EP0503900A1 - Lufttrennung - Google Patents

Lufttrennung Download PDF

Info

Publication number
EP0503900A1
EP0503900A1 EP92302036A EP92302036A EP0503900A1 EP 0503900 A1 EP0503900 A1 EP 0503900A1 EP 92302036 A EP92302036 A EP 92302036A EP 92302036 A EP92302036 A EP 92302036A EP 0503900 A1 EP0503900 A1 EP 0503900A1
Authority
EP
European Patent Office
Prior art keywords
stream
air
nitrogen
compressor
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92302036A
Other languages
English (en)
French (fr)
Other versions
EP0503900B1 (de
Inventor
Thomas Rathbone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOC Group Ltd
Original Assignee
BOC Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Ltd filed Critical BOC Group Ltd
Publication of EP0503900A1 publication Critical patent/EP0503900A1/de
Application granted granted Critical
Publication of EP0503900B1 publication Critical patent/EP0503900B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/958Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures with concurrent production of iron and other desired nonmetallic product, e.g. energy, fertilizer

Definitions

  • This invention relates to air separation in general, and in particular to a method of generating power including an air separation step.
  • the compressor typically raises the pressure of the gaseous fuel stream to a pressure in the range of 10 to 25 atmospheres absolute, the precise pressure depending on the operating pressure of the combustion chamber in which combustion of the fuel gas takes place.
  • the pre-heating of the fuel gas stream may raise its temperature to a value in the range 350 to 400°C, or a lower temperature may be employed.
  • the rectification of the air is preferably performed in a double column comprising a lower pressure stage and a higher pressure stage.
  • the lower pressure stage preferably has an operating pressure (at its top) in the range of 3 to 6 atmospheres absolute. Operation of the lower pressure column in this range makes possible more efficient separation of the air than that possible at the more conventional operating pressures in the range of 1 to 2 atmospheres absolute. Moreover, the size of the pressure range over which the nitrogen is compressed is reduced. Typically, the pressure at which the higher pressure stage operates is a little below the outlet pressure of the air compressor of the gas turbine.
  • the rate at which nitrogen is taken for expansion in the gas turbine is determined by the operating characteristics of the turbine.
  • the gas turbine is designed for a given flow rate of air. By taking some of the compressed air for separation into oxygen and nitrogen, it becomes possible to replace this air with nitrogen. Such replacement of air with nitrogen tends to reduce the concentration of oxides of nitrogen in the gas mixture leaving the turbine.
  • the rate at which nitrogen can be expanded with the combustion gases in the turbine is substantially less than the rate at which nitrogen is produced, this rate being dependent on the demand for oxygen of the blast furnace.
  • some or all of the excess nitrogen may be taken as a product for another use. If, however, there is no such other demand for the excess nitrogen, it too is preferably used in the generation of electricity.
  • a second stream of the nitrogen product of the air separation is preferably heat exchanged at elevated pressure with another fluid stream and then expanded with the performance of external work in a second turbine independent of the gas turbine.
  • the nitrogen is preferably expanded without being mixed with other fluid.
  • the additional expander is preferably used to drive an alternator so as to generate electrical power.
  • the oxygen product may be compressed upstream of the blast furnace or other reactor in which it is used.
  • the illustrated plant includes a gas turbine 2 comprising an air compressor 4, a combustion chamber 6 and an expansion turbine 8.
  • the rotor (not shown) of the air compressor 4 is mounted on the same shaft as the rotor (not shown) of the turbine 8 and thus the turbine 8 is able to drive the compressor 4.
  • the compressor 4 draws in a flow of air and compresses it to a chosen pressure in the range of 10 to 20 atmospheres absolute.
  • the compressor 4 has no means associated therewith for removing the resultant heat of compression.
  • the compressed air leaving the compressor 4 is divided into a major stream and a minor stream. Typically, the major stream comprises from 65 to 90% of the total air flow.
  • the major stream is supplied to the combustion chamber 6.
  • the second stream of nitrogen is taken from upstream of the compressor 28 (preferably at a pressure in the range of 3 to 6 atmospheres) and is pre-heated to a temperature of about 400°C by passage through a heat exchanger 32.
  • the pre-heating is effected by countercurrent heat exchange with another stream of exhaust gas from the turbine 8.
  • the resulting pre-heated second stream of nitrogen flows to an expansion turbine 34 in which it is expanded to approximately atmospheric pressure without being mixed with any other fluid stream.
  • the exhaust gases from the turbine 34 are passed to the stack.
  • the turbine 34 is employed to drive an alternator 36 and thereby generates electrical power.
  • An air stream is passed through a purification apparatus 40 effective to remove water vapour and carbon dioxide from the compressed air.
  • the apparatus 40 is of the kind which employs beds of adsorbent to adsorb water vapour and carbon dioxide from the incoming air.
  • the beds may be operated out of sequence with one another such that while one or more beds are being used to purify air, the others are being regenerated, typically by means of a stream of nitrogen.
  • the purified air stream is divided into major and minor streams.
  • the major stream passes through a heat exchanger 42 in which its temperature is reduced to a level suitable for the separation of the air by rectification. Typically, therefore, the major air stream is cooled to its saturation temperature at the prevailing pressure.
  • the major air stream is then introduced through an inlet 44 to a higher pressure stage 48 of a double rectification column having, in addition to the stage 48, a lower pressure stage 50.
  • Both rectification stages 48 and 50 contain liquid-vapour contact trays (not shown) and associated downcomers (not shown) (or other means for effecting intimate contact between a descending liquid phase and an ascending vapour phase) whereby a descending liquid phase is brought into intimate contact with an ascending vapour phase such that mass transfer occurs between the two phases.
  • the descending liquid phase becomes progressively richer in oxygen and the ascending vapour phase progressively richer in nitrogen.
  • the higher pressure rectification stage 48 operates at a pressure substantially the same as that to which the incoming air is compressed and separates the air into an oxygen-enriched air fraction and a nitrogen fraction.
  • the lower pressure stage 50 is preferably operated so as to give substantially pure nitrogen fraction at its top but an oxygen fraction at its bottom which still contains an appreciable proportion of nitrogen (say, up to 5% by volume).
  • the stages 48 and 50 are linked by a condenser-reboiler 52.
  • the condenser-reboiler 52 receives nitrogen vapour from the top of the higher pressure stage 48 and condenses it by heat exchange with boiling liquid oxygen in the stage 50.
  • the resulting condensate is returned to the higher pressure stage 48.
  • Part of the condensate provides reflux for the stage 48 while the remainder is collected, sub-cooled in a heat exchanger 54 and passed into the top of the lower pressure stage 50 through an expansion valve 56 and thereby provides reflux for the stage 50.
  • the lower pressure rectification stage 50 operates at a pressure lower than that of the stage 48 and receives oxygen-nitrogen mixture for separation from two sources.
  • the first source is the minor air stream formed by dividing the stream of air leaving the purification apparatus 40. Upstream of its introduction into the stage 50 the minor air stream is compressed in a compressor 58 having an after-cooler (not shown) associated therewith, is then cooled to a temperature of about 200K in the heat exchanger 42, is withdrawn from the heat exchanger 42 and is expanded in an expansion turbine 60 to the operating pressure of the stage 50, thereby providing refrigeration for the process. This air stream is then introduced into the lower pressure stage 50 through inlet 62.
  • the expansion turbine 60 may be employed to drive the compressor 58, or alternatively the two machines, namely the compressor 58 and the turbine 60, may be independent of one another. If desired, the compressor 58 may be omitted, and the turbine 60 used to drive an electrical power generator (not shown).
  • the apparatus shown in Figure 3 of the drawings produces a product oxygen stream and a product nitrogen stream.
  • the product oxygen stream is withdrawn as vapour from the bottom of the lower pressure stage 50 through an outlet 70. This stream is then warmed to approximately ambient temperature in the heat exchanger 42 by countercurrent heat exchange with the incoming air.
  • a nitrogen product stream is taken directly from the top of the lower pressure rectification stage 50 through an outlet 72. This nitrogen stream flows through the heat exchanger 54 countercurrently to the liquid nitrogen stream withdrawn from the higher pressure stage 48 and effects the sub-cooling of this stream.
  • the nitrogen product stream then flows through the heat exchanger 66 countercurrently to the liquid stream of oxygen-enriched fraction and effects the sub-cooling of this liquid stream.
  • the nitrogen stream flows next through the heat exchanger 42 countercurrently to the major air stream and is thus warmed to approximately ambient temperature.
  • power can be generated by raising steam from a part of the gas leaving the expander 8 and then expanding the steam in a turbine output in the example described above, some 50.7 MW can be generated in this way. Accordingly, the total power output of the process becomes 210.9 MW which produces a calculated combined efficiency of 51.2%. This efficiency is higher than can be achieved with a high grade fuel such as natural gas.
EP92302036A 1991-03-11 1992-03-10 Lufttrennung Expired - Lifetime EP0503900B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB919105109A GB9105109D0 (en) 1991-03-11 1991-03-11 Air separation
GB9105109 1991-03-11

Publications (2)

Publication Number Publication Date
EP0503900A1 true EP0503900A1 (de) 1992-09-16
EP0503900B1 EP0503900B1 (de) 1997-01-22

Family

ID=10691350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92302036A Expired - Lifetime EP0503900B1 (de) 1991-03-11 1992-03-10 Lufttrennung

Country Status (9)

Country Link
US (1) US5268019A (de)
EP (1) EP0503900B1 (de)
JP (1) JPH0579755A (de)
KR (1) KR100210829B1 (de)
AU (1) AU657300B2 (de)
CA (1) CA2062589A1 (de)
DE (1) DE69216879T2 (de)
GB (1) GB9105109D0 (de)
ZA (1) ZA921477B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2266343A (en) * 1992-04-22 1993-10-27 Boc Group Plc Combined air separation and power generation.
GB2266344A (en) * 1992-04-22 1993-10-27 Boc Group Plc Combined air separation and power generation.
US5295351A (en) * 1992-04-22 1994-03-22 The Boc Group, Plc Air separation
US5317862A (en) * 1992-04-22 1994-06-07 The Boc Group, Plc Air separation
WO1997028284A1 (fr) * 1996-02-01 1997-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation siderurgiques
FR2758621A1 (fr) * 1997-01-22 1998-07-24 Air Liquide Procede et installation d'alimentation d'une unite consommatrice d'un gaz de l'air
EP1058073A1 (de) * 1999-06-04 2000-12-06 Air Products And Chemicals, Inc. Luftzerleggungsverfahren mit einer Gasturbine
EP1058074A1 (de) * 1999-06-04 2000-12-06 Air Products And Chemicals, Inc. Verfahren zur Luftzerleggung mit einer Brennkraftmachine zur Herstellung von Luftgasen und elektrischer Energie

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9123381D0 (en) * 1991-11-04 1991-12-18 Boc Group Plc Air separation
US5706675A (en) * 1995-08-18 1998-01-13 G & A Associates High efficiency oxygen/air separation system
US5582036A (en) * 1995-08-30 1996-12-10 Praxair Technology, Inc. Cryogenic air separation blast furnace system
GB9624819D0 (en) * 1996-11-28 1997-01-15 Air Prod & Chem Use of elevated pressure nitrogen streams to perform work
US5855648A (en) * 1997-06-05 1999-01-05 Praxair Technology, Inc. Solid electrolyte system for use with furnaces
FR2765889B1 (fr) * 1997-07-08 1999-08-13 Air Liquide Procede et installation d'alimentation d'un haut fourneau
US6216441B1 (en) * 1997-09-17 2001-04-17 General Electric Co Removal of inert gases from process gases prior to compression in a gas turbine or combined cycle power plant
US5964085A (en) * 1998-06-08 1999-10-12 Siemens Westinghouse Power Corporation System and method for generating a gaseous fuel from a solid fuel for use in a gas turbine based power plant
US6045602A (en) * 1998-10-28 2000-04-04 Praxair Technology, Inc. Method for integrating a blast furnace and a direct reduction reactor using cryogenic rectification
US6430915B1 (en) 2000-08-31 2002-08-13 Siemens Westinghouse Power Corporation Flow balanced gas turbine power plant
US6692549B2 (en) * 2001-06-28 2004-02-17 Air Liquide Process And Construction, Inc. Methods for integration of a blast furnace and an air separation unit
US6851021B2 (en) * 2001-08-03 2005-02-01 International Business Machines Corporation Methods and systems for efficiently managing persistent storage
JP4563242B2 (ja) * 2005-04-19 2010-10-13 三菱重工業株式会社 燃料ガスカロリ制御方法及び装置
KR100733159B1 (ko) 2006-12-07 2007-06-28 한국에어로(주) 공기압축장치 겸용 질소발생장치
US20100146982A1 (en) * 2007-12-06 2010-06-17 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
US8133298B2 (en) * 2007-12-06 2012-03-13 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
US20100326084A1 (en) * 2009-03-04 2010-12-30 Anderson Roger E Methods of oxy-combustion power generation using low heating value fuel
US20100242489A1 (en) * 2009-03-31 2010-09-30 Rajarshi Saha Systems, Methods, and Apparatus for Modifying Power Output and Efficiency of a Combined Cycle Power Plant
TWI412596B (zh) * 2009-12-03 2013-10-21 Air Prod & Chem 整合功率生產的鼓風爐鐵生產方法
US20120102964A1 (en) * 2010-10-29 2012-05-03 General Electric Company Turbomachine including a carbon dioxide (co2) concentration control system and method
FR2969175B1 (fr) * 2010-12-21 2013-01-04 Air Liquide Procede d'operation d'une installation de haut fourneau avec recyclage de gaz de gueulard
US9593600B2 (en) * 2011-08-22 2017-03-14 Michael H Gurin Hybrid supercritical carbon dioxide geothermal systems
UA117374C2 (uk) * 2013-07-31 2018-07-25 Мідрекс Текнолоджиз, Інк. Відновлення оксиду заліза до металевого заліза із застосуванням коксового газу та газу зі сталеплавильної печі з подачею кисню
US10543514B2 (en) 2015-10-30 2020-01-28 Federal Signal Corporation Waterblasting system with air-driven alternator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557735A (en) * 1984-02-21 1985-12-10 Union Carbide Corporation Method for preparing air for separation by rectification
EP0269609A1 (de) * 1986-11-25 1988-06-01 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Verfahren und Anlage zur Gewinnung von elektrischer Energie neben der Herstellung von flüssigem Roheisen
EP0282321A2 (de) * 1987-03-13 1988-09-14 The BOC Group plc Energieerzeugung
DE3908505A1 (de) * 1988-03-15 1989-09-28 Voest Alpine Ind Anlagen Verfahren zur gewinnung von fluessig-roheisen in einem einschmelzvergaser
EP0367428A1 (de) * 1988-10-15 1990-05-09 The BOC Group plc Lufttrennung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304074A (en) * 1962-10-31 1967-02-14 United Aircraft Corp Blast furnace supply system
GB8820582D0 (en) * 1988-08-31 1988-09-28 Boc Group Plc Air separation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557735A (en) * 1984-02-21 1985-12-10 Union Carbide Corporation Method for preparing air for separation by rectification
EP0269609A1 (de) * 1986-11-25 1988-06-01 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Verfahren und Anlage zur Gewinnung von elektrischer Energie neben der Herstellung von flüssigem Roheisen
EP0282321A2 (de) * 1987-03-13 1988-09-14 The BOC Group plc Energieerzeugung
DE3908505A1 (de) * 1988-03-15 1989-09-28 Voest Alpine Ind Anlagen Verfahren zur gewinnung von fluessig-roheisen in einem einschmelzvergaser
EP0367428A1 (de) * 1988-10-15 1990-05-09 The BOC Group plc Lufttrennung

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2266343B (en) * 1992-04-22 1996-04-24 Boc Group Plc Air separation and power generation
GB2266343A (en) * 1992-04-22 1993-10-27 Boc Group Plc Combined air separation and power generation.
US5295351A (en) * 1992-04-22 1994-03-22 The Boc Group, Plc Air separation
US5317862A (en) * 1992-04-22 1994-06-07 The Boc Group, Plc Air separation
GB2266344B (en) * 1992-04-22 1995-11-22 Boc Group Plc Air separation and power generation
AU666525B2 (en) * 1992-04-22 1996-02-15 Boc Group Plc, The Air separation
GB2266344A (en) * 1992-04-22 1993-10-27 Boc Group Plc Combined air separation and power generation.
WO1997028284A1 (fr) * 1996-02-01 1997-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation siderurgiques
US6126717A (en) * 1996-02-01 2000-10-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Steel-making method and plant
FR2744374A1 (fr) * 1996-02-01 1997-08-08 Air Liquide Procede et installation siderurgiques
FR2758621A1 (fr) * 1997-01-22 1998-07-24 Air Liquide Procede et installation d'alimentation d'une unite consommatrice d'un gaz de l'air
EP1058073A1 (de) * 1999-06-04 2000-12-06 Air Products And Chemicals, Inc. Luftzerleggungsverfahren mit einer Gasturbine
EP1058074A1 (de) * 1999-06-04 2000-12-06 Air Products And Chemicals, Inc. Verfahren zur Luftzerleggung mit einer Brennkraftmachine zur Herstellung von Luftgasen und elektrischer Energie
US6256994B1 (en) 1999-06-04 2001-07-10 Air Products And Chemicals, Inc. Operation of an air separation process with a combustion engine for the production of atmospheric gas products and electric power

Also Published As

Publication number Publication date
GB9105109D0 (en) 1991-04-24
ZA921477B (en) 1992-11-25
CA2062589A1 (en) 1992-09-12
DE69216879T2 (de) 1997-05-07
JPH0579755A (ja) 1993-03-30
EP0503900B1 (de) 1997-01-22
US5268019A (en) 1993-12-07
AU657300B2 (en) 1995-03-09
KR920018329A (ko) 1992-10-21
AU1131292A (en) 1992-09-17
DE69216879D1 (de) 1997-03-06
KR100210829B1 (ko) 1999-07-15

Similar Documents

Publication Publication Date Title
EP0503900B1 (de) Lufttrennung
EP0402045B1 (de) Lufttrennung
US10746461B2 (en) Cryogenic air separation method for producing oxygen at high pressures
AU667083B2 (en) Air separation
EP0357299B1 (de) Lufttrennung
EP0515124B1 (de) Verfahren und Vorrichtung für die Erzeugung eines heissen Gasstromes zwecks Energierückgewinnung
US5080703A (en) Air separation
US5295351A (en) Air separation
GB2261225A (en) Air separation, iron ore reduction and power generation plant
US6692549B2 (en) Methods for integration of a blast furnace and an air separation unit
GB2266344A (en) Combined air separation and power generation.
US5863513A (en) Treatment of gas
AU638671B1 (de)
GB2266343A (en) Combined air separation and power generation.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19930128

17Q First examination report despatched

Effective date: 19940228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970122

Ref country code: BE

Effective date: 19970122

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69216879

Country of ref document: DE

Date of ref document: 19970306

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020306

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020320

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050310