EP1259762B1 - Wasserlanzenbläser mit überwachungseinrichtung für die qualität des wasserstrahls und verfahren zu dessen betrieb - Google Patents
Wasserlanzenbläser mit überwachungseinrichtung für die qualität des wasserstrahls und verfahren zu dessen betrieb Download PDFInfo
- Publication number
- EP1259762B1 EP1259762B1 EP01909805A EP01909805A EP1259762B1 EP 1259762 B1 EP1259762 B1 EP 1259762B1 EP 01909805 A EP01909805 A EP 01909805A EP 01909805 A EP01909805 A EP 01909805A EP 1259762 B1 EP1259762 B1 EP 1259762B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- sensor
- nozzle
- water lance
- lance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J3/00—Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
- F23J3/02—Cleaning furnace tubes; Cleaning flues or chimneys
- F23J3/023—Cleaning furnace tubes; Cleaning flues or chimneys cleaning the fireside of watertubes in boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G15/00—Details
Definitions
- the invention relates to a water lance blower for cleaning Heat systems according to the preamble of claim 1 and a method to its operation according to claim 9.
- Water lances of this type and methods of operation are for example in WO 96/38701, WO 96/38702, WO 96/38703 and the WO 96/38704.
- Such water lances give one bundled stream of water through the firebox to the opposite wall and thus clean the heat systems, especially the fire chambers of Boilers, during operation.
- the kinetic Water jet energy and the sudden evaporation of in pores of Deposits of invading water will spill off the contaminants made of soot, slag and ash.
- the impact area of the water jet of a water lance blower follows in general a certain predetermined path on the surface to be cleaned, also called blowing figure, this way generally meandering runs and, where appropriate, obstacles, openings or other sensitive Zones are spared.
- the Water lance has a nozzle which is arranged on the heat plant, that this permanently the flames and / or flue gases inside the heat system is exposed. This has the consequence that the nozzle is dirty, with different particles, such as soot, ash or the like, on or attach in the nozzle. In addition, residues are deposited inside the nozzle to the water, such as lime.
- the water jet quality of the known water lancers is currently for example, based on the operating characteristics of the water flow generating pumps, a visual inspection and evaluation of the nozzle or a subsequent assessment of the cleaning effect determined.
- the Water pumps are usually located far away from the water lance and In addition, they often supply several water lances. An assessment of an individual Water jet as well as an identification of the cause of a reduction of Water jet quality is therefore difficult.
- a visual check and Rating of the nozzle is very cumbersome and requires highly qualified Employees, who due to an external consideration on the Can close the degree of contamination of the nozzle.
- At the subsequent Assessment of cleaned surfaces of the heat system are the Residual dirt on the boiler wall and the deviation of the impinging jet of water from the given blowing figure in the foreground. Due to the parallel operation of the thermal plant, the assessment of the Cleaning effect only with a very high cost of sensors in or possible on the boiler wall. The achieved cleaning effect also ensures just an inaccurate prediction of waterjet quality during the following Cleaning process.
- the invention is based on the object, a water lance blower of known type and a method of operation of the type mentioned create, with which the quality and thus also the cleaning effect of the generated water jet can be reliably assessed during operation.
- the water lance blower invention is characterized in that the Water lance has at least one sensor which is arranged such that this at least one parameter for monitoring the quality of Detected water jet, wherein the at least one sensor of the following group of sensors is: structure-borne sound sensor, Capacitive sensor, temperature sensor, pressure switch, electronic pressure transducer, inductive Sensor.
- the arrangement of the at least one sensor on or in the Water lance is made according to the type of sensor and the measured Parameter.
- the sensor can be inside or outside the heat system to be ordered.
- the measured values detected by the at least one sensor are forwarded and then evaluated. By such a sensor For the first time, an objective assessment of the beam quality of a water lance is made possible during operation.
- the at least one Sensor designed as structure-borne sound sensor.
- the structure-borne sound sensor is preferred attached to the water lance outside the heating system.
- the Structure-borne sound sensor is in particular as a microphone or piezoelectric Accelerator is executed.
- Particularly advantageous is the attachment several structure-borne sound sensors, which, for example, the structure-borne noise record different frequency ranges. This way will then a more accurate frequency analysis of the measured values ensured or allows separate analysis of different parts of the water lance.
- the nozzle has at least one capacitive sensor by means of which is the water content in an environment of the nozzle near the water jet is determinable.
- the capacitive sensor is preferably on the surface and / or arranged in depressions of the nozzle.
- the simple structure of such Sensors is for a data acquisition at this point of the water lance especially suitable.
- Temperature sensor is on at least one of the surface and / or depressions of the nozzle Temperature sensor arranged.
- Particularly simple and inexpensive are the Wells introduced as holes in the material of the nozzle.
- Temperature sensors are preferably thermocouples or Resistance sensors used. Thermocouples are due to their ruggedness and reliability particularly well suited.
- the thermocouples are included heat-conducting attached to the nozzle, in particular by a pulse welding process. Resistance sensors can be very simple and be produced inexpensively and are therefore a cheap and suitable Alternative.
- At least one Temperature sensor means to provide the water temperature when entering into capture the water lance.
- a measuring curve of the temperature at the nozzle is significantly dependent on the temperature of the water flowing through. Out For this reason, the water temperature is additionally detected, the measuring point can be at the water lance.
- a measuring point is advantageous which is not on moving parts of the water lance blower or a Water supply is arranged and thus a simple forwarding of Measured values possible.
- the water lance blower with an evaluation unit for further processing of the detected measured value executed.
- the forwarding of the measured values from the sensor to the evaluation unit is preferred executed with a suitably protected electrical conductor.
- a Influencing the measured values by external disturbances can be particularly good with fiber-insulated connecting cables are prevented, which in addition surrounded by impurities and water from a metal protective tube.
- These connection lines are either along the water lance and further passed over the drive system of the water lance blower or by the Water lance led directly to the evaluation, preferably means are provided, which the functionality of the connecting line even at a Ensure movement of the water lance.
- the further processing of the detected Measured value can thus also be made in places that are further from the Water lances are removed.
- the evaluation of the measured values takes place either analog or digital. If a digital evaluation of the measured values takes place, then to provide an analog / digital converter.
- a sensor is attached to the nozzle of the water lance, it is particularly advantageous to install this so that an exchange of pollute Nozzle is possible with or without the sensor.
- the sensor is either so Removable from the dirty nozzle that its functionality is maintained and this is again attachable to the new nozzle, or the sensor or his Connection line has an interface which is a common Replace nozzle with sensor.
- the Water lance blower provided with means which calibration of the sensor after replacing the nozzle and / or the sensor allows. The calibration serves to record a reference value or a reference curve of the Measured value with a new and clean nozzle as a reference for the others Evaluation of the nozzle contamination.
- the water lance blower an information unit, which preferably with optical and / or acoustic reacting devices is executed.
- An operator of the Water lance blower can thus be provided information, which for the water jet quality or the degree of contamination of the nozzle are significant.
- the optically reacting devices have in particular differently colored display means on.
- the color of the Display means is in an advantageous manner with signal colors according to the Water quality performed.
- the acoustically responsive devices are preferably designed as a speaker or bugle, this one Be able to emit warning sound, if no sufficient water jet quality more is available.
- the water lance blower a control unit, with which the operating behavior of the water lance blower can be influenced.
- the control unit has a connection to Evaluation unit and / or information unit.
- the control unit influences the operating behavior of the water lance blower stored accordingly Procedures, which depend on the incoming data of the evaluation unit or the Depend on instructions of an operator.
- Procedures which depend on the incoming data of the evaluation unit or the Depend on instructions of an operator.
- evaluation and Control unit together a monitoring unit. It is particularly advantageous the evaluation unit, the control unit and the information unit in a Monitoring unit to integrate. In this way, these units are very arranged compact and protected.
- the monitoring unit is in particular as executed mobile unit, which may be simply from the To decouple water lances and / or has devices, which a remote diagnosis or remote control of water lance blower guarantee.
- the erfindungsgemäBe method for operating a Wassedanzbläsers for Cleaning of heat systems is that a monitoring of the Water jet is done during operation by at least one for the Quality of the water jet characteristic parameter detected as a measured value and is evaluated.
- the characteristic parameter is itself one Description quantity for the assessment of water jet quality or relates on the operating behavior of the Wassalanzenbläsers and thus leaves indirectly Conclusions about the quality of the water jet.
- the measured value acquisition takes place during operation of the water lance blower at predetermined times or continuously.
- An evaluation of the characteristic measured values takes place in such a way that these are compared, for example, with reference values. From the Comparison of the detected measured values and stored reference values Information about the quality of the generated water jet and the degree of Pollution of the nozzle won.
- At least one sensor on the water lance detected at least one characteristic parameter.
- the at least one sensor directly with the water jet in contact or measures for example, flow parameters of the Water flow or he is arranged on or in the nozzle and thus detects the Example temperatures or vibrations of the water lance.
- the generated water jet can be with a number of Characterize description parameters.
- Such description parameters For example, the beam opening angle, the speed of the leaking water, the water flow through the nozzle or in the Water lance generated pressure.
- the beam opening angle describes the Expansion of the generated water jet after leaving the nozzle.
- the Speed refers to the kinetic energy of the beam and characterizes it the speed of the drops of water, with which they come from the nozzle of the water lance escape.
- the water flow rate describes the amount of water in one certain time through a cross section of the nozzle flows.
- the pressure in the nozzle is generated by at least one pump and is still for example from the tightness of the water pipe, the wall friction in the water supply pipes or the water outlet cross section of the nozzle dependent.
- the Beam opening angle is detected as a characteristic measured value. This happens in particular by means of sensors which on or in the water lance in one Environment are arranged near the water jet and the water content in the Measure ambient air. Due to attached at the nozzle exit Dirt is negatively affected the beam formation. This can For example, lead to tearing or bursting of the water jet. The water jet is thus very diffuse.
- the sensors are preferably immediate individually isolated at the nozzle exit and measure capacitively.
- the sensors have a capacity which essentially depends on the distance and the Material is dependent on the capacitor plates. The material between this is air with a determinable proportion of water, this one certain dielectric constant of the air-water mixture results.
- the nozzle exit surface and the nozzle are reduced Wall friction increases.
- the enforced amount of water falls at the same time slight increase in water speed.
- This can be, for example detect changes in the pressure of the water jet within the nozzle.
- characteristic Parameters of the pressure and / or a time course of the pressure of the water before measured at the exit from the nozzle are, for example designed as a compact pressure switch or electric pressure transducer, as these provide very reliable readings.
- the Speed and / or a temporal course of the speed of the exiting water jet measured. It is particularly advantageous, the Speed from the water flow, so the amount of water per time through a nozzle cross-section, deduce.
- the use of an inductive Flow meter is advantageous in which the measured voltage proportional to the flow rate of the water flow. A simple structure or a flexible arrangement of such a measuring device on the water lance is thus guaranteed.
- a sensor for Measuring the water pressure and another sensor for measuring the Water flow rate used to determine the water jet quality are usually subject to fluctuations, for example due to contaminants in the supply lines or the upstream pump arise.
- the influence of such fluctuations in an evaluation of the detected Measurements related to the nozzle contamination is due to an additional Measurement of water flow avoided.
- the analysis of both measured values allows a reliable statement about the nozzle contamination and thus the water jet quality.
- the generated water jet affects the performance of the Water lance blower. For example, pulsating pressure fluctuations an increased vibration of the water lance result. A change in the Waterjet quality can therefore also be changed from one Derive the operating behavior of the water lance blower.
- the operating behavior of a Water lance blower can be, for example, based on body vibrations or describe temperatures of the water lance. According to yet another Embodiment of the method is at least a characteristic measured value Derived from the operating behavior of the water lance blower.
- the measured value acquisition is preferably carried out on a Area of the water lance, which is arranged outside the heat plant.
- the detected frequency bands shift according to the Pollution degree of the nozzle, in particular a shift towards higher frequencies with dirty nozzle is recorded.
- the temporal temperature profile at least one measuring point detected at the water lance.
- the measuring points are in an area of the water lance arranged, which is very close to the heat plant.
- the temporal Temperature profile is detected with at least one sensor, this preferably arranged on a surface and / or in a recess of the nozzle is.
- a sensor on either the Surface or in a depression (eg a bore) in the material of the nozzle is arranged.
- the positioning of the sensor is in a groove executed recess possible, in which case the sensor both in the groove may extend as well over areas on the surface.
- a sensor on the one hand the Temperature profile in or directly on the nozzle wall and with another Sensor additionally the actual water temperature when entering the Capture water lance.
- the water lance blower is in predeterminable cycles operated and is located after such a cycle in a defined Rest position. Especially at the beginning of such a cycle, so at a Measured value recording, shows the water in the supply lines of the water lance blower due to the immediate proximity to the heat plant initially increased Temperature, this temperature falls during the course of operation. Consequently There is no constant water temperature, which is used as a reference for the Temperature history could be used in the nozzle wall. For this Reason the temperature profiles of water and nozzle are detected in parallel.
- the measured values is in particular the ratio from the temporal change (slope) of the temperature profile in the nozzle and a momentary temperature difference of nozzle and water, which allows a reliable statement regarding the nozzle contamination.
- the current temperature difference describes in this context driving force, which causes the change of the nozzle temperature.
- the at least one characteristic measured value forwarded to an evaluation unit.
- the Evaluation unit is preferably preceded by a converter, which the analog Measured value converts into digital data.
- the evaluation unit has the task, the characteristic measured value with one or more stored measured values to compare.
- the forwarding of the data is preferably carried out with serial Interfaces and a data bus, especially with a CAN bus.
- the evaluation unit the measured characteristic parameters with a predefinable and stored setpoint compares.
- the specifiable setpoint describes a water jet suitable Quality.
- the setpoint can in particular be based on an additional and specifiable limit value and / or a predefinable tolerance range be determined.
- the limit value or the tolerance range characterizes a jet of water whose quality is just sufficient. When exceeding or falling below the specified Limit or tolerance range will be data and / or pulses from the Evaluation unit forwarded to an information unit.
- the method is characterized from that the evaluation unit records a time course of measured values and compares with at least one reference curve of measured values and off the result of this comparison corresponding data and / or impulses to a Forward information unit.
- the reference history for example, then recorded and stored when an unpolluted nozzle in Use is (calibration).
- a deviation of the measured value course from Reference curve therefore indicates, for example, a soiled nozzle.
- the comparison can advantageously also be a filtering of the measured values be downstream to disturbances before the evaluation of the measured values eliminate.
- the data and / or Information and / or key figures from the evaluation to a control unit forwarded which affects the performance of the water lance blower.
- This has the consequence, for example, that a correction of the bubble is made, the pressure or the flow rate of the water flow changed or if necessary, the cleaning process is interrupted.
- the corresponding Procedures, as with a certain measured value or Meßwertverlauf the Control unit reacts, in particular are stored and at any time by the Control unit available.
- the method shows the Information unit, the received data and / or information and / or Indicators of the quality of the water jet visually.
- the Information unit For this purpose are especially color differently executed display means suitable.
- a deteriorating quality of the water jet can thus be particularly advantageous be signaled by different LED displays, with a green LED indicator indicates a good quality of the water jet, a yellow LED indicator indicates a nozzle contamination and a red LED indicator Immediately necessary cleaning or replacement of the nozzle signaled.
- FIG. 1 shows a water lance 1 of a water lance blower for cleaning Heat plants, the water lance 1 with its mouth 2 on or in a Luke 3 is movably arranged and a water jet 4 on from the hatch 3 from achievable wall areas of the thermal system can blow.
- the water jet 4 leaves by means of a jet opening angle 5, a throughput 6 by a Cross section (shown in dashed lines) and a pressure 7 in the water lance. 1 describe.
- the illustrated embodiment has a sensor 12 which is arranged on the nozzle 13 near the jet outlet. This sensor 12 detects at least one characteristic of the quality of the water jet 4 Parameter as a measured value and forwards it to an evaluation unit 8. Starting from the evaluation unit 8, a measured value forwarding for Information unit 9 or the control unit 16.
- the information unit 9 has different display means 10 and a speaker 11 for transmission an acoustic signal.
- the information unit 9 becomes data and / or pulses forwarded to the control unit 16.
- the evaluation unit 8, the information unit 9 and the control unit 16 are in a parent Monitoring unit 17 integrated.
- FIG. 2 shows a cross section of an embodiment of a nozzle 13 with Capacitive sensors 12a.
- the sensors 12a are in recesses 15, which, starting from the surface 14 in the material of the nozzle 13 are formed.
- the capacitive sensors 12a are particularly suitable for the assessment of the jet angle 5, by the water content in the Immediately surrounding the nozzle 13 is detected. For this purpose, the sensors 12a isolated against each other.
- At a widening of the water jet 4 there is an increased accumulation of water droplets respectively Water mist near the sensors 12a, where first a change in capacity It should be noted that ultimately a flow of current between the sensors 12a to Episode has.
- These measurements e.g., electrical voltage, capacitance, current, Resistance
- FIG. 3 shows an arrangement of a temperature sensor 12b for detection the temporal temperature profile of the nozzle and a measuring means 20, the the determination of the water temperature is suitable.
- the sensor 12b and the Measuring means 20 are each arranged in a recess 15 of the nozzle 13. Of the Sensor 12b detects the temperature of the nozzle 13 and is in one Section 18 of the nozzle 13, which is made particularly solid.
- the measuring means 20 is in a region 19 of lesser wall thickness near the water jet 4th arranged and thus detects the water temperature with little deviation.
- a cooling of the nozzle 13 of inside out When switching on the water jet 4, a cooling of the nozzle 13 of inside out.
- the heat conduction in the material of the nozzle 13 is substantially from the thermal conductivity of the nozzle material and the heat transfer from Water flow 4 to the nozzle 13 dependent.
- Particles deposited on the nozzle 13 For example, ash, soot, scale or lime hinder the heat transfer and accordingly influence the cooling behavior of the nozzle 13. Die continuously detected Temperaturmeßagonist be to the evaluation unit. 8 forwarded. This calculates at defined time intervals from the incoming Measured value course a characteristic number, which is characteristic for the Water jet quality is. This ratio is in particular the ratio of the temporal change of the nozzle temperature during the time interval and the instantaneous temperature difference of water and nozzle.
- the to Evaluation unit 8 leading lines must be protected in a special way be because the sensors 12b high temperatures and a large Are exposed to pollution.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Nozzles (AREA)
Description
- Fig. 1
- eine schematisch dargestellte Ausführungsform eines Wasserlanzenbläsers mit einer Überwachungseinrichtung,
- Fig. 2
- einen stirnseitigen Querschnitt durch eine Düse mit Sensoren und
- Fig. 3
- einen Längsschnitt durch eine Düse mit thermischen Sensoren gemäß eine Ausführungsbeispiel.
- 1
- Wasserlanze
- 2
- Mündung
- 3
- Luke
- 4
- Wasserstrahl
- 5
- Strahlöffnungswinkel
- 6
- Durchsatz
- 7
- Druck
- 8
- Auswerteeinheit
- 9
- Informationseinheit
- 10
- Anzeigemittel
- 11
- Lautsprecher
- 12
- Sensor
- 12a
- kapazitive Sensoren
- 12b
- Temperatursensoren
- 13
- Düse
- 14
- Oberfläche
- 15
- Vertiefung
- 16
- Regeleinheit
- 17
- Überwachungseinheit
- 18
- Abschnitt
- 19
- Bereich
- 20
- Meßmittel
- 21
- Wärmeanlage
Claims (22)
- Wasserlanzenbläser zur Reinigung einer Wärmeanlage (21) mit einer Wasserlanze (1), die eine Düse (13) zum Ausbilden eines Wasserstrahls (4) und eine Mündung (2) aufweist, wobei die Wasserlanze (1) so mit ihrer Mündung (2) an oder in einer Luke (3) beweglich anordenbar ist daß der Wasserstrahl (4) durch die in Betrieb befindliche und mit Flammen und/oder Rauchgasen beströmte Wärmeanlage (21) hindurch auf von der Luke (3) aus erreichbare Wandbereiche geblasen werden kann, dadurch gekennzeichnet, daß die Wasserlanze (1) mindestens einen Sensor (12; 12a; 12b) aufweist, welcher derart angeordnet ist, daß dieser wenigstens einen zur Überwachung der Qualität des Wasserstrahls (4) charakteristischen Parameter als Meßwert erfaßt, wobei der mindestens eine Sensor (12; 12a; 12 b) einer aus der folgenden Gruppe von Sensoren ist: Körperschallsensor, kapazitiv wirkender Sensor, Temperatursensor, Druckschalter, elektronischer Druckaufnehmer, induktiv wirkender Sensor.
- Wasserlanzenbläser nach Anspruch 1, dadurch gekennzeichnet, daß die Wasserlanze (1) mindestens einen Sensor (12) aufweist, mittels welchem der Wassergehalt in einer Umgebung der Mündung (2) außerhalb des Wasserstrahls (4) bestimmbar ist, wobei der mindestens eine Sensor (12) bevorzugt als kapazitiver Sensor (12a) ausgeführt ist.
- Wasserlanzenbläser nach Anspruch 1, dadurch gekennzeichnet, daß die Wasserlanze (1) mindestens einen Sensor (12) aufweist, mittels welchem der Druck des Wassers in der Düse (13) bestimmbar ist, wobei der mindestens eine Sensor (12) bevorzugt als Druckschalter oder elektrischer Druckaufnehmer ausgeführt ist.
- Wasserlanzenbläser nach Anspruch 1, dadurch gekennzeichnet, daß die Wasserlanze (1) mindestens einen Sensor (12) aufweist, mittels welchem der Wasserdurchsatz durch die Wasserlanze (1) bestimmbar ist, wobei der mindestens eine Sensor (12) bevorzugt als induktiver Sensor (12a) ausgeführt ist.
- Wasserlanzenbläser nach Anspruch 1, dadurch gekennzeichnet, daß auf der Oberfläche (14) und/oder in einer Vertiefung (15) der Düse (13) mindestens ein Temperatursensor (12b) angeordnet ist.
- Wasserlanzenbläser nach Anspruch 5, dadurch gekennzeichnet, daß weiterhin mindestens ein Meßmittel (20) zur Bestimmung der Wassertemperatur vorhanden ist.
- Wasserlanzenbläser nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Wasserlanzenbläser mit einer Auswerteeinheit (8) zur Weiterverarbeitung der erfaßten Meßwerte des charakteristischen Parameters verbunden ist, welche insbesondere mindestens ein Referenzverlauf von Meßwerten des charakteristischen Parameters gespeichert hat, der kennzeichnend für eine bestimmte Qualität des Wasserstrahls (4) ist.
- Wasserlanzenbläser nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Wasserlanzenbläser eine Informationseinheit (9) aufweist.
- Wasserlanzenbläser nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Wasserlanzenbläser eine Regeleinheit (16) aufweist, mit welcher das Betriebsverhalten des Wasserlanzenbläsers beeinflußbar ist.
- Wärmeanlage (21) mit einem Wasserlanzenbläser gemäß einem der Ansprüche 1 bis 9 zu deren Reinigung, dadurch gekennzeichnet, daß die Wasserlanze (1) mit ihrer Mündung (2) so an oder in einer Luke (3) beweglich angeordnet ist, daß sich die Düse (13) permanent im Inneren der Wärmeanlage (21) befindet und der mindestens eine Sensor (12; 12a; 12b) derart angeordnet ist, daß dieser den wenigstens einen charakteristischen Parameter als Meßwert erfaßt.
- Verfahren zum Betrieb eines Wasserlanzenbläsers zur Reinigung einer Wärmeanlage (21) mit einer Wasserlanze (1), die eine Düse (13) zum Ausbilden eines Wasserstrahls (4) und eine Mündung (2) aufweist, wobei die Wasserlanze (1) mit ihrer Mündung (2) an oder in einer Luke (3) beweglich angeordnet ist, umfassend folgende Schritte:Blasen eines Wasserstrahls (4) durch die in Betrieb befindliche und mit Flammen und/oder Rauchgasen beströmte Wärmeanlage (21) hindurch auf von der Luke (3) aus erreichbare Wandbereiche, wobei die Düse (13) permanent den Flammen und/oder Rauchgasen im Inneren der Wärmeanlage (21) ausgesetzt ist,eine Überwachung des Wasserstrahls (4) während des Betriebes erfolgt, indem wenigstens ein für die Düsenverschmutzung sowie die Qualität des Wasserstrahls (4) charakteristischer Parameter als Meßwert erfaßt und ausgewertet wird.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß mindestens ein Sensor (12; 12a; 12b) an der Wasserlanze (1) wenigstens einen charakteristischen Parameter erfaßt.
- Verfahren nach Anspruch 11 oder 12, wobei das Wasser in der Wasserlanze (1) vor der Düse (13) einen Druck (7) aufweist, dadurch gekennzeichnet, daß als charakteristischer Parameter der Druck (7) und/oder ein zeitlicher Verlauf des Drucks (7) in der Wasserlanze (1) gemessen wird.
- Verfahren nach einem der Ansprüche 11 bis 14, wobei die Wasserlanze (1) einen Durchsatz (6) an Wasser aufweist, dadurch gekennzeichnet, daß als charakteristischer Parameter der Durchsatz (6) und/oder ein zeitlicher Verlauf des Durchsatzes (6) gemessen wird.
- Verfahren nach Anspruch 11 oder 12, wobei der erzeugte Wasserstrahl (4) einen Strahlöffnungswinkel (5) hat, dadurch gekennzeichnet, daß als charakteristischer Parameter der Strahlöffnungswinkel (5) erfaßt wird, insbesondere mittels mindestens eines Sensors (12a), welcher in der Umgebung des Wasserstrahls (4) angeordnet ist und den Wasseranteil in der Umgebungsluft mißt.
- Verfahren nach Anspruch 11 oder 12, wobei zumindest der Wasserstrahl (4) Körperschwingungen der Wasserlanze (1) erzeugt, dadurch gekennzeichnet, daß die Körperschwingungen der Wasserlanze (1) gemessen werden und anschließend aus den Meßwerten ein charakteristischer Parameter für die Qualität des Wasserstrahls abgeleitet wird.
- Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß mindestens ein Sensor (12b) als charakteristischen Parameter einen zeitlichen Temperaturverlauf an mindestens einem Meßpunkt an der Wasserlanze (1) erfaßt, insbesondere bei Reinigungsbeginn und/oder Reinigungsende.
- Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß von einem Meßmittel (20) die Wassertemperatur gemessen wird und für eine Anpassung bzw. Korrektur des charakteristische Parameter die Wassertemperatur verwendet wird.
- Verfahren nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß die Meßwerte des mindestens einen charakteristischen Parameters an eine Auswerteeinheit (8) weitergeleitet wird.
- Verfahren nach Anspruch 19, wobei die Auswerteeinheit (8) mindestens einen Referenzverlauf von Meßwerten des charakteristischen Parameters gespeichert hat, dadurch gekennzeichnet, daß die Auswerteeinheit (8) einen Verlauf von Meßwerten des charakteristischen Parameters über einen Zeitraum aufzeichnet und mit dem mindestens einen Referenzverlauf vergleicht, ein Ergebnis dieses Vergleichs erhält und anschließend Daten und/oder Impulse an eine Informationseinheit (9) weiterleitet.
- Verfahren nach Anspruch 19 oder 20, wobei mehrere charakteristische Parameter zur Auswerteeinheit (8) geleitet werden, dadurch gekennzeichnet, daß die Auswerteeinheit (8) aus den mehreren charakteristischen Parametern eine für die Wasserstrahlqualität charakteristische Kennzahl ermittelt und diese an die Informationseinheit (9) weiterleitet.
- Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß die Daten und/oder Informationen und/oder Kennzahlen von der Auswerteeinheit (8) an eine Regeleinheit (16) weitergeleitet werden, welche das Betriebsverhalten des Wasserlanzenbläsers beeinflußt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10009831A DE10009831A1 (de) | 2000-03-01 | 2000-03-01 | Wasserlanzenbläser mit Überwachungseinrichtung für die Qualität des Wasserstrahls und Verfahren zu dessen Betrieb |
DE10009831 | 2000-03-01 | ||
PCT/EP2001/002288 WO2001065180A1 (de) | 2000-03-01 | 2001-03-01 | Wasserlanzenbläser mit überwachungseinrichtung für die qualität des wasserstrahls und verfahren zu dessen betrieb |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1259762A1 EP1259762A1 (de) | 2002-11-27 |
EP1259762B1 true EP1259762B1 (de) | 2005-12-14 |
Family
ID=7633017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01909805A Expired - Lifetime EP1259762B1 (de) | 2000-03-01 | 2001-03-01 | Wasserlanzenbläser mit überwachungseinrichtung für die qualität des wasserstrahls und verfahren zu dessen betrieb |
Country Status (5)
Country | Link |
---|---|
US (1) | US6715499B2 (de) |
EP (1) | EP1259762B1 (de) |
AU (1) | AU2001237422A1 (de) |
DE (2) | DE10009831A1 (de) |
WO (1) | WO2001065180A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007090568A1 (de) | 2006-02-03 | 2007-08-16 | Clyde Bergemann Gmbh | Vorrichtung mit fluidverteiler und messwerterfassung sowie verfahren zum betrieb eines mit rauchgas durchströmten kessels |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10044799C1 (de) | 2000-09-11 | 2002-06-27 | Clyde Bergemann Gmbh | Kugelgelenk-Lagerung für eine Wasserlanze eines Wasserlanzenbläsers |
US8381690B2 (en) * | 2007-12-17 | 2013-02-26 | International Paper Company | Controlling cooling flow in a sootblower based on lance tube temperature |
JP5601538B2 (ja) * | 2008-05-13 | 2014-10-08 | スートテック アクティエボラグ | スートブロワを使用して動力ボイラ炉内の状態を測定するための方法 |
DE102008048738A1 (de) * | 2008-09-24 | 2010-03-25 | Krones Ag | Vorrichtung zur Überwachung einer Wasserdampfströmung |
US8387473B2 (en) * | 2011-01-21 | 2013-03-05 | Clyde Bergemann, Inc. | Temperature sensing sootblower |
DE102011018441A1 (de) * | 2011-04-21 | 2012-10-25 | Clyde Bergemann Gmbh Maschinen- Und Apparatebau | Reinigungsgerät für eine Wärmekraftanlage, Verfahren zur Einrichtung eines Reinigungsgeräts und Verfahren zur Reinigung einer Wärmekraftanlage |
US8381604B2 (en) * | 2011-06-03 | 2013-02-26 | Clyde Beri Emann, Inc. | Intelligent sootblower |
ES2717189T3 (es) * | 2012-02-13 | 2019-06-19 | Alfa Laval Corp Ab | Supervisión de sistema de eyección de líquido |
CN102954479B (zh) * | 2012-11-20 | 2016-04-13 | 乌鲁木齐奥科技术开发有限公司 | 水泥余热锅炉专用声波清灰器 |
US9541282B2 (en) | 2014-03-10 | 2017-01-10 | International Paper Company | Boiler system controlling fuel to a furnace based on temperature of a structure in a superheater section |
PT3055617T (pt) | 2014-05-02 | 2018-03-22 | Air Prod & Chem | Queimador com monitorização |
US9927231B2 (en) * | 2014-07-25 | 2018-03-27 | Integrated Test & Measurement (ITM), LLC | System and methods for detecting, monitoring, and removing deposits on boiler heat exchanger surfaces using vibrational analysis |
US10060688B2 (en) | 2014-07-25 | 2018-08-28 | Integrated Test & Measurement (ITM) | System and methods for detecting, monitoring, and removing deposits on boiler heat exchanger surfaces using vibrational analysis |
AU2015292444B2 (en) | 2014-07-25 | 2018-07-26 | Integrated Test & Measurement | System and method for determining a location of fouling on boiler heat transfer surface |
DE102019205737A1 (de) * | 2019-04-18 | 2020-10-22 | Glatt Gesellschaft Mit Beschränkter Haftung | Verfahren zur Überwachung eines Düsenmundstücks auf Ablagerungen an einer Düse |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1026908B (de) * | 1947-12-19 | 1958-03-27 | Superior Ab | Einrichtung zur UEberwachung des Betriebs von Russblaesern |
DE1526136B2 (de) * | 1962-10-24 | 1972-05-18 | Diamond Power Speciality Corp., Lancaster, Ohio (V.St.A.) | Vorrichtung zum ermitteln der schichtdicke der auf einer von staubbeladenen rauchgasen bestrichenen oberflaeche eines waermetauschers sich bildenden schlackensammlung |
US4718376A (en) * | 1985-11-01 | 1988-01-12 | Weyerhaeuser Company | Boiler sootblowing control system |
US5181482A (en) * | 1991-12-13 | 1993-01-26 | Stone & Webster Engineering Corp. | Sootblowing advisor and automation system |
US5564371A (en) * | 1994-05-06 | 1996-10-15 | Foster Miller, Inc. | Upper bundle steam generator cleaning system and method |
DE19502096A1 (de) * | 1995-01-24 | 1996-07-25 | Bergemann Gmbh | Verfahren und Vorrichtung zur Steuerung von Rußbläsern in einer Kesselanlage |
US6035811A (en) | 1995-05-30 | 2000-03-14 | Clyde Bergemann Gmbh | Water lance blower positioning system |
WO1996038703A1 (de) | 1995-05-30 | 1996-12-05 | Clyde Bergemann Gmbh | Antriebssystem für einen wasserlanzenbläser |
AU5902496A (en) | 1995-05-30 | 1996-12-18 | Clyde Bergemann Gmbh | System for driving a water jet blower with a housing for a confining and rinsing medium |
EP0828987B1 (de) | 1995-05-30 | 2003-07-23 | Clyde Bergemann GmbH | Wasserlanzenbläser mit verkürzter wasserlanze |
US5925193A (en) | 1995-05-30 | 1999-07-20 | Clyde Bergemann Gmbh | Method for cleaning pre-determinable surfaces of a heatable internal chamber and associated water lance blower |
US5619771A (en) * | 1995-08-11 | 1997-04-15 | Effox, Inc. | Oscillating and reverse cleaning sootblower |
DE19605287C2 (de) * | 1996-02-13 | 2000-11-02 | Orfeus Combustion Eng Gmbh | Verfahren und Einrichtung zur Steuerung der Reisezeit eines Kessels |
DE19640337A1 (de) * | 1996-09-20 | 1998-03-26 | Ver Energiewerke Ag | Verfahren zur Bewertung und Abreinigung von Verschlackungen an einer Heizfläche, insbesondere in der Brennkammer eines Dampfkessels |
DE19647868C1 (de) * | 1996-11-19 | 1998-02-26 | Hans Bergemann | Rußbläser |
-
2000
- 2000-03-01 DE DE10009831A patent/DE10009831A1/de not_active Ceased
-
2001
- 2001-03-01 AU AU2001237422A patent/AU2001237422A1/en not_active Abandoned
- 2001-03-01 WO PCT/EP2001/002288 patent/WO2001065180A1/de active IP Right Grant
- 2001-03-01 DE DE50108379T patent/DE50108379D1/de not_active Expired - Lifetime
- 2001-03-01 EP EP01909805A patent/EP1259762B1/de not_active Expired - Lifetime
-
2002
- 2002-09-03 US US10/237,229 patent/US6715499B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007090568A1 (de) | 2006-02-03 | 2007-08-16 | Clyde Bergemann Gmbh | Vorrichtung mit fluidverteiler und messwerterfassung sowie verfahren zum betrieb eines mit rauchgas durchströmten kessels |
US8151739B2 (en) | 2006-02-03 | 2012-04-10 | Clyde Bergemann Gmbh | Device with fluid distributor and measured value recording and method for operation of a boiler with a throughflow of flue gas |
Also Published As
Publication number | Publication date |
---|---|
WO2001065180A1 (de) | 2001-09-07 |
US6715499B2 (en) | 2004-04-06 |
DE50108379D1 (de) | 2006-01-19 |
EP1259762A1 (de) | 2002-11-27 |
DE10009831A1 (de) | 2001-09-13 |
US20030047196A1 (en) | 2003-03-13 |
AU2001237422A1 (en) | 2001-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1259762B1 (de) | Wasserlanzenbläser mit überwachungseinrichtung für die qualität des wasserstrahls und verfahren zu dessen betrieb | |
EP0555294B1 (de) | Betriebsüberwachung eines rohre aufweisenden kondensators mit messungen an ausgewählten rohren | |
DE102009040328B4 (de) | Einrichtung zum Reduzieren der Partikelemission einer Brennkraftmaschine | |
EP2399108A1 (de) | Messeinrichtung für einen wärmetauscher | |
DE102011018441A1 (de) | Reinigungsgerät für eine Wärmekraftanlage, Verfahren zur Einrichtung eines Reinigungsgeräts und Verfahren zur Reinigung einer Wärmekraftanlage | |
WO2011095466A1 (de) | Diagnoseverfahren eines russsensors | |
EP1979701B1 (de) | Vorrichtung mit fluidverteiler und messwerterfassung sowie verfahren zum betrieb eines mit rauchgas durchströmten kessels | |
DE19524260C5 (de) | Heizgerät, insbesondere zur Innenraumbeheizung eines Kraftfahrzeuges | |
DE102013205645B3 (de) | Verfahren und Vorrichtung zur Bestimmung der Deposition in Kraftwerkskesseln und Hochtemperaturöfen | |
DE112019005316T5 (de) | Abgassensor | |
DE3301886C2 (de) | Vorrichtung zur Messung der Temperatur in einem mit Staub beladenen Gasstrom | |
EP1013900A1 (de) | Verfahren zur Überwachung der ausreichenden Ölschmierung eines Verbrennungsmotors und Verbrennungsmotor zur Durchführung des Verfahrens | |
DE202008013879U1 (de) | Volumenstrommessanordnung sowie Volumenstromregler mit einer Volumenstrommessanordnung | |
EP2780482A2 (de) | Blaslanze für einen bof-konverter | |
DE19640337A1 (de) | Verfahren zur Bewertung und Abreinigung von Verschlackungen an einer Heizfläche, insbesondere in der Brennkammer eines Dampfkessels | |
DE19941700C1 (de) | Vorrichtung zum Betreiben einer Heizungsanlage | |
EP1306451A2 (de) | Verfahren und Vorrichtung zur Bestimmung der Schaumschlackenhöhen beim Frischvorgang in einem Blasstahlkonverter | |
EP0796751B1 (de) | Klimatisierungseinrichtung | |
DE69203867T2 (de) | Instrument zum erfassen der anwesenheit eines körpers. | |
AT521158B1 (de) | Vorrichtung zur Messung von Staub- und Fettablagerungen | |
EP1360669B1 (de) | Verfahren und einrichtung zur überwachung unterirdischer anlagen | |
DE1526136C (de) | Vorrichtung zum Ermitteln der Schichtdicke der auf einer von staub beladenen Rauchgasen bestrichenen Ober flache eines Wärmetauschers sich bil denden Schlackensammlung Ausscheidung aus 1401900 | |
DE102006048689B4 (de) | Verfahren und Vorrichtung zur Bestimmung des Stickoxidausstoßes von Verbrennungsmotoren, insbsondere Schiffsdieselmotoren | |
DE10132755B4 (de) | Verfahren und Anordnung zum Ermitteln des Kondensatanfalls in einem Kamin | |
DE4238793C2 (de) | Verfahren zum Erkennen von Betriebsstörungen einer Klopfeinrichtung bzw. zur Steuerung der Reinigungsdauer einer mit einer Klopfeinrichtung klopfbaren Heizfläche |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020906 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BARTELS, FRANZ Inventor name: FRACH, MANFRED Inventor name: EIMER, KLAUS |
|
17Q | First examination report despatched |
Effective date: 20040301 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE FR GB LI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50108379 Country of ref document: DE Date of ref document: 20060119 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060320 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060915 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051214 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130326 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130424 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50108379 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140301 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50108379 Country of ref document: DE Effective date: 20141001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141001 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140301 |