EP1232538B1 - Antenne a resonateur dielectrique avec alimentations multiples et faisceaux orientables, ayant diverses sections transversales - Google Patents
Antenne a resonateur dielectrique avec alimentations multiples et faisceaux orientables, ayant diverses sections transversales Download PDFInfo
- Publication number
- EP1232538B1 EP1232538B1 EP00971607A EP00971607A EP1232538B1 EP 1232538 B1 EP1232538 B1 EP 1232538B1 EP 00971607 A EP00971607 A EP 00971607A EP 00971607 A EP00971607 A EP 00971607A EP 1232538 B1 EP1232538 B1 EP 1232538B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- dielectric resonator
- feeds
- stepped
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0485—Dielectric resonator antennas
- H01Q9/0492—Dielectric resonator antennas circularly polarised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
- H01Q19/09—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens wherein the primary active element is coated with or embedded in a dielectric or magnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0485—Dielectric resonator antennas
Definitions
- This invention relates to dielectric resonator antennas with steerable receive and transmit beams and more particularly to an antenna having several separate feeds such that several separate beams can be created simultaneously and combined as desired, the dielectric resonator antenna including a dielectric resonator of various different cross-sections.
- One method of electronically steering an antenna pattern is to have a number of existing beams and to switch between them, or to combine them so as to achieve the desired beam direction.
- a circular DRA may be fed by a single probe or aperture placed in or under the dielectric and tuned to excite a particular resonant mode.
- the fundamental HEM 11 ⁇ mode is used, but there are many other resonant modes which produce beams that can be steered equally well using the apparatus of embodiments of the present invention.
- the preferred HEM 11 ⁇ mode is a hybrid electromagnetic resonance mode radiating like a horizontal magnetic dipole and giving rise to vertically polarised cosine or figure-of-eight shaped radiation pattern [ LONG, S.A., McALLISTER, M.W., and SHEN, L.C.: 'The resonant cylindrical dielectric cavity antenna', IEEE Trans. Antennas Propagat., AP-31, 1983, pp 406-412 ].
- Modelling by the present Applicants of cylindrical DRAs by FDTD (Finite Difference Time Domain) and practical experimentation has shown that if several such probes are inserted into the dielectric and one is driven whilst all the others are open-circuit then the beam direction can be moved by switching different probes in and out.
- sum and difference patterns can be produced which allow continuous beam-steering and direction finding by amplitude-comparison, monopulse or similar techniques.
- a hemispherical dielectric resonator antenna has the advantage of a simple spherical interface between itself and free space [ LEUNG, K.W., LUK, K.M., LAI, K.Y.A. & LIN, D.: "Theory and experiment of a co-axial probe fed hemispherical dielectric resonator antenna", IEEE Transactions on Antennas and Propagation, AP-41, 1993, pp 1390-1398 ] and of being capable of being rigorously analysed which simplifies design procedures [ LEUNG, K.W., NG, K.W. LUK, K.M. & YUNG, E.K.N., "Simple formula for analysing the centre-fed hemispherical dielectric resonator antenna", Electronics Letters, 1997, 33, (6 )].
- a dielectric resonator antenna including a grounded substrate, a dielectric resonator disposed on the grounded substrate and a plurality of feeds for transferring energy into and from different regions of the dielectric resonator, the feeds being activatable individually or in combination so as to produce at least one incrementally or continuously steerable beam which may be steered through a predetermined angle, characterised in that the dielectric resonator has a cross-section that varies along an axis extending substantially perpendicularly from the grounded substrate, and has the form of a truncated cone, or a truncated pyramid, or a stepped cone, or a truncated stepped cone, or a stepped right cone, or a stepped non-right cone, or a stepped pyramid, or a truncated stepped pyramid, or a stepped right pyramid, or a substantially toroidal form.
- the axis may be defined as substantially perpendicular to a plane which is tangential to a surface of the grounded substrate at a point from where the axis is taken.
- the cross-section may vary in size or in shape or in both size and shape along the axis.
- the dielectric resonator antenna includes electronic circuitry adapted to activate the feeds individually or in combination so as to produce at least one incrementally or continuously steerable beam which may be steered through a predetermined angle.
- the dielectric resonator has the form of a truncated cone.
- the truncated cone may be a right cone or a non-right cone, and may be configured such that its cross-section increases or decreases in area along the axis.
- conical resonators may have increased bandwidth and, in the case of non-right conical resonators, may allow a generated beam pattern to vary about the axis.
- the dielectric resonator has the form of a truncated pyramid.
- the pyramid may be a right pyramid or a non-right pyramid, and may be configured such that its cross-section increases or decreases in area along the axis.
- the pyramid may be a 3-pyramid, a 4-pyramid, a 5-pyramid or an n-pyramid, where n is a positive integer.
- such pyramidal resonators may have increased bandwidth and, in the case of non-right conical resonators, may allow a generated beam pattern to vary about the axis.
- an oblong resonator has two resonant frequencies associated with the dimensions of the two differently-sized sides. Accordingly, it is expected that a resonator having a greater number of differently-sized sides will have a greater number of resonant frequencies. These resonant frequencies may be selected to be closely spaced so as to increase bandwidth, or to be widely spaced so as to permit operation in different frequency bands.
- the dielectric resonator has the form of a stepped cone or pyramid or a truncated stepped cone or pyramid.
- the term 'stepped' is here intended to mean a structure of generally conical or pyramidal shape having a surface which is not even, such as a Tower of Hanoi structure corresponding in external shape to a stack of discs of diminishing diameter.
- the stepped cone or pyramid may be a right stepped cone or pyramid or a non-right stepped cone or pyramid, and may be configured such that its cross-section increases or decreases in area along the axis.
- stepped conical or pyramidal resonators may have increased bandwidth and, in the case of non-right stepped conical or pyramidal resonators, may allow a generated beam pattern to vary about the axis.
- the dielectric resonator is annular with a hollow centre (in the manner of a "Gugelhupf" cake, which has a generally toroidal structure having an overall dome-shaped profile).
- a hollow centre in the manner of a "Gugelhupf" cake, which has a generally toroidal structure having an overall dome-shaped profile.
- Such a structure may be substantially lighter and use less dielectric material than a solid dielectric resonator.
- the resonator may have a base perimeter which is circular, oval or any other appropriate shape.
- geometries of non-circular cross-section generally confer the advantage of broad bandwidth operation.
- a dielectric resonator antenna including a grounded substrate, a dielectric resonator disposed on the grounded substrate and a plurality of feeds for transferring energy into and from different regions of the dielectric resonator, the feeds being activatable individually or in combination so as to produce at least one incrementally or continuously steerable beam which may be steered through a predetermined angle, characterised in that the dielectric resonator has a substantially oval cross-section, or a regular polygonal cross-section, or an irregular polygonal cross-section, or a lobed cross-section.
- the dielectric resonator antenna includes electronic circuitry adapted to activate the feeds individually or in combination so as to produce at least one incrementally or continuously steerable beam which may be steered through a predetermined angle.
- Non-circular cross-sections generally allow the dielectric resonator to be lighter and to use less dielectric material than an equivalent size cylindrical resonator of truly circular cross-section.
- Non-circular cross-sections generally also provide better bandwidth and, when constructed in segmented form, may have low backlobes in predetermined directions.
- the cross-section of the dielectric resonator may be substantially constant along an axis extending substantially perpendicularly from the grounded substrate or may vary, either in size or in shape or in both size and shape.
- a dielectric resonator antenna including a dielectric resonator and at least one dipole feed for transferring energy into and from the dielectric resonator, the dipole feed having a longitudinal axis and being activatable so as to produce at least one incrementally or continuously steerable beam which may be steered through a predetermined angle, characterised in that the dielectric resonator has a cross-section that varies along an axis extending substantially parallel to the axis of the dipole feed, and has the form of a truncated cone, or a truncated pyramid, or a stepped cone, or a truncated stepped cone, or a stepped right cone, or a stepped non-right cone, or a stepped pyramid, or a truncated stepped pyramid, or a stepped right pyramid, or a substantially toroidal form.
- dielectric resonator is fed by at least one and preferably more than one dipole probe, there is no need for a grounded substrate.
- a dipole feed may be used to drive any shape of dielectric resonator without the need for a grounded substrate.
- the grounded substrate acts as a mirror plane in which the dielectric resonator sees its mirror image.
- An equivalent dielectric resonator antenna may be manufactured by providing a dielectric resonator having a shape corresponding to the shape of the monopole feed embodiment and its image as reflected in the plane of the grounded substrate.
- the monopole feed embodiment is preferred, since it is easier to use a monopole feed inserted into a half-shape dielectric resonator disposed on a grounded substrate than it is to embed a dipole probe and feed cable within a whole shape dielectric resonator.
- a dielectric resonator antenna including a dielectric resonator and at least one dipole feed for transferring energy into and from different regions of the dielectric resonator, the dipole feed being activatable so as to produce at least one incrementally or continuously steerable beam which may be steered through a predetermined angle, characterised in that the dielectric resonator has a substantially oval cross-section, or a regular polygonal cross-section, or an irregular polygonal cross-section, or a lobed cross-section.
- the dipole feed preferably has a longitudinal axis, and the cross-section of the dielectric resonator is preferably defined as being substantially perpendicular to that axis.
- the dielectric resonator may be substantially solid or may alternatively include at least one cavity therein.
- the dielectric resonator may be in the form of a hollow shell of the desired shape.
- the antenna of the present invention is adapted to produce at least one incrementally or continuously steerable beam which may be steered through a complete 360 degree circle.
- the electronic circuitry may additionally or alternatively be adapted to combine the feeds to form amplitude or phase comparison radio direction finding capability of up to 360 degrees.
- radio direction finding capability is a complete 360 degree circle.
- the feeds may take the form of conductive probes which are contained within or placed against the dielectric resonator or may comprise aperture feeds provided in the grounded substrate (these are not appropriate for the dipole embodiment).
- Aperture feeds are discontinuities (generally rectangular in shape) in the grounded substrate underneath the dielectric material and are generally excited by passing a microstrip transmission line beneath them.
- the microstrip transmission line is usually printed on the underside of the substrate.
- the feeds take the form of probes, these may be generally elongate in form. Examples of useful probes include thin cylindrical wires which are generally parallel to a longitudinal axis of the dielectric resonator.
- Probes that might be used (and have been tested) include fat cylinders, non-circular cross sections, thin generally vertical plates and even thin generally vertical wires with conducting 'hats' on top (like toadstools). Probes may also comprise metallised strips placed within or against the dielectric. In general any conducting element within or against the dielectric resonator will excite resonance if positioned, sized and fed correctly.
- the different probe shapes give rise to different bandwidths of resonance and may be disposed in various positions and orientations (at different distances along a radius from the centre and at different angles from the centre, as viewed from above) within or against the dielectric resonator so as to suit particular circumstances.
- different feeds can be driven at different frequencies so as to make the antenna transmit or receive simultaneously in different predetermined directions (e.g. azimuth and in elevation) at the different frequencies.
- probes within or against the dielectric resonator which are not connected to the electronic circuitry but instead take a passive role in influencing the transmit/receive characteristics of the dynamic resonator antenna, for example by way of induction.
- the dielectric resonator may be divided into segments by conducting walls provided therein, as described, for example, in TAM, M.T.K. AND MURCH, R.D., 'Compact circular sector and annular sector dielectric resonator antennas', IEEE Trans. Antennas Propagat., AP-47, 1999, pp 837-842 .
- an internal or external monopole antenna which is combined with the dielectric resonator antenna so as to cancel out backlobe fields or to resolve any front/back ambiguity which may occur with a dielectric resonator antenna having a cosine or 'figure of eight' radiation pattern.
- the monopole antenna may be centrally-disposed within the dielectric resonator or may be mounted thereupon or therebelow and is activatable by the electronic circuitry. In embodiments including an annular resonator with a hollow centre, the monopole could be located within the hollow centre.
- a "virtual" monopole may also be formed by the electrical or algorithmic combination of any probes or apertures, preferably a symmetrical set of probes or apertures.
- the dielectric resonator antenna and antenna system of the present invention may be operated with a plurality of transmitters or receivers, these terms here being used to denote respectively a device acting as source of electronic signals for transmission by way of the antenna or a device acting to receive and process electronic signals communicated to the antenna by way of electromagnetic radiation.
- the number of transmitters and/or receivers may or may not be equal to the number of feeds to the dielectric resonator.
- a separate transmitter and/or receiver may be connected to each feed (i.e. one per feed), or a single transmitter and/or receiver to a single feed (i.e. a single transmitter and/or receiver is switched between feeds).
- a single transmitter and/or receiver may be (simultaneously) connected to a plurality of feeds - by continuously varying the feed power between the feeds the beam and/or directional sensitivity of the antenna may be continuously steered.
- a single transmitter and/or receiver may alternatively be connected to several non-adjacent feeds to the dielectric resonator, thereby enabling a significant increase in bandwidth to be attained as compared with a single feed (this is advantageous because DRAs generally have narrow bandwidths).
- a single transmitter and/or receiver may be connected to several adjacent or non-adjacent feeds in order to produce an increase in the generated or detected radiation pattern, or to allow the antenna to radiate or receive in several directions simultaneously.
- the dielectric resonator may be formed of any suitable dielectric material, or a combination of different dielectric materials, having an overall positive dielectric constant k; in preferred embodiments, k is at least 10 and may be at least 50 or even at least 100. k may even be very large e.g. greater than 1000, although available dielectric materials tend to limit such use to low frequencies.
- the dielectric material may include materials in liquid, solid or gas states, or any intermediate state. The dielectric material could be of lower dielectric constant than a surrounding material in which it is embedded.
- embodiments of the present invention may provide the following advantages:
- Figures 1 to 8 relate mainly to a dielectric resonator antenna having a cylindrical shape as described, for example, in co-pending US patent application serial no 09/431,548 from which the present application claims priority.
- FIG. 1a and 1b there is shown a substantially circular slab of dielectric material 1 which is disposed on a grounded substrate 2 having a plurality of holes to allow access by cables and connectors to a plurality of internal probes 3a to 3h.
- the probes 3a to 3h are disposed along radii at different internal angles.
- Figures 2a and 2b show a substantially circular slab of dielectric material 1 which is disposed on a grounded substrate 2 having a plurality of aperture feeds 3a to 3h disposed along radii at different internal angles.
- the aperture feeds are fed by microstrip transmission lines 4.
- Figures 3a and 3b show side plan and side views respectively, as for Figures 1a and 1b , but with the addition of a central monopole antenna 4(i) above the dielectric slab 1 used to cancel out the backlobe or resolve the front/back ambiguity that occurs with dynamic resonator antennas having cosine or 'figure of eight radiation' patterns.
- the monopole 4(i) is shown as an external device above the dielectric slab 1, but a central probe 4(ii) within the dielectric slab 1 will also act as a suitable monopole reference antenna, as will a central probe 4(iii) below the slab 1.
- the circular lines represent power steps of 5 dB (decibels) and the arrow shows the direction of the principal beam direction or 'boresight'.
- the radial lines represent the angle of the beam; this being the azimuth direction when the antenna is placed on a horizontal plane.
- Results are given here for a cylindrical dielectric resonator antenna fitted with 8 internal probes 3a to 3h disposed in a circle.
- probe 3a is driven (in either transmit or receive mode) and the remaining probes 3b to 3h are open-circuited or otherwise terminated, but not connected to the feed, then the measured azimuth radiation pattern shown in Figure 4 is obtained.
- the measured azimuth radiation pattern is as shown in Figure 5 . It can be seen that the beam has been steered incrementally by roughly the same angle as the probes are disposed internally (45 degrees in this case).
- the resulting measured azimuth radiation pattern is as shown in Figure 6 . It can be seen that the beam has been steered roughly to an angle between the angles by which the probes are disposed internally (22.5 degrees in this case).
- This method can be used to continuously steer the beam by continuously varying the feed power being shared between probes. For example, where the power splitter is operated in such a way so as incrementally to transfer power from probe 3a to 3b, the direction of the transmitted or received beam will be steered correspondingly in proportion to the transfer of power.
- any nulls also changes in a corresponding fashion.
- the patterns of Figures 4 to 7 have a significant backlobe, being substantially cosine (figure-of-eight) shaped in form.
- the addition of a central internal or external monopole 4, as shown in Figures 3a and 3b can be used to resolve the ambiguity or, by driving the monopole 4 and one or more of the dielectric resonator steering probes 3 simultaneously, the backlobe can be significantly reduced.
- This is shown experimentally by the measurements in Figure 8 , where probes 3e and 3f and the monopole 4 are driven. It is possible to choose whether to cancel out or reduce either the backlobe or a corresponding front lobe by driving the monopole either in phase or in antiphase with the probes 3.
- FIG. 9a and 9b there is shown a slab of dielectric material 5, substantially hemispherical in cross-section, which is disposed on a grounded substrate 6 having a plurality of holes to allow access by cables and connectors to a plurality of internal probes 7a to 7f.
- the probes 7a to 7f are disposed along radii at different internal angles.
- the circular lines represent power steps of 5 dB (decibels) and the arrows show the direction of the principal beam directions or "boresights". It can be seen that the pattern for probes A and C separately are disposed roughly 120 degrees in angle from each other and that the pattern for probes A and C excited simultaneously represents a new beam, formed electronically, with a boresight roughly half way between the two separate probe patterns.
- Results are given here using a hemispherical dielectric resonator antenna fitted with internal probes.
- probe 7a is driven (in either transmit or receive mode) and the remaining probes are open-circuited or otherwise terminated but not connected to the feed, then the measured azimuth radiation pattern labelled 'Probe A' in Figure 10 is obtained.
- the resulting measured azimuth radiation pattern is as radiation labelled 'Probe A&C' in Figure 10 . It can be seen that the beam has been steered by roughly the angle bisecting the probes (60 degrees in this case). This method can be used to steer the beam continuously by continuously varying the feed power being shared between probes.
- the patterns of Figure 10 have a significant backlobe, being substantially cosine (figure-of-eight) shaped in form.
- direction finding there is a front-to-back ambiguity.
- the addition of a central internal or external monopole 8, as shown in Figures 11a and 11b can be used to resolve this ambiguity or, by driving the monopole 8 and one or more of the dielectric resonator steering probes 7 simultaneously, the backlobe can be significantly reduced.
- Figure 12a shows a cross-section through an embodiment of the present invention comprising a dielectric resonator 10 having a four-lobe cross-section, the cross-section being pronounced of a four-leaf clover.
- the resonator 10 is disposed on a grounded substrate 12, and includes probes 13a, 13b, 13c and 13d, one in each lobe 11.
- the radiation patterns of this device are essentially cosine patterns of the type already shown in Figures 4 and 5 .
- This structure may be divided into segments and a single segment version is shown in Figure 12b , which depicts a grounded substrate 12 and one lobe 11 of the dielectric resonator 10 of Figure 12a , the lobe 11 being driven by a probe 13a.
- the lobe 11 is shown as bounded by generally vertical conducting walls 14, which are disposed at substantially 90° to each other.
- the advantage of such a single-probe quarter 'cloverleaf' antenna is that when the probe 13a is driven, the measured azimuth radiation of Figure 13 is obtained.
- the radiation frequency is 1378MHz at a bandwidth of 169MHz, and it can be seen that there is a significant reduction in backlobe in the direction from the probe 13a towards the centre of the dielectric resonator 10.
- Figure 14 shows a solid spherical dielectric resonator 15 incorporating a dipole feed 16, thus obviating the need for a grounded substrate.
- This resonator 15 gives full beamforming coverage in all directions about the sphere.
- Figure 15 shows a solid hemispherical dielectric resonator 16 disposed on a grounded substrate 17 and incorporating a monopole feed probe 18.
- Figure 16 shows two solid hemispherical dielectric resonators 16 each provided with a monopole probe 18 and mounted back-to-back on either side of a shared grounded substrate 17. As with the embodiment of Figure 14 , full beamforming coverage is provided in all directions.
- Figure 17 shows two solid hemispherical dielectric resonators 16 each provided with a monopole probe 18 and each provided with a separate grounded substrate 17. The respective resonators 16 are then placed back-to-back such that the grounded substrates face each other but do not touch, the overall shape of the composite resonator being substantially spherical.
- Figure 18 shows representations of the various shapes of dielectric resonator some of which are used in the present invention, including: right conical 20; non-right conical 21; truncated 22; non-truncated 23; stepped 24; non-stepped 25; non-circular cross-section 26; conical 27; pyramidal 28, 29; domed 30; spherical 31; part-spherical 32; amorphous 33; toroidal 34, 35; solid 36; cavity 37; hollow shell 38; oval cross-section 39; regular polygonal cross-section 40; irregular polygonal cross-section 41; lobed cross-section 42; and non-constant cross-section 43.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Aerials With Secondary Devices (AREA)
- Details Of Aerials (AREA)
Claims (37)
- Une antenne à résonateur diélectrique comprenant un substrat mis à la masse (6), un résonateur diélectrique (5) disposé sur le substrat mis à la masse (6) et une pluralité d'alimentations (7) pour transférer l'énergie dans et à partir de différentes régions du résonateur diélectrique (5), les alimentations (7) pouvant être activées individuellement ou en combinaison de façon à produire au moins un faisceau orientable incrémentalement ou en continu qui peut être orienté dans un angle prédéterminé, caractérisé en ce que le résonateur diélectrique (5) a une section transversale qui varie le long d'un axe s'étendant sensiblement perpendiculairement au substrat mis à la masse (6), et a la forme d'un cône tronqué (22), ou d'une pyramide tronquée, ou d'un cône en escalier (24), ou d'un cône en escalier tronqué, ou d'un cône droit en escalier, ou d'un cône non-droit en escalier, ou d'une pyramide en escalier, ou d'une pyramide tronquée en escalier, ou d'une pyramide droite en escalier, ou d'une pyramide non-droite en escalier, ou d'une forme sensiblement toroïdale (34, 35).
- Une antenne selon la revendication 1, comprenant en outre un circuit électronique adapté pour activer les alimentations (7) individuellement ou en combinaison afin de produire au moins un faisceau orientable incrémentalement ou en continu qui peut être orienté dans un angle prédéterminé.
- Une antenne selon l'une des revendications 1 et 2, où le résonateur diélectrique (5) comporte au moins une cavité (37).
- Une antenne selon la revendication 3, où le résonateur diélectrique (5) est une coquille creuse (38).
- Une antenne à résonateur diélectrique comprenant un substrat mis à la masse (6), un résonateur diélectrique (5) disposé sur le substrat mis à la masse (6) et une pluralité d'alimentations (7) pour transférer l'énergie dans et à partir de différentes régions du résonateur diélectrique (5), les alimentations (7) pouvant être activées individuellement ou en combinaison afin de produire au moins un faisceau orientable incrémentalement ou en continu qui peut être orienté dans un angle prédéterminé, caractérisé en ce que le résonateur diélectrique (5) a une section transversale sensiblement ovale (39), ou une section transversale ayant la forme d'un polygone régulier (40), ou une section transversale ayant la forme d'un polygone irrégulier (41), ou une section transversale ayant la forme d'un lobe (42).
- Une antenne selon la revendication 5, comprenant en outre un circuit électronique adapté pour activer les alimentations (7) individuellement ou en combinaison afin de produire au moins un faisceau orientable incrémentalement ou en continu qui peut être orienté dans un angle prédéterminé.
- Une antenne selon l'une des revendications 5 et 6, où le résonateur diélectrique (5) a une section transversale qui est sensiblement constante le long d'un axe s'étendant sensiblement perpendiculairement à partir du substrat mis à la masse (6).
- Une antenne selon l'une des revendications 5 et 6, où le résonateur diélectrique (5) a une section transversale qui varie le long d'un axe s'étendant sensiblement perpendiculairement à partir du substrat mis à la masse (6).
- Une antenne selon l'une quelconque des revendications 5 à 8, où le résonateur diélectrique (5) comporte au moins une cavité (37).
- Une antenne selon la revendication 9, où le résonateur diélectrique (5) est une coquille creuse (38).
- Une antenne à résonateur diélectrique comprenant un résonateur diélectrique (15) et au moins une alimentation dipôle (16) pour transférer l'énergie dans et à partir du résonateur diélectrique (15), l'alimentation dipôle (16) ayant un axe longitudinal et pouvant être activée afin de produire au moins un faisceau orientable incrémentalement ou en continu qui peut être orienté dans un angle prédéterminé, caractérisé en ce que le résonateur diélectrique (15) a une section transversale qui varie le long d'un axe s'étendant sensiblement parallèlement à l'axe de l'alimentation dipôle (16), et a la forme d'un cône tronqué (22), ou d'une pyramide tronquée, ou d'un cône en escalier (24), ou d'un cône en escalier tronqué, ou d'un cône droit en escalier, ou d'un cône non-droit en escalier, ou d'une pyramide en escalier, ou d'une pyramide tronquée en escalier, ou d'une pyramide droite en escalier, ou d'une pyramide non-droite en escalier, ou d'une forme sensiblement toroïdale (34, 35).
- Une antenne à résonateur diélectrique comprenant un résonateur diélectrique (15) et au moins une alimentation dipôle (16) pour transférer l'énergie dans et à partir de différentes régions du résonateur diélectrique (15), l'alimentation dipôle (16) pouvant être activée afin de produire au moins un faisceau orientable incrémentalement ou continu qui peut être orienté dans un angle prédéterminé, caractérisé en ce que le résonateur diélectrique (15) a une section transversale sensiblement ovale (39), ou une section transversale ayant la forme d'un polygone régulier (40), ou une section transversale ayant la forme d'un polygone irrégulier (41), ou une section transversale ayant la forme d'un lobe (42).
- Une antenne suivant l'une quelconque des revendications précédentes, où le faisceau orientable peut être orienté sur 360 degrés.
- Une antenne suivant l'une quelconque des revendications précédentes, comprenant un circuit électronique pour combiner les alimentations pour obtenir des diagrammes somme et différence pour permettre une possibilité de trouver une direction radio de jusqu'à 360 degrés.
- Une antenne suivant l'une quelconque des revendications précédentes, comprenant un circuit électronique pour combiner les alimentations pour obtenir une possibilité de trouver une direction radio par comparaison d'amplitude ou de phase de jusqu'à 360 degrés.
- Une antenne suivant l'une quelconque des revendications précédentes, où les alimentations (7, 16) prennent la forme de sondes conductrices qui sont contenus dans ou contre le résonateur diélectrique.
- Une antenne selon l'une quelconque des revendications 1 à 10 et selon l'une quelconque des revendications 13 à 15 dépendant de l'une quelconque des revendications 1 à 10, où les alimentations prennent la forme d'ouvertures (3) réalisées dans le substrat mis à la masse (6).
- Une antenne selon la revendication 17, où les ouvertures (3) sont sous forme des discontinuités dans le substrat mis à la masse (6) en dessous du résonateur diélectrique (5).
- Une antenne selon l'une des revendications 17 et 18, où les ouvertures (3) sont de forme générale rectangulaire.
- Une antenne selon l'une quelconque des revendications 17 à 19, où une ligne de transmission micro-ruban (4) est située sous chaque ouverture (3) qui doit être excitée.
- Une antenne selon la revendication 20, où la ligne de transmission micro-ruban (4) est imprimée sur le côté du substrat (6) éloigné du résonateur diélectrique (5).
- Une antenne selon la revendication 16, où un nombre prédéterminé de sondes (7) dans ou contre le résonateur diélectrique (5) ne sont pas reliées au circuit électronique.
- Une antenne selon la revendication 22, où les sondes (7) sont non-terminées (circuit ouvert).
- Une antenne selon la revendication 22, où les sondes (7) sont terminées par une charge de n'importe quelle impédance, y compris un court-circuit.
- Une antenne selon l'une quelconque des revendications précédentes, où le résonateur diélectrique (5) est divisé en segments par des parois conductrices (14) réalisées dans celui-ci.
- Une antenne suivant l'une quelconque des revendications précédentes, où est réalisée une antenne unipolaire interne ou externe (8) qui est combinée avec l'antenne à résonateur diélectrique afin de neutraliser les champs des lobes arrière ou de résoudre toute ambiguïté avant/arrière qui peut se rencontrer avec une antenne à résonateur diélectrique ayant un diagramme de rayonnement en fonction cosinus ou en "forme de huit".
- Une antenne selon la revendication 26, où l'antenne unipolaire (8) est disposée de façon centrale dans le résonateur diélectrique (5).
- Une antenne selon la revendication 26, où l'antenne unipolaire (8) est montée au-dessus ou en dessous du résonateur diélectrique (5).
- Une antenne selon la revendication 26, où l'antenne unipolaire (8) est sous la forme d'une combinaison électrique des alimentations (7).
- Une antenne selon la revendication 26, où l'antenne unipolaire (8) est sous la forme d'une combinaison algorithmique des alimentations (7).
- Une antenne suivant l'une quelconque des revendications précédentes, où le résonateur diélectrique (5) est constitué d'un matériau diélectrique ayant une constante diélectrique k ≥ 10.
- Une antenne suivant l'une quelconque des revendications précédentes, où le résonateur diélectrique (5) est constitué d'un matériau diélectrique ayant une constante diélectrique k ≥ 50.
- Une antenne suivant l'une quelconque des revendications précédentes, où le résonateur diélectrique (5) est constitué d'un matériau diélectrique ayant une constante diélectrique k ≥ 100.
- Une antenne suivant l'une quelconque des revendications précédentes, où un seul émetteur ou récepteur est relié à une pluralité d'alimentations (7).
- Une antenne selon l'une quelconque des revendications 1 à 33, où une pluralité d'émetteurs ou de récepteurs sont connectés individuellement à une pluralité correspondante d'alimentations (7).
- Une antenne selon l'une quelconque des revendications 1 à 33, où un seul émetteur ou récepteur est connecté à une pluralité d'alimentations non adjacentes (7).
- Une antenne selon l'une quelconque des revendications précédentes, où la au moins une alimentation peut être activée afin de transférer l'énergie dans et à partir de différentes régions du résonateur diélectrique (5) simultanément à différentes fréquences afin de produire au moins deux faisceaux de différentes fréquences dans des directions prédéterminées différentes.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US431548 | 1989-11-03 | ||
US09/431,548 US6452565B1 (en) | 1999-10-29 | 1999-10-29 | Steerable-beam multiple-feed dielectric resonator antenna |
GB0017223 | 2000-07-14 | ||
GB0017223A GB2355855B (en) | 1999-10-29 | 2000-07-14 | Steerable-beam multiple-feed dielectric resonator antenna of various cross-sections |
PCT/GB2000/004155 WO2001031746A1 (fr) | 1999-10-29 | 2000-10-30 | Antenne a resonateur dielectrique avec alimentations multiples et faisceaux orientables, ayant diverses sections transversales |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1232538A1 EP1232538A1 (fr) | 2002-08-21 |
EP1232538B1 true EP1232538B1 (fr) | 2008-11-19 |
Family
ID=26244647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00971607A Expired - Lifetime EP1232538B1 (fr) | 1999-10-29 | 2000-10-30 | Antenne a resonateur dielectrique avec alimentations multiples et faisceaux orientables, ayant diverses sections transversales |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1232538B1 (fr) |
JP (1) | JP2003513495A (fr) |
CN (1) | CN1387689A (fr) |
AU (1) | AU1043701A (fr) |
CA (1) | CA2389161A1 (fr) |
WO (1) | WO2001031746A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10531526B2 (en) | 2016-06-30 | 2020-01-07 | Nxp Usa, Inc. | Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture |
US10638559B2 (en) | 2016-06-30 | 2020-04-28 | Nxp Usa, Inc. | Solid state microwave heating apparatus and method with stacked dielectric resonator antenna array |
Families Citing this family (161)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2360133B (en) * | 2000-03-11 | 2002-01-23 | Univ Sheffield | Multi-segmented dielectric resonator antenna |
JP2001345633A (ja) * | 2000-03-28 | 2001-12-14 | Matsushita Electric Ind Co Ltd | アンテナ装置 |
GB0101567D0 (en) * | 2001-01-22 | 2001-03-07 | Antenova Ltd | Dielectric resonator antenna with mutually orrthogonal feeds |
AU2003244740A1 (en) * | 2002-05-22 | 2003-12-02 | Antenova Limited | Array of dielectric resonator antennas |
US7071879B2 (en) | 2004-06-01 | 2006-07-04 | Ems Technologies Canada, Ltd. | Dielectric-resonator array antenna system |
EP1808931A4 (fr) * | 2004-11-05 | 2007-11-07 | Pioneer Corp | Systeme d antenne dielectrique |
US7747229B2 (en) * | 2004-11-19 | 2010-06-29 | Atc Technologies, Llc | Electronic antenna beam steering using ancillary receivers and related methods |
US7443363B2 (en) * | 2006-06-22 | 2008-10-28 | Sony Ericsson Mobile Communications Ab | Compact dielectric resonator antenna |
US8009107B2 (en) | 2006-12-04 | 2011-08-30 | Agc Automotive Americas R&D, Inc. | Wideband dielectric antenna |
US20080129617A1 (en) * | 2006-12-04 | 2008-06-05 | Agc Automotive Americas R&D, Inc. | Wideband Dielectric Antenna |
WO2011055171A1 (fr) * | 2009-11-09 | 2011-05-12 | Time Reversal Communications | Dispositif de réception et/ou émission d'onde électromagnétique |
US10361487B2 (en) | 2011-07-29 | 2019-07-23 | University Of Saskatchewan | Polymer-based resonator antennas |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US10340599B2 (en) | 2013-01-31 | 2019-07-02 | University Of Saskatchewan | Meta-material resonator antennas |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
EP3075028B1 (fr) | 2013-12-20 | 2021-08-25 | University of Saskatchewan | Réseaux d'antennes à résonateur diélectrique |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
DE102015220372B3 (de) * | 2015-10-20 | 2016-10-06 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Multiband-GNSS Antenne |
US10374315B2 (en) * | 2015-10-28 | 2019-08-06 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
CN117374599B (zh) * | 2023-12-08 | 2024-04-02 | 中山大学 | 一种多通道共相心介质谐振器天线 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1555755A (en) * | 1977-06-17 | 1979-11-14 | Aerialite Aerials Ltd | Antennae |
GB1589272A (en) * | 1977-09-23 | 1981-05-07 | Aerialite Aerials Ltd | Antennae |
CA1239223A (fr) * | 1984-07-02 | 1988-07-12 | Robert Milne | Antenne reseau adaptative |
US5528254A (en) * | 1994-05-31 | 1996-06-18 | Motorola, Inc. | Antenna and method for forming same |
JP3209045B2 (ja) * | 1995-06-20 | 2001-09-17 | 松下電器産業株式会社 | 誘電体共振器アンテナ |
JPH098539A (ja) * | 1995-06-20 | 1997-01-10 | Matsushita Electric Ind Co Ltd | 誘電体共振器アンテナ |
US5767807A (en) * | 1996-06-05 | 1998-06-16 | International Business Machines Corporation | Communication system and methods utilizing a reactively controlled directive array |
JPH11168318A (ja) * | 1997-10-03 | 1999-06-22 | Nippon Telegr & Teleph Corp <Ntt> | 多周波共用セクタアンテナ装置 |
-
2000
- 2000-10-30 EP EP00971607A patent/EP1232538B1/fr not_active Expired - Lifetime
- 2000-10-30 CN CN 00815198 patent/CN1387689A/zh active Pending
- 2000-10-30 JP JP2001533595A patent/JP2003513495A/ja active Pending
- 2000-10-30 CA CA002389161A patent/CA2389161A1/fr not_active Abandoned
- 2000-10-30 WO PCT/GB2000/004155 patent/WO2001031746A1/fr active Application Filing
- 2000-10-30 AU AU10437/01A patent/AU1043701A/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10531526B2 (en) | 2016-06-30 | 2020-01-07 | Nxp Usa, Inc. | Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture |
US10638559B2 (en) | 2016-06-30 | 2020-04-28 | Nxp Usa, Inc. | Solid state microwave heating apparatus and method with stacked dielectric resonator antenna array |
Also Published As
Publication number | Publication date |
---|---|
EP1232538A1 (fr) | 2002-08-21 |
CA2389161A1 (fr) | 2001-05-03 |
AU1043701A (en) | 2001-05-08 |
WO2001031746A1 (fr) | 2001-05-03 |
CN1387689A (zh) | 2002-12-25 |
JP2003513495A (ja) | 2003-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1232538B1 (fr) | Antenne a resonateur dielectrique avec alimentations multiples et faisceaux orientables, ayant diverses sections transversales | |
US6452565B1 (en) | Steerable-beam multiple-feed dielectric resonator antenna | |
US6816118B2 (en) | Multi-segmented dielectric resonator antenna | |
EP1266428B1 (fr) | Reseau d'antenne a resonateur dielectrique ayant des elements orientables | |
US7042416B2 (en) | Dielectric resonator antenna with mutually orthogonal feeds | |
US8184056B1 (en) | Radial constrained lens | |
US7498989B1 (en) | Stacked-disk antenna element with wings, and array thereof | |
Gu et al. | 3-D coverage beam-scanning antenna using feed array and active frequency-selective surface | |
JPH0629724A (ja) | 特に人口衛星による電話通信のための改良されたマイクロストリップアンテナデバイス | |
CN113097745B (zh) | 一种用于一维大角度扫描的宽波束寄生像素层天线 | |
Li et al. | Compact, low-profile, HIS-based pattern-reconfigurable antenna for wide-angle scanning | |
Sun et al. | A review of microwave electronically scanned array: Concepts and applications | |
US11482794B1 (en) | Slot-fed unit cell and current sheet array | |
AU2001237559A2 (en) | Multi-segmented dielectric resonator antenna | |
JP2000209024A (ja) | 同軸給電型アレ―アンテナ | |
CN116130943A (zh) | 一种Ka波段锥状波束天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020425 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20021218 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60040862 Country of ref document: DE Date of ref document: 20090102 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090301 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090219 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090820 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090813 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090220 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091030 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60040862 Country of ref document: DE Effective date: 20110502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20091006 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110502 |