der tliermoplastischen Polymergemische zudosiert. Weiterhin ist es auch möglich die Komponenten unabhängig voneinanderer in verschiedenen Arbeitsschritten zuzu- dosieren, z.B. eine der Komponenten während der Aufarbeitung der Polymerlösung und die andere(n) Komponte(n) in der Schmelze, solange gewährleistet ist, dass alle Komponenten bei der Herstellung der Endprodukte (Formkörper) enthalten sind.
Den erfindungsgemäß thermoplastischen Polymermischungen können weiterhin für
Polycarbonate übliche Zusätze in den bekannten Mengen enthalten, wie beispielhaft und vorzugsweise Stabilisatoren gegen UV-Strahlung, Flammschutzmittel, Farbstoffe, Füllstoffe, Schaummittel, optische Aufheller und Antistatika. Bei optischen Anwendungen werden bevorzugt solche Komponenten genommen, die die Transparenz des Materials nicht negativ beeinflussen.
Die erfindungsgemäßen Polymergemische werden in der für Polycarbonate bekannten Weise zur Herstellung von Formkörpem, vorzugsweise optischen Medien, insbesondere beschriebenen oder einmal- oder mehrfach beschreibbaren optischen Medien, wie bevorzugt optische Datenträger, besonders bevorzugt Compact Discs und DVD's verwendet. Die beschreibbaren Schichten bestehen dabei insbesondere aus Farbstoffen oder metallischen Schichten, die ihrerseits als Aufzeiclmungsprinzip den Wechsel vom amorphen in den kristallinen Zustand benutzen oder magnetische Eigenschaften besitzen. Diese Herstellung der optischen Medien erfolgt vorzugsweise aus den fertig hergestellten, erfindungsgemäßen Polymergemischen, die beispielsweise als Granulat anfallen. Die Herstellung der optischen Medien kann aber auch durch Einarbeitung der Komponenten zu reinen oder handelsüblichen Polycarbonaten und/oder zu den bei der Herstellung von Foimkörpern aus Polycarbonaten üblichen Zusätzen erfolgen.
Ein weiterer Gegenstand der Erfindung sind demnach Formkörper, wie insbesondere optische Datenträger, bevorzugt Compact Discs und DVD's die aus den erfindungsgemäßen thermoplastischen Polymergemischen erhältlich sind.
Die erfindungsgemäßen thermoplastischen Polymergemische haben den Vorteil, dass sie eine bessere Thermostabilität bei der Herstellung von Formkörpern besitzen und die erhaltenen Endprodukte (Foπnkörper) leicht von den Herstellungswerkzeugen getrennt werden können und keine Verunreinigungen auf den Werkzeugen hinter- lassen.
Die nachfolgende Beispiele dienen zur Erläuterung der Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt.
Beispiele:
Folgende Mischungen wurden hergestellt:
Beispiel 1 bis 6
Entsprechend der untenstehenden Tabelle werden x Gewichtsanteile Polycarbonat- granulat aus BPA-PC mit tert.-Butylphenol-Endgrappen und einer mittleren Lösungsviskosität von 1,195 (gemessen in Methylenchlorid bei 25°C und einer Konzentrationvon 0,5 g in 100 ml Methylenchlorid) mit y Gewichtsanteilen Glycerinmonostearat und z Gewichtsanteilen Phosphorverbindung in einem geschlossenen Behälter intensiv durchmischt. Anschließend wird die Mischung auf einem Zwei-Schnecken-Kneter des Typs Werner Pfleiderer ZSK 53 bei einer Massetemperatur von ca. 240°C compoundiert.
Tabelle 1
Als Glycerinmonostearat wird das Produkt Loxiol EP 129 der Henkel KgaA eingesetzt. Als Oligophosphat wird das Produkt ADK Stab PFR von Asahi
Denka/Tokyo eingesetzt. Trioktylphosphat und Triphenylphosphat stammen von der Bayer AG Leverkusen.
Anschließend werden zur Messung der Produktstabilität CDs auf einer CD- Spritzgießmaschine des Typs Netstal Discjet 600 CD-Rohlinge aus den oben be- schriebenen Materialien hergestellt. Die CDs besitzen eine Dicke von 1,2 mm und einen Außendurchmesser von 120 mm. Die Produktstabilität wird dabei unter unterschiedlichen Maschinenbedingungen, im folgenden als Einstellung 1 bis 4 bezeichnet, geprüft:
Einstellung 1 :
Zylindertemperaturen (Einzug/Kompression/ZylinderkopfTDüse) 315 / 320 / 320 / 320°C; maximale Einspritzgeschwindigkeit: 130 mm/sec; Werkzeug (Vorlauftemperatur): 55 °C; Zykluszeit: 4,6 sec
Einstellung 2:
Zylindertemperaturen (Einzug/Kompression/Zylinderkopf Düse) 315 / 340 / 350 / 350°C; maximale Einspritzgeschwindigkeit: 110 mm/sec; Werkzeug (Vorlauftemperatur): 55 °C; Zykluszeit: 4,9 sec
Einstellung 3:
Zylindertemperaturen (Einzug/Kompression/Zylinderkopf Düse) 315 / 360 / 380 / 380°C; maximale Einspritzgeschwindigkeit: 100 mm/sec; Werkzeug (Vorlauftemperatur): 55 °C; Zykluszeit: 5,5 sec
Einstellung 4: entsprechend Einstellung 2, wobei jedoch der Zyklus durch einen 5-minütigen Maschinenstopp unterbrochen wird. Die jeweils fünfte Platte nach Wiederanfahren der Spritzgießmaschine wird für die nachfolgenden Messungen genommen.
An den CD-Rohlingen wird anschließend der verbleibende Gehalt an Glycerinmonostearat und der Gehalt an phenolischen OH-Gruppen bestimmt. Es werden folgende Ergebnisse erhalten: Tabelle 2
(GMS-Konzentrationen in ppm in der CD nach Herstellung unter unterschiedlichen Bedingungen)
Weiterhin wird die Konzentration an phenolischem OH in der CD nach Herstellung unter unterschiedlichen Bedingungen gemessen
Tabelle 3 (Konzentration an phenolischem OH in ppm in der CD nach Herstellung unter unterschiedlichen Bedingungen
Beschreibung der Messmethoden im einzelnen:
Glycerinmonostearat
Das Glycerinmonostearat wird gaschromatographisch auf einer Kapillarsäule getrennt und mit einem Flammen-Ionisations-Detektor detektiert. Die Auswertung erfolgt nach der Methode des internen Standsrds. Die Bestimmungsgrenze liegt bei ca. 10 ppm. phenolisches OH
Das Polycarbonat wird in Dichlormethan gelöst und mit Titan (ιV)-chlorid unter Bildung eines orange-rot gefärbten Komplexes versetzt, dessen Extinktion bei 546 nm photometrisch bestimmt wird. Die Kalibrierung erfolgt mit BPA als exterem
Standard. Die Bestimmungsgrenze liegt bei ca. 20 ppm OH.
Weiterhin wird die Bildung von Belägen im Werkzeug untersucht. Dazu werden auf der CD- Spritzgießmaschine des Typs Netstal Discjet 600 mit einem Axxicon-CD- Werkzeug je 1000 teilgefüllte CD-Rohlinge hergestellt. Die ca. 80 %ige Teilfüllung der CDs wird durch die Reduzierung des Dosierweges mit Anpassung des Nachdruckes erreicht. Dabei liegen die Zylindertemperaturen in der Einzugszone bei 300°C, in der Kompressionszone bei 310°C, am Zylinderkopf und an der Düse herrschte eine Temperatur von 330°C. Die Zykluszeit liegt bei ca 5,5 Sekunden. Nach den 1000 Schuss wird die Oberfläche der Matrize und des Spiegels im Außenbereich, also dem Bereich, der nicht mit der Polycarbonatschmelze in Berührung kommt, visuell auf Belagsbildung untersucht. Es werden folgende Ergebnisse erhalten:
Tabelle 4

Claims

Patentansprüche
Thermoplastische Polymergemische enthaltend mindestens ein Polycarbonat und mindestens ein Entformungsmittel mit mindestens einer freien OH-Gruppe sowie mindestens eine Monophosphorverbindung und mindestens eine oligomere Phosphorverbindung.
2. Polymergemische gemäß Anspruch 1, enthaltend als Monophosphorverbindung eine Verbindung der Formel (II)
wobei in der Formel R , R und R unabhängig voneinander Cι-C8-Alkyl, C6-
C20-Aryl und/oder C7-C12-Aralkyl und m 0 oder 1 und n 0 oder 1 bedeuten;
und als oligomere Phosphorverbindung eine Verbindung der Formel (III)
wobei in der Formel R4, R5, R6, R7 unabhängig voneinander CrCg-Alkyl, C5- Cö-Cycloalkyl, C6-C10-Aryl und oder C7-C12-Aralkyl und k 1 bis 5 bedeuten.
3. Polymergemische gemäß Anspruch 1, enthaltend mindestens eine Verbindung aus der Gruppe Tributylphosphat, Triphenylphosphat, Trikresylphosphat, Diphenylkresylphosphat, Diphenyloctylphosphat, Diphenyl-2-ethylkresyl- phosphat, Tri-(isopropylphenyl)-phosphat, Methylphosphonsäuredimethyl- ester, Methylphosphonsäurediphenylester, Phenylphosphonsäurediethylester,
Triphenylphosphinoxid und Trikresylphosphinoxid und mindestens eine oligomere Phosphorverbindung, wobei die, oligomere Phosphorverbindung ein Reaktionsprodukt der Umsetzung von Gemischen aus Phenol mit Resorcin, Hydrochinon oder BPA mit Phosphoroxitrichlorid oder aus der Umesterang von Phosphorsäuretriphenylester mit Resorcm, Hydrochinon oder BPA ist.
4. Polymergemische gemäß Ansprach 1, enthaltend eine Mischung von Monophosphor-/Phosphorverbindungen wobei die Mischung aus 10 bis 90 Gew.-% Monophosphorverbindung der Formel (II) und 90 bis 10 Gew.-%
Phosphorverbindung der Formel (III), jeweils bezogen auf die Gesamtmenge an Phosphorverbindungen, besteht.
5. Polymergemische gemäß Anspruch 1, enthaltend als Entfoimungsmittel Ester mehrwertiger Alkohole mit langkettigen, nicht vollständig veresterten,
Carbonsäuren.
6. Polymergemische gemäß Anspruch 1, enthaltend als Entformungsmittel die Ester von gesättigten einwertigen Fettsäuren mit 16 bis 22 Kohlenstoffatomen mit Glycerin, Trimethylolpropan, Pentaerythrit oder ähnlichen mehrwertigen
Alkoholen.
7. Polymergemische gemäß Ansprach 1, enthaltend 0,01 bis 0,1 Gew-% an Entformungsmittel und 0,002 - 0,1 Gew-% der erfindungsgemäßen Mischung von Phosphorverbindungen.
8. Verfahren zur Herstellung von Formkörpem, dadurch gekennzeichnet, dass Polymergemische gemäß einem der vorstehenden Ansprücheeingesetzt werden.
9. Formkörper hergestellt aus thermoplastischen Polymergemischen enthaltend mindestens ein Polycarbonat und mindestens ein Entformungsmittel mit mindestens einer freien OH-Gruppe sowie eine spezielle Mischung von Phosphorverbindungen.
10. Optische Datenträger hergestellt aus thermoplastischen Polymergemischen enthaltend mindestens ein Polycarbonat und mindestens ein Entformungsmittel mit mindestens einer freien OH-Gruppe sowie eine spezielle Mischung von Phosphorverbindungen.
11. Mischung enthaltend mindestens 10 bis 90 Gew.-% einer Verbindung der
Formel (II)
wobei in der Formel R1, R2 und R3 unabhängig voneinander Cι-C8-Alkyl, C6-
C2o-Aryl und/oder C7-Cι -Aralkyl
und m 0 oder 1 und n 0 oder 1 bedeuten;
und mindestens 90 bis 10 Gew.-% einer Verbindung der Formel (III)
wobei in der Formel R4, R5, R6, R7 unabhängig voneinander C_-C8-Alkyl, C5- C6-Cycloalkyl, C6-C10-Aryl und/oder C7-Cι2-Aralkyl und k 1 bis 5 bedeuten.
12. Verfahren zur Herstellung von Formkörpem, dadurch gekennzeichnet, dass eine Mischung wie in Ansprach 11 definiert eingesetzt wird.
13. Verwendung der Mischung wie in Ansprach 11 definiert zur Herstellung von thermoplastischen Polymeren und daraus herstellbaren Formkörpern.
14. Verwendung der Polymergemische wie in den vorhergehenden Ansprüchen definiert zur Herstellung von Formkörpem.
EP01919312A 2000-03-03 2001-02-20 Polymergemische mit phosphaten Withdrawn EP1263865A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10010428A DE10010428A1 (de) 2000-03-03 2000-03-03 Polymergemische mit Phosphaten
DE10010428 2000-03-03
PCT/EP2001/001872 WO2001064781A1 (de) 2000-03-03 2001-02-20 Polymergemische mit phosphaten

Publications (1)

Publication Number Publication Date
EP1263865A1 true EP1263865A1 (de) 2002-12-11

Family

ID=7633400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01919312A Withdrawn EP1263865A1 (de) 2000-03-03 2001-02-20 Polymergemische mit phosphaten

Country Status (9)

Country Link
US (1) US20030153657A1 (de)
EP (1) EP1263865A1 (de)
JP (1) JP2003525332A (de)
KR (1) KR20020079931A (de)
CN (1) CN1406265A (de)
AU (1) AU4645701A (de)
DE (1) DE10010428A1 (de)
HK (1) HK1054561A1 (de)
WO (1) WO2001064781A1 (de)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1007996B (de) * 1955-03-26 1957-05-09 Bayer Ag Verfahren zur Herstellung thermoplastischer Kunststoffe
US2991273A (en) * 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) * 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) * 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US2999835A (en) * 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US3879348A (en) * 1970-12-22 1975-04-22 Bayer Ag Saponification-resistant polycarbonates
JPS62181355A (ja) * 1986-02-06 1987-08-08 Idemitsu Petrochem Co Ltd ポリカ−ボネ−ト樹脂組成物
US5227458A (en) * 1988-08-12 1993-07-13 Bayer Aktiengesellschaft Polycarbonate from dihydroxydiphenyl cycloalkane
NO170326C (no) * 1988-08-12 1992-10-07 Bayer Ag Dihydroksydifenylcykloalkaner
FR2713648B1 (fr) * 1993-12-15 1996-03-01 Rhone Poulenc Chimie Composition stabilisante pour polymère chloré comportant des béta-dicétones.
DE19713509A1 (de) * 1997-04-01 1998-10-08 Bayer Ag Pfropfpolymerisat-Formmassen mit reduzierter Belagsbildung
DE19713508A1 (de) * 1997-04-01 1998-10-08 Bayer Ag Polycarbonat/Pfropfpolymerisat-Formmassen mit reduzierter Belagsbildung
DE19734667A1 (de) * 1997-08-11 1999-02-18 Bayer Ag Flammwidrige, verstärkte Polycarbonat-ABS-Formmassen
DE19801198A1 (de) * 1998-01-15 1999-07-22 Bayer Ag Flammwidrige Polycarbonat-ABS-Formmassen
SG72917A1 (en) * 1998-01-28 2000-05-23 Gen Electric Flame retardant polycarbonate resin/abs graft copolymer blends
DE19859050A1 (de) * 1998-12-21 2000-06-29 Bayer Ag Neue Polymergemische mit Entformungsmitteln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0164781A1 *

Also Published As

Publication number Publication date
DE10010428A1 (de) 2001-09-06
WO2001064781A1 (de) 2001-09-07
HK1054561A1 (zh) 2003-12-05
CN1406265A (zh) 2003-03-26
US20030153657A1 (en) 2003-08-14
KR20020079931A (ko) 2002-10-19
JP2003525332A (ja) 2003-08-26
AU4645701A (en) 2001-09-12

Similar Documents

Publication Publication Date Title
EP1169386B1 (de) Flammwidrige thermoplastische formmasse
DE3301963C2 (de)
DE2620257C3 (de) Thermoplastische Polycarbonat-Formmassen mit verbesserter Entformbarkeit
DE19732090C1 (de) Polycarbonatformmassen, Verfahren zu ihrer Herstellung und ihre Verwendung als Beschichtungen in coextrudierten Platten
DE2729485C2 (de) Thermoplastische Preßmasse
EP1836234B1 (de) Polycarbonate mit guter benetzbarkeit
DE19925125A1 (de) Polycarbonatformmassen zur Herstellung von Artikeln mit verminderter Staubanlagerung
EP1379583B1 (de) Neue polymergemische
DE2507748C2 (de) Thermoplastische Polycarbonat- Formmassen mit verbesserter Entformbarkeit
DE19954313A1 (de) Polycarbonatformmassen
EP0531861B1 (de) Flammwidrige Polycarbonatformmassen
WO2000036002A1 (de) Röntgenkontrastierbare kunststofformmassen
EP1141112B1 (de) Neue polymergemische mit entformungsmitteln
WO2001064781A1 (de) Polymergemische mit phosphaten
EP0783020B1 (de) Verwendung von Carbonaten als Entformungsmittel für thermoplastische Polycarbonate
WO2000073377A1 (de) Polycarbonatformmassen mit guter entformung und daraus hergestellte formkörper und halbzeuge mit guten gleiteigenschaften
DE102004061754A1 (de) Substratmaterialien für transparente Spritzgussteile
EP0718367A2 (de) Stabilisierte Polycarbonate
EP1200517A1 (de) Polycarbonatformmassen mit guter entformung und daraus hergestellte formkörper und halbzeuge
WO2002074848A1 (de) Verwendung von zwitterionischen verbindungen als entformungsmittel in thermoplasten
EP0991710A1 (de) Verwendung von saccharin zur stabilisierung von thermoplastischen, aromatischen polycarbonaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030717

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040227