EP1250185B1 - Air separation method and plant - Google Patents

Air separation method and plant Download PDF

Info

Publication number
EP1250185B1
EP1250185B1 EP00993692A EP00993692A EP1250185B1 EP 1250185 B1 EP1250185 B1 EP 1250185B1 EP 00993692 A EP00993692 A EP 00993692A EP 00993692 A EP00993692 A EP 00993692A EP 1250185 B1 EP1250185 B1 EP 1250185B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
enriched
stream
combustion chamber
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00993692A
Other languages
German (de)
French (fr)
Other versions
EP1250185A2 (en
Inventor
François Fuentes
Richard Dubettier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1250185A2 publication Critical patent/EP1250185A2/en
Application granted granted Critical
Publication of EP1250185B1 publication Critical patent/EP1250185B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers

Definitions

  • the present invention relates to a method and an installation of air separation.
  • it relates to a process that produces a flow rate enriched in nitrogen at a pressure of at least 2 bars which is relaxed in a turbine.
  • Cryogenic air separation devices operate traditionally with two distillation columns a so-called medium pressure operating at about 4 to 10 bar and a so-called low pressure operating at between 1 to 3 bars.
  • DE-A-2553700 discloses an air separation apparatus which produces a flow rate gas enriched with nitrogen. After a compression step, the gas flow is heated by indirect heat exchange inside a chamber of combustion before being expanded in a turbine. The gas relaxed in the turbine serves to preheat the compressed gas to be sent to the chamber of combustion.
  • the document describes a process according to the preamble of claim 1.
  • US-A-3950957 discloses an air separation apparatus including nitrogen product is relaxed after warming up in a boiler. Calories remaining in the expanded nitrogen are passed to the boiler by exchange of indirect heat.
  • US-A-4557735 describes the case in which the nitrogen is expanded to a cryogenic temperature, compressed, mixed with air and sent to a room of combustion.
  • EP-A-0959314 relates to a method for expanding a mixture of air and residual nitrogen, in which the mixture is sent to a chamber of combustion.
  • the proposed scheme corresponds to turbining residual nitrogen at high temperature in an innovative and efficient way.
  • An air flow 1 is compressed in a compressor 3, cooled by means of of a refrigerating unit 5 and purified in adsorbent beds 7.
  • the air is cooled in the main exchanger 9 before being sent at the medium pressure column of a double column.
  • Rich liquid is sent from the medium pressure column to the column low pressure and oxygen-rich gas is drawn off the low column pressure.
  • This oxygen-rich gas can possibly be sent to a unit oxygen consumer that produces a fuel 27 for a chamber of combustion 15.
  • This unit can be a blast furnace, a production unit of steel or other metals.
  • the gaseous impure nitrogen 11 containing from less than one to several percent molar oxygen, available at room temperature and moderate pressure (2 to 7 bar) at the top of the low pressure column of the double column with a flow rate from 50,000 Nm3 / h to 500,000 Nm3 / h is compressed in a compressor 13 to a pressure of the order of 10 to 20 bar, after regenerating the adsorbent bed 7. It contains the impurities trapped by it.
  • This fluid then at a temperature of the order of 90 to 150 ° C (because there is no final refrigerant downstream of the compressor 13) is heated, in two stages separated A, B, in a combustion chamber 15 up to a temperature of 700 to 800 ° C.
  • the combustion chamber 15 is fed with fuel 27 and compressed air or another source of oxygen.
  • Compressed air can come from of a fan FD ("forced draft fan").
  • the combustion chamber is optionally constituted by an oven having at least one burner.
  • the heated residual nitrogen is then expanded to a pressure close to the atmospheric pressure in an expansion turbine 17 coupled to an electric generator and / or compression means of the air separation.
  • the expanded fluid 19, a temperature of 350 to 450 ° C is then mixed with the fumes from the combustion chamber at a substantially identical, intermediate between the two reheating steps A, B previously cited in order to minimize irreversibilities.
  • the residual heat of the flue gases with residual nitrogen is used to heat pressurized water 21 (at about 110 - 130 ° C) necessary for the operation of the absorption refrigerating unit 5 (bromide lithium or equivalent) for cooling the air entering the separating apparatus air.
  • the overall energy balance is particularly interesting and allows valorize low-energy energy.
  • This scheme makes it possible to value the energy contained in the residual nitrogen without having the expensive circuits necessary for the production of boiler water.
  • At least a part of the residual nitrogen, as well as the heat available in the system (compression or residual heat of fumes) can be used to regenerate the adsorbent beds of the air separation apparatus before being compressed, heated in the combustion chamber and sent to the turbine.
  • the nitrogen to be released can be extracted from the column operating at the pressure lower and / or the column operating at the highest pressure and / or the column operating at intermediate pressure (in the case where the separating apparatus of air would be a triple column).
  • the combustion chamber can be oversized to can also produce steam, functioning as a boiler.
  • Part of the residual nitrogen can be taken from different points of to act as a bearing gas and / or cooling of the blades or the rotor the nitrogen expansion turbine or other turbine.
  • Part of the waste nitrogen can be injected into the burners of the combustion chamber to control the NO x level .
  • the scheme can obviously be designed without nitrogen compressor especially if the low pressure column operates at a pressure above 1.4 bar.
  • FCC units fluidized catalytic cracking
  • This gas is usually turbined and then the calories are recovered.
  • this or these gases can (can) be mixed with the nitrogen at the points indicated by the dashed arrows 20,23,24,31 (before or after the first heating stage, just upstream of the turbine or upstream of the compressor nitrogen) depending on its temperature and pressure.
  • the flow rate is of the same order of magnitude as that of the residual nitrogen (ie 50,000 Nm3 / h at 500,000 Nm3 / h).
  • the pressure is typically 2 to 6 bar abs.
  • FCC regeneration can be enhanced by enriching the air.
  • oxygen for enrichment can come from the ASU which provides the nitrogen.
  • the pressure is typically 2 to 10 bar abs and the flow rate is 20,000 Nm3 / h at 200,000 Nm3 / h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The pressurized waste nitrogen (11) from a column of an air separation unit (10) is sent, optionally after being compressed, to a combustion chamber (15) where it is heated, to a turbine (17) in which it is expanded and again to the combustion chamber (15) where it is mixed with the flue gases in order to give up waste heat thereto.

Description

La présente invention est relative à un procédé et une installation de séparation d'air. En particulier, elle concerne un procédé qui produit un débit enrichi en azote à une pression d'au moins 2 bars qui est détendu dans une turbine.The present invention relates to a method and an installation of air separation. In particular, it relates to a process that produces a flow rate enriched in nitrogen at a pressure of at least 2 bars which is relaxed in a turbine.

En particulier elle concerne un procédé et installation de séparation d'air intégrés avec une chambre à combustion.In particular it relates to a method and installation of air separation integrated with a combustion chamber.

Les appareils de séparation d'air par voie cryogénique fonctionnent traditionnellement avec deux colonnes de distillation une dite moyenne pression fonctionnant à environ 4 à 10 bars et une dite basse pression fonctionnant à entre 1 à 3 bars.Cryogenic air separation devices operate traditionally with two distillation columns a so-called medium pressure operating at about 4 to 10 bar and a so-called low pressure operating at between 1 to 3 bars.

Une augmentation de ces pressions, bien que rendant la distillation plus difficile, serait intéressante car elle permettrait de réduire le volume des équipements (et donc leurs coûts) et permettrait de réduire les irréversibilités énergétiques dues aux pertes de charges dans les différents circuits.An increase in these pressures, although making distillation more difficult, would be interesting because it would reduce the volume of equipment (and therefore their costs) and would reduce irreversibilities energy losses due to losses in the different circuits.

Çependant, il est assez rare de pouvoir augmenter ces pressions car il est nécessaire de valoriser l'énergie contenue dans les fluides résiduaires "non commercialisables" traditionnellement du fait de leurs puretés.However, it is quite rare to be able to increase these pressures because It is necessary to value the energy contained in the waste fluids marketable "traditionally because of their purities.

Les solutions classiques sont par exemple de :

  • réinjecter ce résiduaire dans des turbines à gaz (cas en particulier des IGCC),
  • turbiner à froid ce fluide de manière à produire du liquide,
  • turbiner à température élevée (tel que décrit dans la demande de brevet EP-A-0402045).
Typical solutions are for example:
  • reinject this waste into gas turbines (in particular cases of IGCC),
  • cold wind this fluid so as to produce liquid,
  • turbinate at elevated temperature (as described in patent application EP-A-0402045).

DE-A-2553700 décrit un appareil de séparation d'air qui produit un débit gazeux enrichi en azote. Après une étape de compression, le débit gazeux est chauffé par échange de chaleur indirect à l'intérieur d'une chambre de combustion avant d'être détendu dans une turbine. Le gaz détendu dans la turbine sert à préchauffer le gaz comprimé à envoyer à la chambre de combustion. Le document décrit un procédé selon le préambule de la revendication 1.DE-A-2553700 discloses an air separation apparatus which produces a flow rate gas enriched with nitrogen. After a compression step, the gas flow is heated by indirect heat exchange inside a chamber of combustion before being expanded in a turbine. The gas relaxed in the turbine serves to preheat the compressed gas to be sent to the chamber of combustion. The document describes a process according to the preamble of claim 1.

US-A-3950957 divulgue un appareil de séparation d'air dont l'azote produit est détendu après s'être réchauffée dans une chaudière. Les calories restantes dans l'azote détendu sont transmises à la chaudière par échange de chaleur indirecte.US-A-3950957 discloses an air separation apparatus including nitrogen product is relaxed after warming up in a boiler. Calories remaining in the expanded nitrogen are passed to the boiler by exchange of indirect heat.

Dans US-A-5459994, un débit d'azote est détendu dans une turbine, mélangé avec de l'air, comprimé et envoyé à une chambre de combustion.In US-A-5459994, a nitrogen flow rate is expanded in a turbine, mixed with air, compressed and sent to a combustion chamber.

Dans US-A-4729217 après avoir été mélangé avec le carburant, l'azote est détendu dans une turbine et envoyé à une chambre de combustion.In US-A-4729217 after being mixed with the fuel, nitrogen is expanded in a turbine and sent to a combustion chamber.

US-A-4557735 décrit le cas dans lequel l'azote est détendu à une température cryogénique, comprimé, mélangé avec l'air et envoyé à une chambre de combustion.US-A-4557735 describes the case in which the nitrogen is expanded to a cryogenic temperature, compressed, mixed with air and sent to a room of combustion.

EP-A-0959314 concerne un procédé de détente d'un mélange d'air et d'azote résiduaire, dans lequel le mélange est envoyé à une chambre de combustion.EP-A-0959314 relates to a method for expanding a mixture of air and residual nitrogen, in which the mixture is sent to a chamber of combustion.

Le schéma proposé correspond à turbiner l'azote résiduaire à température élevée de manière innovante et efficace.The proposed scheme corresponds to turbining residual nitrogen at high temperature in an innovative and efficient way.

Selon un objet de l'invention, il est prévu un procédé selon la revendication 1.According to one object of the invention, there is provided a method according to claim 1.

Optionnellement :

  • la température d'entrée de l'azote dans la turbine est au moins 700°C.
  • le débit gazeux enrichi en azote est comprimé à une pression entre 5 et 20 bars avant d'être détendu.
  • l'air est refroidi après sa compression au moyen d'un groupe frigorifique à absorption et de l'eau pressurisée destinée au groupe frigorifique est chauffée par les gaz de la chambre de combustion additionnés du débit gazeux enrichi en azote.
  • l'air est épuré dans un moyen d'épuration avant d'être envoyé à l'appareil de séparation, le moyen d'épuration est régénéré par un débit gazeux enrichi en azote et au moins une partie du débit ayant servi à la régénération est envoyé à la turbine de détente.
  • le débit enrichi en azote est soutiré d'une simple colonne ou de la colonne moyenne pression et/ou de la colonne basse pression d'une double colonne ou de la colonne haute pression et/ou de la colonne à pression intermédiaire et/ou de la colonne basse pression d'une triple colonne.
  • le débit enrichi en azote est mélangé avec un gaz enrichi en azote provenant d'une source extérieure avant d'être détendu dans la turbine.
  • le débit enrichi en azote contient au moins 50 mol.% d'azote et entre 0.5 et 10% molaires d'oxygène.
  • la colonne dont provient le débit enrichi en azote fonctionne entre substantiellement 2 et 7 bars.
  • le débit enrichi en azote n'est pas mélangé avec de l'air avant d'etre détendu dans la turbine.
  • on mélange un débit enrichi en azote, de préférence contenant au moins 50 mol.% d'azote, provenant d'une source extérieure, avec le débit enrichi en azote provenant de l'appareil de séparation d'air, en amont de la turbine de détente.
Optionally:
  • the inlet temperature of the nitrogen in the turbine is at least 700 ° C.
  • the nitrogen-enriched gas flow is compressed at a pressure between 5 and 20 bar before being expanded.
  • the air is cooled after compression by means of an absorption refrigeration unit and the pressurized water for the refrigeration unit is heated by the combustion chamber gases plus the nitrogen-enriched gas flow.
  • the air is purified in a purification means before being sent to the separation apparatus, the purification means is regenerated by a nitrogen-enriched gas flow and at least a portion of the flow rate used for the regeneration is sent to the relaxation turbine.
  • the nitrogen-enriched flow is withdrawn from a single column or from the medium pressure column and / or the low pressure column of a double column or the high pressure column and / or the intermediate pressure column and / or the low pressure column of a triple column.
  • the nitrogen-enriched flow is mixed with a nitrogen-enriched gas from an external source before being expanded in the turbine.
  • the flow enriched in nitrogen contains at least 50 mol% of nitrogen and between 0.5 and 10 mol% of oxygen.
  • the column from which the nitrogen-enriched flow is produced operates between substantially 2 and 7 bars.
  • the flow enriched in nitrogen is not mixed with air before being expanded in the turbine.
  • a flow enriched in nitrogen, preferably containing at least 50 mol% of nitrogen, from an external source, is mixed with the flow enriched in nitrogen coming from the air separation apparatus, upstream of the turbine of relaxation.

Selon un autre objet de l'invention, il est prévu une installation de séparation d'air selon la revendication 1.According to another object of the invention, an installation of air separation according to claim 1.

Optionnellement l'installation peut comprendre :

  • un groupe frigorifique dans lequel l'air est refroidi après sa compression, un circuit d'eau premurisée destinée au groupe frigorifique et des moyens pour chauffer le circuit d'eau pressurisée par les gaz de la chambre de combustion additionnés du débit gazeux enrichi en azote.
  • un moyen d'épuration dans lequel l'air est épuré avant d'être envoyé à l'appareil de séparation, le moyen d'épuration étant régénéré par un débit gazeux enrichi en azote et des moyens pour envoyer au moins une partie du débit ayant servi à la régénération à la turbine de détente.
  • des moyens pour soutirer le débit enrichi en azote d'une simple colonne ou de la colonne moyenne pression et/ou de la colonne basse pression d'une double colonne ou de la colonne haute pression et/ou de la colonne à pression intermédiaire et/ou de la colonne basse pression d'une triple colonne.
  • des moyens pour mélanger un gaz résiduaire enrichi en azote (de préférence contenant au moins 50 mol.% d'azote) provenant d'une source extérieure avec le gaz enrichi en azote à détendre.
Optionally the installation may include:
  • a refrigeration unit in which the air is cooled after compression, a premilled water circuit for the refrigeration unit and means for heating the water circuit pressurized by the combustion chamber gases plus the nitrogen-enriched gas flow rate; .
  • a purification means in which the air is purified before being sent to the separation apparatus, the purification means being regenerated by a nitrogen-enriched gas flow and means for sending at least a portion of the flow rate having served for regeneration at the expansion turbine.
  • means for withdrawing the nitrogen-enriched flow of a single column or medium pressure column and / or low pressure column from a double column or the high pressure column and / or the intermediate pressure column and / or the low pressure column of a triple column.
  • means for mixing a nitrogen enriched waste gas (preferably containing at least 50 mol% nitrogen) from an external source with the nitrogen-enriched gas to be decompressed.

L'invention sera maintenant décrite en se référant à la Figure qui est un schéma d'une installation selon l'invention.The invention will now be described with reference to Figure which is a diagram of an installation according to the invention.

Un débit d'air 1 est comprimé dans un compresseur 3, refroidi au moyen d'un groupe frigorifique 5 et épuré dans des lits d'adsorbants 7.An air flow 1 is compressed in a compressor 3, cooled by means of of a refrigerating unit 5 and purified in adsorbent beds 7.

Ensuite l'air est refroidi dans l'échangeur principal 9 avant d'être envoyé à la colonne moyenne pression d'une double colonne.Then the air is cooled in the main exchanger 9 before being sent at the medium pressure column of a double column.

Du liquide riche est envoyé de la colonne moyenne pression à la colonne basse pression et un gaz riche en oxygène est soutiré de la colonne basse pression. Ce gaz riche en oxygène peut éventuellement etre envoyé à une unité consommatrice d'oxygène qui produit un carburant 27 pour une chambre de combustion 15. Cette unité peut être un haut-fourneau, une unité de production d'acier ou d'autres métaux.Rich liquid is sent from the medium pressure column to the column low pressure and oxygen-rich gas is drawn off the low column pressure. This oxygen-rich gas can possibly be sent to a unit oxygen consumer that produces a fuel 27 for a chamber of combustion 15. This unit can be a blast furnace, a production unit of steel or other metals.

L'azote impur gazeux 11 contenant de moins de un à plusieurs pour cent molaires d'oxygène, disponible à température ambiante et pression modérée (2 à 7 bars) en tête de la colonne basse pression de la double colonne avec un débit de 50 000 Nm3/h à 500 000 Nm3/h est comprimé dans un compresseur 13 à une pression de l'ordre de 10 à 20 bars, après avoir régénéré le lit d'adsorbant 7. Il contient les impuretés piégées par celui-ci.The gaseous impure nitrogen 11 containing from less than one to several percent molar oxygen, available at room temperature and moderate pressure (2 to 7 bar) at the top of the low pressure column of the double column with a flow rate from 50,000 Nm3 / h to 500,000 Nm3 / h is compressed in a compressor 13 to a pressure of the order of 10 to 20 bar, after regenerating the adsorbent bed 7. It contains the impurities trapped by it.

Ce fluide, alors à une température de l'ordre de 90 à 150°C (car il n'y a pas de réfrigérant final en aval du compresseur 13) est réchauffé, en deux étapes séparées A,B, dans une chambre de combustion 15 jusqu'à une température de l'ordre de 700 à 800°C.This fluid, then at a temperature of the order of 90 to 150 ° C (because there is no final refrigerant downstream of the compressor 13) is heated, in two stages separated A, B, in a combustion chamber 15 up to a temperature of 700 to 800 ° C.

La chambre de combustion 15 est alimentée par du carburant 27 et de l'air 25 comprimé ou une autre source d'oxygène. L'air comprimé peut provenir d'une soufflante FD (« forced draft fan »).The combustion chamber 15 is fed with fuel 27 and compressed air or another source of oxygen. Compressed air can come from of a fan FD ("forced draft fan").

La chambre de combustion est éventuellement constituée par un four ayant au moins un brûleur.The combustion chamber is optionally constituted by an oven having at least one burner.

L'azote résiduaire réchauffé est ensuite détendu jusqu'à une pression voisine de la pression atmosphérique dans une turbine de détente 17 couplée à un générateur électrique et/ou des moyens de compression de l'appareil de séparation d'air.The heated residual nitrogen is then expanded to a pressure close to the atmospheric pressure in an expansion turbine 17 coupled to an electric generator and / or compression means of the air separation.

Le fluide détendu 19, d'une température de 350 à 450°C est alors mélangé aux fumées de la chambre de combustion à un niveau sensiblement identique, intermédiaire entre les deux étapes de réchauffage A,B précédemment citées de manière à minimiser les irréversibilités.The expanded fluid 19, a temperature of 350 to 450 ° C is then mixed with the fumes from the combustion chamber at a substantially identical, intermediate between the two reheating steps A, B previously cited in order to minimize irreversibilities.

La chaleur résiduelle des fumées additionnées d'azote résiduaire est utilisée pour réchauffer de l'eau pressurisée 21 (à environ 110 - 130°C) nécessaire au fonctionnement du groupe frigorifique à absorption 5 (bromure de lithium ou équivalent) destiné à refroidir l'air entrant dans l'appareil de séparation d'air.The residual heat of the flue gases with residual nitrogen is used to heat pressurized water 21 (at about 110 - 130 ° C) necessary for the operation of the absorption refrigerating unit 5 (bromide lithium or equivalent) for cooling the air entering the separating apparatus air.

Le bilan énergétique global est particulièrement intéressant et permet de valoriser de l'énergie peu noble.The overall energy balance is particularly interesting and allows valorize low-energy energy.

II y a adéquation entre les besoins du groupe frigorifique de l'appareil de séparation d'air et les calories disponibles dans les fumées de la chambre de combustion au niveau de température indiqué.There is adequacy between the needs of the refrigeration unit of the apparatus of separation of air and the calories available in the fumes of the chamber of combustion at the indicated temperature level.

Ce schéma permet de valoriser l'énergie contenue dans l'azote résiduaire sans avoir les circuits coûteux nécessaires à la production d'eau de chaudière.This scheme makes it possible to value the energy contained in the residual nitrogen without having the expensive circuits necessary for the production of boiler water.

Du fait de l'injection d'azote résiduaire, la teneur en vapeur d'eau dans les fumées est relativement faible et permettrait de récupérer de l'énergie à des niveaux de température bas, sans risque de condensation (et donc de corrosion) dans la cheminée de la chambre de combustion. Due to the injection of residual nitrogen, the water vapor content in the fumes is relatively low and would recover energy from low temperature levels, without risk of condensation (and therefore corrosion) in the chimney of the combustion chamber.

Au moins une partie de l'azote résiduaire, de même que la chaleur disponible dans le système (compression ou chaleur résiduelle des fumées) peut être utilisée pour régénérer les lits d'adsorbants de l'appareil de séparation d'air avant d'être comprimée, chauffée dans la chambre de combustion et envoyée à la turbine.At least a part of the residual nitrogen, as well as the heat available in the system (compression or residual heat of fumes) can be used to regenerate the adsorbent beds of the air separation apparatus before being compressed, heated in the combustion chamber and sent to the turbine.

Evidemment la double colonne de la Figure peut être remplacée par une triple colonne telle que celle de EP-A-0538118.Obviously the double column of the Figure can be replaced by a triple column such as that of EP-A-0538118.

L'azote à détendre peut être extrait de la colonne opérant à la pression la plus basse et/ou de la colonne opérant à la pression la plus élevée et/ou de la colonne opérant à pression intermédiaire (dans le cas où l'appareil de séparation d'air serait une triple colonne).The nitrogen to be released can be extracted from the column operating at the pressure lower and / or the column operating at the highest pressure and / or the column operating at intermediate pressure (in the case where the separating apparatus of air would be a triple column).

La chambre de combustion peut être surdimensionnée de manière à pouvoir produire aussi de la vapeur, fonctionnant comme une chaudière.The combustion chamber can be oversized to can also produce steam, functioning as a boiler.

Une partie de l'azote résiduaire peut être prélevé en différents points de manière à servir de gaz de palier et/ou de refroidissement des aubes ou du rotor de la turbine de détente de l'azote ou d'une autre turbine.Part of the residual nitrogen can be taken from different points of to act as a bearing gas and / or cooling of the blades or the rotor the nitrogen expansion turbine or other turbine.

Une partie de l'azote résiduaire peut être injecté au niveau des brûleurs de la chambre de combustion pour contrôler le niveau en NOx.Part of the waste nitrogen can be injected into the burners of the combustion chamber to control the NO x level .

Le schéma peut évidemment être conçu sans compresseur d'azote surtout si la colonne basse pression opère à une pression au-dessus de 1,4 bar.The scheme can obviously be designed without nitrogen compressor especially if the low pressure column operates at a pressure above 1.4 bar.

Dans de nombreuses raffineries il existe des unités de type FCC (fluidized catalytic cracking) où le gaz de régénération est disponible à environ 700°C et 3 à 4 bars. Ce gaz est généralement turbiné puis les calories sont récupérées.In many refineries there are FCC units (fluidized catalytic cracking) where the regeneration gas is available at approximately 700 ° C and 3 to 4 bars. This gas is usually turbined and then the calories are recovered.

Il se trouve que souvent, les FCC sont de taille modeste et donc l'investissement de la turbine ne se justifie pas économiquement. Nous pourrions donc proposer de détendre ce gaz en même temps après l'avoir mélangé avec l'azote.It often happens that the FCCs are modest in size and therefore the investment of the turbine is not justified economically. We could so propose to relax this gas at the same time after mixing it with nitrogen.

Il est également possible de détendre d'autres gaz résiduaires à fort contenu en azote (au-dessus de 50 mol %) avec l'azote provenant de l'ASU.It is also possible to relax other waste gases to strong nitrogen content (above 50 mol%) with nitrogen from the ASU.

En variante, ce ou ces gaz peut (peuvent) être mélangé(s) avec l'azote aux points indiqués par les flèches en pointillés 20,23,24,31 (avant ou après la première étape de chauffage, juste en amont de la turbine ou en amont du compresseur d'azote) en fonction de sa température et sa pression.Alternatively, this or these gases can (can) be mixed with the nitrogen at the points indicated by the dashed arrows 20,23,24,31 (before or after the first heating stage, just upstream of the turbine or upstream of the compressor nitrogen) depending on its temperature and pressure.

Application 1 : les FCC ou unités de craquage catalytique à lit fluide Application 1: FCC or Fluid-bed Catalytic Cracking Units Exemple de gaz :Example of gas:

N2 N 2 72.5%72.5% ArAr 1%1% CO2 CO 2 14%14% O2 O 2 1%1% H2OH 2 O 11.5%11.5% Traces de CO, NOx et SO2.Traces of CO, NO x and SO 2 .

Le débit est du même ordre de grandeur que celui de l'azote résiduaire (soit 50 000 Nm3/h à 500 000 Nm3/h). La pression est typiquement de 2 à 6 bar abs.The flow rate is of the same order of magnitude as that of the residual nitrogen (ie 50,000 Nm3 / h at 500,000 Nm3 / h). The pressure is typically 2 to 6 bar abs.

Nota : la régénération du FCC peut être améliorée par enrichissement de l'air. Dans ce cas l'oxygène destiné à l'enrichissement peut provenir de l'ASU qui fournit l'azote.Note: FCC regeneration can be enhanced by enriching the air. In this case the oxygen for enrichment can come from the ASU which provides the nitrogen.

Deuxième cas d'application : les unités d'acide nitrique Second case of application: nitric acid units

Dans ces unités un gaz contenant au moins 50 mol.% d'azote est produit en tête d'une colonne d'absorption, alimentée par de l'air.
D'autres intégrations plus complètes sont aussi possibles :

  • soit au niveau de l'injection d'oxygène pour la production de gaz de synthèse permettant de fabriquer de l'ammoniac qui sert ensuite à faire de l'acide nitrique.
  • soit par enrichissement de l'air destiné à l'usine d'acide nitrique proprement dite (appliqué en général lors de dégoulottage). Il s'agit là d'un petit débit.
In these units a gas containing at least 50 mol% of nitrogen is produced at the top of an absorption column, supplied with air.
Other more complete integrations are also possible:
  • or at the level of the injection of oxygen for the production of synthesis gas to manufacture ammonia which is then used to make nitric acid.
  • either by enriching the air intended for the nitric acid plant itself (generally applied during debottlenecking). This is a small flow.

La pression est typiquement de 2 à 10 bar abs et le débit de 20 000 Nm3/h à 200 000 Nm3/h.The pressure is typically 2 to 10 bar abs and the flow rate is 20,000 Nm3 / h at 200,000 Nm3 / h.

Claims (13)

  1. Air separation process in which a stream of compressed and purified air is separated in an air separation unit (10) in order to produce a nitrogen-enriched gas stream (11) at between 2 and 7 bar, the nitrogen-enriched gas stream is expanded in a turbine (17) and the expanded gas stream (19) is sent to a convection region located downstream of a combustion chamber (15), the gas stream being expanded without having been mixed with a stream of fuel and without being mixed with a stream of air after its expansion, the nitrogen-enriched gas stream (11) is preheated by indirect heat exchange with the gases inside the convection region of the combustion chamber (15) before being expanded, characterized in that the nitrogen-enriched stream (11) is preheated by indirect exchange in the combustion chamber in one step up to an intermediate temperature and then in a second step up to the turbine entry temperature and the expanded gas sent into the combustion chamber (15) gives up heat to the gas stream to be expanded during the first preheating step.
  2. Process according to Claim 1, in which the temperature at which the nitrogen enters the turbine (17) is at least 700°C.
  3. Process according to either of Claims 1 and 2, in which the nitrogen-enriched gas stream is compressed to a pressure of between 5 and 20 bar before being expanded.
  4. Process according to one of Claims 1 to 3, in which the air is cooled after its compression by means of a refrigerating unit (5) and pressurized water (21) intended for the refrigerating unit is heated by the gases from the combustion chamber to which gases the nitrogen-enriched gas stream is added.
  5. Process according to one of the preceding claims, in which the air is purified in a purifying means (7) before being sent to the separation unit, the purifying means is regenerated by a nitrogen-enriched gas stream (11) and at least one portion of the stream that has served for the regeneration is sent to the expansion turbine (17).
  6. Process according to one of the preceding claims, in which the nitrogen-enriched stream (11) is withdrawn from a single column or from the medium-pressure column and/or the low-pressure column of a double column or from the high-pressure column and/or the intermediate-pressure column and/or the low-pressure column of a triple column.
  7. Process according to one of the preceding claims, in which the nitrogen-enriched stream (11) contains at least 50 mol% nitrogen and between 0.5 and 10 mol% oxygen.
  8. Process according to one of the preceding claims, in which a nitrogen-enriched stream (20, 23, 24, 31), preferably containing at least 50 mol% nitrogen, coming from an external source, is mixed with the nitrogen-enriched stream (11, 19) coming from the air separation unit (10), upstream of the expansion turbine (17).
  9. Air separation plant for the implementation of a process according to one of the preceeding claims, which comprises characterized in that means viii) are:
    i) an air separation unit (10) operating by cryogenic distillation;
    ii) a combustion chamber (15) followed by a heat-recovery region comprising at least one convection region,
    iii) an expansion turbine (17);
    iv) means (3) for sending air to the air separation unit operating by cryogenic distillation;
    v) means for withdrawing a nitrogen-enriched gas stream (11) from the air separation unit operating by cryogenic distillation;
    vi) means for sending the nitrogen-enriched gas stream to the expansion turbine; and
    vii) means for sending the nitrogen-enriched gas stream from the expansion turbine to the convection region located downstream of the combustion chamber, and which comprises neither means for mixing air with the nitrogen-enriched gas downstream of the turbine and upstream of the combustion chamber nor means for mixing fuel with the nitrogen-enriched gas before its expansion; and
    viii) means for preheating the nitrogen-enriched gas stream (11) by indirect heat exchange with the gases inside the combustion chamber (15) upstream of the expansion turbine (17),
    characterized in that the means viii) are means for preheating the nitrogen-enriched stream by indirect exchange in the combustion chamber in one step up to an intermediate temperature and then in a second step up to the turbine entry temperature and include means for sending the expanded gas to the combustion chamber so as to heat the gas stream to be expanded.
  10. Plant according to Claim 9, comprising a refrigerating unit (5) in which the air is cooled after it has been compressed, a pressurized-water circuit (21) intended for the refrigerating unit and a means for heating the pressurized-water circuit by the gases from the combustion chamber, to which gases the nitrogen-enriched gas stream has been added.
  11. Plant according to either of Claims 9 and 10, comprising a purifying means (7) in which the air is purified before being sent to the separation unit, the purifying means being regenerated by a nitrogen-enriched gas stream (11), and means for sending at least a portion of the stream that has served for the regeneration to the expansion turbine.
  12. Plant according to one of Claims 9 to 11, comprising means for withdrawing the nitrogen-enriched stream from a single column or from the medium-pressure column and/or low-pressure column of a double column or from the high-pressure column and/or the intermediate-pressure column and/or the low-pressure column of a triple column or of a mixing column.
  13. Plant according to one of Claims 9 to 12, comprising means for mixing a nitrogen-enriched waste gas (20, 23, 24, 31), preferably containing at least 50 mol% nitrogen, coming from an external source with the nitrogen-enriched gas to be expanded.
EP00993692A 1999-12-30 2000-12-28 Air separation method and plant Expired - Lifetime EP1250185B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9916751A FR2803221B1 (en) 1999-12-30 1999-12-30 AIR SEPARATION PROCESS AND INSTALLATION
FR9916751 1999-12-30
PCT/FR2000/003706 WO2001049394A2 (en) 1999-12-30 2000-12-28 Air separation method and plant

Publications (2)

Publication Number Publication Date
EP1250185A2 EP1250185A2 (en) 2002-10-23
EP1250185B1 true EP1250185B1 (en) 2005-10-26

Family

ID=9554062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00993692A Expired - Lifetime EP1250185B1 (en) 1999-12-30 2000-12-28 Air separation method and plant

Country Status (11)

Country Link
US (1) US6776005B2 (en)
EP (1) EP1250185B1 (en)
JP (1) JP2003519349A (en)
KR (1) KR100747615B1 (en)
AT (1) ATE307659T1 (en)
AU (1) AU2860801A (en)
CA (1) CA2389546A1 (en)
DE (1) DE60023557T2 (en)
ES (1) ES2251422T3 (en)
FR (1) FR2803221B1 (en)
WO (1) WO2001049394A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003900327A0 (en) * 2003-01-22 2003-02-06 Paul William Bridgwood Process for the production of liquefied natural gas
US8065879B2 (en) 2007-07-19 2011-11-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal integration of oxygen plants
US8020406B2 (en) 2007-11-05 2011-09-20 David Vandor Method and system for the small-scale production of liquified natural gas (LNG) from low-pressure gas
KR101172422B1 (en) 2009-12-11 2012-08-08 에스케이씨 주식회사 Waste Heat Recovery System
KR101188231B1 (en) 2010-01-27 2012-10-05 니카코리아 (주) Ultra cooling separation device of mixed gas
US9546814B2 (en) 2011-03-16 2017-01-17 8 Rivers Capital, Llc Cryogenic air separation method and system
KR101294005B1 (en) * 2012-08-23 2013-08-07 한국에너지기술연구원 A fluidized bed heat exchanger to produce high temperature water by recovering waste heat from flue gas
US10746461B2 (en) 2016-08-30 2020-08-18 8 Rivers Capital, Llc Cryogenic air separation method for producing oxygen at high pressures
EP3438584B1 (en) * 2017-08-03 2020-03-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for air separation by cryogenic distilling
WO2019172772A1 (en) * 2018-03-09 2019-09-12 Karbon Ccs Ltd Carbon capture system comprising a gas turbine
KR102623304B1 (en) * 2020-09-29 2024-01-09 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Chiller, air separation system, and related methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731495A (en) * 1970-12-28 1973-05-08 Union Carbide Corp Process of and apparatus for air separation with nitrogen quenched power turbine
IL36741A (en) * 1971-04-30 1974-11-29 Zakon T Method for the separation of gaseous mixtures with recuperation of mechanical energy and apparatus for carrying out this method
DE2553700C3 (en) 1975-11-28 1981-01-08 Linde Ag, 6200 Wiesbaden Method for operating a gas turbine system with a closed circuit
DE3408937A1 (en) 1984-01-31 1985-08-08 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau COMBINED GAS / VAPOR POWER PLANT
US4557735A (en) 1984-02-21 1985-12-10 Union Carbide Corporation Method for preparing air for separation by rectification
DE3871220D1 (en) * 1987-04-07 1992-06-25 Boc Group Plc AIR SEPARATION.
US5681158A (en) * 1995-03-14 1997-10-28 Gfk Consulting Limited Single-stage process for disposal of chemically bound nitrogen in industrial waste streams
US5722259A (en) * 1996-03-13 1998-03-03 Air Products And Chemicals, Inc. Combustion turbine and elevated pressure air separation system with argon recovery
US5711166A (en) * 1997-01-22 1998-01-27 The Boc Group, Inc. Air separation method and apparatus
US5979183A (en) * 1998-05-22 1999-11-09 Air Products And Chemicals, Inc. High availability gas turbine drive for an air separation unit

Also Published As

Publication number Publication date
AU2860801A (en) 2001-07-16
CA2389546A1 (en) 2001-07-12
DE60023557D1 (en) 2005-12-01
ATE307659T1 (en) 2005-11-15
ES2251422T3 (en) 2006-05-01
DE60023557T2 (en) 2006-07-27
WO2001049394A3 (en) 2002-01-31
FR2803221A1 (en) 2001-07-06
KR100747615B1 (en) 2007-08-09
WO2001049394A2 (en) 2001-07-12
FR2803221B1 (en) 2002-03-29
US6776005B2 (en) 2004-08-17
JP2003519349A (en) 2003-06-17
US20030140653A1 (en) 2003-07-31
EP1250185A2 (en) 2002-10-23
KR20020066328A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP2516851B2 (en) Integrated gasification combined cycle power generation method
US10746461B2 (en) Cryogenic air separation method for producing oxygen at high pressures
EP1953486B2 (en) Purification of carbon dioxide
US4545787A (en) Process for producing by-product oxygen from turbine power generation
RU2387934C2 (en) Method to separate air into components by cryogenic distillation
US5609040A (en) Process and plant for producing carbon monoxide
EP0357299B1 (en) Air separation
US6098424A (en) Process and plant for production of carbon monoxide and hydrogen
EP0503900A1 (en) Air separation
AU667083B2 (en) Air separation
EP0689019A1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP1250185B1 (en) Air separation method and plant
US5080703A (en) Air separation
KR100536021B1 (en) Process and plant for the combined production of an ammonia synthesis mixture and carbon monoxide
WO2009010931A2 (en) Thermal integration of oxygen plants
RU2287120C2 (en) Method and device for air separation
AU656062B2 (en) Air separation
FR2862004A1 (en) Enriching a flow of pressurised gas in one of its components by dividing the gas into two fractions, separating one fraction to obtain an enriched gas and mixing that gas with the other fraction
US6692549B2 (en) Methods for integration of a blast furnace and an air separation unit
AU649907B2 (en) Integrated air separation plant - integrated gasification combined cycle power generator
FR2825453A1 (en) Process for further purifying a nitrogen-rich feed involves adding a single column to a cryogenic distillation air separator producing a gas which is ninety percent or more nitrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020731

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030403

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60023557

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060327

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2251422

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071214

Year of fee payment: 8

Ref country code: NL

Payment date: 20071127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20071231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071114

Year of fee payment: 8

Ref country code: GB

Payment date: 20071127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071128

Year of fee payment: 8

BERE Be: lapsed

Owner name: S.A. L'AIR LIQUIDE A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20081231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081229

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081228