EP1236819B1 - Tissu possedant des proprietés de conduction de l'électricité - Google Patents

Tissu possedant des proprietés de conduction de l'électricité Download PDF

Info

Publication number
EP1236819B1
EP1236819B1 EP02356022A EP02356022A EP1236819B1 EP 1236819 B1 EP1236819 B1 EP 1236819B1 EP 02356022 A EP02356022 A EP 02356022A EP 02356022 A EP02356022 A EP 02356022A EP 1236819 B1 EP1236819 B1 EP 1236819B1
Authority
EP
European Patent Office
Prior art keywords
fabric
groups
carbon
wires
metal wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02356022A
Other languages
German (de)
English (en)
Other versions
EP1236819A1 (fr
Inventor
Carlos Saiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tissage et Enduction Serge Ferrari SA
Original Assignee
Tissage et Enduction Serge Ferrari SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tissage et Enduction Serge Ferrari SA filed Critical Tissage et Enduction Serge Ferrari SA
Publication of EP1236819A1 publication Critical patent/EP1236819A1/fr
Application granted granted Critical
Publication of EP1236819B1 publication Critical patent/EP1236819B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • H05B3/347Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles woven fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/275Carbon fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/60Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the warp or weft elements other than yarns or threads
    • D03D15/67Metal wires
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/18Outdoor fabrics, e.g. tents, tarpaulins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • H05B2203/015Heater wherein the heating element is interwoven with the textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the invention relates to the field of technical textiles, and more specifically to electrically conductive textiles. It finds multiple applications, and in particular in the realization of truck tarpaulins, flexible roofing elements or even furniture or interior design. It relates more particularly to a heating fabric incorporating metal and carbon son which allow heating by a "low voltage" power supply, and which is by design very easily configurable to any pattern of geometry, and to different heating surface powers.
  • the electrically conductive textiles consist of a basic support fabric incorporating, in the form of a warp and / or weft, copper wires or more generally metallic wires.
  • the presence of these threads gives the fabric structure a certain electrical conductivity by allowing multiple uses, and in particular to form heating tissues.
  • the object of the invention is to provide a fabric that has optimal and continuous electrical properties on the fabric surface.
  • a conductive fabric including among its weft son, conductive son electricity. These weft yarns are electrically connected in parallel by two conductive warp wires located on each side of the fabric.
  • this kind of fabric has a number of disadvantages. Indeed, when it is desired to produce fabrics having a sufficient width, it is necessary to subject the weft son to a relatively large voltage, generally equal to the 220 volts AC grid voltage. The use of such a voltage raises problems of electrical safety, and in particular which concerns the risks of contact by persons. This high electrical voltage is also necessary in view of the poor connections existing between the electrode warp wires and the conductive weft wires.
  • the power dissipated per unit area for a fabric of given dimensions, is solely a function of the applied voltage. In other words, it is not possible to adapt the power dissipated according to the desired application.
  • the object of the present invention is to provide a conductive fabric that can be used with "low voltage" type supply voltages, that is to say within the conventional range of 12 volts to 48 volts. Another objective is to allow a great modularity so as to ensure a dissipation of energy per unit area that is configurable by the user very easily.
  • Another objective is to provide a coated fabric whose coating does not disturb the connection properties between the conductors son.
  • the invention therefore relates to a fabric which has properties of conduction of electricity.
  • Such a fabric is defined according to claim 1.
  • this fabric comprises, arranged in a regular manner, strips of carbon son which ensure a dissipation of energy when they are traversed by an electric current.
  • strips of carbon son are interconnected by strips of conductive son such as metal son, the son son strips serving as power supply son and current to the carbon son. These strips of supply son are much more spaced from one another than the carbon son strips.
  • the distribution of metal son and carbon son over the entire surface of the fabric according to the invention gives the latter a matrix structure through which it is possible to supply voltage any length or width of fabric.
  • the supply son are sufficiently numerous over the entire width of the fabric to form two electrodes for any tissue cut.
  • the pressure exerted on the contact zone between these different son is sufficient to withstand the pressure of the plastic material that is used during the coating operation of the fabric.
  • the metal wires used may be nickel-alloy wire, aluminum wire, stainless steel wire, or son covered with a layer of gold.
  • nickel alloys for its good compatibility with the connection generally made with copper alloys.
  • the use of relatively expensive materials increases almost insensitively the cost of the fabric according to the invention. We will therefore favor the very good conductive qualities of some relatively expensive metals.
  • non-conductive wires used between the metal wires may advantageously be polyester wires, used for their good mechanical behavior.
  • the coating layers, and for example coating, covering the two faces of the fabric may be different.
  • coating layers are chosen which have different thermal properties, for example by using fillers in different proportions from one face to the other.
  • the distance d between the strips of carbon son may be between 1 and 10 centimeters, the distance separating the strips of metal son then being between 20 centimeters and 2 meters.
  • power can be obtained by connecting different power supply strips alternately to one of the two terminals of the power supply.
  • the fabric may have on its edges, and at the ends of the strips of metal son, areas in which the coating layers are removed. In this way, by making a cut perpendicular to the strips of metal son, at the level of the latter, it is sufficient to extract the coating layers by sliding around the metal son by pulling outwardly of the fabric. This is done in the same way that is denuded a sheathed wire denuding the end zone of the strip of the wire.
  • These supply terminals can be arranged at the end of all or part of the metal terminals, depending on the supply voltage that it is desired to apply to the fabric.
  • the power dissipated per unit area is varied, which makes it possible to adapt the fabric to different applications.
  • the invention relates to a heating textile which is made by weaving, and which incorporates two types of different conductive son in these warp and weft directions.
  • the fabric (1) comprises strips (2) of carbon son which are spaced a distance d.
  • This fabric (1) also comprises strips (3) of metal son.
  • the carbon threads have a title of 200 tex and comprise 200 fibers per son.
  • Each band (2) comprises five carbon threads of this type.
  • the strips (2) of carbon threads are spaced apart by a distance d of 5 centimeters.
  • the metal son used are the pure nickel son of twenty hundredths of a millimeter in diameter.
  • Each strip (3) of metal son comprises ten son of nickel, which represents a bandwidth of the order of one centimeter.
  • the strips (3) of metal son are distant by a distance D of about one meter.
  • the voltage drop measured along the supply son of a strip (3) is negligible with regard to the measured voltage drop along copper wires between two successive strips (3).
  • the yarns (4) used for the rest of the fabric are non-conductive yarns, for example conventional high tenacity polyester yarns of 1100 dtex, 200 strands.
  • the weaving of the wires (13, 14) with carbon threads (12) as illustrated in Figure 2 provides an advantage with respect to the contact surface between these different threads. Indeed, the contact zone between the carbon son (12) and the metal son (13) extends over a portion of the circumference of the carbon son (13), typically greater than a quarter of this circumference. Carbon yarns that are softer than metal wires tend to crush, which dramatically increases the contact area.
  • This large contact area allows the passage of a relatively high current, such as those used for low voltage supplies of type 12 to 48 volts.
  • the coating layer (15, 16) which covers both sides of the fabric, thus preventing any risk of contact with areas under tension.
  • the coating layers (15, 16) are identical and made for example of PVC. However, as already mentioned, these layers (15, 16) may be different so as to influence the direction of the heat flux released by the carbon son (12).
  • the textile according to the invention when used as the upper cover of a building, and that it is intended to ensure a controlled melting snow, we will favor the heat flow to the upper face fabric.
  • the coating layer (15) on the upper face of the fabric has a better thermal conductivity than the layer (16) on the underside.
  • the coating used may be such that its heat conduction properties vary on the very surface of one side of the fabric.
  • the coating used may be such that its heat conduction properties vary on the very surface of one side of the fabric.
  • FIG. 3 and 4 illustrate the manipulations necessary to ensure the connection of the fabric to a power source.
  • the fabric (1) has on its edge (5) different weft son that are visible through the coating layer (15). Among these visible yarns, non-conductive polyester yarns (6) and metallic yarns (13) are identified. These metal wires (13) are part of a strip (3) of conductive wires. After making a notch of the fabric in the planes (20, 21) parallel to the weft, was cut the polyester warp son (4) located in this region.
  • a slight notch (22) is made parallel to the warp threads to delimit the area which will then be extracted.
  • This notch (22) can be achieved by a suitable tool or even not be physically materialized, but simply result from the traction that will be performed by the operator.
  • This zone contains the portions of polyester threads (4) which have been cut beforehand during the making of the cuts (20, 21).
  • the various metal son (13) are then apparent at the edge of the fabric, and it is sufficient for the operator to gather them to put them in place in the appropriate connector. The connection of the strip (3) of metal wires (13) is thus ensured.
  • the power source (26) can see its upper terminal connected to the terminals of the metal wires (3a, 3c, 3e), while its lower terminal is connected to the strips (3b, 3d). .
  • all segments of carbon son located between two strips (3) of metal son are subjected to the supply voltage of the source (26).
  • the power source (27) has its upper terminal connected to the bands (3a, 3e) of the fabric, while its lower terminal is connected to the web (3c) of the fabric.
  • the carbon wire segments are subjected to a potential difference equal to half that of the previous configuration.
  • the same logic can be declined with the configuration of the power source (28) illustrated in Figure 5c.
  • the power source (28) is connected by its positive terminal to the band (3a) and its negative terminal to the band (3e).
  • Equivalent source the voltage imposed on the carbon son is worth one quarter of that of the configuration (26), which results in a power dissipated sixteen times lower.
  • the wiring diagram of the various metal strips (3) can be adapted according to the desired dissipation power, by determining the length of the carbon wires required, and therefore the multiple of the distance D to obtain the dissipation of the desired power.
  • This wiring can also be variable inside the fabric itself, to concentrate the dissipation of energy in certain particular areas.
  • this wiring can be adapted according to the nominal voltage of the sources (26-28) used.
  • a supply voltage of 12 volts may be sufficient.
  • a 24-volt power supply will quadruple the power dissipated per unit area.
  • the fabric can be used to make roofs or hangings superior to withstand the snow.
  • the heating will ensure a slight melting of the snow.
  • This merger will be controlled, so that the accumulation of water during the snowmelt will be avoided, thanks to a control of the areas in which the snow will melt first.
  • the fabric can then be used for heating applications, for example to form partitions or heating ceilings.
  • the fabric according to the invention has multiple applications thanks on the one hand to its matrix structure, on the other hand to its great ease of connection.
  • this fabric can be used for multiple heating applications, outer walls of building, and partition-type or other interior walls. It can also be used for heating functions in all kinds of articles suitable for being coated with a textile. It may also be accessories used in the home such as blinds.
  • this fabric can also be used for anti-static applications, particularly in areas where it is necessary to carry out dust extractions such as mining industries, or automobile or railway tunnels, or still well in the electronics industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Woven Fabrics (AREA)
  • Non-Insulated Conductors (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)
  • Surgical Instruments (AREA)
  • Saccharide Compounds (AREA)
  • Laser Surgery Devices (AREA)

Description

    Domaine Technique
  • L'invention se rattache au domaine des textiles techniques, et plus précisément aux textiles conducteurs de l'électricité. Elle trouve des applications multiples, et notamment dans la réalisation de bâches de camion, d'éléments de toiture souple ou encore d'ameublement ou d'aménagement intérieur. Elle concerne plus particulièrement un tissu chauffant incorporant des fils métalliques et de carbone qui permettent un chauffage par une alimentation « basse tension », et qui est par construction très facilement configurable à tout motif de géométrie, et à différentes puissances surfacique de chauffe.
  • Techniques antérieures
  • De façon connue, les textiles conducteurs de l'électricité sont constitués d'un tissu élémentaire support incorporant en chaîne et/ou en trame des fils de cuivre ou plus généralement des fils métalliques. La présence de ces fils confère à la structure des tissus une certaine conductivité électrique en permettant de multiples utilisations, et notamment pour constituer des tissus chauffants.
  • L'objectif de l'invention est de fournir un tissu qui présente des propriétés électriques optimales et continues sur la surface du tissu.
  • De très nombreuses solutions ont déjà été proposées pour intégrer un tel fil conducteur à l'intérieur d'un tissu.
  • Ainsi, dans le document FR 2 340 016 ou US 4 538 054 , on a décrit un tissu conducteur incluant parmi ses fils de trame, des fils conducteurs de l'électricité. Ces fils de trame sont reliés électriquement en parallèles par deux fils de chaîne conducteurs situés de chaque côté du tissu.
  • On conçoit que ce genre de tissu présente un certain nombre d'inconvénients. En effet, lorsque l'on souhaite réaliser des tissus présentant une largeur suffisante, il est nécessaire de soumettre les fils de trame à une tension relativement importante, généralement égale à la tension réseau 220 volts alternatifs. L'emploi d'une telle tension pose des problèmes de sécurité électrique, et notamment en ce qui concerne les risques de contact par des personnes. Cette tension électrique importante est également nécessaire compte tenu de la médiocrité des connexions existant entre les fils de chaîne formant électrode, et les fils de trame conducteurs.
  • Un autre exemple d'un tel tissu a également été décrit dans le document FR 2 263 658 . Dans ce cas, la mise en parallèle des différents fils conducteurs se fait par l'emploi d'un feuillard de cuivre disposé dans les lisières du tissu. L'emploi de ces feuillards présente deux inconvénients majeurs. D'une part, de tels feuillards en cuivre sont relativement rigides et empêchent de conformer le tissu très simplement. D'autre part, la connexion entre le feuillard et les fils conducteurs est relativement médiocre, et oblige donc l'emploi d'une tension élevée, c'est-à-dire en pratique la tension de réseau 220 volts, induisant un courant très faible plus compatible avec une telle qualité de connexion. Les inconvénients de l'emploi d'une tension élevée sont les mêmes que ceux indiqués précédemment.
  • En outre, la puissance dissipée par unité de surface, pour un tissu de dimensions données, est uniquement fonction de la tension appliquée. En d'autres termes, il n'est pas possible d'adapter la puissance dissipée en fonction de l'application souhaitée.
  • L'objectif de la présente invention est de fournir un tissu conducteur qui puisse être employé avec des tensions d'alimentation du type « basse tension », c'est-à-dire comprise dans la gamme classique allant de 12 volts à 48 volts. Un autre objectif est de permettre une grande modularité de manière à assurer une dissipation d'énergie par unité de surface qui soit configurable par l'utilisateur de façon très aisée.
  • Un autre objectif est de fournir un tissu enduit dont l'enduction ne perturbe pas les propriétés de connexion entre les fils conducteurs.
  • Exposé de l'invention
  • L'invention concerne donc un tissu qui possède des propriétés de conduction de l'électricité.
  • Un tel tissu est défini selon la revendication 1.
  • Autrement dit, ce tissu comporte, disposées de façon régulière, des bandes de fils de carbone qui assurent une dissipation d'énergie lorsqu'ils sont parcourus par un courant électrique. Ces bandes de fils de carbone sont reliées entre elles par des bandes de fils conducteurs tels que des fils métalliques, les bandes de fils métalliques servant de fils d'alimentation et d'amenée du courant à destination des fils de carbone. Ces bandes de fils d'alimentation sont nettement plus espacées les unes des autres que les bandes de fils de carbone.
  • En utilisant deux matériaux de conductivité nettement différente, c'est-à-dire des fils de carbone présentant une résistivité nettement supérieure à celle des fils métalliques, l'essentiel de la chute de tension se fait aux bornes des fils de carbone, qui assurent donc une dissipation d'énergie très nettement supérieure à celle qui a lieu dans les fils métalliques transversaux.
  • Le tissage des différents fils de la bande de fils de carbone avec les fils métalliques de la bande de fils d'alimentation assure un contact relativement important entre ces différents fils, et donc une connexion qui autorise le passage d'un courant important, et donc l'emploi du tissu en association avec des alimentations électriques basse tension, du type de 12 volts à 48 volts.
  • En outre, la répartition des fils métalliques et des fils de carbone sur l'ensemble de la surface du tissu selon l'invention confère à ce dernier une structure matricielle grâce à laquelle il est possible d'alimenter en tension n'importe quelle longueur ou largeur de tissu.
  • Autrement dit, les fils d'alimentation sont suffisamment nombreux sur toute la largeur du tissu pour constituer deux électrodes pour n'importe quelle découpe de tissu.
  • Du fait du tissage des fils métalliques et des fils de carbone, la pression exercée sur zone de contact entre ces différents fils est suffisante pour résister à la pression de la matière plastique qui est utilisée lors de l'opération d'enduction du tissu.
  • En pratique, les fils métalliques utilisés peuvent être des fils à base d'alliage de nickel, des fils d'aluminium, des fils en acier inoxydable, ou encore des fils recouverts d'une couche d'or.
  • On préférera par exemple utiliser des alliages de nickel pour sa bonne compatibilité avec la connectique généralement réalisée avec des alliages de cuivre. Compte tenu du très faible nombre de fils d'alimentation métalliques, l'emploi de matériaux relativement coûteux augmente de façon quasi insensible le prix de revient du tissu conforme à l'invention. On privilégiera donc les très bonnes qualités conductrices de certains métaux relativement coûteux.
  • Par ailleurs, les fils non conducteurs utilisés entre les fils métalliques peuvent avantageusement être des fils de polyester, utilisés pour leur bon comportement mécanique.
  • D'autres métaux peuvent également être utilisés dès lors que leur résistivité est suffisamment faible, comparée avec celle des fils chauffants de carbone, et en tenant compte du rapport entre les distances d et D séparant les différentes bandes de fils de carbone et de fils d'alimentation métallique.
  • Dans une forme particulière, les couches de revêtement, et par exemple d'enduction, recouvrant les deux faces du tissu peuvent être différentes.
  • De la sorte, on assure une dissipation de l'énergie qui est différente d'une face à l'autre du tissu, ce qui permet d'orienter le flux de chaleur dans une direction privilégiée. En pratique, on choisit des couches d'enduction qui possèdent des propriétés thermiques différentes, par exemple en utilisant des charges dans des proportions différentes d'une face à l'autre.
  • Avantageusement en pratique, la distance d séparant les bandes de fils de carbone peut être comprise entre 1 et 10 centimètres, la distance séparant les bandes de fils métalliques étant alors comprise entre 20 centimètres et 2 mètres.
  • Grâce à ces dimensions données à titre indicatives et non limitatives, il est possible de découper le tissu en conservant la possibilité d'une alimentation quelle que soit la forme générale de la découpe, dès lors qu'elle est supérieure à la dimension D séparant les rayures de fils métalliques.
  • En pratique, l'alimentation peut s'obtenir en reliant différentes bandes de fils d'alimentation alternativement à une des deux bornes de la source d'alimentation électrique.
  • Selon une autre caractéristique de l'invention, le tissu peut présenter sur ses lisières, et à l'endroit des extrémités des bandes de fils métalliques, des zones dans lesquelles les couches d'enduction sont éliminées. De la sorte, en réalisant une découpe perpendiculaire aux bandes de fils métalliques, au niveau de ces dernières, il suffit d'extraire les couches d'enduction en les faisant coulisser autour des fils métalliques en les tirant vers l'extérieur du tissu. On procéde ainsi de la même manière que l'on dénude un fil métallique gainé en dénudant la zone extrémale de la bande du fil métallique.
  • Il s'ensuit que l'ensemble des fils métalliques ainsi dénudés peuvent être rassemblés pour être ensuite mis en place dans des bornes d'alimentation disposées sur les lisières du tissu.
  • Ces bornes d'alimentation peuvent être disposées à l'extrémité de toutes ou partie des bornes métalliques, en fonction de la tension d'alimentation que l'on souhaite appliquer sur le tissu.
  • Ainsi, en faisant varier le nombre de bandes de fils métalliques présents entre deux bornes d'alimentation électrique, on fait varier la puissance dissipée par unité de surface, ce qui permet d'adapter le tissu à différentes applications.
  • Description sommaire des figures
  • La manière de réaliser l'invention ainsi que les avantages qui en découlent ressortiront bien de la description du mode de réalisation qui suit, donné à titre d'exemple non limitatif, à l'appui des figures annexées dans lesquelles :
    • La figure 1 est une vue schématique d'un tissu conforme à l'invention.
    • La figure 2 est une vue en coupe de détail illustrant le tissage des fils de carbone et des fils métalliques.
    • La figure 3 est une vue en perspective sommaire d'une lisière du tissu conforme à l'invention, pendant la réalisation d'une connexion latérale.
    • La figure 4 illustre une étape ultérieure de celle de la figure 3.
    • La figure 5 est une vue schématique illustrant les différentes possibilités d'alimentation d'un dispositif conforme à l'invention.
    Manière de réaliser l'invention
  • Comme déjà évoqué, l'invention concerne un textile chauffant qui est réalisé par tissage, et qui incorpore deux types de fils conducteurs différents dans ces sens chaîne et trame.
  • Ainsi, et comme illustré à l'exemple de la figure 1, le tissu (1) comporte des bandes (2) de fils de carbone qui sont espacées d'une distance d. Ce tissu (1) comprend également des bandes (3) de fils métalliques.
  • Dans l'exemple illustré, les fils de carbone présentent un titre de 200 tex et comportent 200 fibres par fils. Chaque bande (2) comprend cinq fils de carbone de ce type. Les bandes (2) de fils de carbone sont espacées d'une distance d de 5 centimètres.
  • Dans l'exemple de la figure 1, les fils métalliques utilisés sont les fils de nickel pur de vingt centièmes de millimètres de diamètre. Chaque bande (3) de fils métalliques comprend dix fils de nickel, ce qui représente une largeur de bande de l'ordre du centimètre.
  • Les bandes (3) de fils métalliques sont distantes d'une distance D valant environ un mètre.
  • Compte tenu du fait que la résistivité du nickel est environ cent fois inférieure à celle du carbone, la chute de tension mesurée le long des fils d'alimentation d'une bande (3) est négligeable au regard de la chute de tension mesurée le long des fils de cuivre entre deux bandes (3) successives.
  • C'est cette dernière chute de tension qui provoque l'échauffement des fils de cuivre et la dissipation d'énergie cherchée.
  • Les fils (4) utilisés pour le reste du tissu sont des fils non conducteurs, par exemple des fils de polyester haute ténacité classiques de 1100 dtex, 200 brins.
  • Bien entendu, les valeurs et les matériaux donnés ci-dessus le sont uniquement à titre d'exemple, et l'invention couvre de multiples variantes de réalisation qui s'en écartent.
  • Le tissage des fils métalliques (13, 14) avec des fils de carbone (12) tels qu'illustrés à la figure 2, procure un avantage en ce qui concerne la surface de contact entre ces différents fils. En effet, la zone de contact entre les fils de carbone (12) et les fils métalliques (13) s'étend sur une partie de la circonférence des fils de carbone (13), typiquement supérieure à un quart de cette circonférence. Les fils de carbone qui sont plus souples que les fils métalliques ont tendance à s'écraser, ce qui augmente considérablement la surface de contact.
  • Cette importante surface de contact autorise le passage d'un courant relativement élevé, tel que ceux utilisés pour des alimentations en basse tension du type 12 à 48 volts.
  • A la figure 2, on observe également la présence de la couche d'enduction (15, 16) qui recouvre les deux faces du tissu, empêchant ainsi tout risque de contact avec des zones sous tension. Dans la forme illustrée, les couches d'enduction (15, 16) sont identiques et réalisées par exemple en PVC. Néanmoins, comme déjà évoqué, ces couches (15, 16) peuvent être différentes de manière à influencer la direction du flux de chaleur libérée par les fils de carbone (12).
  • A titre d'exemple, lorsque le textile conforme à l'invention est utilisé en tant que couverture supérieure d'un bâtiment, et qu'il est destiné à assurer une fonte controlée des neiges, on privilégiera le flux de chaleur vers la face supérieure du tissu. Dans ce cas, la couche d'enduction (15) située sur la face supérieure du tissu présente une meilleure conductibilité thermique que la couche (16) située sur la face inférieure.
  • De même, l'enduction utilisée peut être telle que ses propriétés de conduction de la chaleur varient sur la surface même d'une face du tissu. Ainsi, en modulant cette conductivité thermique, on peut uniformiser le flux de chaleur émis entre les zones comportant les fils de carbone, et les espaces situés entre ces bandes fils de carbone.
  • Une autre caractéristique de l'invention concerne la facilité avec laquelle le tissu conforme à l'invention peut être relié à l'alimentation électrique. Les figures 3 et 4 illustrent les manipulations nécessaires pour assurer la connexion du tissu à une source d'alimentation.
  • Ainsi, le tissu (1) présente sur sa lisière (5) différents fils de trame qui sont apparents au travers de la couche d'enduction (15). Parmi ces fils apparents, on identifie les fils de polyester (6) non conducteurs, et les fils métalliques (13). Ces fils métalliques (13) font partie d'une bande (3) de fils conducteurs. Après avoir procédé à une entaille du tissu selon les plans (20, 21) parallèles à la trame, on a découpé les fils de chaîne (4) en polyester situés dans cette région.
  • On procéde par la suite à une légère entaille (22) parallèle aux fils de chaîne pour délimiter la zone qui sera ensuite extraite. Cette entaille (22) peut être réalisée par un outil approprié ou bien encore ne pas être physiquement matérialisée, mais simplement résulter de la traction qui sera effectuée par l'opérateur.
  • Par la suite, l'opérateur exerce une traction sur la zone délimitée par les découpes (20, 21, 22). Cette zone (25) coulisse sur les fils métalliques (13), qui est ensuite extraite comme à la figure 4. Cette zone contient les portions de fils de polyester (4) qui ont été préalablement coupées lors de la réalisation des entailles (20, 21). Les différents fils métalliques (13) sont alors apparents en lisière du tissu, et il suffit à l'opérateur de les rassembler pour les mettre en place dans l'organe de connectique approprié. La connexion de la bande (3) de fils métalliques (13) est ainsi assurée.
  • Bien entendu, l'opérateur choisit selon la configuration du tissu et la tension d'alimentation les bandes (3) qui doivent être ainsi dénudées.
  • Ainsi, différentes configurations d'alimentation peuvent être utilisées.
  • Ainsi, comme illustré à la figure Sa, la source d'alimentation (26) peut voir sa borne supérieure reliée aux bornes des fils métalliques (3a, 3c, 3e), alors que sa borne inférieure est reliée aux bandes (3b, 3d). Autrement dit, tous les segments de fils de carbone situés entre deux bandes (3) de fils métalliques sont soumis à la tension d'alimentation de la source (26).
  • Dans l'autre configuration illustrée à la figure 5b, la source d'alimentation (27) présente sa borne supérieure reliée aux bandes (3a, 3e) du tissu, tandis que sa borne inférieure est reliée à la bande (3c) du tissu. Dans ce cas, et à tension d'alimentation constante, les segments de fils de carbone sont soumis à une différence de potentiel égale à la moitié de celle de la configuration précédente.
  • Il s'ensuit que la chaleur dégagée par l'unité de surface est égale au quart de celle qui est dissipée dans le cas de la configuration de la source d'alimentation (26).
  • La même logique peut être déclinée avec la configuration de la source d'alimentation (28) illustrée à la figure 5c. Dans ce cas, la source d'alimentation (28) est reliée par sa borne positive à la bande (3a) et à sa borne négative à la bande (3e). A source équivalente, la tension imposée aux fils de carbone vaut le quart de celle de la configuration (26), ce qui se traduit par une puissance dissipée seize fois inférieure.
  • Bien entendu, le schéma de câblage des différentes bandes métalliques (3) peut être adapté en fonction de la puissance de dissipation recherchée, en déterminant la longueur des fils de carbone nécessaire, et donc le multiple de la distance D pour obtenir la dissipation de la puissance souhaitée.
  • Ce câblage peut également être variable à l'intérieur même du tissu, pour concentrer la dissipation d'énergie dans certaines zones particulières.
  • De la même manière, ce câblage peut être adapté en fonction de la tension nominale des sources (26-28) utilisées.
  • Ainsi, à titre d'exemple, pour une puissance à dissiper de l'ordre de 100 watts par mètre carré, une tension d'alimentation de 12 volts peut être suffisante. Il s'agit alors d'applications permettant un léger réchauffement du tissu en vue de l'élimination de la condensation présente sur celui-ci lorsqu'il est utilisé pour réaliser des tentes de chapiteau ou autres constructions analogues.
  • Pour un schéma de câblage, une alimentation en 24 volts quadruplera la puissance dissipée par unité de surface. Ainsi, avec une dissipation de 400 watts par mètre carré, le tissu pourra être utilisé pour réaliser des toits ou des tentures supérieures aptes à supporter la neige. Dans ce cas, le chauffage permettra d'assurer une légère fusion de la neige. Cette fusion sera controlée, de sorte que l'on évitera les accumulations d'eau lors de la fonte des neiges, grâce à une maîtrise des zones dans lesquelles la neige fondera en premier.
  • Lorsque le même schéma de configuration est utilisé avec une source d'alimentation en 48 volts, correspond donc à une dissipation de 1 600 watts par mètre carré, le tissu pourra alors être utilisé pour des applications de chauffage, par exemple pour former des cloisons ou des plafonds chauffants.
  • Il ressort de ce qui précède que le tissu conforme à l'invention présente de multiples avantages et notamment :
    • ❖ la possibilité d'être alimenté de façon tout à fait sûre par des alimentations basses tension, du type 12 à 48 volts ;
    • ❖ une très grande modularité du fait de sa structure matricielle, qui permet d'obtenir les propriétés recherchées quelle que soit la forme des découpes du tissu ;
    • ❖ une grande facilité pour réaliser la connectique aux sources d'alimentation électrique.
    Applications industrielles
  • Le tissu conforme à l'invention présente de multiples applications grâce d'une part à sa structure matricielle, d'autre part à sa grande facilité de connexion.
  • Ainsi, ce tissu peut être utilisé pour de multiples applications de chauffage, en parois extérieures de bâtiment, ainsi qu'en parois intérieures du type cloison ou autres. Il peut également être utilisé pour des fonctions de chauffage dans toutes sortes d'articles aptes à être revêtus d'un textile. Il peut également s'agir d'accessoires utilisés dans l'habitat tels que des stores.
  • Grâce à ses excellentes qualités électriques, ce tissu peut également être utilisé pour des applications anti-statiques, et notamment dans des domaines où il est nécessaire d'effectuer des extractions de poussières telles que les industries minières, ou les tunnels automobiles ou ferroviaires, ou bien encore dans l'industrie de l'électronique.
  • Il peut également être utilisé pour équiper des bâtiments de manière à leur conférer des propriétés de cage de Faraday.

Claims (8)

  1. Tissu (1) possédant des propriétés de conduction de l'électricité et comportant :
    - dans le sens respectivement chaîne ou trame, des groupes de fils de carbone (12) et des groupes de fils (4) non conducteurs de l'électricité, lesdits groupes de fils de carbone formant des bandes (2) régulièrement espacées d'une distance d;
    - dans le sens respectivement trame ou chaîne, des groupes de fils métalliques (13) ;
    - une couche de revêtement isolant (15, 16) recouvrant chaque face du tissu;
    caractérisé en ce qu'il comporte également dans le sens respectivement trame ou chaîne des groupes de fils non conducteurs de l'électricité, lesdits groupes de fils métalliques formant des bandes (3) reliant électriquement en parallèle les bandes (2) de fils de carbone entre eux, les bandes (3) de fils métalliques étant régulièrement espacées d'une distance D au moins cinq fois supérieure à la distance d, et en ce que la dimension du tissu dans le sens respectivement trame ou chaîne est supérieure à la distance D séparant les bandes de fils métalliques (13), de sorte que la répartition des fils métalliques (13) et des fils de carbone (12) sur l'ensemble de la surface du tissu confère à ce dernier une structure matricielle grâce à laquelle il est possible d'alimenter en tension le tissu.
  2. Tissu selon la revendication 1, caractérisée en ce que les fils métalliques (13) sont choisi parmi les fils de nickel, les fils d'aluminium, les fils en acier inoxydable et le fils recouverts d'une couche d'or.
  3. Tissu selon la revendication 1, caractérisé en ce que les fils (14) non conducteurs de l'électricité sont des fils de polyester.
  4. Tissu selon la revendication 1, caractérisé en ce que les couches de revêtement isolant (15, 16) sont des couches obtenues par enduction.
  5. Tissu selon la revendication 1, caractérisé en ce que les couches de revêtement isolant (15, 16) sont différentes sur les deux faces du tissu.
  6. Tissu selon la revendication 1, caractérisé en ce que la distance d séparant les bandes (2) de fils de carbone est comprise entre 1 et 10 centimètres, et en ce que la distance D séparant les bandes (3) de fils métalliques est comprise entre 20 centimètres et 2 mètres.
  7. Tissu selon la revendication 1, caractérisé en ce qu'il présente sur ses lisières (5), et à l'endroit des extrémités des bandes (3) de fils métalliques, des zones (25) dans lesquelles les couches d'enductions (15, 16) sont éliminées.
  8. Tissu selon la revendication 1, caractérisé en ce qu'il comporte en outre des bornes d'alimentation disposées sur ses lisières, à l'extrémité de certains groupes de fils métalliques.
EP02356022A 2001-02-28 2002-02-12 Tissu possedant des proprietés de conduction de l'électricité Expired - Lifetime EP1236819B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0102737 2001-02-28
FR0102737A FR2821366B1 (fr) 2001-02-28 2001-02-28 Tissu possedant des proprietes de conduction de l'electricite

Publications (2)

Publication Number Publication Date
EP1236819A1 EP1236819A1 (fr) 2002-09-04
EP1236819B1 true EP1236819B1 (fr) 2007-12-19

Family

ID=8860557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02356022A Expired - Lifetime EP1236819B1 (fr) 2001-02-28 2002-02-12 Tissu possedant des proprietés de conduction de l'électricité

Country Status (6)

Country Link
EP (1) EP1236819B1 (fr)
AT (1) ATE381633T1 (fr)
DE (1) DE60224127T2 (fr)
DK (1) DK1236819T3 (fr)
ES (1) ES2296882T3 (fr)
FR (1) FR2821366B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108146A1 (fr) 2014-12-29 2016-07-07 PartGyx Beteiligungen AG Chauffage de surface

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005003690A5 (de) * 2005-06-30 2008-06-05 Gerd Lukoschus Beheizbare Markise
DE102008035057B4 (de) * 2008-07-26 2023-01-26 Volkswagen Ag Textiles Flächenheizelement
GB2484980A (en) * 2010-11-01 2012-05-02 Bill John Finch Low voltage heating sheet
ES2393013B1 (es) * 2011-05-19 2013-09-16 Comersan S.A. Tejido calefactable.
BE1020679A3 (nl) * 2012-05-10 2014-03-04 Heatsail Ip Bvba Verwarmingselement voor gebruik buitenshuis voor het verwarmen van een terras of dergelijke en luifel aan een terras die voorzien is van zulk verwarmingselement.
DE102012020869B4 (de) 2012-10-24 2022-10-06 Audi Ag Flächenheizelement und Verwendung desselben für Fahrzeuginnenverkleidungen und Fahrzeugsitze
DE102014001383A1 (de) 2014-02-01 2015-08-06 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Verbundwerkstoff
DE102015219911A1 (de) 2015-10-14 2017-04-20 Robert Bosch Gmbh Faden zur Herstellung eines elektrisch leitenden Gewebes, Verfahren zur Herstellung des Fadens, elektrisch leitendes Gewebe und Verfahren zu dessen Herstellung sowie Kleidungsstück

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7315574A (nl) * 1973-11-14 1975-05-16 Benoit De La Bretoniere Andre Weefsel.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108146A1 (fr) 2014-12-29 2016-07-07 PartGyx Beteiligungen AG Chauffage de surface

Also Published As

Publication number Publication date
DK1236819T3 (da) 2008-03-31
DE60224127T2 (de) 2008-12-04
EP1236819A1 (fr) 2002-09-04
FR2821366A1 (fr) 2002-08-30
DE60224127D1 (de) 2008-01-31
ES2296882T3 (es) 2008-05-01
ATE381633T1 (de) 2008-01-15
FR2821366B1 (fr) 2003-05-30

Similar Documents

Publication Publication Date Title
EP1236819B1 (fr) Tissu possedant des proprietés de conduction de l'électricité
EP1340060B1 (fr) Procede de fabrication de convertisseurs thermo-electriques
FR2485859A1 (fr) Cable flexible de chauffage electrique a auto-limitation de temperature
FR2533101A1 (fr) Element electrique flexible, a decouper en longueurs, pour le chauffage ou la mesure de temperature
EP2193529B1 (fr) Gaine de protection a l'egard du rayonnement, notamment du champ electrique engendre par des cables electriques
EP1314355B1 (fr) Installation électrique répulsive pour oiseaux
FR2740934A1 (fr) Structure chauffante souple
EP0506521B1 (fr) Vitrage feuilleté chauffant
EP0373553B1 (fr) Câble électrique blindé muni de zones de raccordement rapide en dérivation
EP2108724B1 (fr) Procédé de tissage pour réaliser une nappe textile chauffante et nappe textile chauffante
EP0637115B1 (fr) Conduit de protection à friction réduite
EP0860899B1 (fr) Connecteur à perforation d'isolant
FR2737803A1 (fr) Enrubannage de manchon de cables
WO2004075346A2 (fr) Piece de liaison electrique pour filiere delivrant des filaments notamment de verre
EP1352449B1 (fr) Dispositif pour contact electrique pour materiau fibreux et son utilisation pour le chauffage par effet joule
EP0002627A1 (fr) Balai pour collecteur
EP0031623A1 (fr) Electrode pour filtre à gaz et filtre équipé de telles électrodes
FR2835973A1 (fr) Organe de connectique destine a etre mis en place sur un textile incluant des cables metalliques
EP1304405B1 (fr) Tissu incorporant des fils metalliques
FR2570066A1 (fr) Dispositif pour la manutention d'une charge a distance
FR2644660A1 (fr) Cable chauffant, plus particulierement destine au chauffage direct par rayonnement
WO2005039240A2 (fr) Dispositif de chauffage par film souple chauffant, et utilisation du dispositif pour la protection des cultures et des plantes contre les degats du froid
FR3003720A1 (fr) Element conducteur pour la realisation d'un systeme chauffant
EP3266278B1 (fr) Câble chauffant a flux thermique oriente
WO2005001999A1 (fr) Dispositif de connexion pour panneau conducteur d’electricite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021223

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20051027

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60224127

Country of ref document: DE

Date of ref document: 20080131

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080214

Year of fee payment: 7

Ref country code: DK

Payment date: 20080121

Year of fee payment: 7

Ref country code: ES

Payment date: 20080220

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2296882

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080213

Year of fee payment: 7

Ref country code: FI

Payment date: 20080204

Year of fee payment: 7

Ref country code: GB

Payment date: 20080206

Year of fee payment: 7

Ref country code: IT

Payment date: 20080218

Year of fee payment: 7

Ref country code: NL

Payment date: 20080118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080225

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080519

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

26N No opposition filed

Effective date: 20080922

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080118

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

BERE Be: lapsed

Owner name: TISSAGE ET ENDUCTION SERGE FERRARI SA

Effective date: 20090228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090212

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090212

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080212

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090213