EP1234157A1 - Method for exchanging data between a device for programming and triggering electronic detonators and said detonators - Google Patents

Method for exchanging data between a device for programming and triggering electronic detonators and said detonators

Info

Publication number
EP1234157A1
EP1234157A1 EP00915162A EP00915162A EP1234157A1 EP 1234157 A1 EP1234157 A1 EP 1234157A1 EP 00915162 A EP00915162 A EP 00915162A EP 00915162 A EP00915162 A EP 00915162A EP 1234157 A1 EP1234157 A1 EP 1234157A1
Authority
EP
European Patent Office
Prior art keywords
detonators
voltage
detonator
programming
ignition circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00915162A
Other languages
German (de)
French (fr)
Other versions
EP1234157B1 (en
Inventor
Jan Petzold
Heinz Schäfer
Ulrich Steiner
Andreas Zemla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orica Explosives Technology Pty Ltd
Original Assignee
Dynamit Nobel AG
Dynamit Nobel GmbH Explosivstoff und Systemtechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7901830&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1234157(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dynamit Nobel AG, Dynamit Nobel GmbH Explosivstoff und Systemtechnik filed Critical Dynamit Nobel AG
Publication of EP1234157A1 publication Critical patent/EP1234157A1/en
Application granted granted Critical
Publication of EP1234157B1 publication Critical patent/EP1234157B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay

Definitions

  • the invention relates to a method for exchanging data between a device for programming and triggering electronic detonators and the detonators according to the preamble of the first claim.
  • This mining process involves blasting operations in which explosive charges placed in many boreholes are detonated one after the other according to a specific schedule.
  • a method for controlling detonators and a so-called coded structure for controlling detonation are known, for example, from EP 0 588 685 B1.
  • the electronic detonators of the explosive charges form an ignition system.
  • the electronic detonators are connected together via a so-called bus line to a device for programming and triggering.
  • the electronic detonators are controlled via this bus line and receive electrical energy, which they capacitively store. If the capacity of a detonator is charged, it is able to operate independently with the help of the energy stored in its capacitor. The stored energy ensures the function for ignition and for communication between the igniter and the device for programming and triggering the igniter.
  • each individual detonator has an address assigned to it, which consists of a multi-digit digital code.
  • the delay time with which the point in time at which the respective detonator is triggered is coded in the form
  • the signals can go out There are polarity changes of a predetermined voltage at a predetermined level.
  • the delay time is coupled with an address code, so that each detonator charges only the delay time assigned to it based on the address code. After the detonator has received the data assigned to it, it must send a response so that it can be determined that the delay time has been properly received and stored by the detonator electronics.
  • the signals in the data generally consist of polarity changes in a specific time sequence and in a specific number. These polarity changes are distorted due to the capacitive resistors, so that a clear transmission of the signals is not always guaranteed.
  • the capacitive resistances the data transmission rates per unit of time are low and the programming of a detonator, which takes place in the dialog of the electronics of the detonator with the device for programming and triggering the detonator, is time-consuming and not always trouble-free.
  • Ignition circuit with a predetermined duration applied a DC voltage that is higher than the voltage of the signals with which the data is generated, which the igniter transmits in response.
  • the increased voltage is below a critical voltage for triggering an igniter.
  • the detonators are typically designed to withstand voltage, i.e. H. are not triggered, which is at a certain level above the nominal voltage, which is intended to generate the signals for communication with the detonators. According to the invention, the intended tolerance range is not exhausted in order to avoid any risk.
  • the level of the voltage is chosen so that the capacities of the other detonators are charged to such a level within a very short time that a weakening of the voltage with which the signals of the detonator's response are generated is avoided.
  • the voltage is lowered and the signals of the data which the detonator transmits in response are generated with a lower voltage.
  • all other detonators are charged to such a high level that they no longer represent capacitive resistors and communication is therefore possible at a very high data transmission rate per unit of time.
  • the voltage in the ignition circuit is increased to such a value over such a duration that during the subsequent response of one igniter no capacities of the other igniters have to be charged due to charge losses.
  • the level of the capacitive and ohmic resistances within the ignition circuit depend on the number of connected electronic detonators.
  • the capacitive resistance it is possible for the capacitive resistance to be determined and, depending on its size, the DC voltage which is at least required to charge the capacitors to be determined.
  • the voltage drop caused by the ohmic resistors can be compensated.
  • the increase in the DC voltage can thus be individual to the respective Use case to be coordinated. It also ensures that the voltage does not exceed a critical value that triggers an igniter.
  • a bus line 3 symbolized by two wiring harnesses 3a and 3b, leads from the device 2 for programming and triggering the detonators to the detonators 4a, 4b and 4c.
  • the charges 5a, 5b and 5c are assigned to the detonators 4a, 4b and 4c.
  • the three electronic detonators shown represent any number of detonators that are connected to bus line 3 in accordance with the respective specification.
  • This bus line 3 enables bidirectional data transmission, that is, from the device 2 for programming and triggering the detonators to the detonators and from the electronics of the detonators to the device 2 back.
  • the length of the bus line 3 and the electronics of the detonators cause a voltage drop within the ignition circuit 1, which is symbolized by the ohmic resistors labeled 7a, 7b and 7c.
  • 8a, 8b and 8c are capacitors which are intended to represent the energy stores of the respective detonators. The energy stored in them enables communication between the detonators 4a to 4c and the device 2 for programming and triggering the detonators. The stored energy is also used to trigger the detonators.
  • Each of the detonators 4a to 4c has an address stored in its electronic circuit 6a to 6c. This address consists of a coded signal, a signal with a predetermined number of polarity changes in a predetermined time. The data is transmitted with a voltage of a certain level, which is supplied by the voltage source 9.
  • the detonator addressed responds when it has received the data properly with the delay time provided for it.
  • the voltage of the voltage source 9 is increased so far in a predetermined time before the detonator responds that the capacities of the other detonators are charged to such an extent that at the time of the detonator's response no capacities of the other detonators due to charge losses of the capacities need to be charged.
  • the remaining detonators therefore do not represent capacitive resistors for the responding detonator, which impair the quality of the response signals.
  • the answer of the responding detonator is at a lower voltage level than the previously increased voltage level.
  • the signals from the detonator are transmitted without interference to the device 2 for programming and triggering the detonators. If the responding detonator has transmitted its answer and a subsequent detonator is to respond, the voltage in the ignition circuit is also increased before its reply, so that the subsequent answer does not obstruct the signal transmission by capacitive resistors.
  • the capacitive resistance and the voltage drop in Ignition circuit 1 can be determined. These values are transmitted via line 13 to device 2 for programming and triggering the detonators. To overcome the capacitive resistance and to charge the Capacitors then have a higher voltage at the ignition circuit 1 than is required to generate the signals of the data which the igniter transmits as a response.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Selective Calling Equipment (AREA)
  • Stored Programmes (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

Explosions are carried out in the mining of raw materials, whereby explosive charges are placed in numerous boreholes and are detonated in succession, according to a specific time frame. The electronic detonators (4a - 4c) of the explosive charges form an ignition system. Said electronic detonators are jointly connected to a programming and triggering device using a bus line (3). However, this leads to communication problems between a detonator and the programming and triggering device (2) in that the remaining detonators which are connected to the bus line present capacitive resistances which affect the transmission of the data. According to the invention, a direct current of a predetermined duration, which is greater than the current provided for generating signals, is applied to the ignition circuit (1) before an intended communication of a detonator with the device. The signals used to generate the data which is transmitted by the detonator as a response are subsequently generated with a lower current than the previously increased direct current and the direct current is increased again prior to the response of another detonator.

Description

Verfahren zum Austausch von Daten zwischen einer Einrichtung zur Programmierung und Auslösung elektronischer Zünder und den Zündern Process for the exchange of data between a device for programming and triggering electronic detonators and the detonators
Die Erfindung betrifft ein Verfahren zum Austausch von Daten zwischen einer Einrichtung zur Programmierung und Auslösung elektronischer Zünder und den Zündern entsprechend dem Oberbegriff des ersten Anspruchs.The invention relates to a method for exchanging data between a device for programming and triggering electronic detonators and the detonators according to the preamble of the first claim.
Bei der Gewinnung von Rohstoffen, die im Erdreich lagern, ist es erforderlich, das den Zugang zu den Rohstoffen verhindernde Gebirge wegzuräumen und anschließend die Rohstoffe durch Herausbrechen aus ihren Lagerstätten zu gewinnen. Bei diesen Abbauverfahren werden Sprengungen durchgeführt, bei denen in vielen Bohrlöchern angeordnete Sprengladungen nach einem bestimmten Zeitplan nacheinander gezündet werden.When extracting raw materials that are stored in the ground, it is necessary to clear away the mountains that prevent access to the raw materials and then extract the raw materials by breaking them out of their deposits. This mining process involves blasting operations in which explosive charges placed in many boreholes are detonated one after the other according to a specific schedule.
Ein Verfahren zur Steuerung von Sprengzündern sowie ein sogenannter codierter Aufbau zur Steuerung des Sprengens sind beispielsweise aus der EP 0 588 685 B1 bekannt. Die elektronischen Zünder der Sprengladungen bilden ein Zündsystem. Die elektronischen Zünder sind gemeinsam über eine sogenannte Busleitung mit einer Einrichtung zur Programmierung und Auslösung verbunden. Über diese Busleitung werden die elektronischen Zünder angesteuert und erhalten elektrische Energie, die von ihnen kapazitiv gespeichert wird. Ist die Kapazität eines Zünders aufgeladen, so ist er in der Lage, mit Hilfe der in seinem Kondensator gespeicherten Energie selbständig in Betrieb zu bleiben. Mit der gespeicherten Energie wird die Funktion zur Zündung sowie zur Kommunikation zwischen dem Zünder und der Einrichtung zur Programmierung und Auslösung der Zünder sichergestellt.A method for controlling detonators and a so-called coded structure for controlling detonation are known, for example, from EP 0 588 685 B1. The electronic detonators of the explosive charges form an ignition system. The electronic detonators are connected together via a so-called bus line to a device for programming and triggering. The electronic detonators are controlled via this bus line and receive electrical energy, which they capacitively store. If the capacity of a detonator is charged, it is able to operate independently with the help of the energy stored in its capacitor. The stored energy ensures the function for ignition and for communication between the igniter and the device for programming and triggering the igniter.
In der Regel hat jeder einzelne Zünder eine ihm zugeordnete Adresse, die aus einem mehrstelligen digitalen Code besteht. Die Verzögerungszeit, mit der der Zeitpunkt bestimmt wird, an dem der jeweilige Zünder ausgelöst wird, wird in Form codierterAs a rule, each individual detonator has an address assigned to it, which consists of a multi-digit digital code. The delay time with which the point in time at which the respective detonator is triggered is coded in the form
Signale an jeden einzelnen Zünder übergeben. Die Signale können aus Polaritätswechsel einer in einer vorgegebenen Höhe vorgegebenen Spannung bestehen. Die Verzögerungszeit wird mit einem Adressencode gekoppelt, so daß jeder Zünder aufgrund des Adressencodes nur die ihm zugeordnete Verzögerungszeit lädt. Nachdem der Zünder die ihm zugeordneten Daten übermittelt bekommen hat, muß er eine Antwort absenden, damit festgestellt werden kann, daß die Verzögerungszeit ordnungsgemäß von der Elektronik des Zünders empfangen und abgespeichert wurde.Pass signals to each detonator. The signals can go out There are polarity changes of a predetermined voltage at a predetermined level. The delay time is coupled with an address code, so that each detonator charges only the delay time assigned to it based on the address code. After the detonator has received the data assigned to it, it must send a response so that it can be determined that the delay time has been properly received and stored by the detonator electronics.
Bei der Kommunikation eines Zünders mit der Einrichtung zur Programmierung und Auslösung der Zünder treten allerdings dadurch Probleme auf, daß die übrigen, an der Busleitung angeschlossenen Zünder kapazitive Widerstände darstellen, die auf die Übertragung der Daten einwirken. Die Signale der Daten bestehen in der Regel aus Polaritätswechsel in einer bestimmten zeitlichen Abfolge und in einer bestimmten Anzahl. Diese Polaritätswechsel werden aufgrund der kapazitiven Widerstände verzerrt, so daß eine eindeutige Übermittlung der Signale nicht immer gewährleistet ist. Unter Berücksichtigung der kapazitiven Widerstände sind die Datenübertragungsraten pro Zeiteinheit gering und die Programmierung eines Zünders, die im Dialog der Elektronik des Zünders mit der Einrichtung zur Programmierung und Auslösung der Zünder erfolgt, ist zeitaufwendig und nicht immer störungsfrei.When a detonator communicates with the device for programming and triggering the detonators, however, problems arise in that the other detonators connected to the bus line represent capacitive resistances which act on the transmission of the data. The signals in the data generally consist of polarity changes in a specific time sequence and in a specific number. These polarity changes are distorted due to the capacitive resistors, so that a clear transmission of the signals is not always guaranteed. Taking into account the capacitive resistances, the data transmission rates per unit of time are low and the programming of a detonator, which takes place in the dialog of the electronics of the detonator with the device for programming and triggering the detonator, is time-consuming and not always trouble-free.
Es ist deshalb die Aufgabe der vorliegenden Erfindung, den Austausch von Daten zwischen einer Einrichtung zur Programmierung und Auslösung von elektronischen Zündern und den Zündern sicherer und schneller zu machen.It is therefore the object of the present invention to make the exchange of data between a device for programming and triggering electronic detonators and the detonators safer and faster.
Die Lösung der Aufgabe erfolgt mit Hilfe der kennzeichnenden Merkmale des ersten Anspruchs. Weitere vorteilhafte Ausgestaltungen der Erfindung werden in den Unteransprüche beansprucht.The problem is solved with the aid of the characterizing features of the first claim. Further advantageous embodiments of the invention are claimed in the subclaims.
Erfindungsgemäß wird vor einer beabsichtigten Kommunikation eines elektronischen Zünders mit der Einrichtung zur Programmierung und Auslösung der Zünder an den - —According to the invention, prior to an intended communication of an electronic detonator with the device for programming and triggering the detonator to the - -
Zündkreis mit vorgegebener Dauer eine Gleichspannung angelegt, die höher ist als die Spannung der Signale, mit der die Daten erzeugt werden, die der Zünder als Antwort übermittelt. Die erhöhte Spannung liegt unterhalb einer kritischen Spannung zur Auslösung eines Zünders. Die Zünder sind in der Regel so ausgelegt, daß sie gegen eine Spannung resistent sind, d. h. nicht ausgelöst werden, die in einer bestimmten Höhe über der Nennspannung liegt, die zur Generierung der Signale zur Kommunikation mit den Zündern vorgesehen ist. Entsprechend der Erfindung wird der vorgesehene Toleranzbereich aber nicht ausgeschöpft, um jegliches Risiko zu vermeiden. Andererseits wird die Höhe der Spannung so gewählt, daß innerhalb einer sehr kurzen Zeit die Aufladung der Kapazitäten der übrigen Zünder auf ein solches Niveau erfolgt, daß eine Schwächung der Spannung vermieden wird, mit der die Signale der Antwort des Zünders erzeugt werden.Ignition circuit with a predetermined duration applied a DC voltage that is higher than the voltage of the signals with which the data is generated, which the igniter transmits in response. The increased voltage is below a critical voltage for triggering an igniter. The detonators are typically designed to withstand voltage, i.e. H. are not triggered, which is at a certain level above the nominal voltage, which is intended to generate the signals for communication with the detonators. According to the invention, the intended tolerance range is not exhausted in order to avoid any risk. On the other hand, the level of the voltage is chosen so that the capacities of the other detonators are charged to such a level within a very short time that a weakening of the voltage with which the signals of the detonator's response are generated is avoided.
Um die Antwort des Zünders zu übermitteln, wird die Spannung abgesenkt und die Signale der Daten, die der Zünder als Antwort übermittelt, werden mit einer niedrigeren Spannung erzeugt. Während der Übertragung der Signale des antwortenden Zünders sind alle übrigen Zünder auf einem so hohen Niveau aufgeladen, daß sie keine kapazitiven Widerstände mehr darstellen und dadurch eine Kommunikation mit einer sehr hohen Übertragungsrate der Daten pro Zeiteinheit möglich ist. Die Spannung im Zündkreis wird über eine solche Dauer auf einen solchen Wert erhöht, daß während der nachfolgenden Antwort eines Zünders keine Kapazitäten der übrigen Zünder aufgrund von Ladungsverlusten aufgeladen werden müssen.In order to transmit the response of the detonator, the voltage is lowered and the signals of the data which the detonator transmits in response are generated with a lower voltage. During the transmission of the signals from the responding detonator, all other detonators are charged to such a high level that they no longer represent capacitive resistors and communication is therefore possible at a very high data transmission rate per unit of time. The voltage in the ignition circuit is increased to such a value over such a duration that during the subsequent response of one igniter no capacities of the other igniters have to be charged due to charge losses.
Die Höhe der kapazitiven und ohmschen Widerstände innerhalb des Zündkreises sind abhängig von der Anzahl der angeschlossenen elektronischen Zünder. In weiterer vorteilhafter Ausgestaltung der Erfindung ist es möglich, daß der kapazitive Widerstand ermittelt wird und in Abhängigkeit seiner Größe die zur Aufladung der Kapazitäten mindestens erforderliche Gleichspannung bestimmt wird. Zusätzlich kann der durch die ohmschen Widerstände verursachte Spannungsabfall ausgeglichen werden. Die Erhöhung der Gleichspannung kann damit individuell auf den jeweiligen Anwendungsfall abgestimmt werden. Außerdem ist dadurch sichergestellt, daß die Spannung keinen kritischen Wert überschreitet, der zur Auslösung eines Zünders führt.The level of the capacitive and ohmic resistances within the ignition circuit depend on the number of connected electronic detonators. In a further advantageous embodiment of the invention, it is possible for the capacitive resistance to be determined and, depending on its size, the DC voltage which is at least required to charge the capacitors to be determined. In addition, the voltage drop caused by the ohmic resistors can be compensated. The increase in the DC voltage can thus be individual to the respective Use case to be coordinated. It also ensures that the voltage does not exceed a critical value that triggers an igniter.
Anhand eines Ersatzschaltbildes wird die Erfindung näher erläutert.The invention is explained in more detail using an equivalent circuit diagram.
Mit 1 ist das Ersatzschaltbild eines Zündkreises bezeichnet. Von der Einrichtung 2 zur Programmierung und Auslösung der Zünder führt eine Busleitung 3, symbolisiert durch zwei Leitungsstränge 3a und 3b, zu den Zündern 4a, 4b und 4c. Den Zündern 4a, 4b und 4c sind die jeweils zu zündenden Ladungen 5a, 5b und 5c zugeordnet. Die drei dargestellten elektronischen Zünder stehen stellvertretend für eine beliebige Anzahl von Zündern, die entsprechend der jeweiligen Vorgabe an der Busleitung 3 angeschlossen sind. Diese Busleitung 3 ermöglicht eine bidirektionale Datenübertragung, das heißt, von der Einrichtung 2 zur Programmierung und Auslösung der Zünder zu den Zündern hin und von der Elektronik der Zünder zur Einrichtung 2 zurück.The equivalent circuit diagram of an ignition circuit is designated by 1. A bus line 3, symbolized by two wiring harnesses 3a and 3b, leads from the device 2 for programming and triggering the detonators to the detonators 4a, 4b and 4c. The charges 5a, 5b and 5c are assigned to the detonators 4a, 4b and 4c. The three electronic detonators shown represent any number of detonators that are connected to bus line 3 in accordance with the respective specification. This bus line 3 enables bidirectional data transmission, that is, from the device 2 for programming and triggering the detonators to the detonators and from the electronics of the detonators to the device 2 back.
Die Länge der Busleitung 3 und die Elektronik der Zünder verursachen einen Spannungsabfall innerhalb des Zündkreises 1 , was durch die mit 7a, 7b und 7c bezeichneten ohmschen Widerständen symbolisiert wird. Mit 8a, 8b und 8c sind Kondensatoren bezeichnet, welche die Energiespeicher der jeweiligen Zünder darstellen sollen. Die in ihnen gespeicherte Energie ermöglicht die Kommunikation zwischen den Zündern 4a bis 4c und der Einrichtung 2 zur Programmierung und Auslösung der Zünder. Außerdem dient die gespeicherte Energie zur Auslösung der Zünder.The length of the bus line 3 and the electronics of the detonators cause a voltage drop within the ignition circuit 1, which is symbolized by the ohmic resistors labeled 7a, 7b and 7c. 8a, 8b and 8c are capacitors which are intended to represent the energy stores of the respective detonators. The energy stored in them enables communication between the detonators 4a to 4c and the device 2 for programming and triggering the detonators. The stored energy is also used to trigger the detonators.
Um die Zündung der einzelnen Zünder 4a bis 4c und der darüber hinaus hier nicht weiter dargestellten Zünder in der vorgesehenen Reihenfolge zu den vorgesehenen Zeitpunkten sicherzustellen ist es erforderlich, daß jeder Zünder eine ihm zugeordnete Verzögerungszeit mitgeteilt bekommt. Jeder der Zünder 4a bis 4c hat eine in seiner elektronischen Schaltung 6a bis 6c gespeicherte Adresse. Diese Adresse besteht aus einem codierten Signal, einem Signal mit einer vorgegebenen Anzahl von Polaritätswechseln in einer vorgegebenen Zeit. Die Übertragung der Daten erfolgt mit einer Spannung in einer bestimmten Höhe, die von der Spannungsquelle 9 geliefert wird.In order to ensure the ignition of the individual detonators 4a to 4c and the detonators (not further shown here) in the intended order at the intended times, it is necessary for each detonator to be informed of a delay time assigned to it. Each of the detonators 4a to 4c has an address stored in its electronic circuit 6a to 6c. This address consists of a coded signal, a signal with a predetermined number of polarity changes in a predetermined time. The data is transmitted with a voltage of a certain level, which is supplied by the voltage source 9.
Um die Übertragung der Daten sicherzustellen, antwortet der jeweils angesprochene Zünder, wenn er die Daten mit der für ihn vorgesehenen Verzögerungszeit ordnungsgemäß empfangen hat. Zur Überwindung des kapazitiven Widerstandes wird vor der Antwort des Zünders in einer vorgegebenen Zeit die Spannung der Spannungsquelle 9 so weit erhöht, daß die Kapazitäten der übrigen Zünder so weit aufgeladen sind, daß zum Zeitpunkt der Antwort des Zünders keine Kapazitäten der übrigen Zünder aufgrund von Ladungsverlusten der Kapazitäten aufgeladen werden müssen. Somit stellen die übrigen Zünder für den antwortenden Zünder keine kapazitiven Widerstände dar, die die Qualität der Antwortsignale beeinträchtigen.In order to ensure the transmission of the data, the detonator addressed responds when it has received the data properly with the delay time provided for it. In order to overcome the capacitive resistance, the voltage of the voltage source 9 is increased so far in a predetermined time before the detonator responds that the capacities of the other detonators are charged to such an extent that at the time of the detonator's response no capacities of the other detonators due to charge losses of the capacities need to be charged. The remaining detonators therefore do not represent capacitive resistors for the responding detonator, which impair the quality of the response signals.
Die Antwort des antwortenden Zünders erfolgt auf einem niedrigeren Spannungsniveau als das zuvor erhöhte Spannungsniveau. Aus den oben genannten Gründen erfolgt eine störungsfreie Übermittlung der Signale des Zünders an die Einrichtung 2 zur Programmierung und Auslösung der Zünder. Wenn der antwortende Zünder seine Antwort übermittelt hat und ein nachfolgender Zünder antworten soll, wird auch vor seiner Antwort die Spannung im Zündkreis erhöht, damit bei der nachfolgenden Antwort keine Behinderung der Signalübertragung durch kapazitive Widerstände erfolgt.The answer of the responding detonator is at a lower voltage level than the previously increased voltage level. For the reasons mentioned above, the signals from the detonator are transmitted without interference to the device 2 for programming and triggering the detonators. If the responding detonator has transmitted its answer and a subsequent detonator is to respond, the voltage in the ignition circuit is also increased before its reply, so that the subsequent answer does not obstruct the signal transmission by capacitive resistors.
Vor der Aufschaltung einer höheren Spannung ist es möglich, daß entsprechend dem vorliegenden Ausführungsbeispiel zunächst über eine mit 10 bezeichnete Prüfeinrichtung, die über die Leitungen 11 und 12 an die Leitungsstränge 3a bzw. 3b der Busleitung 3 angeschlossen ist, der kapazitive Widerstand sowie der Spannungsabfall im Zündkreis 1 ermittelt werden. Diese Werte werden über die Leitung 13 der Einrichtung 2 zur Programmierung und Auslösung der Zünder übermittelt. Zur Überwindung des kapazitiven Widerstandes und zur Aufladung der Kapazitäten liegt dann über eine vorgebbare Zeit am Zündkreis 1 eine höhere Spannung an, als zur Generierung der Signale der Daten, die der Zünder als Antwort übermittelt, erforderlich ist.Before a higher voltage is applied, it is possible that, in accordance with the present exemplary embodiment, the capacitive resistance and the voltage drop in Ignition circuit 1 can be determined. These values are transmitted via line 13 to device 2 for programming and triggering the detonators. To overcome the capacitive resistance and to charge the Capacitors then have a higher voltage at the ignition circuit 1 than is required to generate the signals of the data which the igniter transmits as a response.
Dadurch, daß vor jeder Antwort eines Zünders die Wirkung der kapazitiven Widerstände im Zündkreis 1 ausgeschaltet wird, ist eine störungsfreie Kommunikation zwischen der Einrichtung 2 zur Programmierung und Auslösung der Zünder und den Zündern 4a bis 4c mit einer hohen Übertragungsrate der Signale möglich. Because the effect of the capacitive resistors in the ignition circuit 1 is switched off before each detonator response, trouble-free communication between the device 2 for programming and triggering the detonators and the detonators 4a to 4c is possible with a high transmission rate of the signals.

Claims

Patentansprüche claims
1. Verfahren zum Austausch von Daten zwischen elektronischen Zündern und einer Einrichtung zur Programmierung und Auslösung von Zündern, wobei mehrere elektronische Zünder in einem Zündkreis hintereinander angeordnet sind, den Zündern jeweils eine Adresse zugeordnet ist, die Auslösung der Zünder in einer vorgebbaren Verzögerungssequenz erfolgt und die Daten durch eine zeitliche Abfolge von Signalen mit einer vorgegebenen Spannung erzeugt werden, dadurch gekennzeichnet, daß vor einer beabsichtigten Kommunikation eines Zünders mit der Einrichtung an den Zündkreis mit vorgegebener Dauer eine Gleichspannung angelegt wird, die höher ist als die Spannung, die zur1. A method for exchanging data between electronic detonators and a device for programming and triggering detonators, wherein a plurality of electronic detonators are arranged one behind the other in an ignition circuit, the detonators are each assigned an address, the detonators are triggered in a predefinable delay sequence and Data are generated by a chronological sequence of signals with a predetermined voltage, characterized in that before an intended communication of an igniter with the device, a direct voltage is applied to the ignition circuit with a predetermined duration, which is higher than the voltage which is used for
Signalerzeugung vorgesehenen ist, daß danach die Signale, mit denen die Daten erzeugt werden, die der Zünder als Antwort übermittelt, mit einer niedrigeren Spannung erzeugt werden als die zuvor erhöhte Spannung und daß vor der Antwort eines weiteren Zünders die Gleichspannung erneut erhöht wird.Signal generation is provided that thereafter the signals with which the data which the igniter transmits in response are generated are generated with a lower voltage than the previously increased voltage and that the DC voltage is increased again before the response of another igniter.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Spannung im Zündkreis über eine solche Dauer auf einen solchen Wert erhöht wird, daß während der nachfolgenden Antwort eines Zünders keine der Kapazitäten der übrigen Zünder aufgrund von Ladungsverlusten aufgeladen wird.2. The method according to claim 1, characterized in that the voltage in the ignition circuit is increased over such a duration to such a value that none of the capacities of the other detonators is charged due to charge losses during the subsequent response of an igniter.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die erhöhte Spannung unterhalb einer kritischen Spannung zur Auslösung eines Zünders liegt.3. The method according to claim 1 or 2, characterized in that the increased voltage is below a critical voltage for triggering an igniter.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der kapazitive Widerstand im Zündkreis ermittelt und in Abhängigkeit seiner Größe die zur Aufladung der Kapazitäten mindestens erforderliche Gleichspannung bestimmt wird. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der durch den ohmschen Widerstand im Zündkreis verursachte Spannungsabfall ermittelt und die zu seinem Ausgleich erforderliche Spannung bestimmt wird. 4. The method according to any one of claims 1 to 3, characterized in that the capacitive resistance in the ignition circuit is determined and, depending on its size, the minimum DC voltage required for charging the capacitors is determined. Method according to one of claims 1 to 4, characterized in that the voltage drop caused by the ohmic resistance in the ignition circuit is determined and the voltage required for its compensation is determined.
EP00915162A 1999-03-20 2000-03-02 Method for exchanging data between a device for programming and triggering electronic detonators and said detonators Expired - Lifetime EP1234157B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19912688 1999-03-20
DE19912688A DE19912688B4 (en) 1999-03-20 1999-03-20 Method for exchanging data between a device for programming and triggering electronic detonators and the detonators
PCT/EP2000/001820 WO2000057125A1 (en) 1999-03-20 2000-03-02 Method for exchanging data between a device for programming and triggering electronic detonators and said detonators

Publications (2)

Publication Number Publication Date
EP1234157A1 true EP1234157A1 (en) 2002-08-28
EP1234157B1 EP1234157B1 (en) 2003-08-20

Family

ID=7901830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00915162A Expired - Lifetime EP1234157B1 (en) 1999-03-20 2000-03-02 Method for exchanging data between a device for programming and triggering electronic detonators and said detonators

Country Status (12)

Country Link
US (1) US6637339B1 (en)
EP (1) EP1234157B1 (en)
JP (1) JP4361701B2 (en)
CN (1) CN1111720C (en)
AU (1) AU773790B2 (en)
BR (1) BR0009165B1 (en)
CA (1) CA2393565C (en)
DE (1) DE19912688B4 (en)
MX (1) MXPA01009389A (en)
NO (1) NO320807B1 (en)
WO (1) WO2000057125A1 (en)
ZA (1) ZA200107769B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE515382C2 (en) * 1999-12-07 2001-07-23 Dyno Nobel Sweden Ab Electronic detonator system, method of controlling the system and associated electronic detonators
DE10139810B4 (en) * 2000-11-09 2014-10-16 Orica Explosives Technology Pty. Ltd. Voltage sensor for monitoring electronic ignition circuits
FR2832501B1 (en) * 2001-11-19 2004-06-18 Delta Caps Internat Dci INSTALLATION OF PROGRAMMABLE PYROTECHNICAL SHOTS
PT102997A (en) * 2003-07-10 2005-01-31 Espanola Explosivos Electronic detonation system includes communication system for sequential, automatic control of connected detonators, selector, delayer and checking devices for charge and igniter
US20050190525A1 (en) * 2003-07-15 2005-09-01 Special Devices, Inc. Status flags in a system of electronic pyrotechnic devices such as electronic detonators
KR20170014227A (en) * 2015-07-29 2017-02-08 주식회사 아이에스디에프시스템 A power supplying circuit having improved stability against external environmental change
GB2549559B (en) 2016-09-26 2019-06-12 Guardian Global Tech Limited Downhole firing tool
AU2019200724B1 (en) 2019-01-15 2020-05-21 DynaEnergetics Europe GmbH Booster charge holder for an initiator system
US11268376B1 (en) 2019-03-27 2022-03-08 Acuity Technical Designs, LLC Downhole safety switch and communication protocol
US11619119B1 (en) 2020-04-10 2023-04-04 Integrated Solutions, Inc. Downhole gun tube extension

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB922193A (en) * 1958-08-08 1963-03-27 Siemens Ag Improvements in or relating to electric ignition devices
AT300104B (en) * 1969-10-10 1972-07-10 Schaffler & Co Capacitor ignition device, especially for mining operations endangered by firedamp
AU518851B2 (en) * 1978-04-26 1981-10-22 Aeci Limited Explosives
DE3441413A1 (en) * 1983-12-22 1985-07-04 Dynamit Nobel Ag, 5210 Troisdorf Method for triggering electronic explosive time fuzes such that they are staggered in time
US4674047A (en) * 1984-01-31 1987-06-16 The Curators Of The University Of Missouri Integrated detonator delay circuits and firing console
US4576093A (en) * 1984-04-12 1986-03-18 Snyder Richard N Remote radio blasting
WO1987000265A1 (en) * 1985-06-28 1987-01-15 Moorhouse, D., J. Detonator actuator
MW1787A1 (en) * 1986-04-10 1987-12-09 Ici Australia Ltd Blasting method
US4884506A (en) * 1986-11-06 1989-12-05 Electronic Warfare Associates, Inc. Remote detonation of explosive charges
JPH0694996B2 (en) * 1989-11-24 1994-11-24 繁明 國友 Fireworks ignition device
ES2027197T1 (en) * 1989-12-29 1992-06-01 Union Espanola De Explosivos S.A. ELECTRONIC EXPLOSER-DETONATOR SYSTEM FOR HIGH RELIABILITY STAGED DETONATION.
AU657013B2 (en) * 1991-12-03 1995-02-23 Smi Technology (Proprietary) Limited Single initiate command system and method for a multi-shot blast
DE4225330C1 (en) * 1992-07-31 1993-11-04 Bergwerksverband Gmbh DEVICE FOR THE SEQUENTIAL ENDING OF ELECTRIC LITERS
FR2695719B1 (en) * 1992-09-17 1994-12-02 Davey Bickford Method for controlling detonators of the type with integrated electronic delay ignition module, coded firing control assembly and coded ignition module for its implementation.
US5533454A (en) * 1994-07-18 1996-07-09 Western Atlas International, Inc. Alternating current activated firing circuit for EBW detonators
GB9423314D0 (en) * 1994-11-18 1995-01-11 Explosive Dev Ltd Electrical distribution system
US5721493A (en) * 1995-02-28 1998-02-24 Altech Industries (Proprietary) Limited Apparatus for locating failures in detonation devices
US6148263A (en) * 1998-10-27 2000-11-14 Schlumberger Technology Corporation Activation of well tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0057125A1 *

Also Published As

Publication number Publication date
BR0009165B1 (en) 2012-10-30
CN1111720C (en) 2003-06-18
US6637339B1 (en) 2003-10-28
CA2393565A1 (en) 2000-09-28
CA2393565C (en) 2008-07-22
ZA200107769B (en) 2002-09-20
DE19912688A1 (en) 2000-09-21
AU773790B2 (en) 2004-06-03
AU3657000A (en) 2000-10-09
WO2000057125A1 (en) 2000-09-28
CN1345411A (en) 2002-04-17
DE19912688B4 (en) 2010-04-08
JP2002540373A (en) 2002-11-26
MXPA01009389A (en) 2003-06-06
BR0009165A (en) 2001-12-26
JP4361701B2 (en) 2009-11-11
NO20014075L (en) 2001-08-22
NO320807B1 (en) 2006-01-30
EP1234157B1 (en) 2003-08-20
NO20014075D0 (en) 2001-08-22

Similar Documents

Publication Publication Date Title
DE19983678B4 (en) Downhole activating system
DE602004003826T2 (en) SPARKLING DIAGNOSIS OF A PYROTECHNICAL DEVICE SUCH AS AN ELECTRONIC IGNITION
DE602004006439T2 (en) DYNAMIC BASIC RULES FOR COMMUNICATION BASED ON CURRENT MODULATION
DE2838055C2 (en) Electric detonator
DE2945122A1 (en) ELECTRIC DELAY DEVICE
EP1234157B1 (en) Method for exchanging data between a device for programming and triggering electronic detonators and said detonators
DE102005052578B4 (en) Method for setting a delay time on an electronic detonator
EP0093872A1 (en) Method for the transmission of measured values in a control system
DE102005014783A1 (en) Method and devices for transmitting data to a data line between a control device and at least one decentralized data processing device
WO1997040604A2 (en) Bus system for data transfer
DE3904563C2 (en)
EP1864443A1 (en) Method and device for transmitting data to a data line between a control appliance and a decentralised data processing appliance
DE3638147A1 (en) DIGITAL MESSAGE TRANSMISSION SYSTEM WITH ADDRESSING INTERMEDIATE REGENERATORS AND DEVICE FOR Fault Locating
DE4017533A1 (en) Control-supervisory signal transmission system - employs shared data line for bidirectional traffic between controller and controlled devices or device state monitors
CH686415A5 (en) Electrical spark erosion machine.
DE3317385C2 (en) Method for operating terminals of a digital subscriber line
DE2422155A1 (en) DEVICE FOR AUTOMATIC SWITCHING INTO ELECTRIC IGNITORS FOR STORIES
EP1480432B1 (en) Method for programming an intercom device
WO2000057124A1 (en) Method for triggering detonators via a line of a large length
DE2712813A1 (en) DIGITAL DEVICE FOR ADJUSTING THE VOLTAGE ON CAPACITORS (DIGITAL ADJUSTMENT OF RC GENERATORS)
WO2016026623A1 (en) Switch unit, ethernet network, and method for activating components in an ethernet network
DE2158512C3 (en) Data transmission system with majority checking device
DE2133684A1 (en) Circuit arrangement in an electrical see tinder for projectiles
DE2355112C2 (en) Gas discharge indicator
DE956593C (en) Electronic search dialer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORICA EXPLOSIVES TECHNOLOGY PTY LTD

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): ES FR SE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031201

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180227

Year of fee payment: 19

Ref country code: SE

Payment date: 20180313

Year of fee payment: 19

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331