EP1250185B1 - Verfahren und vorrichtung zur luftzerlegung - Google Patents

Verfahren und vorrichtung zur luftzerlegung Download PDF

Info

Publication number
EP1250185B1
EP1250185B1 EP00993692A EP00993692A EP1250185B1 EP 1250185 B1 EP1250185 B1 EP 1250185B1 EP 00993692 A EP00993692 A EP 00993692A EP 00993692 A EP00993692 A EP 00993692A EP 1250185 B1 EP1250185 B1 EP 1250185B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
enriched
stream
combustion chamber
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00993692A
Other languages
English (en)
French (fr)
Other versions
EP1250185A2 (de
Inventor
François Fuentes
Richard Dubettier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1250185A2 publication Critical patent/EP1250185A2/de
Application granted granted Critical
Publication of EP1250185B1 publication Critical patent/EP1250185B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers

Definitions

  • the present invention relates to a method and an installation of air separation.
  • it relates to a process that produces a flow rate enriched in nitrogen at a pressure of at least 2 bars which is relaxed in a turbine.
  • Cryogenic air separation devices operate traditionally with two distillation columns a so-called medium pressure operating at about 4 to 10 bar and a so-called low pressure operating at between 1 to 3 bars.
  • DE-A-2553700 discloses an air separation apparatus which produces a flow rate gas enriched with nitrogen. After a compression step, the gas flow is heated by indirect heat exchange inside a chamber of combustion before being expanded in a turbine. The gas relaxed in the turbine serves to preheat the compressed gas to be sent to the chamber of combustion.
  • the document describes a process according to the preamble of claim 1.
  • US-A-3950957 discloses an air separation apparatus including nitrogen product is relaxed after warming up in a boiler. Calories remaining in the expanded nitrogen are passed to the boiler by exchange of indirect heat.
  • US-A-4557735 describes the case in which the nitrogen is expanded to a cryogenic temperature, compressed, mixed with air and sent to a room of combustion.
  • EP-A-0959314 relates to a method for expanding a mixture of air and residual nitrogen, in which the mixture is sent to a chamber of combustion.
  • the proposed scheme corresponds to turbining residual nitrogen at high temperature in an innovative and efficient way.
  • An air flow 1 is compressed in a compressor 3, cooled by means of of a refrigerating unit 5 and purified in adsorbent beds 7.
  • the air is cooled in the main exchanger 9 before being sent at the medium pressure column of a double column.
  • Rich liquid is sent from the medium pressure column to the column low pressure and oxygen-rich gas is drawn off the low column pressure.
  • This oxygen-rich gas can possibly be sent to a unit oxygen consumer that produces a fuel 27 for a chamber of combustion 15.
  • This unit can be a blast furnace, a production unit of steel or other metals.
  • the gaseous impure nitrogen 11 containing from less than one to several percent molar oxygen, available at room temperature and moderate pressure (2 to 7 bar) at the top of the low pressure column of the double column with a flow rate from 50,000 Nm3 / h to 500,000 Nm3 / h is compressed in a compressor 13 to a pressure of the order of 10 to 20 bar, after regenerating the adsorbent bed 7. It contains the impurities trapped by it.
  • This fluid then at a temperature of the order of 90 to 150 ° C (because there is no final refrigerant downstream of the compressor 13) is heated, in two stages separated A, B, in a combustion chamber 15 up to a temperature of 700 to 800 ° C.
  • the combustion chamber 15 is fed with fuel 27 and compressed air or another source of oxygen.
  • Compressed air can come from of a fan FD ("forced draft fan").
  • the combustion chamber is optionally constituted by an oven having at least one burner.
  • the heated residual nitrogen is then expanded to a pressure close to the atmospheric pressure in an expansion turbine 17 coupled to an electric generator and / or compression means of the air separation.
  • the expanded fluid 19, a temperature of 350 to 450 ° C is then mixed with the fumes from the combustion chamber at a substantially identical, intermediate between the two reheating steps A, B previously cited in order to minimize irreversibilities.
  • the residual heat of the flue gases with residual nitrogen is used to heat pressurized water 21 (at about 110 - 130 ° C) necessary for the operation of the absorption refrigerating unit 5 (bromide lithium or equivalent) for cooling the air entering the separating apparatus air.
  • the overall energy balance is particularly interesting and allows valorize low-energy energy.
  • This scheme makes it possible to value the energy contained in the residual nitrogen without having the expensive circuits necessary for the production of boiler water.
  • At least a part of the residual nitrogen, as well as the heat available in the system (compression or residual heat of fumes) can be used to regenerate the adsorbent beds of the air separation apparatus before being compressed, heated in the combustion chamber and sent to the turbine.
  • the nitrogen to be released can be extracted from the column operating at the pressure lower and / or the column operating at the highest pressure and / or the column operating at intermediate pressure (in the case where the separating apparatus of air would be a triple column).
  • the combustion chamber can be oversized to can also produce steam, functioning as a boiler.
  • Part of the residual nitrogen can be taken from different points of to act as a bearing gas and / or cooling of the blades or the rotor the nitrogen expansion turbine or other turbine.
  • Part of the waste nitrogen can be injected into the burners of the combustion chamber to control the NO x level .
  • the scheme can obviously be designed without nitrogen compressor especially if the low pressure column operates at a pressure above 1.4 bar.
  • FCC units fluidized catalytic cracking
  • This gas is usually turbined and then the calories are recovered.
  • this or these gases can (can) be mixed with the nitrogen at the points indicated by the dashed arrows 20,23,24,31 (before or after the first heating stage, just upstream of the turbine or upstream of the compressor nitrogen) depending on its temperature and pressure.
  • the flow rate is of the same order of magnitude as that of the residual nitrogen (ie 50,000 Nm3 / h at 500,000 Nm3 / h).
  • the pressure is typically 2 to 6 bar abs.
  • FCC regeneration can be enhanced by enriching the air.
  • oxygen for enrichment can come from the ASU which provides the nitrogen.
  • the pressure is typically 2 to 10 bar abs and the flow rate is 20,000 Nm3 / h at 200,000 Nm3 / h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Motor Or Generator Cooling System (AREA)

Claims (13)

  1. Verfahren zur Luftzerlegung, bei dem eine komprimierte und gereinigte Luftmenge in einer Luftzerlegungsanlage (10) zerlegt wird, um eine mit Stickstoff zu zwischen 2 und 7 bar angereicherte Gasmenge (11) zu erzeugen, wobei die mit Stickstoff angereicherte Gasmenge in einer Turbine (17) aufbewahrt wird, und wobei die aufbewahrte Gasmenge (19) an eine Konvektionszone geschickt wird, die sich stromabwärts zu einer Verbrennungskammer (15) befindet, wobei die Gasmenge aufbewahrt wird, ohne mit einer Treibstoffmenge gemischt worden zu sein und ohne mit einer Luftmenge nach ihrer Expansion gemischt zu werden, wobei die mit Stickstoff angereicherte Gasmenge (11) durch indirekten Wärmeaustausch mit den Gasen im Inneren der Konvektionszone der Verbrennungskammer (15) vorerhitzt wird, bevor sie expandiert, dadurch gekennzeichnet, dass die mit Stickstoff angereicherte Menge (11) durch indirekten Austausch in der Verbrennungskammer in einem Schritt bis zu einer Zwischentemperatur und dann in einem zweiten Schritt bis zu der Eintrittstemperatur der Turbine vorerhitzt wird, wobei das in die Verbrennungskammer (15) geschickte aufbewahrte Gas während des ersten Vorerhitzungsschrittes an die zu expandierende Gasmenge Kalorien abgibt.
  2. Verfahren nach Anspruch 1, bei dem die Eintrittstemperatur des Stickstoffs in die Turbine (17) mindestens 700° C beträgt.
  3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem die mit Stickstoff angereicherte Gasmenge bei einem Druck zwischen 5 und 20 bar komprimiert wird, bevor sie expandiert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Luft nach ihrer Kompression mit Hilfe einer Kühlgruppe (5) gekühlt und Druckwasser (21), das für die Kühlgruppe bestimmt ist, durch die Gase der Verbrennungskammer, die der mit Stickstoff angereicherten Gasmenge hinzugefügt werden, erhitzt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Luft in einem Reinigungsmittel (7) gereinigt wird, bevor sie an die Zerlegungsanlage geschickt wird, wobei das Reinigungsmittel durch eine mit Stickstoff angereicherte Gasmenge (11) regeneriert wird und zumindest ein Teil der Menge, die zur Regeneration gedient hat, an die Expansionsturbine (17) geschickt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die mit Stickstoff angereicherte Menge (11) aus einer einfachen Säule oder aus der Mitteldrucksäule und/oder aus der Niederdrucksäule einer doppelten Säule oder aus der Hockdrucksäule und/oder der Zwischendrucksäule und/oder der Niederdrucksäule einer dreifachen Säule entnommen wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die mit Stickstoff angereicherte Menge (11) mindestens 50 Mol-% Stickstoff und zwischen 0,5 und 10 Mol-% Sauerstoff enthält.
  8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem eine mit Stickstoff angereicherte Menge (20, 23, 24, 31), die vorzugsweise mindestens 50 Mol-% Stickstoff enthält, der von einer äußeren Quelle kommt, mit der mit Stickstoff angereicherten Menge (11, 19), die von der Luftzerlegungsanlage (10) kommt, stromaufwärts zu der Expansionsturbine (17) gemischt wird.
  9. Luftzerlegungsanlage für den Einsatz eines Verfahrens nach einem der vorhergehenden Ansprüche, umfassend:
    i) eine Luftzerlegungsanlage (10) durch kryogene Destillation,
    ii) eine Verbrennungskammer (15), gefolgt von einer Wärmewiedergewinnungszone, mindestens umfassend eine Konvektionszone,
    iii) eine Expansionsturbine (17),
    iv) Mittel, um Luft an die Luftzerlegungsanlage durch kryogene Destillation zu schicken,
    v) Mittel, um eine mit Stickstoff angereicherte Gasmenge (11) aus der Luftzerlegungsanlage durch kryogene Destillation zu entnehmen,
    vi) Mittel, um die mit Stickstoff angereicherte Gasmenge an die Expansionsturbine zu schicken, und
    vii) Mittel, um die mit Stickstoff angereicherte Gasmenge von der Expansionsturbine zur stromabwärts zur Verbrennungskammer angeordneten Konvektionszone zu schicken,
    weder umfassend Mittel, um Luft mit dem mit Stickstoff angereicherten Gas stromabwärts zur Turbine und stromaufwärts zur Verbrennungskammer zu mischen, noch umfassend Mittel, um Treibstoff mit dem mit Stickstoff angereicherten Gas vor seiner Expansion zu mischen,
    viii) Mittel, um die mit Stickstoff angereicherte Gasmenge (11) durch indirekten Wärmeaustausch mit den Gasen im Inneren der Verbrennungskammer (15) stromaufwärts zur Expansionsturbine (17) vorzuerhitzen,
    dadurch gekennzeichnet, dass die Mittel viii) Mittel sind, um die mit Stickstoff angereicherte Menge durch indirekten Austausch in der Verbrennungskammer in einem Schritt bis zu einer Zwischentemperatur und dann in einem zweiten Schritt bis zur Eintrittstemperatur der Turbine vorzuerhitzen, und umfassend Mittel, um das expandierte Gas an die Verbrennungskammer zu schicken, um die zu expandierende Gasmenge zu erhitzen.
  10. Anlage nach Anspruch 9, umfassend eine Kühlgruppe (5), in der die Luft nach ihrer Kompression gekühlt wird, einen Druckwasserkreis (21), der für die Kühlgruppe bestimmt ist, und Mittel, um den Druckwasserkreis durch die Gase der Verbrennungskammer, die der mit Stickstoff angereicherten Gasmenge hinzugefügt werden, zu erhitzen.
  11. Anlage nach einem der Ansprüche 9 oder 10, umfassend ein Reinigungsmittel (7), in dem die Luft gereinigt wird, bevor sie an die Luftzerlegungsanlage geschickt wird, wobei das Reinigungsmittel durch eine mit Stickstoff angereicherte Gasmenge (11) regeneriert wird, und Mittel, um zumindest einen Teil der Menge, die für die Regeneration gedient hat, an die Expansionsturbine zu schicken.
  12. Anlage nach einem der Ansprüche 9 bis 11, umfassend Mittel, um die mit Stickstoff angereicherte Menge aus einer einfachen Säule oder aus der Mitteldrucksäule und/oder der Niederdrucksäule einer doppelten Säule oder aus der Hochdrucksäule und/oder der Zwischendrucksäule und/oder der Niederdrucksäule einer dreifachen Säule oder aus einer Mischsäule zu entnehmen.
  13. Anlage nach einem der Ansprüche 9 bis 12, umfassend Mittel, um ein mit Stickstoff angereichertes Restgas (20, 23, 24, 31), das vorzugsweise mindestens 50 Mol-% Stickstoff enthält, der von einer äußeren Quelle kommt, mit dem zu expandierenden mit Stickstoff angereicherten Gas zu mischen.
EP00993692A 1999-12-30 2000-12-28 Verfahren und vorrichtung zur luftzerlegung Expired - Lifetime EP1250185B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9916751 1999-12-30
FR9916751A FR2803221B1 (fr) 1999-12-30 1999-12-30 Procede et installation de separation d'air
PCT/FR2000/003706 WO2001049394A2 (fr) 1999-12-30 2000-12-28 Procede et installation de separation d'air

Publications (2)

Publication Number Publication Date
EP1250185A2 EP1250185A2 (de) 2002-10-23
EP1250185B1 true EP1250185B1 (de) 2005-10-26

Family

ID=9554062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00993692A Expired - Lifetime EP1250185B1 (de) 1999-12-30 2000-12-28 Verfahren und vorrichtung zur luftzerlegung

Country Status (11)

Country Link
US (1) US6776005B2 (de)
EP (1) EP1250185B1 (de)
JP (1) JP2003519349A (de)
KR (1) KR100747615B1 (de)
AT (1) ATE307659T1 (de)
AU (1) AU2860801A (de)
CA (1) CA2389546A1 (de)
DE (1) DE60023557T2 (de)
ES (1) ES2251422T3 (de)
FR (1) FR2803221B1 (de)
WO (1) WO2001049394A2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003900327A0 (en) * 2003-01-22 2003-02-06 Paul William Bridgwood Process for the production of liquefied natural gas
US8065879B2 (en) 2007-07-19 2011-11-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal integration of oxygen plants
US8020406B2 (en) 2007-11-05 2011-09-20 David Vandor Method and system for the small-scale production of liquified natural gas (LNG) from low-pressure gas
KR101172422B1 (ko) * 2009-12-11 2012-08-08 에스케이씨 주식회사 폐열 회수 시스템
KR101188231B1 (ko) 2010-01-27 2012-10-05 니카코리아 (주) 혼합가스의 초저온 냉각 분리 장치
US9546814B2 (en) 2011-03-16 2017-01-17 8 Rivers Capital, Llc Cryogenic air separation method and system
KR101294005B1 (ko) * 2012-08-23 2013-08-07 한국에너지기술연구원 고온수 생산을 위한 연소 배가스 열회수형 유동층 열교환 장치
EA201990580A1 (ru) 2016-08-30 2019-09-30 8 Риверз Кэпитл, Ллк Способ криогенного разделения воздуха для получения кислорода высокого давления
EP3438584B1 (de) * 2017-08-03 2020-03-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und gerät zur trennung von luft durch kryogene destillation
CN112188925B (zh) * 2018-03-09 2023-09-15 卡尔伯恩Ccs有限公司 包括气体涡轮机的碳捕获系统
US12038230B2 (en) * 2020-09-29 2024-07-16 Air Products And Chemicals, Inc. Chiller, air separation system, and related methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731495A (en) * 1970-12-28 1973-05-08 Union Carbide Corp Process of and apparatus for air separation with nitrogen quenched power turbine
IL36741A (en) 1971-04-30 1974-11-29 Zakon T Method for the separation of gaseous mixtures with recuperation of mechanical energy and apparatus for carrying out this method
DE2553700C3 (de) 1975-11-28 1981-01-08 Linde Ag, 6200 Wiesbaden Verfahren zum Betreiben einer Gasturbinenanlage mit geschlossenem Kreislauf
DE3408937A1 (de) 1984-01-31 1985-08-08 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Kombinierte gas-/dampf-kraftwerkanlage
US4557735A (en) * 1984-02-21 1985-12-10 Union Carbide Corporation Method for preparing air for separation by rectification
DE3871220D1 (de) * 1987-04-07 1992-06-25 Boc Group Plc Lufttrennung.
US5681158A (en) * 1995-03-14 1997-10-28 Gfk Consulting Limited Single-stage process for disposal of chemically bound nitrogen in industrial waste streams
US5722259A (en) * 1996-03-13 1998-03-03 Air Products And Chemicals, Inc. Combustion turbine and elevated pressure air separation system with argon recovery
US5711166A (en) * 1997-01-22 1998-01-27 The Boc Group, Inc. Air separation method and apparatus
US5979183A (en) * 1998-05-22 1999-11-09 Air Products And Chemicals, Inc. High availability gas turbine drive for an air separation unit

Also Published As

Publication number Publication date
ATE307659T1 (de) 2005-11-15
CA2389546A1 (fr) 2001-07-12
AU2860801A (en) 2001-07-16
US20030140653A1 (en) 2003-07-31
WO2001049394A2 (fr) 2001-07-12
EP1250185A2 (de) 2002-10-23
KR100747615B1 (ko) 2007-08-09
JP2003519349A (ja) 2003-06-17
ES2251422T3 (es) 2006-05-01
KR20020066328A (ko) 2002-08-14
DE60023557T2 (de) 2006-07-27
WO2001049394A3 (fr) 2002-01-31
FR2803221A1 (fr) 2001-07-06
FR2803221B1 (fr) 2002-03-29
DE60023557D1 (de) 2005-12-01
US6776005B2 (en) 2004-08-17

Similar Documents

Publication Publication Date Title
JP2516851B2 (ja) 一貫式ガス化組合せサイクル電力発生方法
JP6750120B2 (ja) 高圧酸素を生成するための深冷空気分離方法
EP1953486B2 (de) Reinigung von Kohlendioxid
RU2387934C2 (ru) Способ разделения воздуха на составные части при помощи криогенной дистилляции
US5609040A (en) Process and plant for producing carbon monoxide
EP0357299B1 (de) Lufttrennung
US6098424A (en) Process and plant for production of carbon monoxide and hydrogen
EP0503900A1 (de) Lufttrennung
AU667083B2 (en) Air separation
US8065879B2 (en) Thermal integration of oxygen plants
EP0689019A1 (de) Verfahren und Einrichtung zur Herstellung von gasförmigen Drucksäuerstoff
KR20080069523A (ko) 이산화탄소의 정제
EP1250185B1 (de) Verfahren und vorrichtung zur luftzerlegung
US5080703A (en) Air separation
KR100536021B1 (ko) 암모니아 합성 혼합물 및 일산화탄소의 병합 생산 방법 및 병합 생산용 플랜트
RU2287120C2 (ru) Интегрированный способ и система для разделения воздуха, поступающего посредством сжатого воздуха из нескольких компрессоров
AU656062B2 (en) Air separation
FR2862004A1 (fr) Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants
US6692549B2 (en) Methods for integration of a blast furnace and an air separation unit
AU649907B2 (en) Integrated air separation plant - integrated gasification combined cycle power generator
GB2266344A (en) Combined air separation and power generation.
FR2825453A1 (fr) Procede et installation de separation par distillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020731

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030403

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60023557

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060327

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2251422

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071214

Year of fee payment: 8

Ref country code: NL

Payment date: 20071127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20071231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071114

Year of fee payment: 8

Ref country code: GB

Payment date: 20071127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071128

Year of fee payment: 8

BERE Be: lapsed

Owner name: S.A. L'AIR LIQUIDE A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20081231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081229

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081228