EP1260780A1 - Drying plant and method for drying wood - Google Patents

Drying plant and method for drying wood Download PDF

Info

Publication number
EP1260780A1
EP1260780A1 EP00975053A EP00975053A EP1260780A1 EP 1260780 A1 EP1260780 A1 EP 1260780A1 EP 00975053 A EP00975053 A EP 00975053A EP 00975053 A EP00975053 A EP 00975053A EP 1260780 A1 EP1260780 A1 EP 1260780A1
Authority
EP
European Patent Office
Prior art keywords
drying
drying chamber
air
furnace
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00975053A
Other languages
German (de)
French (fr)
Inventor
Viktor Georgievich Di Skrotsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skrotskaya Olga Panteleimonovna HF
Original Assignee
Skrotskaya Olga Panteleimonovna HF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skrotskaya Olga Panteleimonovna HF filed Critical Skrotskaya Olga Panteleimonovna HF
Publication of EP1260780A1 publication Critical patent/EP1260780A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/06Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/001Drying-air generating units, e.g. movable, independent of drying enclosure
    • F26B21/002Drying-air generating units, e.g. movable, independent of drying enclosure heating the drying air indirectly, i.e. using a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • F26B23/028Heating arrangements using combustion heating using solid fuel; burning the dried product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • F26B25/006Separating volatiles, e.g. recovering solvents from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • F26B2210/16Wood, e.g. lumber, timber

Definitions

  • the invention relates to drying equipment and can be used in timber industry, woodworking and other branches of industry, whenever parameters and procedures necessary to dry materials as wood are used.
  • Drying plants are known from prior art that include a batch-operating drying chamber and a furnace located near it, in which woodworking waste products may be and are primarily used as fuel to generate heat necessary for drying.
  • the furnace gases or a mixture of furnace gases with air are used in such systems (e.g., see, Spravochnik po sushke drevesiny (Wood-drying reference book) edited by E.S. Bogdanov, Moscow, Lesnaya promyshlennost, 1990, pp. 38-63, patent RU 2105941, and the following inventor's certificates: SU:380454, JP09223628, JP11094460, JP11201639, JP11241883).
  • the subject of the present invention is to ensure higher ecological safety and provide a highly productive, power-saving drying process, allowing to produce high quality dried materials.
  • the proposed drying plant is not expensive, simple in maintenance and does not require highly qualified personnel.
  • the drying plant can be installed either in existing premises or in the form of a separate premise, e.g. at lumbering sites.
  • the proposed drying method is as follows: stack the wood into the free internal space of the drying chamber, close the chamber, and supply a hot drying agent (the air heated in the pipes located in the furnace flue) into the chamber.
  • the woodworking waste products are the primary fuel used in the furnace.
  • the air is forcedly circulated from pipes located in the furnace flue to the lower part of the free internal space of the drying chamber, and from the upper part of the free internal space of the drying chamber into the pipes of the furnace flue, and backwards.
  • a portion of cooled and humidified air from the upper part of the free internal space of the drying chamber is forcedly supplied into the condensate cleaning unit, where it is mixed with the furnace gases, which are also forcedly supplied into the unit for purification; on their way to the cleaning unit, the furnace gases pass through a cavity located in the bottom of the drying chamber providing additional heating of the chamber.
  • Air circulation from the pipes of the furnace flue to the lower part of the free internal space of the drying chamber and from its upper part into the pipes located in the furnace flue, and forced supply of furnace gases through an exhaust pipe into the cavity in the bottom of the drying chamber and then into the condensate cleaning unit, as well as forced supply of a portion of cooled and humidified air from the upper part of the free internal space of the drying chamber into the condensate cleaning unit, is realized with the aid of three appropriate exhaust ventilators.
  • the pressure in the free internal space of the drying chamber falls slightly during drying. Humidity conditions can be adjusted by releasing vapor from the upper part of the free internal space of the drying chamber into atmosphere.
  • Temperature conditions can be regulated by adjusting air circulation intensity from the pipes of the furnace flue to the lower part of the free internal space of the drying chamber and from the upper part of the free internal space of the drying chamber into the pipes; temperature conditions can also be regulated by adjusting the temperature of the drying agent (air), which depends on burning intensity and the amount of fuel in the furnace.
  • the proposed method for drying wood may be realized as a drying plant consisting of a heat-insulated drying chamber with a free internal space, a furnace located close to the drying chamber, and facilities for supplying drying agent from the furnace into the drying chamber.
  • the bottom of drying chamber is designed with two cavities horizontally arranged and hermetically separated from each other. The partition between these cavities is made of diathermic material.
  • the lower cavity in the bottom of the drying chamber is designed in such a way as to provide forced feeding of furnace gases into the cavity from the exhaust pipe of the furnace flue.
  • the upper cavity located in the bottom of the drying chamber is designed in such a way as to provide supply of the air heated in the furnace flue into the cavity; in the upper cavity, the heated air is distributed among air distribution channels to interact with the material to be dried located in the free internal space of the drying chamber at specially arranged places. There is a possibility to provide forced feeding of a portion of the air cooled and humidified during drying from the upper part of the free internal space of the drying chamber into the furnace flue.
  • the drying plant is equipped with a condensate cleaning unit located outside the drying chamber; the furnace gases are forcedly fed into the unit after they pass through the lower cavity in the bottom of the drying chamber; also, a portion of cooled and humidified air is forcedly fed into the unit from the upper part of the free internal space of the drying chamber for mixing up with the furnace gases to form a condensate; after that, the purified air is exhausted into atmosphere.
  • a condensate cleaning unit located outside the drying chamber; the furnace gases are forcedly fed into the unit after they pass through the lower cavity in the bottom of the drying chamber; also, a portion of cooled and humidified air is forcedly fed into the unit from the upper part of the free internal space of the drying chamber for mixing up with the furnace gases to form a condensate; after that, the purified air is exhausted into atmosphere.
  • the facilities that forcedly supply furnace gases from the exhaust pipe of the furnace flue to the lower cavity in the bottom of the drying chamber and into the condensate cleaning unit after they pass through the lower cavity are designed in the form of the first exhaust ventilator (smoke exhauster) located outside the drying chamber and condensate cleaning unit and connected to the outlet of the lower cavity in the bottom of the drying chamber and to the inlet of the condensate cleaning unit.
  • first exhaust ventilator smoke exhauster
  • the facilities that supply a portion of cooled and humidified air from the upper part of the free internal space of the drying chamber into the condensate cleaning unit are designed in the form of the second exhaust ventilator located outside the drying chamber and the condensate cleaning unit and connected to both of them.
  • the facilities that bleed a portion of cooled and humidified air from the upper part of the free internal space of the drying chamber and supply it into the furnace flue are designed in the form of the third exhaust ventilator connected both to the drying chamber and the furnace flue so as to provide the closed air circulation from the upper part of the free internal space of the drying chamber into the furnace flue and from the furnace flue into the upper cavity in the bottom of the drying chamber and further into the free internal space of the drying chamber.
  • a casing of the third exhaust ventilator is connected to an outgoing pipe intended to discharge into atmosphere moisture which is accumulated on the internal surface of the casing as a result of condensation of cooled and humidified air bled by the third exhaust ventilator from the upper part of the free internal space of the drying chamber.
  • the outgoing pipe is equipped with a shutter to adjust humidity conditions of the drying process.
  • the furnace flue contains a pipe where the air is heated by the furnace gases and then fed into the drying chamber and backwards, thus supporting the process of drying.
  • the pipe is curved many times to increase the way and time for the air to go through the furnace flue, enabling maximum heat transfer from the furnace gases to the air in the pipe.
  • a shutter for adjusting temperature conditions of the drying process is installed in the channel, designed for forced air supplying from the upper free space of the drying chamber into the furnace flue.
  • the lower cavity in the bottom of the drying chamber is equipped with at least two partitions to provide labyrinth passing of furnace gases. It increases heat emission from the furnace gases to the walls of the lower cavity, and therefore, provides additional heating of the drying chamber.
  • the air distribution channels are perpendicular to the direction of the heated airflow fed into the upper cavity in the bottom of the drying chamber. These channels are located between and along the areas for placing the material to be dried; each air distribution channel is separated with a vertical partition from an adjacent area for placing the material to be dried.
  • the areas for placing the material to be dried are located on/above the upper surface of the diathermic partition between the upper and lower cavities in the bottom of the drying chamber so as to allow heated air to pass through the material to be dried while moving up to the upper part of the free internal space of the drying chamber.
  • the areas for placing the material to be dried are equipped with the vertical partitions to direct and distribute the heated air. First, the heated air passes the free space of the upper cavity in the bottom of the drying chamber through the air distribution channels, and then it is supplied to the material being dried.
  • the through holes In the upper surface of the upper cavity in the bottom of the drying chamber, close to one of its lateral walls, there are the through holes, which provide additional hot air supply from the upper cavity in the bottom of the drying chamber into the free internal space of the drying chamber.
  • the through holes are made near the ends of the piles.
  • the condensate cleaning unit is designed in the form of a hollow reservoir to ensure condensation on its internal walls, when cooled and humidified air fed from the upper part of the free internal space of the drying chamber gets mixed up with the furnace gases from the lower cavity in the bottom of the drying chamber.
  • the power capacity of the third exhaust ventilator is higher than the power capacity of the second exhaust ventilator.
  • the volume of the free internal space of the drying chamber determines the values and ratios of the power capacities of the second and third ventilators.
  • the drying plant consists of the heat-insulated drying chamber (1) with the free internal space (2), the furnace (3) located close to the drying chamber (1), the bottom of the drying chamber (4) that is designed with two cavities (5 and 6), horizontally arranged and separated from each other by the hermetic partition (7) made of diathermic material.
  • the lower cavity (5) in the bottom (4) of the drying chamber (1) is designed in such a way as to provide forced feeding of furnace gases into the cavity (5) from the exhaust pipe (8) of the furnace flue (9).
  • the upper cavity (6) in the bottom (4) of the drying chamber (1) is designed in such a way as to provide feeding of the air (drying agent) heated in the furnace flue (9) into said cavity (6); in the upper cavity (6), the heated air is distributed among the air distribution channels (10) to interact with the material to be dried located in the free internal space of the drying chamber (1).
  • the air drying agent
  • the heated air is distributed among the air distribution channels (10) to interact with the material to be dried located in the free internal space of the drying chamber (1).
  • the drying plant is equipped with the condensate cleaning unit (11) located outside the drying chamber (1); furnace gases are forcedly fed into the cleaning unit (11) from the exhaust pipe (8) of the furnace flue (9) after they pass through the lower cavity (5) in the bottom (4) of the drying chamber (1); also, a portion of the air cooled and humidified during drying is forcedly fed into the cleaning unit (11) from the upper part of the free internal space of the drying chamber (1) for mixing up with the furnace gases to form a condensate; subsequently, purified air is exhausted into atmosphere.
  • the facilities that forcedly supply furnace gases from the exhaust pipe (8) of the furnace flue (9) into the lower cavity (5) in the bottom of the drying chamber (1) and into the condensate cleaning unit (11) after they pass through the lower cavity (5), are designed in the form of the first exhaust ventilator (12) located outside the drying chamber (1) and condensate cleaning unit (11), and connected to the outlet (13) of the lower cavity (5) in the bottom (4) of the drying chamber (1) and to the inlet (14) of the condensate cleaning unit (11).
  • the facilities that supply a portion of cooled and humidified air from the upper part of the free internal space (2) of the drying chamber (1) into the condensate cleaning unit (11) are designed in the form of the second exhaust ventilator (15) located outside the drying chamber (1) and the condensate cleaning unit (11) and connected to both of them.
  • the facilities that bleed a portion of cooled and humidified air from the upper part of the free internal space (2) of the drying chamber (1) and supply it into the furnace flue (9) are designed in the form of the third exhaust ventilator (16) connected both to the drying chamber (1) and the furnace flue (9) so as to provide the closed air circulation from the upper part of the free internal space (2) of the drying chamber (1) into the furnace flue (9) and from the furnace flue (9) into the upper cavity (6) in the bottom (4) of the drying chamber (1) and further into the free internal space (2) of the drying chamber (1).
  • the casing (17) of the third exhaust ventilator (16) is connected to the outgoing pipe (18) intended to discharge into atmosphere moisture, which is accumulated on the internal surface of the casing (17) as a result of condensation of water vapor in the cooled air, bled by the third exhaust ventilator (16) from the upper part of the free internal space (2) of the drying chamber (1).
  • the outgoing pipe (18) is equipped with the shutter (19) to adjust humidity conditions of the drying process.
  • the furnace flue (9) contains the pipe (20), where the air is heated by the furnace gases and then fed into the drying chamber (1) and backwards.
  • the pipe (20) is curved many times to increase the way and time for the air to go through the furnace flue (9).
  • the shutter (22) for adjusting temperature conditions of the drying process is installed in the channel (21), designed for air supplying into the furnace flue (9) and further into the upper cavity (6) in the bottom (4) of the drying chamber (1).
  • the lower cavity (5) in the bottom (4) of the drying chamber (1) is equipped with at least two partitions (23) to provide labyrinth passing of furnace gases in the lower cavity (5) in the bottom (4) of the drying chamber (1).
  • the air distribution channels (10) are located between and along the areas for placing the material to be dried. Each air distribution channel (10) is separated with a vertical partition (25) from an adjacent area (24) for placing the material to be dried.
  • the areas (24) for placing the material to be dried are located on/above the upper surface of the diathermic partition, which separates the lower (5) and upper (6) cavities in the bottom (4) of the drying chamber (1) so as to allow heated air to pass through the material to be dried; the heated air is moving up to the upper part of the free internal space (2) of the drying chamber (1).
  • the areas for placing the material to be dried (24) are equipped with vertical partitions (26) to direct and distribute the heated air incoming from the pipe (20) of the furnace flue (9) via the inlet (27) of the upper cavity (6) in the bottom (4) of the drying chamber (1) through the air distribution channels (10).
  • Additional heated air supply to the material being dried is provided via the through holes (29) in the vertical partitions (25) that separate the areas for placing the material to be dried (24) from the air distribution channels (10).
  • These holes (29) have different diameters that increase along the way of heated air passage via the air distribution channels (10).
  • the through holes (30) In the upper surface of the upper cavity (6) in the bottom of the drying chamber, close to one of its lateral walls, there are the through holes (30), which provide additional hot air supply from the upper cavity (6) in the bottom (4) of the drying chamber (1) into the free internal space (2) of the drying chamber (1).
  • the piles In case the drying chamber (1) is used for drying saw-timber piles, the piles are located in the drying chamber (1) along the air distribution channels (10) so that the ends of the piles are opposite to said through holes (30).
  • the condensate cleaning unit (11) is designed in the form of a hollow reservoir to ensure condensation on its internal walls when cooled and humidified air fed from the upper part of the free internal space (2) of the drying chamber (1) gets mixed up with the furnace gases from the lower cavity (5) in the bottom (4) of the drying chamber (1).
  • the power capacity of the third exhaust ventilator (16) relates to the power capacity of the second exhaust ventilator (15) as 10:1.
  • the operation of the proposed drying plant may be demonstrated with an example of implementing the method of drying wood, namely, saw-timber stacked in piles.
  • the furnace (3) is put in operation by igniting the fuel (woodworking waste products) in the combustion chamber. Simultaneously, the first exhaust ventilator (12) is turned on. The saw-timber stacked in piles is placed in the specially arranged areas (24) in the free internal space (2) of the drying chamber (1). After the drying chamber (1) is loaded and its doors, equipped with appropriate seals, are hermetically locked, the second (15) and third (16) exhaust ventilators are turned on. At this time, the shutter (19) in the outgoing pipe (18), connected to the casing (17) of the third exhaust ventilator, (16) is shut. When the temperature and humidity in the drying chamber (1) reach required values the shutter (19) should be opened. Then, the drying plant runs in a set mode of operation. The only maintenance required is to load fuel in the combustion chamber and remove ashes in time.
  • the drying agent i.e. the air heated by the furnace gases in the pipes (20) located in the furnace flue (9) enters the upper cavity (6) in the bottom (4) of the drying chamber (1) through the channel (21), and then goes through the air distribution channels (10) to the areas (24), where it passes through the piles of the material to be dried, then the air goes up to the top of the drying chamber (1), where it is partially bled by the second (15) and the third (16) exhaust ventilators.
  • the proposed and described above location of the air distribution channels (10), relative to the areas for placing the material to be dried (24) and relative to the direction of heated air entering the upper cavity (6) in the bottom (4) of the drying chamber (1), ensures uniform distribution of heated air among the piles.
  • Uniform distribution of heated air is also insured by additional supply of heated air to the piles via the through holes (30) in the upper surface of the upper cavity (6) in the bottom (4) of the drying chamber (1) and/or via the through holes (29) in the vertical partitions (25), which separate the areas for placing the material to be dried (24) from the air distribution channels (10).
  • the air is circling in a closed circuit sequentially passing through the pipes (20) located in the furnace flue (9), the inlet part of the channel (21), the upper cavity (6) in the bottom (4) of the drying chamber (1) with its air distribution channels (10), then through the piles (in case saw-timber is dried) the air goes up to the upper part of the free internal space (2) of the drying chamber (1), and then again it passes through the channel (21) into the pipes (20) located in the furnace flue (9), etc.
  • convectional drying of wet materials with heated air is realized in the drying chamber (1). While moving up to the upper part of the free internal space (2) of the drying chamber (1) and contacting the material to be dried, heated air becomes wet and partially cools down, because some heat is consumed for moisture evaporation and wood heating.
  • a part of cooled and humidified air from the upper part of the free internal space (2) of the drying chamber (1) is fed by the second exhaust ventilator (15) to the condensate cleaning unit (11), where it gets mixed up with the furnace gases supplied to the unit (11) by the first exhaust ventilator (12).
  • the furnace gases pass through the lower cavity in the bottom (4) of the drying chamber (1), heating said chamber (1).
  • Humidity conditions of the drying process can be adjusted by opening up the shutter (19) in the outgoing pipe (18), through which the condensate, forming on the internal surface of the casing of the third exhaust ventilator (16), when cooled and humidified air passes through the ventilator (16) from the upper part of the free internal space (2) of the drying chamber (1), is discharged into atmosphere.
  • Temperature conditions of the drying process can be regulated by adjusting the amount of heated air supply from the pipes (20) located in the furnace flue (9) to the drying chamber, temperature conditions can also be regulated by adjusting the temperature of heated air that depends on the intensity of fuel burning in the furnace (3).
  • the proposed drying plant and wood-drying method ensure a highly productive, cost-effective and nonpolluting drying process.
  • the heated air moves from the bottom to the top of the drying chamber (1), thus ensuring maximum heat transfer to the material being dried without any loss.
  • Such air-moving does not require any additional power-consuming devices, since the heated air is lighter in weight than the cold air, and the air humidified during elevation is lighter in weight than the dry air at the same temperature.
  • Supplying heated air to the material being dried through the proposed and described air distribution channels (10) of the upper cavity (6) in the bottom (4) of the drying chamber (1) provides the uniform distribution of heated air among the material being dried (especially, in case saw-timber is being dried) located in the specially arranged areas (24).

Abstract

The invention relates to drying equipment and can be used in wood and wood treatment industries, etc., whenever parameters and procedures necessary to dry materials such as wood are used. The invention allows the drying process to achieve a higher degree of environmental protection, a larger product output and power saving features on the account of the following design of the plant: the drying chamber (1) which contains the material to be dried includes a bottom (4) which has two cavities (5,6); hot combustion products are injected into one of these cavities (5) from the flue pipe (9) of the furnace (3) which is used to burn wood waste; hot air is supplied into the other cavity (6), whereby said air is heated in pipes which are located in the flue (9), and is used as a drying agent. The hot drying agent is supplied from the cavity (6) in the bottom and circulates through air distribution channels in the lower part of the drying chamber (1) where it passes through the material to be dried and rises in the top portion of the internal open space of the drying chamber (1). From that point, one part of the drying agent is fed into a closed circuit in the flue (9) of the furnace and is heated therein, and the other part of said drying agent is directed into a condensate cleaning unit (11) where it is mixed with furnace gases and purifies these gases by condensation.

Description

Technical Field
The invention relates to drying equipment and can be used in timber industry, woodworking and other branches of industry, whenever parameters and procedures necessary to dry materials as wood are used.
Prior Art
Drying plants are known from prior art that include a batch-operating drying chamber and a furnace located near it, in which woodworking waste products may be and are primarily used as fuel to generate heat necessary for drying. Usually, the furnace gases or a mixture of furnace gases with air are used in such systems (e.g., see, Spravochnik po sushke drevesiny (Wood-drying reference book) edited by E.S. Bogdanov, Moscow, Lesnaya promyshlennost, 1990, pp. 38-63, patent RU 2105941, and the following inventor's certificates: SU:380454, JP09223628, JP11094460, JP11201639, JP11241883). While using those systems, accompanying problems inevitably appear due to the following facts. Gaseous combustion products of high-temperature wood burning consist largely of CO2, H2O and nitrogen oxides NOx. The situation becomes much more complicated when an incomplete fuel combustion takes place, because in this case the combustion products are fouled not only with soot (i.e., unburned carbon particles), but also with dry distillation products as well, consisting of CO and a number of hydrocarbons, which are usually chemically active, smell specifically, have relatively low temperatures of boiling, etc. Furthermore, there is a risk of environmental pollution due to a possible formation of dioxins and furans as a result of condensation reactions, when gaseous products of wood burning are cooled with the presence of even minimal amounts of chlorine (although furnace ashes do not contain these products).
As a result, to ensure ecological safety of the drying plants and to produce high-quality dry wood materials, considerable expenses are required to purify combustion products and drying agents. Besides, special devices are required to provide necessary drying conditions (e.g., different humidifiers or steam generators are used to maintain the necessary level of humidity), resulting in a sophisticated design, higher prices and complicated maintenance. Nevertheless, neither the measures taken nor considerable expenses can guarantee either necessary ecological safety or high quality of dried materials.
Specification
The subject of the present invention is to ensure higher ecological safety and provide a highly productive, power-saving drying process, allowing to produce high quality dried materials. The proposed drying plant is not expensive, simple in maintenance and does not require highly qualified personnel. The drying plant can be installed either in existing premises or in the form of a separate premise, e.g. at lumbering sites.
The proposed drying method is as follows: stack the wood into the free internal space of the drying chamber, close the chamber, and supply a hot drying agent (the air heated in the pipes located in the furnace flue) into the chamber. The woodworking waste products are the primary fuel used in the furnace. The air is forcedly circulated from pipes located in the furnace flue to the lower part of the free internal space of the drying chamber, and from the upper part of the free internal space of the drying chamber into the pipes of the furnace flue, and backwards. During drying, a portion of cooled and humidified air from the upper part of the free internal space of the drying chamber is forcedly supplied into the condensate cleaning unit, where it is mixed with the furnace gases, which are also forcedly supplied into the unit for purification; on their way to the cleaning unit, the furnace gases pass through a cavity located in the bottom of the drying chamber providing additional heating of the chamber. Air circulation from the pipes of the furnace flue to the lower part of the free internal space of the drying chamber and from its upper part into the pipes located in the furnace flue, and forced supply of furnace gases through an exhaust pipe into the cavity in the bottom of the drying chamber and then into the condensate cleaning unit, as well as forced supply of a portion of cooled and humidified air from the upper part of the free internal space of the drying chamber into the condensate cleaning unit, is realized with the aid of three appropriate exhaust ventilators. The pressure in the free internal space of the drying chamber falls slightly during drying. Humidity conditions can be adjusted by releasing vapor from the upper part of the free internal space of the drying chamber into atmosphere.
Temperature conditions can be regulated by adjusting air circulation intensity from the pipes of the furnace flue to the lower part of the free internal space of the drying chamber and from the upper part of the free internal space of the drying chamber into the pipes; temperature conditions can also be regulated by adjusting the temperature of the drying agent (air), which depends on burning intensity and the amount of fuel in the furnace.
The proposed method for drying wood may be realized as a drying plant consisting of a heat-insulated drying chamber with a free internal space, a furnace located close to the drying chamber, and facilities for supplying drying agent from the furnace into the drying chamber. The bottom of drying chamber is designed with two cavities horizontally arranged and hermetically separated from each other. The partition between these cavities is made of diathermic material. The lower cavity in the bottom of the drying chamber is designed in such a way as to provide forced feeding of furnace gases into the cavity from the exhaust pipe of the furnace flue. The upper cavity located in the bottom of the drying chamber is designed in such a way as to provide supply of the air heated in the furnace flue into the cavity; in the upper cavity, the heated air is distributed among air distribution channels to interact with the material to be dried located in the free internal space of the drying chamber at specially arranged places. There is a possibility to provide forced feeding of a portion of the air cooled and humidified during drying from the upper part of the free internal space of the drying chamber into the furnace flue. Besides, the drying plant is equipped with a condensate cleaning unit located outside the drying chamber; the furnace gases are forcedly fed into the unit after they pass through the lower cavity in the bottom of the drying chamber; also, a portion of cooled and humidified air is forcedly fed into the unit from the upper part of the free internal space of the drying chamber for mixing up with the furnace gases to form a condensate; after that, the purified air is exhausted into atmosphere.
The facilities that forcedly supply furnace gases from the exhaust pipe of the furnace flue to the lower cavity in the bottom of the drying chamber and into the condensate cleaning unit after they pass through the lower cavity, are designed in the form of the first exhaust ventilator (smoke exhauster) located outside the drying chamber and condensate cleaning unit and connected to the outlet of the lower cavity in the bottom of the drying chamber and to the inlet of the condensate cleaning unit.
The facilities that supply a portion of cooled and humidified air from the upper part of the free internal space of the drying chamber into the condensate cleaning unit are designed in the form of the second exhaust ventilator located outside the drying chamber and the condensate cleaning unit and connected to both of them.
The facilities that bleed a portion of cooled and humidified air from the upper part of the free internal space of the drying chamber and supply it into the furnace flue are designed in the form of the third exhaust ventilator connected both to the drying chamber and the furnace flue so as to provide the closed air circulation from the upper part of the free internal space of the drying chamber into the furnace flue and from the furnace flue into the upper cavity in the bottom of the drying chamber and further into the free internal space of the drying chamber.
A casing of the third exhaust ventilator is connected to an outgoing pipe intended to discharge into atmosphere moisture which is accumulated on the internal surface of the casing as a result of condensation of cooled and humidified air bled by the third exhaust ventilator from the upper part of the free internal space of the drying chamber. The outgoing pipe is equipped with a shutter to adjust humidity conditions of the drying process. The furnace flue contains a pipe where the air is heated by the furnace gases and then fed into the drying chamber and backwards, thus supporting the process of drying. The pipe is curved many times to increase the way and time for the air to go through the furnace flue, enabling maximum heat transfer from the furnace gases to the air in the pipe.
A shutter for adjusting temperature conditions of the drying process is installed in the channel, designed for forced air supplying from the upper free space of the drying chamber into the furnace flue.
The lower cavity in the bottom of the drying chamber is equipped with at least two partitions to provide labyrinth passing of furnace gases. It increases heat emission from the furnace gases to the walls of the lower cavity, and therefore, provides additional heating of the drying chamber.
The air distribution channels are perpendicular to the direction of the heated airflow fed into the upper cavity in the bottom of the drying chamber. These channels are located between and along the areas for placing the material to be dried; each air distribution channel is separated with a vertical partition from an adjacent area for placing the material to be dried.
The areas for placing the material to be dried are located on/above the upper surface of the diathermic partition between the upper and lower cavities in the bottom of the drying chamber so as to allow heated air to pass through the material to be dried while moving up to the upper part of the free internal space of the drying chamber. The areas for placing the material to be dried are equipped with the vertical partitions to direct and distribute the heated air. First, the heated air passes the free space of the upper cavity in the bottom of the drying chamber through the air distribution channels, and then it is supplied to the material being dried.
There is an additional possibility to supply heated air to the material being dried via the through holes in the vertical partitions that separate the areas for placing the material to be dried from the air distribution channels. These holes have different diameters that increase along the way of heated air passage via the air distribution channels. These holes are equipped with shutters.
In the upper surface of the upper cavity in the bottom of the drying chamber, close to one of its lateral walls, there are the through holes, which provide additional hot air supply from the upper cavity in the bottom of the drying chamber into the free internal space of the drying chamber. In case the drying chamber is used for drying saw-timber piles, which is located along the air distribution channels, the through holes are made near the ends of the piles.
When the drying chamber is not completely loaded, it is possible to close the air distribution channel adjacent to the area for placing the material to be dried, which contains no material.
The condensate cleaning unit is designed in the form of a hollow reservoir to ensure condensation on its internal walls, when cooled and humidified air fed from the upper part of the free internal space of the drying chamber gets mixed up with the furnace gases from the lower cavity in the bottom of the drying chamber.
The power capacity of the third exhaust ventilator is higher than the power capacity of the second exhaust ventilator. The volume of the free internal space of the drying chamber determines the values and ratios of the power capacities of the second and third ventilators.
Brief Description of Drawings
The design of the proposed drying plant is illustrated in the following figures:
  • In Fig. 1, a cross-section of the drying plant is given;
  • Fig. 2 gives an A-A section of Fig.1 (without furnace);
  • Fig. 3 gives a B-B section of Fig. 1 (without furnace);
  • Fig. 4 gives a C-C section of Fig. 1 (without furnace).
  • Description of Preferred Embodiment
    The drying plant consists of the heat-insulated drying chamber (1) with the free internal space (2), the furnace (3) located close to the drying chamber (1), the bottom of the drying chamber (4) that is designed with two cavities (5 and 6), horizontally arranged and separated from each other by the hermetic partition (7) made of diathermic material. The lower cavity (5) in the bottom (4) of the drying chamber (1) is designed in such a way as to provide forced feeding of furnace gases into the cavity (5) from the exhaust pipe (8) of the furnace flue (9). The upper cavity (6) in the bottom (4) of the drying chamber (1) is designed in such a way as to provide feeding of the air (drying agent) heated in the furnace flue (9) into said cavity (6); in the upper cavity (6), the heated air is distributed among the air distribution channels (10) to interact with the material to be dried located in the free internal space of the drying chamber (1). There is a possibility to provide forced feeding of a portion of the air, being cooled and humidified during drying, from the upper part of the drying chamber (1) into the furnace flue (9). The drying plant is equipped with the condensate cleaning unit (11) located outside the drying chamber (1); furnace gases are forcedly fed into the cleaning unit (11) from the exhaust pipe (8) of the furnace flue (9) after they pass through the lower cavity (5) in the bottom (4) of the drying chamber (1); also, a portion of the air cooled and humidified during drying is forcedly fed into the cleaning unit (11) from the upper part of the free internal space of the drying chamber (1) for mixing up with the furnace gases to form a condensate; subsequently, purified air is exhausted into atmosphere.
    The facilities that forcedly supply furnace gases from the exhaust pipe (8) of the furnace flue (9) into the lower cavity (5) in the bottom of the drying chamber (1) and into the condensate cleaning unit (11) after they pass through the lower cavity (5), are designed in the form of the first exhaust ventilator (12) located outside the drying chamber (1) and condensate cleaning unit (11), and connected to the outlet (13) of the lower cavity (5) in the bottom (4) of the drying chamber (1) and to the inlet (14) of the condensate cleaning unit (11).
    The facilities that supply a portion of cooled and humidified air from the upper part of the free internal space (2) of the drying chamber (1) into the condensate cleaning unit (11) are designed in the form of the second exhaust ventilator (15) located outside the drying chamber (1) and the condensate cleaning unit (11) and connected to both of them.
    The facilities that bleed a portion of cooled and humidified air from the upper part of the free internal space (2) of the drying chamber (1) and supply it into the furnace flue (9) are designed in the form of the third exhaust ventilator (16) connected both to the drying chamber (1) and the furnace flue (9) so as to provide the closed air circulation from the upper part of the free internal space (2) of the drying chamber (1) into the furnace flue (9) and from the furnace flue (9) into the upper cavity (6) in the bottom (4) of the drying chamber (1) and further into the free internal space (2) of the drying chamber (1). The casing (17) of the third exhaust ventilator (16) is connected to the outgoing pipe (18) intended to discharge into atmosphere moisture, which is accumulated on the internal surface of the casing (17) as a result of condensation of water vapor in the cooled air, bled by the third exhaust ventilator (16) from the upper part of the free internal space (2) of the drying chamber (1). The outgoing pipe (18) is equipped with the shutter (19) to adjust humidity conditions of the drying process. The furnace flue (9) contains the pipe (20), where the air is heated by the furnace gases and then fed into the drying chamber (1) and backwards. The pipe (20) is curved many times to increase the way and time for the air to go through the furnace flue (9).
    The shutter (22) for adjusting temperature conditions of the drying process is installed in the channel (21), designed for air supplying into the furnace flue (9) and further into the upper cavity (6) in the bottom (4) of the drying chamber (1).
    The lower cavity (5) in the bottom (4) of the drying chamber (1) is equipped with at least two partitions (23) to provide labyrinth passing of furnace gases in the lower cavity (5) in the bottom (4) of the drying chamber (1). The air distribution channels (10) are located between and along the areas for placing the material to be dried. Each air distribution channel (10) is separated with a vertical partition (25) from an adjacent area (24) for placing the material to be dried.
    The areas (24) for placing the material to be dried are located on/above the upper surface of the diathermic partition, which separates the lower (5) and upper (6) cavities in the bottom (4) of the drying chamber (1) so as to allow heated air to pass through the material to be dried; the heated air is moving up to the upper part of the free internal space (2) of the drying chamber (1).
    The areas for placing the material to be dried (24) are equipped with vertical partitions (26) to direct and distribute the heated air incoming from the pipe (20) of the furnace flue (9) via the inlet (27) of the upper cavity (6) in the bottom (4) of the drying chamber (1) through the air distribution channels (10). There is a possibility to supply the heated air to the material being dried located in the specially arranged areas (24) after it passes the air distribution channels (10) through the free space (28) of the upper cavity (6) in the bottom (4) of the drying chamber (1), which is adjacent to the ends of the areas for placing the material to be dried (24). Additional heated air supply to the material being dried is provided via the through holes (29) in the vertical partitions (25) that separate the areas for placing the material to be dried (24) from the air distribution channels (10). These holes (29) have different diameters that increase along the way of heated air passage via the air distribution channels (10). In the upper surface of the upper cavity (6) in the bottom of the drying chamber, close to one of its lateral walls, there are the through holes (30), which provide additional hot air supply from the upper cavity (6) in the bottom (4) of the drying chamber (1) into the free internal space (2) of the drying chamber (1). In case the drying chamber (1) is used for drying saw-timber piles, the piles are located in the drying chamber (1) along the air distribution channels (10) so that the ends of the piles are opposite to said through holes (30).
    When the drying chamber (1) is not completely loaded, it is possible to close the air distribution channel (10) adjacent to the area for placing the material to be dried, which contains no material.
    The condensate cleaning unit (11) is designed in the form of a hollow reservoir to ensure condensation on its internal walls when cooled and humidified air fed from the upper part of the free internal space (2) of the drying chamber (1) gets mixed up with the furnace gases from the lower cavity (5) in the bottom (4) of the drying chamber (1). The power capacity of the third exhaust ventilator (16) relates to the power capacity of the second exhaust ventilator (15) as 10:1.
    Industrial Application
    The operation of the proposed drying plant may be demonstrated with an example of implementing the method of drying wood, namely, saw-timber stacked in piles.
    The furnace (3) is put in operation by igniting the fuel (woodworking waste products) in the combustion chamber. Simultaneously, the first exhaust ventilator (12) is turned on. The saw-timber stacked in piles is placed in the specially arranged areas (24) in the free internal space (2) of the drying chamber (1). After the drying chamber (1) is loaded and its doors, equipped with appropriate seals, are hermetically locked, the second (15) and third (16) exhaust ventilators are turned on. At this time, the shutter (19) in the outgoing pipe (18), connected to the casing (17) of the third exhaust ventilator, (16) is shut. When the temperature and humidity in the drying chamber (1) reach required values the shutter (19) should be opened. Then, the drying plant runs in a set mode of operation. The only maintenance required is to load fuel in the combustion chamber and remove ashes in time.
    During the operation of the drying plant, the drying agent, i.e. the air heated by the furnace gases in the pipes (20) located in the furnace flue (9), enters the upper cavity (6) in the bottom (4) of the drying chamber (1) through the channel (21), and then goes through the air distribution channels (10) to the areas (24), where it passes through the piles of the material to be dried, then the air goes up to the top of the drying chamber (1), where it is partially bled by the second (15) and the third (16) exhaust ventilators. The proposed and described above location of the air distribution channels (10), relative to the areas for placing the material to be dried (24) and relative to the direction of heated air entering the upper cavity (6) in the bottom (4) of the drying chamber (1), ensures uniform distribution of heated air among the piles. Uniform distribution of heated air is also insured by additional supply of heated air to the piles via the through holes (30) in the upper surface of the upper cavity (6) in the bottom (4) of the drying chamber (1) and/or via the through holes (29) in the vertical partitions (25), which separate the areas for placing the material to be dried (24) from the air distribution channels (10).
    During the operation of the drying plant, due to the action of the third exhaust ventilator (16), the air is circling in a closed circuit sequentially passing through the pipes (20) located in the furnace flue (9), the inlet part of the channel (21), the upper cavity (6) in the bottom (4) of the drying chamber (1) with its air distribution channels (10), then through the piles (in case saw-timber is dried) the air goes up to the upper part of the free internal space (2) of the drying chamber (1), and then again it passes through the channel (21) into the pipes (20) located in the furnace flue (9), etc. Thus, convectional drying of wet materials with heated air is realized in the drying chamber (1). While moving up to the upper part of the free internal space (2) of the drying chamber (1) and contacting the material to be dried, heated air becomes wet and partially cools down, because some heat is consumed for moisture evaporation and wood heating.
    During drying, a part of cooled and humidified air from the upper part of the free internal space (2) of the drying chamber (1) is fed by the second exhaust ventilator (15) to the condensate cleaning unit (11), where it gets mixed up with the furnace gases supplied to the unit (11) by the first exhaust ventilator (12). On the way to the condensate cleaning unit (11) the furnace gases pass through the lower cavity in the bottom (4) of the drying chamber (1), heating said chamber (1).
    Humidity conditions of the drying process can be adjusted by opening up the shutter (19) in the outgoing pipe (18), through which the condensate, forming on the internal surface of the casing of the third exhaust ventilator (16), when cooled and humidified air passes through the ventilator (16) from the upper part of the free internal space (2) of the drying chamber (1), is discharged into atmosphere.
    Temperature conditions of the drying process can be regulated by adjusting the amount of heated air supply from the pipes (20) located in the furnace flue (9) to the drying chamber, temperature conditions can also be regulated by adjusting the temperature of heated air that depends on the intensity of fuel burning in the furnace (3).
    The proposed drying plant and wood-drying method ensure a highly productive, cost-effective and nonpolluting drying process.
    The heated air moves from the bottom to the top of the drying chamber (1), thus ensuring maximum heat transfer to the material being dried without any loss. Such air-moving (from the bottom to the top of the drying chamber (1)) does not require any additional power-consuming devices, since the heated air is lighter in weight than the cold air, and the air humidified during elevation is lighter in weight than the dry air at the same temperature. These properties of air provide natural airflow and lay the foundation of operation of the drying chamber (1) of the proposed drying plant.
    Designing the drying chamber (1) equipped with a lower cavity (5) in its bottom (4), which the furnace gases (smoke), formed during fuel burning in the combustion chamber (1) of the furnace (3), pass through, allows to use the warmth of the furnace gases for additional heating of the drying chamber (1), promoting a higher cost-effectiveness of the proposed drying plant. And subsequent condensate purification of cooled furnace gases ensures an increased environmental safety of the proposed drying plant, which allows to run it in any circumstances without environmental pollution, since there is virtually no discharge of harmful substances into atmosphere.
    Supplying heated air to the material being dried through the proposed and described air distribution channels (10) of the upper cavity (6) in the bottom (4) of the drying chamber (1) provides the uniform distribution of heated air among the material being dried (especially, in case saw-timber is being dried) located in the specially arranged areas (24).
    The foregoing allows one to claim that the above listed advantages of the proposed drying plant may be realized only by exploiting all its features as a whole, each feature has its own function, whereas taken as a whole they contribute solving the problem.

    Claims (25)

    1. A drying plant, comprising a heat-insulated drying chamber with an internal space, a furnace located near the drying chamber, facilities for supplying a drying agent from the furnace to the drying chamber, distinctive in that the bottom of the drying chamber is designed with two cavities horizontally arranged and separated from each other by a hermetic partition made of diathermic material, the lower cavity in the bottom of the drying chamber is designed for forced feeding of furnace gases into the lower cavity from an exhaust pipe of a furnace flue, the upper cavity in the bottom of the drying chamber is designed for feeding of the air heated in the furnace flue into the upper cavity; in the upper cavity, the heated air, used as a drying agent, is distributed among air distribution channels to interact with a material to be dried, located in specially arranged areas in the internal space of the drying chamber; besides that, a portion of air, cooled and humidified during drying, may be forcedly fed from the upper part of the drying chamber into the furnace flue, the plant is also equipped with a condensate cleaning unit located outside the drying chamber, the condensate cleaning unit is forcedly fed with furnace gases after they pass through the lower cavity in the bottom of the drying chamber, the condensate cleaning unit is also fed with a portion of air, cooled and humidified during drying, from the upper part of the internal space of the drying chamber for mixing up with furnace gases to form a condensate and for subsequent exhausting of purified air.
    2. The drying plant according to claim 1, wherein the facilities for forced feeding of furnace gases from an exhaust pipe of the furnace flue into the lower cavity of the bottom of the drying chamber and into the condensate cleaning unit after said gases pass through the lower cavity, are designed in a form of a first exhaust ventilator, located outside the drying chamber and outside the condensate cleaning unit and connected to an outlet of the lower cavity of the bottom of the drying chamber and to an inlet of the condensate cleaning unit.
    3. The drying plant according to any one of claims 1-2, wherein the facilities for supplying a portion of cooled and humidified air from the upper part of the internal space of the drying chamber to the condensate cleaning unit are designed in a form of a second exhaust ventilator, located outside the drying chamber and outside the condensate cleaning unit and connected to both the drying chamber and the condensate cleaning unit.
    4. The drying plant according to any preceding claim, wherein the facilities for bleeding a portion of cooled and humidified air from the upper part of the internal space of the drying chamber and supplying said air into the furnace flue are designed in a form of a third exhaust ventilator connected to both the drying chamber and the furnace flue so as to provide closed air circulation from the upper part of the internal space of the drying chamber into the furnace flue and from the furnace flue into the upper cavity of the bottom of the drying chamber and further into the internal space of the drying chamber.
    5. The drying plant according to claim 4, wherein a casing of the third exhaust ventilator is connected to an outgoing pipe, designed to discharge into atmosphere moisture, which is accumulated on the internal surface of the casing as a result of condensation of cooled and humidified air, bled by the third exhaust ventilator from the upper part of the internal space of the drying chamber.
    6. The drying plant according to claim 5, wherein the outgoing pipe is equipped with a shutter to adjust humidity conditions of drying.
    7. The drying plant according to any preceding claim, wherein the furnace flue contains a pipe, where the air is heated by furnace gases and fed into the drying chamber and backwards providing the process of drying.
    8. The drying plant according to claim 7, wherein said pipe, located in the furnace flue, is curved many times to increase the way and time for the air to go through the furnace flue.
    9. The drying plant according to any preceding claim, wherein the shutter for adjusting required and assigned temperature conditions of drying is installed in a channel, used for supplying hot air from the furnace flue to the upper cavity of the bottom of the drying chamber.
    10. The drying plant according to any preceding claim, wherein the lower cavity of the bottom of the drying chamber is equipped with at least two partitions to provide labyrinth passing of furnace gases in the lower cavity of the bottom of the drying chamber.
    11. The drying plant according to any preceding claim, wherein the air distribution channels are located perpendicular to a heated airflow, entering the upper cavity of the bottom of the drying chamber, between and along areas for placing a material to be dried, each of the air distribution channels is separated with a vertical partition from an adjacent area for placing a material to be dried.
    12. The drying plant according to any preceding claim, wherein the areas for placing a material to be dried are located on or above the upper surface of the diathermic partition, which separates the lower and upper cavities in the bottom of the drying chamber so as to allow heated air to pass through a material being dried when said air is moving up to the upper part of the internal space of the drying chamber, the areas for placing a material to be dried are equipped with vertical partitions to direct and distribute heated air, incoming from the inlet of the upper cavity of the bottom of the drying chamber, among the air distribution channels.
    13. The drying plant according to any preceding claim, wherein heated air reaches a material to be dried after passing in the air distribution channels through the free space of the upper cavity of the bottom of the drying chamber, which constrains areas for placing a material to be dried.
    14. The drying plant according to any preceding claim, wherein heated air can be additionally supplied to a material being dried via through holes in the vertical partitions, which separate areas for placing a material to be dried from air distribution channels.
    15. The drying plant according to claim 14, wherein the diameters of said through holes increase along the way of heated air passage via an air distribution channel.
    16. The drying plant according to any one of claims 14-15, wherein said through holes are equipped with shutters.
    17. The drying plant according to any preceding claim, wherein through holes for additional heated air supply from the upper cavity of the bottom of the drying chamber to the internal space of the drying chamber are designed in the upper surface of the upper cavity of the bottom of the drying chamber and near one of the walls of the drying chamber.
    18. The drying plant according to claim 17, wherein, in case of drying saw-timber piles, the piles are located in the drying chamber along the air distribution channels so that the ends of said piles are opposite to said through holes.
    19. The drying plant according to any preceding claim, wherein, in case of partial loading of the drying chamber, it is possible to close the air distribution channel adjacent to any area for placing a material to be dried, which contains no material.
    20. The drying plant according to any preceding claim, wherein the condensate cleaning unit is designed in a form of a hollow reservoir to make possible condensation on the internal walls of the condensate cleaning unit, while cooled and humidified air, fed from the upper part of the internal space of the drying chamber, is mixing up with the furnace gases, fed from the lower cavity of the bottom of the drying chamber.
    21. The drying plant according to any preceding claim, wherein the power capacity of the third exhaust ventilator is higher than the power capacity of the second exhaust ventilator.
    22. The wood drying method, consisting of stacking wood into the internal space of the drying chamber, closing the drying chamber, and supplying a hot drying agent to the drying chamber; a fuel is being burnt in a combustion chamber of a furnace located near the drying chamber, distinctive in that the air, heated in the pipes located in the furnace flue, is used as the drying agent; said air is forcedly circulated from pipes located in the furnace flue to the lower part of the internal space of the drying chamber, and from the upper part of the internal space of the drying chamber to the pipes of the furnace flue, and backwards; during drying, a portion of cooled and humidified air is forcedly supplied from the upper part of the internal space of the drying chamber into the condensate cleaning unit, where said portion of air is mixing up with the furnace gases, which are forcedly supplied to the condensate cleaning unit for purification; on the way to the condensate cleaning unit, the furnace gases pass through a cavity, designed in the bottom of the drying chamber, heating said bottom.
    23. The wood drying method according to claim 22, wherein the air circulation from the pipes of the furnace flue to the lower part of the internal space of the drying chamber, and from the upper part of the internal space of the drying chamber to the pipes located in the furnace flue, and forced supply of furnace gases from the furnace flue through an exhaust pipe to the cavity of the bottom of the drying chamber and then to the condensate cleaning unit, and also forced supply of a portion of cooled and humidified air from the upper part of the internal space of the drying chamber to the condensate cleaning unit, is realized with the aid of three appropriate exhaust ventilators providing gradual decrease of pressure in the internal space of the drying chamber during drying.
    24. The wood-drying method according to any one of claims 22-23, wherein humidity conditions of drying are adjusted by releasing vapor from the upper part of the internal space of the drying chamber into atmosphere.
    25. The wood drying method according to any one of claims 22-24, wherein temperature conditions of drying are regulated by adjusting the amount of heated air supply from the pipes located in the furnace flue to the lower part of the internal space of the drying chamber, and also by adjusting the temperature of heated air, which depends on the intensity of fuel combustion in the furnace and on the amount of fuel being burnt.
    EP00975053A 1999-10-27 2000-10-24 Drying plant and method for drying wood Withdrawn EP1260780A1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    RU99122270/06A RU2153640C1 (en) 1999-10-27 1999-10-27 Drying complex and method of wood drying
    RU99122270 1999-10-27
    PCT/RU2000/000419 WO2001031270A2 (en) 1999-10-27 2000-10-24 Drying plant and method for drying wood

    Publications (1)

    Publication Number Publication Date
    EP1260780A1 true EP1260780A1 (en) 2002-11-27

    Family

    ID=20226143

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00975053A Withdrawn EP1260780A1 (en) 1999-10-27 2000-10-24 Drying plant and method for drying wood

    Country Status (6)

    Country Link
    US (1) US6725566B1 (en)
    EP (1) EP1260780A1 (en)
    CA (1) CA2388584A1 (en)
    NO (1) NO20021989L (en)
    RU (1) RU2153640C1 (en)
    WO (1) WO2001031270A2 (en)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2902866A1 (en) * 2006-06-22 2007-12-28 Giat Ind Sa HOT GAS GENERATOR AND DRYING OR DEHYDRATION INSTALLATION USING SUCH A GENERATOR
    CN103968650A (en) * 2013-02-01 2014-08-06 昆山尚达智机械有限公司 Wood drying kiln
    CN105135833A (en) * 2015-08-25 2015-12-09 重庆市合川区环宇配件厂 Drying oven for automobile accessories
    CN106018055A (en) * 2016-06-27 2016-10-12 长沙开元仪器股份有限公司 Drying oven for protective gas

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2870154B1 (en) * 2004-05-13 2012-12-14 Bio 3D Applic BIO-THERMAL METHOD AND SYSTEM FOR STABILIZING LUMBER
    US7963048B2 (en) * 2005-05-23 2011-06-21 Pollard Levi A Dual path kiln
    US20070184196A1 (en) * 2006-02-03 2007-08-09 Ben Wallace Electromagnetic irradiation vacuum drying of solvents
    US20090249642A1 (en) * 2006-06-29 2009-10-08 Yasar Kocaefe Method of thermally treating wood
    NZ589612A (en) * 2008-04-30 2012-06-29 Marvin Lumber & Cedar Co Method and apparatus for steam heating with drying of solvents
    LT5565B (en) 2008-07-01 2009-04-27 Koretsky, Sergei Leonidovich Device for drying capillary porous materials by acoustic thermal method
    US8201501B2 (en) 2009-09-04 2012-06-19 Tinsley Douglas M Dual path kiln improvement
    RU2479807C2 (en) * 2010-05-27 2013-04-20 Глеб Викторович Жарков Woods drying method
    JP5634306B2 (en) * 2011-03-08 2014-12-03 独立行政法人森林総合研究所 Wood drying control system by nondestructive drying stress measurement of wood
    CN107014191B (en) * 2015-09-09 2019-04-05 普定县亮峰茶业有限责任公司 The tea drying device and its working method of adjustable speed
    CN105043068B (en) * 2015-09-09 2017-03-29 汕尾市金瑞丰生态农业有限公司 A kind of air pressure drives the tea drying device of lifting
    CN105066646B (en) * 2015-09-09 2017-08-08 金华市四维空间汽车用品有限公司 A kind of shock-absorbing type tea drying device with airflow filtering net
    PL234814B1 (en) * 2017-09-05 2020-04-30 Politechnika Rzeszowska Im Ignacego Lukasiewicza Drying room for volumetric agricultural products
    US10619921B2 (en) 2018-01-29 2020-04-14 Norev Dpk, Llc Dual path kiln and method of operating a dual path kiln to continuously dry lumber
    FR3090835B1 (en) * 2018-12-19 2023-01-13 Ways [Process for thermal drying of wood under CO2 atmosphere, drying installation for the implementation of said process and product obtained]
    US11536513B2 (en) 2019-10-25 2022-12-27 Westmill Industries Ltd. Apparatus and methods for drying materials
    CN111365960A (en) * 2020-03-18 2020-07-03 南华大学 Material drying device capable of fully utilizing heat energy
    CN112747569A (en) * 2020-12-20 2021-05-04 杭州慧智新材料科技有限公司 Drying box for textile washing

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SU10935A1 (en) * 1925-06-27 1929-09-30 В.И. Медведев Single chamber dryer
    SU380454A1 (en) 1971-01-13 1973-05-15 Хозрасчетное экспериментальное производство разработке , изготовлению средств механизации строительстве DRYER
    US4017254A (en) * 1975-12-15 1977-04-12 S. J. Agnew Recirculating furnace-dryer combination
    US4520791A (en) * 1982-03-22 1985-06-04 Chamberlain Joseph G Jacketed wood stove
    DE3637737A1 (en) * 1986-11-05 1988-05-19 Waldner Gmbh & Co Hermann DRYERS, ESPECIALLY FOR THE CHEMICAL INDUSTRY
    JPH0379983A (en) * 1989-08-18 1991-04-04 Takahashi Kikan Kogyosho:Kk Wood drying apparatus
    JP2516467B2 (en) 1990-10-12 1996-07-24 石井 拓司 Wood drying equipment
    AU702960B2 (en) * 1994-10-12 1999-03-11 Minoru Ando Pit membrane-broken wood
    RU2102662C1 (en) * 1995-12-07 1998-01-20 Николай Георгиевич Конопасов Recirculating drying plant
    JP2757170B2 (en) * 1996-04-09 1998-05-25 有限会社山本家具製作所 Wood treatment method and equipment
    JPH1151560A (en) 1997-08-05 1999-02-26 Gastar Corp Drying furnace
    JPH1194460A (en) 1997-09-25 1999-04-09 Tsukishima Kikai Co Ltd Hot air dryer unit and production system for solidified waste fuel equipped with hot air dryer unit
    JPH11201639A (en) 1998-01-08 1999-07-30 Shin Meiwa Ind Co Ltd Refuse-drying device and control method thereof
    JPH11241883A (en) 1998-02-24 1999-09-07 Tsuneo Ito Smoking/drying system for wood
    RU2134838C1 (en) * 1999-01-14 1999-08-20 Скроцкий Виктор Георгиевич Furnace

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    See references of WO0131270A2 *

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2902866A1 (en) * 2006-06-22 2007-12-28 Giat Ind Sa HOT GAS GENERATOR AND DRYING OR DEHYDRATION INSTALLATION USING SUCH A GENERATOR
    WO2007147961A3 (en) * 2006-06-22 2008-03-20 Nexter Munitions Hot gas generator and drying or dehydratiion installation employing such a generator
    US8011113B2 (en) 2006-06-22 2011-09-06 Nexter Munitions Hot gas generator and drying or dehydration facility implementing such a generator
    CN103968650A (en) * 2013-02-01 2014-08-06 昆山尚达智机械有限公司 Wood drying kiln
    CN105135833A (en) * 2015-08-25 2015-12-09 重庆市合川区环宇配件厂 Drying oven for automobile accessories
    CN105135833B (en) * 2015-08-25 2017-05-31 重庆市合川区环宇配件厂 Automobile fitting baking oven
    CN106018055A (en) * 2016-06-27 2016-10-12 长沙开元仪器股份有限公司 Drying oven for protective gas

    Also Published As

    Publication number Publication date
    NO20021989L (en) 2002-06-26
    US6725566B1 (en) 2004-04-27
    CA2388584A1 (en) 2001-05-03
    WO2001031270A3 (en) 2001-06-14
    NO20021989D0 (en) 2002-04-26
    WO2001031270A2 (en) 2001-05-03
    RU2153640C1 (en) 2000-07-27
    WO2001031270A8 (en) 2002-06-27

    Similar Documents

    Publication Publication Date Title
    US6725566B1 (en) Drying plant and method for drying wood
    CA2053323C (en) System for drying green woods
    RU153204U1 (en) HEATING BOILER
    KR100577218B1 (en) Wood drying method
    EP1200777B1 (en) System for the drying of damp biomass based fuel
    CN101373070B (en) Heat decomposition gas processing method and apparatus of carbonization processing system containing water
    RU2310124C2 (en) Furnace of steam and water heating boiler for burning wastes of woodworking industry
    CN212375149U (en) Sludge treatment system
    KR101956883B1 (en) Heater using wood fuel
    KR100929576B1 (en) Heat-treating apparatus for drying wood
    US6332411B1 (en) Furnace
    WO2005108866A1 (en) Waste treatment apparatus
    US5335607A (en) Rubber tire combuster
    JP2745392B2 (en) Incinerator
    RU2425294C1 (en) Thermal gas chemical plant
    KR100564718B1 (en) Garbage incinerator
    UA23621U (en) Appliance for obtaining heat energy at burning wastes of organic origin
    WO2006090482A1 (en) Pyrolytic apparatus, method of heat supply using pyrolytic apparatus, method of pyrolyzing wood fuel, smoke treating apparatus, smoke utilization system, smoke utilization apparatus, and method of feeding smoke to smoke utilization apparatus
    JPS62200105A (en) Incinerator
    JP3640999B2 (en) Wood drying equipment
    RU2210035C2 (en) Thermal convector
    CN2411423Y (en) Two-purpose incinerator
    JP2005179451A (en) Pyrolysis apparatus, heat-supply method using the same, pyrolysis method for wood fuel, smoke-treatment system, system and apparatus for utilizing flue-gas, and method for supplying flue-gas to the apparatus for utilizing flue-gas
    RU32584U1 (en) Drying chamber
    JPH08159429A (en) Fluidized bed refuse incinerator

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020724

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20050503