EP1255892A1 - Technisches gewebe mit stecknaht - Google Patents
Technisches gewebe mit stecknahtInfo
- Publication number
- EP1255892A1 EP1255892A1 EP01909152A EP01909152A EP1255892A1 EP 1255892 A1 EP1255892 A1 EP 1255892A1 EP 01909152 A EP01909152 A EP 01909152A EP 01909152 A EP01909152 A EP 01909152A EP 1255892 A1 EP1255892 A1 EP 1255892A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- yarns
- industrial fabric
- fabric
- seaming
- multicomponent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/0027—Screen-cloths
- D21F1/0036—Multi-layer screen-cloths
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/47—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
- D03D15/587—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D25/00—Woven fabrics not otherwise provided for
- D03D25/005—Three-dimensional woven fabrics
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/0027—Screen-cloths
- D21F1/0054—Seams thereof
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/02—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
- D10B2321/022—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
- D10B2331/021—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/06—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
- D10B2331/061—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers polyetherketones, polyetheretherketones, e.g. PEEK
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/30—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14
- D10B2331/301—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14 polyarylene sulfides, e.g. polyphenylenesulfide
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/04—Heat-responsive characteristics
- D10B2401/041—Heat-responsive characteristics thermoplastic; thermosetting
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/062—Load-responsive characteristics stiff, shape retention
Definitions
- the present invention relates to the papermaking and related arts. More specifically, the present invention is an industrial fabric of the on-machine-seamable variety, such as an on-machine-seamable press fabric for the press section of a paper machine.
- a cellulosic fibrous web is formed by depositing a fibrous slurry, that is, an aqueous dispersion of cellulose fibers, onto a moving forming fabric in the forming section of a paper machine. A large amount of water is drained from the slurry through the forming fabric, leaving the cellulosic fibrous web on the surface of the forming fabric.
- the newly formed cellulosic fibrous web proceeds from the forming section to a press section, which includes a series of press nips.
- the cellulosic fibrous web passes through the press nips supported by a press fabric, or, as is often the case, between two such press fabrics.
- the cellulosic fibrous web is subjected to compressive forces which squeeze water therefrom, and which adhere the cellulosic fibers in the web to one another to turn the cellulosic fibrous web into a paper sheet .
- the water is accepted by the press fabric or fabrics and, ideally, does not return to the paper sheet .
- the paper sheet finally proceeds to a dryer section, which includes at least one series of rotatable dryer drums or cylinders, which are internally heated by steam.
- the newly formed paper sheet is directed in a serpentine path sequentially around each in the series of drums by a dryer fabric, which holds the paper sheet closely against the surfaces of the drums .
- the heated drums reduce the water content of the paper sheet to a desirable level through evaporation.
- the forming, press and dryer fabrics all take the form of endless loops on the paper machine and function in the manner of conveyors. It should further be appreciated that paper manufacture is a continuous process which proceeds at considerable speeds. That is to say, the fibrous slurry is continuously deposited onto the forming fabric in the forming section, while a newly manufactured paper sheet is continuously wound onto rolls after it exits from the dryer section.
- press fabrics were supplied only in endless form. This is because a newly formed cellulosic fibrous web is extremely susceptible to marking in the press nip by any nonuniformity in the press fabric ⁇ or fabrics.
- An endless, seamless fabric such as one produced by the process known as endless weaving, has a uniform structure in both its longitudinal (machine) and transverse (cross- machine) directions.
- a seam such as a seam which may be used to close the press fabric into endless form during installation on a paper machine, represents a discontinuity in the uniform structure of the press fabric. The use of a seam, then, greatly increases the likelihood that the cellulosic fibrous web will be marked in the press nip.
- any workable on- machine-seamable press fabric must behave under load, that is, under compression in the press nip or nips, like the rest of the press fabric, and must have the same permeability to water and to air as the rest of the press fabric, in order to prevent the periodic marking of the paper product being manufactured by the seam region.
- it remained highly desirable to develop an on-machine-seamable press fabric because of the comparative ease and safety with which such a fabric could be installed on the press section.
- these obstacles were overcome with the development of press fabrics having seams formed by providing seaming loops on the crosswise edges of the two ends of the fabric.
- the seaming loops themselves are formed by the machine-direction (MD) yarns of the fabric.
- MD machine-direction
- the seam is closed by bringing the two ends of the press fabric together, by interdigitating the seaming loops at the two ends of the fabric, and by directing a so-called pin, or pintle, through the passage defined by the interdigitated seaming loops to lock the two ends of the fabric together.
- pin or pintle
- One method to produce a press fabric that can be joined on the paper machine with such a seam is to flat- weave the fabric.
- the warp yarns are the machine-direction (MD) yarns of the press fabric.
- MD machine-direction
- the warp yarns at the ends of the fabric are turned back and woven some distance back into the fabric body in a direction parallel to the warp yarns.
- Another technique, far more preferable, is a modified form of endless weaving, which normally is used to produce an endless loop of fabric.
- the weft, or filling, yarns are continuously woven back and forth across the loom, in each passage forming a loop on one of the edges of the fabric being' woven by passing around a loop-forming pin.
- the seaming loops obtained in this manner are stronger than any that can be produced by weaving the warp ends back into the ends of a flat-woven fabric.
- a more compressible base fabric may be obtained by weaving with multifilament or plied monofilament yarns, instead of with single monofilament strands.
- yarns of these types do not have the rigidity necessary for good loop formation or for maintaining the integrity of the seam area during the loop interdigitation required when the seam is to be closed.
- yarns of these types are twisted, loops formed from them tend to rotate about axes lying in the planes formed by the loops. When this rotation, known as the secondary helix effect, occurs, it causes the loops to rotate from the ideal orientation needed for interdigitation. Such departure makes it difficult, if not impossible, to properly interdigitate the loops at each end of the press fabric during closure, as well as to direct the pintle through the passage defined by the interdigitated loops.
- non-monofilament loop-forming MD yarns act like monofilament.
- the MD yarns in an on-machine- seamable papermakers' fabric have a composite structure including braided monofilament strands.
- the braided yarn forms seaming loops which resist deformation and, because they are balanced with regard to twist, form seaming loops which are not susceptible to "secondary helix effect" rotation from the ideal plane geometry of the seam.
- the MD yarns of an on- machine-seamable papermakers' fabric are plied/twisted yarns having a coating which gives the yarn a monofilament-like structure.
- the coating may be either permanent, semi-permanent or soluble. Even though the yarns may not be balanced, the coating prevents loop rotation.
- the MD yarns of an on- machine-seamable papermakers 1 fabric have a core of cabled monofilaments surrounded by a sheath of multifilaments.
- the multifilament sheath binds the cabled monofilaments together, and prevents any of the monofilaments in the core from blocking the passage defined by the interdigitated loops formed by the MD yarns during seaming.
- the MD yarns of an on-machine-seamable papermakers' fabric are plied/twisted yarns and form seaming loops along the widthwise edges at the two ends of the fabric. A monofilament seaming spiral is attached to the seaming loops at each end.
- the seaming spirals are used to join the fabric into endless form, thereby providing a fabric having plied/twisted MD yarns with monofilament joining means .
- the present invention represents a different approach for providing an on-machine-seamable industrial fabric having plied/twisted MD yarns with seaming loops which maintain their integrity and proper orientation during seaming.
- the objective of the present invention is to provide an on-machine-seamable industrial fabric having multicomponent MD yarns with seaming loops which maintain the proper orientation and the required integrity for seaming.
- thermofusible yarns comprising a plurality of individual yarn strands and at least one, thermofusible strand of a thermoplastic material, wherein the thermoplastic material of the- at least one thermofusible strand has a melting point lower than that of the individual yarn strands in the multicomponent yarn.
- thermoplastic material melts and flows into the spaces between the individual yarn strands, and, at the conclusion of the heat treatment, resolidifies and stiffens the multicomponent yarn and holds the individual yarn strands thereof together along that given length. This ensures that the seaming loops formed by the multicomponent yarns will maintain the proper orientation and the required integrity for seaming.
- thermofusible strands in the multicomponent yarn enables the stiffness of the yarn to be controlled based upon the number and/or sizes of the thermofusible strands included. In turn, this enables fabric compressibility and resiliency to be controlled to a greater degree than is possible in fabrics manufactured with yarns not having thermofusible strands.
- the multicomponent yarns may be plied monofilament, plied multifilament, multifilament or plied/twisted yarns or combinations thereof.
- a plied/twisted yarn is meant any variety of yarn used in the production of paper machine clothing having multiple ends or filaments, which are twisted together to a desired degree, and, in many cases, then combined or plied with other filaments of the same type or of a different type. -During the plying operation, the yarn components are combined together by twisting them in the opposite direction from that of the individual components.
- the plied/twisted yarns may accordingly be considered to be multicomponent yarns .
- the multicomponent yarns may alternatively be braided or knitted yarns. In any event, the multicomponent yarn includes at least one thermofusible strand.
- the individual yarn strands included in the multicomponent yarn are typically of circular cross section, although it should be understood that they may be of any of a variety of other cross-sectional shapes, such as rectangular, oval or multilobed.
- the multicomponent yarn, produced by ply/twisting, braiding or knitting its components, may have a cross section which is not circular in shape.
- the present on-machine-seamable industrial fabric may be woven in a modified endless weaving technique from a system of MD yarns and a system of cross-machine- direction (CD) yarns, wherein the MD yarns are the multicomponent yarns described above.
- the industrial fabric may be flat-woven, wherein the MD yarns, the warp yarns during the weaving process, are again the multicomponent yarns.
- the industrial fabric has a rectangular shape with a length, a width, two lengthwise edges and two widthwise edges.
- the MD yarns (multicomponent yarns) extend back-and-forth continuously for the length of the industrial fabric between the two widthwise edges and form a first plurality of seaming loops along one of ⁇ the two widthwise edges and a second plurality of seaming loops along the other of the two widthwise edges.
- the multicomponent yarns, and seaming loops formed therefrom are stiffened and the plurality of individual yarn strands thereof held together by the thermoplastic material of the at least one thermofusible strand in the multicomponent yarn.
- the industrial fabric is joined into endless form by interdigitating the seaming loops of the first plurality with the seaming loops of the second plurality and by directing a pintle through the passage defined by the interdigitated seaming loops to close the loop seam, locking the two widthwise edges of the fabric together.
- multicomponent yarns may also be used in the cross-machine direction
- the stiffness of the CD yarn has a direct bearing on the number of MD and CD yarns that may be included in a fabric.
- the use in weaving of a yarn of lower stiffness allows a broader range of, and especially higher, end counts.
- the present multicomponent yarn may also be used as the machine-direction (MD) yarn in a flat-woven fabric which is to be joined into endless form with a woven seam because they can be designed to take the crimp required to form such a seam.
- Figure 1 is a schematic perspective view of an on- machine-seamable industrial fabric
- Figure 2 is a schematic perspective view of the two ends of the on-machine-seamable industrial fabric prior to their being joined to one another;
- Figure 3 is a cross-sectional view, taken in the warpwise direction, of the industrial fabric;
- Figure 4 is a cross-sectional view, taken in the weftwise direction, of the seam region of the industrial fabric; and Figure 5 is a cross-sectional view, analogous to that provided in Figure 4, of the seam region of an alternate embodiment of the industrial fabric.
- FIG 1 is a schematic perspective view of an on-machine-seamable industrial fabric 10.
- the fabric 10 takes the form of an endless loop once its two ends 12,14 have been joined to one another at seam 16.
- Figure 2 is a schematic perspective view of the two ends 12,14 of the on-machine-seamable industrial fabric 10 prior to their attachment to one another.
- Widthwise across the edges of each of the two ends 12,14 are a plurality of seaming loops 18.
- To attach the two ends 12,14 to one another they are brought together, in so doing alternating and intermeshing, or interdigitating, the seaming loops 18 at each end with one another.
- the interdigitated seaming loops 18 define a passage through which a pin, or pintle, a yarn-like strand or member, may be directed to secure the ends 12,14 to one another.
- FIG 3 shows a cross section, taken in the warpwise direction, of an industrial fabric 20 on which the present invention may be practiced.
- Fabric 20 is shown to be woven in a duplex weave, although it should be understood that such a weave is shown as an example only, and that the invention could be practiced with fabrics 20 that are woven in other weaves, such as single-, two-, three- or higher layer weaves, or which are laminated and include several fabric layers.
- Fabric 20 may be a base fabric for a press fabric, and, accordingly, may be needled with one or more layers of staple fiber batt material on one or both sides, or may be coated in some manner.
- fabric 20 may be used on one of the other sections of the paper machine, that is, on the forming or drying sections, or as a base for a polymeric-resin-coated, paper-industry process belt (PIPB) .
- PIPB polymeric-resin-coated, paper-industry process belt
- fabric 20 may be used as a corrugator belt or as a base thereof; as a pulp-forming fabric, such as a double-nip-thickener belt; or as other industrial process belts.
- Fabric 20 is woven using a modified endless weaving technique.
- warp yarns 22 ultimately become the cross-machine-direction (CD) yarns
- the weft yarns 24 ultimately become the machine-direction (MD) yarns, when reference is made to the orientations of the yarns relative to the machine on which fabric 20 is installed.
- Warp yarns 22, the CD yarns in the on-machine- seamable fabric 20 may be of any of the yarn types used to weave bases for paper machine fabrics or PIPB's, or for the other fabrics and belts mentioned above. That is to say, monofilament yarns, which are monofilament strands used singly, or multicomponent yarns, as described above, may be used as warp yarns 22.
- Weft yarns 24, the MD yarns in the on-machine- seamable fabric 20, on the other hand, are multicomponent yarns. As described above, multicomponent yarns may be plied monofilament, plied multifilament, multifilament or plied/twisted yarns or combinations thereof. The multicomponent yarns may also be braided or knitted yarns .
- the individual yarn strands comprising warp yarns 22 (CD yarns) and weft yarns 24 (MD yarns) are extruded from synthetic polymeric resin materials, such as polyamide, polyester, polyetherketo ⁇ e, polypropylene, polyaramid, polyolefin, polyphenylene sulfide (PPS) and polyethylene terephthalate (PET) resins, and copolymers thereof, and incorporated into yarns according to techniques well-known in the textile industry and particularly in the paper machine clothing industry.
- synthetic polymeric resin materials such as polyamide, polyester, polyetherketo ⁇ e, polypropylene, polyaramid, polyolefin, polyphenylene sulfide (PPS) and polyethylene terephthalate (PET) resins, and copolymers thereof, and incorporated into yarns according to techniques well-known in the textile industry and particularly in the paper machine clothing industry.
- the weft yarns 24 in addition to having a plurality of individual yarn strands, also include at least one thermofusible strand of a thermoplastic material, wherein the thermoplastic material has a melting point lower than that of the individual yarn strands making up the multicomponent yarn.
- the thermoplastic material upon application of a heat treatment at a temperature higher than the melting point of the thermofusible strand but below that of the individual yarn strands of the multicomponent yarn, the thermoplastic material stiffens the multicomponent yarn, and seaming loops 18 formed therefrom, and holds the individual yarn strands of the multicomponent yarn together. This ensures that the seaming loops formed by the multicomponent yarns will maintain the proper orientation and the required integrity for seaming.
- the thermoplastic material may, for example, be polyamide 66, low-melt polyamide 6 or polyurethane .
- the multicomponent yarn includes at least one thermofusible strand of the thermoplastic material. That is, it may include one, two, three or more thermofusible strands.
- the thermofusible strand may be monofilament or multifilament, either of which may be of non-circular cross section. It may be an extruded yarn or a strand cut from a film of "the thermoplastic material. It may also be of a strand or strands obtained or cut from a nonwoven material web of polyamide or polyurethane of a low melting temperature. Nonwoven material webs of this type are available from Sharnet.
- Figure 4 is a cross section, taken in the weftwise direction, of the seam region of the fabric 20 taken at the conclusion of the modified endless weaving process.
- loop-forming pin 26 must be removed to place fabric 20 into a form in which it may readily be installed on a particular machine.
- seaming loops 18 may rotate from the ideal seaming-loop geometry, illustrating the secondary helix effect, and deform as soon as the loop-forming pin 26 is removed, rendering subsequent seaming difficult or impossible.
- the heat treatment which stiffens and consolidates the multicomponent yarns is carried out before the loop-forming pin 26 is removed. It should be appreciated, however, that the heat treatment can be carried out either before or after the fabric 20 is woven, even at the yarn-forming stage. Further, where staple fiber batt material is to be needled into the fabric 20, the heat treatment can be carried out either before or after the needling process, although heat treatment following needling is preferred because the thermoplastic material of the at least one thermofusible strand improves the anchoring of the staple fiber batt material to the base fabric 20.
- seaming loops 18 are joined into endless form by interdigitating the seaming loops 18 at one end of the fabric with those at the other end and by directing a pintle through the passage defined by the interdigitated seaming loops 18.
- seaming spirals 28 may be attached to the seaming loops 18 and used to join the fabric 20 into the form of an endless loop.
- seaming spirals 28 may be interdigitated with seaming loops 18 and joined thereto by connecting yarns 30.
- fabric 20, having multicomponent yarns in the machine direction may be provided with monofilament seaming loops in the form of the individual coils of the seaming spirals 28.
- Seaming spirals 28 may be monofilament spirals, preferably of extruded polyamide resin.
- the monofilament diameter may be, for example, 0.40 mm or 0.50 mm.
- the individual coils of seaming spirals 28, being of monofilament may be readily interdigitated with one another and joined to one another by directing pintle 32 through the passage defined by the interdigitated coils.
- Stuffer yarns 34 may be inserted within the seaming spirals 28 to ensure that the seam region has characteristics similar to the rest of the fabric 20.
- Connecting yarns 30 and stuffer yarns 34 may be yarns of the same types used as the warp yarns 22 (CD yarns) of the fabric 20.
- Pintle 32 may be a single strand of monofilament, multiple strands of monofilament untwisted about one another, or plied, twisted, braided or knitted together, or one or more strands of any of the multicomponent yarns described above for use as the MD yarns (weft yarns 24) of fabric 20.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Woven Fabrics (AREA)
- Paper (AREA)
- Treatment Of Fiber Materials (AREA)
- Details Of Garments (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Laminated Bodies (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50336300A | 2000-02-14 | 2000-02-14 | |
US503363 | 2000-02-14 | ||
PCT/US2001/004511 WO2001061105A1 (en) | 2000-02-14 | 2001-02-12 | Seamed industrial fabrics |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1255892A1 true EP1255892A1 (de) | 2002-11-13 |
EP1255892B1 EP1255892B1 (de) | 2004-07-28 |
Family
ID=24001769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01909152A Expired - Lifetime EP1255892B1 (de) | 2000-02-14 | 2001-02-12 | Technisches gewebe mit stecknaht |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP1255892B1 (de) |
JP (1) | JP2003522856A (de) |
KR (1) | KR100680872B1 (de) |
CN (1) | CN1188570C (de) |
AT (1) | ATE272145T1 (de) |
AU (2) | AU3693701A (de) |
BR (1) | BR0108316A (de) |
CA (1) | CA2399696A1 (de) |
DE (1) | DE60104523T2 (de) |
ES (1) | ES2222345T3 (de) |
MX (1) | MXPA02007888A (de) |
NO (1) | NO20023826L (de) |
NZ (1) | NZ520757A (de) |
RU (1) | RU2265095C2 (de) |
TW (1) | TWI242620B (de) |
WO (1) | WO2001061105A1 (de) |
ZA (1) | ZA200206311B (de) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7273074B2 (en) * | 2002-07-24 | 2007-09-25 | Albany International Corp. | On-machine-seamable industrial fabric having seam-reinforcing rings |
US7093621B2 (en) * | 2004-12-15 | 2006-08-22 | Albany International Corp. | Multi-pin pin seam for an industrial fabric |
JP4761363B2 (ja) * | 2005-11-28 | 2011-08-31 | タカタ株式会社 | シートベルト装置 |
US8088256B2 (en) * | 2007-09-05 | 2012-01-03 | Albany International Corp. | Process for producing papermaker's and industrial fabric seam and seam produced by that method |
JP2010065343A (ja) * | 2008-09-10 | 2010-03-25 | Ichikawa Co Ltd | 製紙用シーム付きフェルト |
CN104611978B (zh) * | 2015-01-08 | 2017-05-17 | 江苏理文造纸有限公司 | 一种用于材料复合型纸页干网的旋转辊 |
MX2018005538A (es) | 2015-11-06 | 2018-11-09 | Invista Textiles Uk Ltd | Tela de baja permeabilidad y alta resistencia y metodos para hacer la misma. |
TWI663301B (zh) * | 2015-11-23 | 2019-06-21 | 順益材料股份有限公司 | 複合織物及其製法 |
CN109563684B (zh) * | 2016-08-04 | 2021-06-18 | 艾斯登强生股份有限公司 | 用于工业纺织品的加强构件 |
US11060215B2 (en) | 2017-01-26 | 2021-07-13 | Bright Cheers International Limited | Reinforced composite fabric and method for preparing the same |
CA3060311C (en) | 2017-05-02 | 2022-05-24 | Invista Textiles (U.K.) Limited | Low permeability and high strength woven fabric and methods of making the same |
BR112020006305A2 (pt) | 2017-09-29 | 2020-09-24 | Invista Textiles (U.K.) Limited | airbags e métodos para a produção de airbags |
CN110747686A (zh) * | 2019-05-17 | 2020-02-04 | 玖龙纸业(河北)有限公司 | 一种经过接缝处理的毛布及其接缝方法 |
CN112826349A (zh) * | 2021-02-04 | 2021-05-25 | 浦江环彩纺织有限公司 | 一种织物及澡巾布料 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB223578A (en) * | 1923-10-16 | 1926-01-15 | Willis Mckee | Improvements in or relating to conveyors |
DE1155049B (de) * | 1960-02-23 | 1963-09-26 | Aurelio Zatti | Filzband fuer Anlagen zur Herstellung von Platten und Rohren aus Asbestzement od. dgl. |
JPS57185800U (de) * | 1981-05-20 | 1982-11-25 | ||
US4991630A (en) * | 1989-04-10 | 1991-02-12 | Asten Group, Inc. | Single layer pin seam fabric having perpendicular seaming loops and method |
US5005610A (en) * | 1989-01-03 | 1991-04-09 | Albany International Corporation | Papermaking fabric pin seam with braided yarns in joining loops |
US5204150A (en) * | 1989-08-17 | 1993-04-20 | Albany International Corp. | Loop formation in on-machine-seamed press fabrics using yarns comprising mxd6 polyamide resin material |
US5391419A (en) * | 1989-08-17 | 1995-02-21 | Albany International Corp. | Loop formation in on-machine-seamed press fabrics using unique yarns |
US5031283A (en) * | 1990-02-14 | 1991-07-16 | Niagara Lockport Industries Inc. | Multifilament helical seaming element |
JPH0518606U (ja) * | 1991-08-13 | 1993-03-09 | ダイワボウ・クリエイト株式会社 | 濾過布 |
US5875822A (en) * | 1996-06-25 | 1999-03-02 | Albany International Corp. | Polyamide spiral seam for seamed papermakers' fabrics |
US5888915A (en) * | 1996-09-17 | 1999-03-30 | Albany International Corp. | Paper machine clothings constructed of interconnected bicomponent fibers |
-
2001
- 2001-02-12 CA CA002399696A patent/CA2399696A1/en not_active Abandoned
- 2001-02-12 CN CNB018065082A patent/CN1188570C/zh not_active Expired - Fee Related
- 2001-02-12 EP EP01909152A patent/EP1255892B1/de not_active Expired - Lifetime
- 2001-02-12 AU AU3693701A patent/AU3693701A/xx active Pending
- 2001-02-12 JP JP2001559934A patent/JP2003522856A/ja active Pending
- 2001-02-12 AT AT01909152T patent/ATE272145T1/de active
- 2001-02-12 NZ NZ520757A patent/NZ520757A/xx unknown
- 2001-02-12 KR KR1020027010505A patent/KR100680872B1/ko not_active IP Right Cessation
- 2001-02-12 WO PCT/US2001/004511 patent/WO2001061105A1/en active IP Right Grant
- 2001-02-12 BR BR0108316-3A patent/BR0108316A/pt not_active Application Discontinuation
- 2001-02-12 DE DE60104523T patent/DE60104523T2/de not_active Expired - Lifetime
- 2001-02-12 AU AU2001236937A patent/AU2001236937B2/en not_active Ceased
- 2001-02-12 ES ES01909152T patent/ES2222345T3/es not_active Expired - Lifetime
- 2001-02-12 RU RU2002121630/12A patent/RU2265095C2/ru not_active IP Right Cessation
- 2001-02-12 MX MXPA02007888A patent/MXPA02007888A/es active IP Right Grant
- 2001-02-13 TW TW090103173A patent/TWI242620B/zh not_active IP Right Cessation
-
2002
- 2002-08-07 ZA ZA200206311A patent/ZA200206311B/en unknown
- 2002-08-13 NO NO20023826A patent/NO20023826L/no not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0161105A1 * |
Also Published As
Publication number | Publication date |
---|---|
NO20023826D0 (no) | 2002-08-13 |
CA2399696A1 (en) | 2001-08-23 |
KR20020075915A (ko) | 2002-10-07 |
NO20023826L (no) | 2002-10-08 |
WO2001061105A1 (en) | 2001-08-23 |
AU3693701A (en) | 2001-08-27 |
JP2003522856A (ja) | 2003-07-29 |
ATE272145T1 (de) | 2004-08-15 |
MXPA02007888A (es) | 2003-06-24 |
ES2222345T3 (es) | 2005-02-01 |
DE60104523D1 (de) | 2004-09-02 |
AU2001236937B2 (en) | 2005-11-10 |
TWI242620B (en) | 2005-11-01 |
CN1418276A (zh) | 2003-05-14 |
ZA200206311B (en) | 2004-03-31 |
RU2002121630A (ru) | 2004-01-20 |
RU2265095C2 (ru) | 2005-11-27 |
BR0108316A (pt) | 2003-03-11 |
CN1188570C (zh) | 2005-02-09 |
EP1255892B1 (de) | 2004-07-28 |
KR100680872B1 (ko) | 2007-02-08 |
DE60104523T2 (de) | 2005-07-28 |
NZ520757A (en) | 2003-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0816559B1 (de) | Schraubenförmige Naht aus Polyamid für Geweben mit Stecknaht | |
EP0925393B1 (de) | Einheitlich gewebtes laminiertes papiermachergewebe | |
AU771612B2 (en) | Four-layer seamed press fabric | |
AU729718B2 (en) | Seam integrity in multiple layer/multiple seam press fabrics | |
US6719014B2 (en) | Enhancements for seams in on-machine-seamable papermaker's fabrics | |
AU2001236937B2 (en) | Seamed industrial fabrics | |
CA2260708C (en) | Flow-resistant material additions to double-seam on-machine-seamable fabrics | |
AU2001236937A1 (en) | Seamed industrial fabrics | |
EP1314814B1 (de) | Verbesserte Naht für Papiermachergewebe mit Naht | |
AU2003248787A1 (en) | On-machine-seamable industrial fabric having seam-reinforcing rings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020813 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60104523 Country of ref document: DE Date of ref document: 20040902 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041028 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041028 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040728 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2222345 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050214 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050429 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080224 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090227 Year of fee payment: 9 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20100225 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20100303 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100212 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120228 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20120228 Year of fee payment: 12 Ref country code: SE Payment date: 20120228 Year of fee payment: 12 Ref country code: IT Payment date: 20120224 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120119 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 272145 Country of ref document: AT Kind code of ref document: T Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130213 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130212 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60104523 Country of ref document: DE Effective date: 20130903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130903 |