EP1236819A1 - Tissu possedant des proprietés de conduction de l'électricité - Google Patents

Tissu possedant des proprietés de conduction de l'électricité Download PDF

Info

Publication number
EP1236819A1
EP1236819A1 EP02356022A EP02356022A EP1236819A1 EP 1236819 A1 EP1236819 A1 EP 1236819A1 EP 02356022 A EP02356022 A EP 02356022A EP 02356022 A EP02356022 A EP 02356022A EP 1236819 A1 EP1236819 A1 EP 1236819A1
Authority
EP
European Patent Office
Prior art keywords
wires
fabric
threads
carbon
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02356022A
Other languages
German (de)
English (en)
Other versions
EP1236819B1 (fr
Inventor
Carlos Saiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tissage et Enduction Serge Ferrari SA
Original Assignee
Tissage et Enduction Serge Ferrari SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tissage et Enduction Serge Ferrari SA filed Critical Tissage et Enduction Serge Ferrari SA
Publication of EP1236819A1 publication Critical patent/EP1236819A1/fr
Application granted granted Critical
Publication of EP1236819B1 publication Critical patent/EP1236819B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • H05B3/347Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles woven fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/275Carbon fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/60Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the warp or weft elements other than yarns or threads
    • D03D15/67Metal wires
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/18Outdoor fabrics, e.g. tents, tarpaulins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • H05B2203/015Heater wherein the heating element is interwoven with the textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the invention relates to the field of technical textiles, and more precisely to electrically conductive textiles. She finds applications multiple, and in particular in the production of truck tarpaulins, flexible roofing or even furnishing or interior fittings. It relates to more particularly a heating fabric incorporating metallic wires and carbon which allow heating by a “low voltage” power supply, and which is by construction very easily configurable to any geometry pattern, and to different surface heating powers.
  • electrically conductive textiles consist of a elementary support fabric incorporating in the warp and / or weft copper wires or more generally metal wires. The presence of these sons gives the tissue structure some electrical conductivity allowing for multiple uses, and in particular for constituting heating fabrics.
  • the objective of the invention is to provide a fabric which has properties electric and continuous on the surface of the fabric.
  • a conductive fabric including among its weft threads, electrically conductive threads. These sons of frame are electrically connected in parallel by two conductive chain wires located on each side of the fabric.
  • the power dissipated per unit area, for a fabric of given dimensions is only a function of the applied voltage. In others terms, it is not possible to adapt the dissipated power according to the desired application.
  • the objective of the present invention is to provide a conductive fabric which can be used with supply voltages of the "low voltage" type, that is to say, included in the conventional range from 12 volts to 48 volts.
  • a another objective is to allow a great modularity so as to ensure a energy dissipation per unit area which is user configurable very easy way.
  • Another objective is to provide a coated fabric whose coating does not disturb not the connection properties between the conductive wires.
  • the invention therefore relates to a fabric which has conduction properties. electricity.
  • this fabric comprises, arranged in a regular manner, strips of carbon threads which ensure energy dissipation when traversed by an electric current.
  • These strips of carbon threads are connected together by strips of conductive wires such as metallic wires, strips of wires of metal serving as supply and current leads to the carbon threads.
  • These strips of power wires are much more spaced apart from each other as strips of carbon threads.
  • the distribution of metallic wires and carbon wires on the entire surface of the fabric gives it a matrix structure thanks to which it is possible to supply voltage to any length or fabric width, if this width or length is greater than the distance D separating the strips of metal wires.
  • the supply wires are sufficiently numerous throughout the width of the fabric to form two electrodes for any cut tissue.
  • the metallic wires used can be alloy-based wires nickel, aluminum wires, stainless steel wires, or wires covered with a layer of gold.
  • non-conductive wires used between the metallic wires can advantageously be polyester yarns, used for their good behavior mechanical.
  • metals can also be used if their resistivity is sufficiently low, compared with that of the carbon heating wires, and in taking into account the relationship between the distances d and D separating the different bands carbon wires and metallic power wires.
  • the coating layers, and for example coating, covering the two sides of the fabric may be different.
  • the distance d separating the strips of wires from carbon can be between 1 and 10 centimeters, the distance separating the metal wire bands then being between 20 centimeters and 2 meters.
  • power can be obtained by connecting different bands of wires alternately at one of the two terminals of the power source electric.
  • the fabric can have on its selvedges, and at the ends of the strips of metal wire, areas in which the coating layers are removed. In this way, by performing a cutting perpendicular to the metal wire strips, at the level of the latter, just extract the coating layers by sliding them around the wires by pulling them out of the fabric. We do the same so that we strip a sheathed metal wire by stripping the extremal zone of the strip of metal wire.
  • These supply terminals can be arranged at the end of all or part of the metal terminals, depending on the supply voltage that wish to apply to the fabric.
  • the power dissipated per unit is varied surface, which allows the fabric to be adapted to different applications.
  • the invention relates to a heating textile which is produced by weaving, and which incorporates two different types of conductive threads in these directions a chain and a frame.
  • the fabric (1) comprises strips (2) of carbon threads which are spaced apart by a distance d.
  • This fabric (1) also includes strips (3) of metal wires.
  • the carbon threads have a titer of 200 tex and have 200 fibers per thread.
  • Each strip (2) comprises five carbon threads of this guy.
  • the strips (2) of carbon threads are spaced by a distance d of 5 centimeters.
  • the carbon wires can be replaced by wires with similar electrical properties, i.e. higher resistivity to the supply wires. Mention may for example be made of threads made from fibers metal, with a diameter of the order of a micrometer.
  • the metal wires used are the wires of pure nickel twenty hundredths of a millimeter in diameter.
  • Each strip (3) of wire metal includes ten nickel wires, which represents a bandwidth of the order of the centimeter.
  • the strips (3) of metal wires are spaced apart by a distance D equal to about a meter.
  • the voltage drop measured along the supply wires of a strip (3) is negligible with regard to the voltage drop measured along copper wires between two successive bands (3).
  • the threads (4) used for the rest of the fabric are non-conductive threads, for example example of conventional high tenacity polyester yarns of 1100 dtex, 200 strands.
  • the weaving of metallic threads (13, 14) with carbon threads (12) such as illustrated in FIG. 2, provides an advantage as regards the surface of contact between these different wires. Indeed, the contact area between the carbon wires (12) and the metal wires (13) extends over part of the circumference of the wires carbon (13), typically greater than a quarter of this circumference. The sons of carbon which are more flexible than the metallic wires tend to crush, this which considerably increases the contact surface.
  • This large contact surface allows the passage of a current relatively high, such as those used for low voltage power supplies of the type 12 to 48 volts.
  • the coating layer (15, 16) which covers both sides of the fabric, thus preventing any risk of contact with live areas.
  • the coating layers (15, 16) are identical and made for example of PVC. However, as already mentioned, these layers (15, 16) can be different so as to influence the direction of the heat flow released by the carbon wires (12).
  • the textile according to the invention when used as that top cover of a building, and that it is intended to ensure a melting snow control, we will favor the heat flow towards the upper face of the tissue.
  • the coating layer (15) located on the upper side of the fabric has better thermal conductivity than the layer (16) located on the lower side.
  • the coating used may be such that its conduction properties heat varies on the very surface of one side of the fabric. So by modulating this thermal conductivity, we can standardize the heat flow emitted between the zones comprising the carbon threads, and the spaces between these strips of carbon.
  • FIG. 3 and 4 illustrate the manipulations necessary to ensure the connection of the tissue to a power source.
  • the fabric (1) has on its selvedge (5) different weft threads which are visible through the coating layer (15).
  • these apparent sons one identifies nonconductive polyester yarns (6) and metallic yarns (13).
  • These metallic wires (13) are part of a strip (3) of conductive wires. After having proceeded to a notch of the fabric along the planes (20, 21) parallel to the weft, we have cut the polyester chain threads (4) located in this region.
  • This notch (22) can be made by an appropriate tool or even not be physically materialized, but simply result from the traction which will be carried out by the operator.
  • This zone contains the portions of wires of polyester (4) which were previously cut when making the notches (20, 21).
  • the various metallic wires (13) are then visible at the edge of the fabric, and the operator just has to put them together to put them in place in the appropriate connectors. The connection of the strip (3) of metal wires (13) is thus assured.
  • the power source (26) can see its upper terminal connected to the terminals of the metal wires (3a, 3c, 3e), while its lower terminal is connected to the bands (3b, 3d). In other words, all segments of carbon wires located between two strips (3) of metal wires are subjected to the source supply voltage (26).
  • the power source (27) has its upper terminal connected to the bands (3a, 3e) of the fabric, while its lower terminal is connected to the strip (3c) of the fabric.
  • the carbon wire segments are subjected to potential difference equal to half that of the previous configuration.
  • the same logic can be applied with the configuration of the source supply (28) illustrated in Figure 5c.
  • the power source (28) is connected by its positive terminal to the band (3a) and its negative terminal to the band (3e).
  • the tension imposed on the carbon wires is worth a quarter of that of configuration (26), which results in a power dissipated sixteen times lower.
  • the wiring diagram of the different metal strips (3) can be adapted according to the desired dissipation power, in determining the length of the carbon threads required, and therefore the multiple of the distance D to obtain the dissipation of the desired power.
  • This wiring can also be variable inside the fabric, to focus energy dissipation in specific areas.
  • this wiring can be adapted according to the voltage nominal of the sources (26-28) used.
  • a supply voltage of 12 volts may be sufficient. It's about then applications allowing a slight warming of the fabric in order to elimination of the condensation present on it when used for make marquee tents or other similar constructions.
  • a 24 volt supply will quadruple the dissipated power per unit area. So, with 400 watt dissipation per square meter, the fabric can be used to make roofs or hangings superior able to withstand snow. In this case, the heating will allow to ensure a slight melting of the snow. This merger will be controlled, so that water accumulations will be avoided when the snow melts, thanks to a control the areas in which the snow will melt first.
  • the fabric can then be used for heating applications, for example example for forming heated partitions or ceilings.
  • the fabric according to the invention has multiple applications thanks to on the one hand to its matrix structure, on the other hand to its great ease of connection.
  • this fabric can be used for multiple heating applications, in particular exterior walls of a building, as well as interior walls of the partition type or other. It can also be used for heating functions in all kinds of articles suitable for being covered with a textile. It can also be accessories used in the home such as blinds.
  • this fabric can also be used for anti-static applications, and especially in areas where it is necessary to perform dust extraction such as industries mining, or automotive or railway tunnels, or even in the electronics industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Woven Fabrics (AREA)
  • Non-Insulated Conductors (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)
  • Surgical Instruments (AREA)
  • Saccharide Compounds (AREA)
  • Laser Surgery Devices (AREA)

Abstract

Tissu (1) possédant des propriétés de conduction de l'électricité, caractérisé en ce qu'il comporte : dans le sens chaîne ou trame, des groupes de fils de carbone et des groupes de fils (4) non conducteurs de l'électricité, lesdits groupes de fils de carbone formant des bandes (2) régulièrement espacées d'une distance d; dans le sens trame ou chaîne, des groupes de fils métalliques et des groupes de fils non conducteurs de l'électricité, lesdits groupes de fils métalliques formant des bandes (3) reliant électriquement en parallèle les bandes (2) de fils de carbone entre eux, les bandes (3) de fils métalliques étant régulièrement espacées d'une distance D au moins cinq fois supérieure à la distance d; une couche de revêtement isolant recouvrant chaque face du tissu. <IMAGE>

Description

Domaine Tehnique
L'invention se rattache au domaine des textiles techniques, et plus précisément aux textiles conducteurs de l'électricité. Elle trouve des applications multiples, et notamment dans la réalisation de bâches de camion, d'éléments de toiture souple ou encore d'ameublement ou d'aménagement intérieur. Elle concerne plus particulièrement un tissu chauffant incorporant des fils métalliques et de carbone qui permettent un chauffage par une alimentation « basse tension », et qui est par construction très facilement configurable à tout motif de géométrie, et à différentes puissances surfacique de chauffe.
Techniques antérieures
De façon connue, les textiles conducteurs de l'électricité sont constitués d'un tissu élémentaire support incorporant en chaíne et/ou en trame des fils de cuivre ou plus généralement des fils métalliques. La présence de ces fils confère à la structure des tissus une certaine conductivité électrique en permettant de multiples utilisations, et notamment pour constituer des tissus chauffants.
L'objectif de l'invention est de fournir un tissu qui présente des propriétés électriques optimales et continues sur la surface du tissu.
De très nombreuses solutions ont déjà été proposées pour intégrer un tel fil conducteur à l'intérieur d'un tissu.
Ainsi, dans le document FR 2 340 016, on a décrit un tissu conducteur incluant parmi ses fils de trame, des fils conducteurs de l'électricité. Ces fils de trame sont reliés électriquement en parallèles par deux fils de chaíne conducteurs situés de chaque côté du tissu.
On conçoit que ce genre de tissu présente un certain nombre d'inconvénients. En effet, lorsque l'on souhaite réaliser des tissus présentant une largeur suffisante, il est nécessaire de soumettre les fils de trame à une tension relativement importante, généralement égale à la tension réseau 220 volts alternatifs. L'emploi d'une telle tension pose des problèmes de sécurité électrique, et notamment en ce qui concerne les risques de contact par des personnes. Cette tension électrique importante est également nécessaire compte tenu de la médiocrité des connexions existant entre les fils de chaíne formant électrode, et les fils de trame conducteurs.
Un autre exemple d'un tel tissu a également été décrit dans le document FR 2 263 658. Dans ce cas, la mise en parallèle des différents fils conducteurs se fait par l'emploi d'un feuillard de cuivre disposé dans les lisières du tissu. L'emploi de ces feuillards présente deux inconvénients majeurs. D'une part, de tels feuillards en cuivre sont relativement rigides et empêchent de conformer le tissu très simplement. D'autre part, la connexion entre le feuillard et les fils conducteurs est relativement médiocre, et oblige donc l'emploi d'une tension élevée, c'est-à-dire en pratique la tension de réseau 220 volts, induisant un courant très faible plus compatible avec une telle qualité de connexion. Les inconvénients de l'emploi d'une tension élevée sont les mêmes que ceux indiqués précédemment.
En outre, la puissance dissipée par unité de surface, pour un tissu de dimensions données, est uniquement fonction de la tension appliquée. En d'autres termes, il n'est pas possible d'adapter la puissance dissipée en fonction de l'application souhaitée.
L'objectif de la présente invention est de fournir un tissu conducteur qui puisse être employé avec des tensions d'alimentation du type « basse tension », c'est-à-dire comprise dans la gamme classique allant de 12 volts à 48 volts. Un autre objectif est de permettre une grande modularité de manière à assurer une dissipation d'énergie par unité de surface qui soit configurable par l'utilisateur de façon très aisée.
Un autre objectif est de fournir un tissu enduit dont l'enduction ne perturbe pas les propriétés de connexion entre les fils conducteurs.
Exposé de l'invention
L'invention concerne donc un tissu qui possède des propriétés de conduction de l'électricité.
Un tel tissu se caractérise en ce qu'il comporte
  • Figure 00030001
    dans le sens chaíne ou trame, des groupes de fils de carbone et des groupes de fils non conducteurs de l'électricité, lesdits groupes de fils de carbone formant des bandes régulièrement espacées d'une distance d ;
  • Figure 00030002
    dans le sens trame ou chaíne, des groupes de fils métalliques et des groupes de fils non conducteurs de l'électricité, lesdits groupes de fils métalliques formant des rayures reliant électriquement en parallèle les groupes de fils de carbone entre eux, les rayures de fils métalliques étant régulièrement espacées d'une distance D au moins cinq fois supérieure à la distance d ;
  • Figure 00030003
    une couche de revêtement isolant recouvrant chaque face du tissu.
  • Autrement dit, ce tissu comporte, disposées de façon régulière, des bandes de fils de carbone qui assurent une dissipation d'énergie lorsqu'ils sont parcourus par un courant électrique. Ces bandes de fils de carbone sont reliées entre elles par des bandes de fils conducteurs tels que des fils métalliques, les bandes de fils métalliques servant de fils d'alimentation et d'amenée du courant à destination des fils de carbone. Ces bandes de fils d'alimentation sont nettement plus espacées les unes des autres que les bandes de fils de carbone.
    En utilisant deux matériaux de conductivité nettement différente, c'est-à-dire des fils de carbone présentant une résistivité nettement supérieure à celle des fils métalliques, l'essentiel de la chute de tension se fait aux bornes des fils de carbone, qui assurent donc une dissipation d'énergie très nettement supérieure à celle qui a lieu dans les fils métalliques transversaux.
    Le tissage des différents fils de la bande de fils de carbone avec les fils métalliques de la bande de fils d'alimentation assure un contact relativement important entre ces différents fils, et donc une connexion qui autorise le passage d'un courant important, et donc l'emploi du tissu en association avec des alimentations électriques basse tension, du type de 12 volts à 48 volts.
    En outre, la répartition des fils métalliques et des fils de carbone sur l'ensemble de la surface du tissu confère à ce dernier une structure matricielle grâce à laquelle il est possible d'alimenter en tension n'importe quelle longueur ou largeur de tissu, dès lors que cette largeur ou longueur est supérieure à la distance D séparant les bandes de fils métalliques.
    Autrement dit, les fils d'alimentation sont suffisamment nombreux sur toute la largeur du tissu pour constituer deux électrodes pour n'importe quelle découpe de tissu.
    Du fait du tissage des fils métalliques et des fils de carbone, la pression exercée sur zone de contact entre ces différents fils est suffisante pour résister à la pression de la matière plastique qui est utilisée lors de l'opération d'enduction du tissu.
    En pratique, les fils métalliques utilisés peuvent être des fils à base d'alliage de nickel, des fils d'aluminium, des fils en acier inoxydable, ou encore des fils recouverts d'une couche d'or.
    On préférera par exemple utiliser des alliages de nickel pour sa bonne compatibilité avec la connectique généralement réalisée avec des alliages de cuivre. Compte tenu du très faible nombre de fils d'alimentation métalliques, l'emploi de matériaux relativement coûteux augmente de façon quasi insensible le prix de revient du tissu conforme à l'invention. On privilégiera donc les très bonnes qualités conductrices de certains métaux relativement coûteux.
    Par ailleurs, les fils non conducteurs utilisés entre les fils métalliques peuvent avantageusement être des fils de polyester, utilisés pour leur bon comportement mécanique.
    D'autres métaux peuvent également être utilisés dès lors que leur résistivité est suffisamment faible, comparée avec celle des fils chauffants de carbone, et en tenant compte du rapport entre les distances d et D séparant les différentes bandes de fils de carbone et de fils d'alimentation métallique.
    Dans une forme particulière, les couches de revêtement, et par exemple d'enduction, recouvrant les deux faces du tissu peuvent être différentes.
    De la sorte, on assure une dissipation de l'énergie qui est différente d'une face à l'autre du tissu, ce qui permet d'orienter le flux de chaleur dans une direction privilégiée. En pratique, on choisit des couches d'enduction qui possèdent des propriétés thermiques différentes, par exemple en utilisant des charges dans des proportions différentes d'une face à l'autre.
    Avantageusement en pratique, la distance d séparant les bandes de fils de carbone peut être comprise entre 1 et 10 centimètres, la distance séparant les bandes de fils métalliques étant alors comprise entre 20 centimètres et 2 mètres.
    Grâce à ces dimensions données à titre indicatives et non limitatives, il est possible de découper le tissu en conservant la possibilité d'une alimentation quelle que soit la forme générale de la découpe, dès lors qu'elle est supérieure à la dimension D séparant les rayures de fils métalliques.
    En pratique, l'alimentation peut s'obtenir en reliant différentes bandes de fils d'alimentation alternativement à une des deux bornes de la source d'alimentation électrique.
    Selon une autre caractéristique de l'invention, le tissu peut présenter sur ses lisières, et à l'endroit des extrémités des bandes de fils métalliques, des zones dans lesquelles les couches d'enduction sont éliminées. De la sorte, en réalisant une découpe perpendiculaire aux bandes de fils métalliques, au niveau de ces dernières, il suffit d'extraire les couches d'enduction en les faisant coulisser autour des fils métalliques en les tirant vers l'extérieur du tissu. On procéde ainsi de la même manière que l'on dénude un fil métallique gainé en dénudant la zone extrémale de la bande du fil métallique.
    Il s'ensuit que l'ensemble des fils métalliques ainsi dénudés peuvent être rassemblés pour être ensuite mis en place dans des bornes d'alimentation disposées sur les lisières du tissu.
    Ces bornes d'alimentation peuvent être disposées à l'extrémité de toutes ou partie des bornes métalliques, en fonction de la tension d'alimentation que l'on souhaite appliquer sur le tissu.
    Ainsi, en faisant varier le nombre de bandes de fils métalliques présents entre deux bornes d'alimentation électrique, on fait varier la puissance dissipée par unité de surface, ce qui permet d'adapter le tissu à différentes applications.
    Description sommaire des figures
    La manière de réaliser l'invention ainsi que les avantages qui en découlent ressortiront bien de la description du mode de réalisation qui suit, donné à titre d'exemple non limitatif, à l'appui des figures annexées dans lesquelles :
  • La figure 1 est une vue schématique d'un tissu conforme à l'invention.
  • La figure 2 est une vue en coupe de détail illustrant le tissage des fils de carbone et des fils métalliques.
  • La figure 3 est une vue en perspective sommaire d'une lisière du tissu conforme à l'invention, pendant la réalisation d'une connexion latérale.
  • La figure 4 illustre une étape ultérieure de celle de la figure 3.
  • La figure 5 est une vue schématique illustrant les différentes possibilités d'alimentation d'un dispositif conforme à l'invention.
  • Manière de réaliser l'invention
    Comme déjà évoqué, l'invention concerne un textile chauffant qui est réalisé par tissage, et qui incorpore deux types de fils conducteurs différents dans ces sens chaíne et trame.
    Ainsi, et comme illustré à l'exemple de la figure 1, le tissu (1) comporte des bandes (2) de fils de carbone qui sont espacées d'une distance d. Ce tissu (1) comprend également des bandes (3) de fils métalliques.
    Dans l'exemple illustré, les fils de carbone présentent un titre de 200 tex et comportent 200 fibres par fils. Chaque bande (2) comprend cinq fils de carbone de ce type. Les bandes (2) de fils de carbone sont espacées d'une distance d de 5 centimètres.
    Dans une variante de réalisation, on peut remplacer les fils de carbone par des fils ayant des propriétés électriques similaires, c'est-à-dire une résistivité supérieure aux fils d'alimentation. On peut citer par exemple des fils réalisés à partir des fibres métalliques, d'un diamètre de l'ordre du micromètre.
    Dans l'exemple de la figure 1, les fils métalliques utilisés sont les fils de nickel pur de vingt centièmes de millimètres de diamètre. Chaque bande (3) de fils métalliques comprend dix fils de nickel, ce qui représente une largeur de bande de l'ordre du centimètre.
    Les bandes (3) de fils métalliques sont distantes d'une distance D valant environ un mètre.
    Compte tenu du fait que la résistivité du nickel est environ cent fois inférieure à celle du carbone, la chute de tension mesurée le long des fils d'alimentation d'une bande (3) est négligeable au regard de la chute de tension mesurée le long des fils de cuivre entre deux bandes (3) successives.
    C'est cette dernière chute de tension qui provoque l'échauffement des fils de cuivre et la dissipation d'énergie cherchée.
    Les fils (4) utilisés pour le reste du tissu sont des fils non conducteurs, par exemple des fils de polyester haute ténacité classiques de 1100 dtex, 200 brins.
    Bien entendu, les valeurs et les matériaux donnés ci-dessus le sont uniquement à titre d'exemple, et l'invention couvre de multiples variantes de réalisation qui s'en écartent.
    Le tissage des fils métalliques (13, 14) avec des fils de carbone (12) tels qu'illustrés à la figure 2, procure un avantage en ce qui concerne la surface de contact entre ces différents fils. En effet, la zone de contact entre les fils de carbone (12) et les fils métalliques (13) s'étend sur une partie de la circonférence des fils de carbone (13), typiquement supérieure à un quart de cette circonférence. Les fils de carbone qui sont plus souples que les fils métalliques ont tendance à s'écraser, ce qui augmente considérablement la surface de contact.
    Cette importante surface de contact autorise le passage d'un courant relativement élevé, tel que ceux utilisés pour des alimentations en basse tension du type 12 à 48 volts.
    A la figure 2, on observe également la présence de la couche d'enduction (15, 16) qui recouvre les deux faces du tissu, empêchant ainsi tout risque de contact avec des zones sous tension. Dans la forme illustrée, les couches d'enduction (15, 16) sont identiques et réalisées par exemple en PVC. Néanmoins, comme déjà évoqué, ces couches (15, 16) peuvent être différentes de manière à influencer la direction du flux de chaleur libérée par les fils de carbone (12).
    A titre d'exemple, lorsque le textile conforme à l'invention est utilisé en tant que couverture supérieure d'un bâtiment, et qu'il est destiné à assurer une fonte controlée des neiges, on privilégiera le flux de chaleur vers la face supérieure du tissu. Dans ce cas, la couche d'enduction (15) située sur la face supérieure du tissu présente une meilleure conductibilité thermique que la couche (16) située sur la face inférieure.
    De même, l'enduction utilisée peut être telle que ses propriétés de conduction de la chaleur varient sur la surface même d'une face du tissu. Ainsi, en modulant cette conductivité thermique, on peut uniformiser le flux de chaleur émis entre les zones comportant les fils de carbone, et les espaces situés entre ces bandes fils de carbone.
    Une autre caractéristique de l'invention concerne la facilité avec laquelle le tissu conforme à l'invention peut être relié à l'alimentation électrique. Les figures 3 et 4 illustrent les manipulations nécessaires pour assurer la connexion du tissu à une source d'alimentation.
    Ainsi, le tissu (1) présente sur sa lisière (5) différents fils de trame qui sont apparents au travers de la couche d'enduction (15). Parmi ces fils apparents, on identifie les fils de polyester (6) non conducteurs, et les fils métalliques (13). Ces fils métalliques (13) font partie d'une bande (3) de fils conducteurs. Après avoir procédé à une entaille du tissu selon les plans (20, 21) parallèles à la trame, on a découpé les fils de chaíne (4) en polyester situés dans cette région.
    On procéde par la suite à une légère entaille (22) parallèle aux fils de chaíne pour délimiter la zone qui sera ensuite extraite. Cette entaille (22) peut être réalisée par un outil approprié ou bien encore ne pas être physiquement matérialisée, mais simplement résulter de la traction qui sera effectuée par l'opérateur.
    Par la suite, l'opérateur exerce une traction sur la zone délimitée par les découpes (20, 21, 22). Cette zone (25) coulisse sur les fils métalliques (13), qui est ensuite extraite comme à la figure 4. Cette zone contient les portions de fils de polyester (4) qui ont été préalablement coupées lors de la réalisation des entailles (20, 21). Les différents fils métalliques (13) sont alors apparents en lisière du tissu, et il suffit à l'opérateur de les rassembler pour les mettre en place dans l'organe de connectique approprié. La connexion de la bande (3) de fils métalliques (13) est ainsi assurée.
    Bien entendu, l'opérateur choisit selon la configuration du tissu et la tension d'alimentation les bandes (3) qui doivent être ainsi dénudées.
    Ainsi, différentes configurations d'alimentation peuvent être utilisées.
    Ainsi, comme illustré à la figure Sa, la source d'alimentation (26) peut voir sa borne supérieure reliée aux bornes des fils métalliques (3a, 3c, 3e), alors que sa borne inférieure est reliée aux bandes (3b, 3d). Autrement dit, tous les segments de fils de carbone situés entre deux bandes (3) de fils métalliques sont soumis à la tension d'alimentation de la source (26).
    Dans l'autre configuration illustrée à la figure 5b, la source d'alimentation (27) présente sa borne supérieure reliée aux bandes (3a, 3e) du tissu, tandis que sa borne inférieure est reliée à la bande (3c) du tissu. Dans ce cas, et à tension d'alimentation constante, les segments de fils de carbone sont soumis à une différence de potentiel égale à la moitié de celle de la configuration précédente.
    Il s'ensuit que la chaleur dégagée par l'unité de surface est égale au quart de celle qui est dissipée dans le cas de la configuration de la source d'alimentation (26).
    La même logique peut être déclinée avec la configuration de la source d'alimentation (28) illustrée à la figure 5c. Dans ce cas, la source d'alimentation (28) est reliée par sa borne positive à la bande (3a) et à sa borne négative à la bande (3e). A source équivalente, la tension imposée aux fils de carbone vaut le quart de celle de la configuration (26), ce qui se traduit par une puissance dissipée seize fois inférieure.
    Bien entendu, le schéma de câblage des différentes bandes métalliques (3) peut être adapté en fonction de la puissance de dissipation recherchée, en déterminant la longueur des fils de carbone nécessaire, et donc le multiple de la distance D pour obtenir la dissipation de la puissance souhaitée.
    Ce câblage peut également être variable à l'intérieur même du tissu, pour concentrer la dissipation d'énergie dans certaines zones particulières.
    De la même manière, ce câblage peut être adapté en fonction de la tension nominale des sources (26-28) utilisées.
    Ainsi, à titre d'exemple, pour une puissance à dissiper de l'ordre de 100 watts par mètre carré, une tension d'alimentation de 12 volts peut être suffisante. Il s'agit alors d'applications permettant un léger réchauffement du tissu en vue de l'élimination de la condensation présente sur celui-ci lorsqu'il est utilisé pour réaliser des tentes de chapiteau ou autres constructions analogues.
    Pour un schéma de câblage, une alimentation en 24 volts quadruplera la puissance dissipée par unité de surface. Ainsi, avec une dissipation de 400 watts par mètre carré, le tissu pourra être utilisé pour réaliser des toits ou des tentures supérieures aptes à supporter la neige. Dans ce cas, le chauffage permettra d'assurer une légère fusion de la neige. Cette fusion sera controlée, de sorte que l'on évitera les accumulations d'eau lors de la fonte des neiges, grâce à une maítrise des zones dans lesquelles la neige fondera en premier.
    Lorsque le même schéma de configuration est utilisé avec une source d'alimentation en 48 volts, correspond donc à une dissipation de 1 600 watts par mètre carré, le tissu pourra alors être utilisé pour des applications de chauffage, par exemple pour former des cloisons ou des plafonds chauffants.
    Il ressort de ce qui précède que le tissu conforme à l'invention présente de multiples avantages et notamment :
  • Figure 00110001
    la possibilité d'être alimenté de façon tout à fait sûre par des alimentations basses tension, du type 12 à 48 volts ;
  • Figure 00110002
    une très grande modularité du fait de sa structure matricielle, qui permet d'obtenir les propriétés recherchées quelle que soit la forme des découpes du tissu ;
  • Figure 00110003
    une grande facilité pour réaliser la connectique aux sources d'alimentation électrique.
  • Applications industrielles
    Le tissu conforme à l'invention présente de multiples applications grâce d'une part à sa structure matricielle, d'autre part à sa grande facilité de connexion.
    Ainsi, ce tissu peut être utilisé pour de multiples applications de chauffage, en parois extérieures de bâtiment, ainsi qu'en parois intérieures du type cloison ou autres. Il peut également être utilisé pour des fonctions de chauffage dans toutes sortes d'articles aptes à être revêtus d'un textile. Il peut également s'agir d'accessoires utilisés dans l'habitat tels que des stores.
    Grâce à ses excellentes qualités électriques, ce tissu peut également être utilisé pour des applications anti-statiques, et notamment dans des domaines où il est nécessaire d'effectuer des extractions de poussières telles que les industries minières, ou les tunnels automobiles ou ferroviaires, ou bien encore dans l'industrie de l'électronique.
    Il peut également être utilisé pour équiper des bâtiments de manière à leur conférer des propriétés de cage de Faraday.

    Claims (8)

    1. Tissu (1) possédant des propriétés de conduction de l'électricité, caractérisé en ce qu'il comporte :
      dans le sens chaíne ou trame, des groupes de fils de carbone (12) et des groupes de fils (4) non conducteurs de l'électricité, l'esdits groupes de fils de carbone formant des bandes (2) régulièrement espacées d'une distance d;
      dans le sens trame ou chaíne, des groupes de fils métalliques (13) et des groupes de fils non conducteurs de l'électricité, lesdits groupes de fils métalliques formant des bandes (3) reliant électriquement en parallèle les bandes (2) de fils de carbone entre eux, les bandes (3) de fils métalliques étant régulièrement espacées d'une distance D au moins cinq fois supérieure à la distance d;
      une couche de revêtement isolant (15, 16) recouvrant chaque face du tissu.
    2. Tissu selon la revendication 1, caractérisée en ce que les fils métalliques (13) sont choisi parmi les fils de nickel, les fils d'aluminium, les fils en acier inoxydable et le fils recouverts d'une couche d'or.
    3. Tissu selon la revendication 1, caractérisé en ce que les fils (14) non conducteurs de l'électricité sont des fils de polyester.
    4. Tissu selon la revendication 1, caractérisé en ce que les couches de revêtement isolant (15, 16) sont des couches obtenues par enduction.
    5. Tissu selon la revendication 1, caractérisé en ce que les couches de revêtement isolant (15, 16) sont différentes sur les deux faces du tissu.
    6. Tissu selon la revendication 1, caractérisé en ce que la distance d séparant les bandes (2) de fils de carbone est comprise entre 1 et 10 centimètres, et en ce que la distance D séparant les bandes (3) de fils métalliques est comprise entre 20 centimètres et 2 mètres.
    7. Tissu selon la revendication 1, caractérisé en ce qu'il présente sur ses lisières (5), et à l'endroit des extrémités des bandes (3) de fils métalliques, des zones (25) dans lesquelles les couches d'enductions (15, 16) sont éliminées.
    8. Tissu selon la revendication 1, caractérisé en ce qu'il comporte en outre des bornes d'alimentation disposées sur ses lisières, à l'extrémité de certains groupes de fils métalliques.
    EP02356022A 2001-02-28 2002-02-12 Tissu possedant des proprietés de conduction de l'électricité Expired - Lifetime EP1236819B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0102737 2001-02-28
    FR0102737A FR2821366B1 (fr) 2001-02-28 2001-02-28 Tissu possedant des proprietes de conduction de l'electricite

    Publications (2)

    Publication Number Publication Date
    EP1236819A1 true EP1236819A1 (fr) 2002-09-04
    EP1236819B1 EP1236819B1 (fr) 2007-12-19

    Family

    ID=8860557

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02356022A Expired - Lifetime EP1236819B1 (fr) 2001-02-28 2002-02-12 Tissu possedant des proprietés de conduction de l'électricité

    Country Status (6)

    Country Link
    EP (1) EP1236819B1 (fr)
    AT (1) ATE381633T1 (fr)
    DE (1) DE60224127T2 (fr)
    DK (1) DK1236819T3 (fr)
    ES (1) ES2296882T3 (fr)
    FR (1) FR2821366B1 (fr)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2007003144A1 (fr) * 2005-06-30 2007-01-11 Gerd Lukoschus Auvent pouvant etre chauffe
    GB2484980A (en) * 2010-11-01 2012-05-02 Bill John Finch Low voltage heating sheet
    BE1020679A3 (nl) * 2012-05-10 2014-03-04 Heatsail Ip Bvba Verwarmingselement voor gebruik buitenshuis voor het verwarmen van een terras of dergelijke en luifel aan een terras die voorzien is van zulk verwarmingselement.

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008035057B4 (de) * 2008-07-26 2023-01-26 Volkswagen Ag Textiles Flächenheizelement
    ES2393013B1 (es) * 2011-05-19 2013-09-16 Comersan S.A. Tejido calefactable.
    DE102012020869B4 (de) 2012-10-24 2022-10-06 Audi Ag Flächenheizelement und Verwendung desselben für Fahrzeuginnenverkleidungen und Fahrzeugsitze
    DE102014001383A1 (de) 2014-02-01 2015-08-06 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Verbundwerkstoff
    WO2016108146A1 (fr) 2014-12-29 2016-07-07 PartGyx Beteiligungen AG Chauffage de surface
    DE102015219911A1 (de) 2015-10-14 2017-04-20 Robert Bosch Gmbh Faden zur Herstellung eines elektrisch leitenden Gewebes, Verfahren zur Herstellung des Fadens, elektrisch leitendes Gewebe und Verfahren zu dessen Herstellung sowie Kleidungsstück

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4538054A (en) * 1973-11-14 1985-08-27 Bretoniere Andre B De Electric heating fabric

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4538054A (en) * 1973-11-14 1985-08-27 Bretoniere Andre B De Electric heating fabric

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2007003144A1 (fr) * 2005-06-30 2007-01-11 Gerd Lukoschus Auvent pouvant etre chauffe
    GB2484980A (en) * 2010-11-01 2012-05-02 Bill John Finch Low voltage heating sheet
    BE1020679A3 (nl) * 2012-05-10 2014-03-04 Heatsail Ip Bvba Verwarmingselement voor gebruik buitenshuis voor het verwarmen van een terras of dergelijke en luifel aan een terras die voorzien is van zulk verwarmingselement.

    Also Published As

    Publication number Publication date
    DK1236819T3 (da) 2008-03-31
    DE60224127T2 (de) 2008-12-04
    FR2821366A1 (fr) 2002-08-30
    DE60224127D1 (de) 2008-01-31
    ES2296882T3 (es) 2008-05-01
    ATE381633T1 (de) 2008-01-15
    FR2821366B1 (fr) 2003-05-30
    EP1236819B1 (fr) 2007-12-19

    Similar Documents

    Publication Publication Date Title
    EP1236819B1 (fr) Tissu possedant des proprietés de conduction de l&#39;électricité
    FR2485859A1 (fr) Cable flexible de chauffage electrique a auto-limitation de temperature
    EP1340060B1 (fr) Procede de fabrication de convertisseurs thermo-electriques
    CA2728961C (fr) Installation et procede d&#39;impregnation d&#39;un materiau poreux par de la poudre
    EP1816656B1 (fr) Cable électrique protégé contre la corrosion
    FR2744289A1 (fr) Connecteur de derivation pour cable souterrain
    EP2193529B1 (fr) Gaine de protection a l&#39;egard du rayonnement, notamment du champ electrique engendre par des cables electriques
    EP1314355B1 (fr) Installation électrique répulsive pour oiseaux
    EP3935652A1 (fr) Câble de puissance auto-éclairé à bas courant et gardant sa souplesse et procédé de fabrication associé
    EP3857137A1 (fr) Panneau radiant destine a etre installe a l&#39;interieur d&#39;un habitacle de vehicule
    FR2740934A1 (fr) Structure chauffante souple
    EP1858298A1 (fr) Cable chauffant auto-regulant
    EP0373553B1 (fr) Câble électrique blindé muni de zones de raccordement rapide en dérivation
    EP0860899B1 (fr) Connecteur à perforation d&#39;isolant
    WO2004075346A2 (fr) Piece de liaison electrique pour filiere delivrant des filaments notamment de verre
    FR2523469A1 (en) Metallic filter candles with integral electrical heating wires - for direct defrosting of vehicle air intakes or ventilators etc.
    EP0637115B1 (fr) Conduit de protection à friction réduite
    FR2737803A1 (fr) Enrubannage de manchon de cables
    CA2434598C (fr) Dispositif pour contact electrique pour materiau fibreux et son utilisation pour le chauffage par effet joule
    EP1304405B1 (fr) Tissu incorporant des fils metalliques
    EP0031623A1 (fr) Electrode pour filtre à gaz et filtre équipé de telles électrodes
    FR2835973A1 (fr) Organe de connectique destine a etre mis en place sur un textile incluant des cables metalliques
    FR2644660A1 (fr) Cable chauffant, plus particulierement destine au chauffage direct par rayonnement
    FR2721788A1 (fr) Film chauffant.
    EP2897227B1 (fr) Tresse métallique pour la mise à la terre d&#39;un écran d&#39;un câble électrique

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20021223

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20051027

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 60224127

    Country of ref document: DE

    Date of ref document: 20080131

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20080313

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20080214

    Year of fee payment: 7

    Ref country code: DK

    Payment date: 20080121

    Year of fee payment: 7

    Ref country code: ES

    Payment date: 20080220

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2296882

    Country of ref document: ES

    Kind code of ref document: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080213

    Year of fee payment: 7

    Ref country code: FI

    Payment date: 20080204

    Year of fee payment: 7

    Ref country code: GB

    Payment date: 20080206

    Year of fee payment: 7

    Ref country code: IT

    Payment date: 20080218

    Year of fee payment: 7

    Ref country code: NL

    Payment date: 20080118

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20080118

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20080225

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20080519

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080228

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071219

    26N No opposition filed

    Effective date: 20080922

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20081031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20080320

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20080118

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071219

    BERE Be: lapsed

    Owner name: TISSAGE ET ENDUCTION SERGE FERRARI SA

    Effective date: 20090228

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090212

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090228

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090212

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090212

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090228

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20090901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090228

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20090213

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090212

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090831

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080212

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090213

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20071219

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090212

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090213