EP1229337A1 - Verfahren zur temparaturkompensierten elektro-optischen Messung einer elektrischen Spannung - Google Patents

Verfahren zur temparaturkompensierten elektro-optischen Messung einer elektrischen Spannung Download PDF

Info

Publication number
EP1229337A1
EP1229337A1 EP01810120A EP01810120A EP1229337A1 EP 1229337 A1 EP1229337 A1 EP 1229337A1 EP 01810120 A EP01810120 A EP 01810120A EP 01810120 A EP01810120 A EP 01810120A EP 1229337 A1 EP1229337 A1 EP 1229337A1
Authority
EP
European Patent Office
Prior art keywords
voltage
electro
medium
temperature
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01810120A
Other languages
English (en)
French (fr)
Inventor
Michael Stanimirov
Klaus Bohnert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP01810120A priority Critical patent/EP1229337A1/de
Priority to JP2002563010A priority patent/JP2004525361A/ja
Priority to US10/467,305 priority patent/US6930475B2/en
Priority to EP02709953A priority patent/EP1358492B1/de
Priority to DE50203564T priority patent/DE50203564D1/de
Priority to PCT/CH2002/000068 priority patent/WO2002063317A1/de
Priority to AT02709953T priority patent/ATE299269T1/de
Publication of EP1229337A1 publication Critical patent/EP1229337A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/247Details of the circuitry or construction of devices covered by G01R15/241 - G01R15/246
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption

Definitions

  • the invention relates to a method for measurement an electrical voltage with an electro-optical Medium according to the preamble of claim 1.
  • An electro-optical medium is a material its refractive index or its speed of light propagation opt for at least one light polarization changes when an electric field is applied.
  • a corresponding one Device is e.g. in U.S. 4,904,931. It contains one electro-optical crystal between two polarizers.
  • the Pockels effect causes a change in the crystal of the refractive indices generated, leading to modulation the light intensity after the second polarizer leads. This modulation is periodic of the voltage dependent. In order to get a clear measurement result, are therefore the same in US 4,904,931 Wavelength passed through the crystal.
  • US 4,531,092 describes a method for Measurement of an electrical voltage, at which two Beams of different wavelengths through an electro-optical Crystal. It will only one of the two beams polarized on the output side, see above that the intensity of the second beam is not different from that Voltage is dependent. This measure allows the to use the second beam as a reference variable and the Improve accuracy of measurement.
  • the task arises of a procedure of Provide the type mentioned in the simple Way to compensate for temperature-dependent fluctuations can.
  • the electro-optical medium is thus penetrated by two light beams of different wavelengths, the signals A 1 , A 2 of both light beams being measured after the output polarizer.
  • These signals A 1, A 2 are functions f 1, f 2 of the electrical voltage to be measured V and temperature T.
  • the additional information that results from the measurement at a second wavelength is used for the elimination of the temperature dependence.
  • a deflecting prism 6 is arranged on the end face of the BGO crystal 1 forming the electrode 3, while there are two linear polarizers (or analyzers) 9 and 10 on the end face of the BGO crystal 1 forming the electrode 2, to which collimators are located Connect 7 or 8.
  • the polarizers 9, 10 are at 45 ° to the Axes of the crystal oriented. You can go to each other parallel or crossed by 90 °.
  • Two light beams are in the collimator 7 11 different wavelengths coupled.
  • the decoupled light rays are marked with number 12. You won't be in one shown beam splitter separated and their signals are recorded individually.
  • the signal strength A i of each light beam i 1.2 after the polarizer 10 applies where A 0, i is the signal amplitude of the light beam i and V h is the half-wave voltage for the present configuration.
  • r 63 is the effective electro-optical coefficient of the material in the present configuration
  • is the light wavelength of the respective light beam
  • n is the refractive index of the crystal in the x and y directions.
  • a phase delay plate with a delay and orientation is additionally inserted between the crystal and the output polarizer (or between the input polarizer and the crystal) such that the phase difference of the two orthogonal polarizations at the output polarizer is 90 ° without voltage being applied.
  • the signal strength A i is given by
  • phase delay plate in both Wavelengths creates a delay of 90 ° is one To use higher order plate.
  • the advantage of using an additional phase delay plate in that between positive and negative tensions can be distinguished.
  • r ( T ) r ( T 0 ) + K ⁇ ⁇ T .
  • r ( T 0 ) the known electro-optical coefficient at a reference temperature T 0
  • K is a known temperature coefficient
  • ⁇ T T - T 0
  • the exact temperature value T of the electro-optical medium is generally not known.
  • the unknown parameter ⁇ T and thus the temperature T or the electro-optical coefficient r 63 ( T ) can be calculated from the system of equations (7). The following applies:
  • equation (9) has a clear solution.
  • the temperature correction of the electro-optical coefficient according to equations (8) and (6) can be carried out at a significantly lower rate than the actual measurement of the voltage V. It is also possible to determine the temperature only when the respective voltage is below the half-wave voltage, so that the problem of the ambiguous voltage determination is irrelevant.
  • the temperature is corrected according to equation (5) or (6) with the temperature deviation ⁇ T determined according to (8). Thanks to this measure, the electro-optical coefficients are known more precisely, so that the voltage value V can be determined with greater accuracy and reliability.
  • the compensation method can also be generalized to cases in which the temperature dependence of the electro-optical coefficient is not linear, which can be the case in particular in the vicinity of a phase transition of an electro-optical medium.
  • the corresponding function r ( T ) must be used in the system of equations (7). If necessary, the solution to the system of equations (7) must then be determined numerically.
  • a BGO crystal is used as the electro-optical medium, the field being applied in the z direction and the light propagating in the z direction. It is also possible to use other geometries and other electro-optical media, such as crystals made of LiNbO 3 or BSO or non-centrically polarized polymers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

Zur Messung einer elektrischen Spannung in einem elektro-optischen Spannungswandler wird polarisiertes Licht zweier Wellenlängen durch das Medium (1) geschickt. Ausgangsseitig wird das Licht durch einen Polarisator (10) geführt und das verbleibende Signal wird gemessen. Um die Temperaturabhängigkeit der elektro-optischen Koeffizienten zu kompensieren, werden die Messresultate beider Wellenlänge miteinander verglichen und es wird derjenige Spannungswert verwendet, der mit beiden Messungen konsistent ist. <IMAGE>

Description

Technisches Gebiet
Die Erfindung betrifft ein Verfahren zur Messung einer elektrischen Spannung mit einem elektro-optischen Medium gemäss Oberbegriff von Anspruch 1.
Stand der Technik
Ein elektro-optisches Medium ist ein Material, dessen Brechungsindex bzw. dessen Lichtausbreitungsgeschwindigkeit sich für mindestens eine Lichtpolarisation ändert, wenn ein elektrisches Feld angelegt wird.
Die Messung elektrischer Spannungen mittels elektro-optischer Medien ist bekannt. Ein entsprechendes Gerät wird z.B. in US 4 904 931 offenbart. Es enthält einen elektro-optischen Kristall zwischen zwei Polarisatoren. Durch den Pockels-Effekt wird im Kristall eine Änderung der Brechungsindizes erzeugt, die zu einer Modulation der Lichtintensität nach dem zweiten Polarisator führt. Diese Modulation ist periodisch von der Spannung abhängig. Um ein eindeutiges Messresultat zu erhalten, werden in US 4 904 931 deshalb zwei Strahlen gleicher Wellenlänge durch den Kristall geführt.
US 4 531 092 beschreibt ein Verfahren zur Messung einer elektrischen Spannung, bei welchem zwei Strahlen unterschiedlicher Wellenlänge durch einen elektro-optischen Kristall geschickt werden. Dabei wird nur einer der beiden Strahlen ausgangsseitig polarisiert, so dass die Intensität des zweiten Strahls nicht von der Spannung abhängig ist. Diese Massnahme erlaubt es, den zweiten Strahl als Referenzgrösse zu verwenden und die Genauigkeit der Messung zu verbessern.
Bei Verfahren der oben erwähnten Art muss der effektive elektro-optische Koeffizient genau bekannt sein. Da dieser Koeffizient in der Regel temperaturabhängig ist, kann es zu Ungenauigkeiten kommen.
Darstellung der Erfindung
Es stellt sich die Aufgabe, ein Verfahren der eingangs genannten Art bereitzustellen, das in einfacher Weise temperaturabhängige Schwankungen zu kompensieren vermag.
Diese Aufgabe wird vom Verfahren gemäss Anspruch 1 gelöst.
Erfindungsgemäss wird das elektro-optische Medium also von zwei Lichtstrahlen unterschiedlicher Wellenlänge durchsetzt, wobei die Signale A 1, A 2 beider Lichtstrahlen nach dem Ausgangspolarisator gemessen werden. Diese Signale A 1, A 2 sind Funktionen f 1, f 2 der zu messenden elektrischen Spannung V und der Temperatur T. Erfindungsgemäss werden diejenigen Werte der Temperatur T und der Spannung V gesucht werden, die das Gleichungssystem A 1 = f 1(T, V) und A 2 = f 2(T, V) lösen. Somit wird die zusätzliche Information, die aus der Messung bei einer zweiten Wellenlänge resultiert, für die Elimination der Temperaturabhängigkeit verwendet.
Kurze Beschreibung der Zeichnung
Weitere Ausgestaltungen, Vorteile und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und aus der nun folgenden Beschreibung anhand der Figur. Dabei zeigt:
  • Fig. 1 eine schematische Darstellung eines zur Durchführung der Erfindung geeigneten Spannungswandlers.
  • Wege zur Ausführung der Erfindung
    In Fig. 1 ist eine schematische Darstellung eines quaderförmigen BGO-Kristalls 1 zu erkennen, der an seinen beiden Stirnseiten mit einer Beschichtung aus einem elektrisch leitfähigen, lichtdurchlässigen Material zur Bildung von zwei Elektroden 2, 3 versehen ist. Die eine Elektrode 2 dient als Erdpotential-Anschluss 4 und die andere Elektrode 3 ist als Hochspannungspotential-Anschluss 5 vorgesehen. Die zwischen den Elektroden 2, 3 angelegte Spannung ist mit V bezeichnet. Auf der die Elektrode 3 bildenden Stirnseite des BGO-Kristalls 1 ist ein Umlenkprisma 6 angeordnet, während sich an der die Elektrode 2 bildenden Stirnseite des BGO-Kristalls 1 zwei lineare Polarisatoren (bzw. Analysatoren) 9 bzw. 10 befinden, an welche sich Kollimatoren 7 bzw. 8 anschliessen.
    Die Polarisatoren 9, 10 sind unter 45° zu den Achsen des Kristalls orientiert. Sie können zueinander parallel oder um 90° gekreuzt sein.
    In den Kollimator 7 werden zwei Lichtstrahlen 11 unterschiedlicher Wellenlänge eingekoppelt. Sie durchläufen den Polarisator 9. Sie treten polarisiert durch die Elektrode 2, in den BGO-Kristall 1 und durch die Elektrode 3, werden an den Grenzflächen des Umlenkprismas 6 reflektiert und durchläufen anschliessend die Elektrode 3, den BGO-Kristall 1, die Elektrode 2, den Polarisator 10 und den Kollimator 8. Die ausgekoppelten Lichtstrahlen sind mit Ziffer 12 bezeichnet. Sie werden in einem nicht dargestellten Strahlteiler separiert und ihre Signale werden einzeln erfasst.
    Sind die Polarisatoren parallel, so gilt bei Lichtausbreitung entlang der optischen Achse z für die Signalstärke Ai jedes Lichtstrahls i = 1,2 nach dem Polarisator 10
    Figure 00040001
    wobei A 0, i die Signalamplitude des Lichtstrahls i und Vh die Halbwellenspannung für die vorliegende Konfiguration ist. Im vorliegenden Fall wird das elektrische Feld in z-Richtung des Kristalls angelegt und es gilt für die Halbwellenspannung Vh Vh = λ2 . r 63 . n 3 , wobei r 63 der bei der vorliegenden Konfiguration effektive elektro-optische Koeffizient des Materials, λ die Lichtwellenlänge des jeweiligen Lichtstrahls und n der Brechungsindex des Kristalls in x- bzw. y-Richtung ist.
    Sind die Polarisatoren um 90° zueinander verdreht, so gilt anstelle von Gleichung (1)
    Figure 00040002
    In einer bevorzugten Ausführung wird zusätzlich zwischen dem Kristall und dem Ausgangspolarisator (oder zwischen dem Eingangspolarisator und dem Kristall) eine Phasenverzögerungsplatte mit einer Verzögerung und Orientierung derart eingefügt, dass ohne angelegte Spannung der Phasenunterschied der beiden orthogonalen Polarisationen am Ausgangspolarisator 90° beträgt. Die Signalstärke Ai ist in diesem Fall gegeben durch
    Figure 00040003
    Damit die Phasenverzögerungsplatte bei beiden Wellenlängen eine Verzögerung von 90° erzeugt, ist eine Platte höherer Ordnung zu verwenden. Der Vorteil der Verwendung einer zusätzlichen Phasenverzögerungsplatte liegt darin, dass zwischen positiven und negativen Spannungen unterschieden werden kann.
    In vielen gängigen elektro-optischen Medien hängen die elektro-optischen Koeffizienten r relativ stark von der Temperatur T ab, d.h. es existiert eine im Allgemeinen bekannte Temperaturabhängigkeit r = r(T). Dabei steht der Wert r für den bei der jeweiligen Konfiguration, Kristallsymmetrie und Wellenlänge wirksamen effektiven elektro-optischen Koeffizienten. Im obigen Beispiel ist r = r 63.
    Die Gleichungen (1), (1') bzw. (1*) lassen sich, unter Berücksichtigung der Temperaturabhängigkeit, für zwei Lichtstrahlen verallgemeinert wie folgt schreiben: A 1 = f 1(V, T) und A 2 = f 2(V, T), wobei z.B. im Falle gekreuzter Polarisatoren 9, 10 die Funktionen fi gegeben sind durch
    Figure 00050001
    Für den Fall paralleler Polarisatoren ist der Sinus durch den Kosinus zu ersetzen.
    In linearer Näherung gilt für die Temperaturabhängigkeit von r z.B. r(T) = r(T 0) + K·ΔT, wobei r(T 0) der als bekannt vorausgesetzte elektro-optische Koeffizient bei einer Referenztemperatur T 0, K ein bekannter Temperaturkoeffizient und ΔT = T - T 0 ist. Der genaue Temperaturwert T des elektro-optischen Mediums ist in der Regel nicht bekannt.
    Für das obige Beispiel wird Gleichungssystem (4) im Fall gemäss Gleichung (1') zu
    Figure 00050002
    Der unbekannte Parameter ΔT und somit die Temperatur T bzw. der elektro-optische Koeffizient r 63(T) kann aus Gleichungssystem (7) berechnet werden. Es gilt:
    Figure 00060001
    Ist ΔT einmal bekannt, so kann die Spannung V aus einer der Gleichungen (7) direkt berechnet werden. Es gilt
    Figure 00060002
    Für VV h hat Gleichung (9) eine eindeutige Lösung. Für V > V h ist diejenige Lösung zu suchen, die beide Gleichungen (4) (bzw. (9) für i = 1 und 2) löst.
    Grundsätzlich kann die Temperaturkorrektur des elektro-optischen Koeffizienten gemäss Gleichung (8) und (6) mit wesentlich geringerer Rate erfolgen als die eigentliche Messung der Spannung V. Es ist auch möglich, die Temperatur nur zu bestimmen, wenn die jeweilige Spannung unterhalb der Halbwellenspannung liegt, so dass das Problem der nicht-eindeutigen Spannungsbestimmung keine Rolle spielt.
    Die Temperaturkorrektur erfolgt gemäss Gleichung (5) bzw. (6) mit der nach (8) ermittelten Temperaturabweichung ΔT. Dank dieser Massnahme sind die elektro-optischen Koeffizienten genauer bekannt, so dass der Spannungswert V mit grösserer Genauigkeit und Zuverlässigkeit ermittelt werden kann.
    Es ist ebenfalls möglich, das in (8) beschriebene Kompensationsverfahren auf den Fall paralleler Polarisatoren gemäss Gleichung (1) zu übertragen, wobei sich das Gleichungssystem (7) und die Formeln für e und f in Gleichung (8) entsprechend ändern.
    Das Kompensationsverfahren lässt sich auch auf Fälle verallgemeinern, bei welchen die Temperaturabhängigkeit des elektro-optischen Koeffizienten nicht linear ist, was insbesondere in der Nähe eines Phasenübergangs eines elektro-optischen Mediums der Fall sein kann. In diesem Fall ist in Gleichungssystem (7) die entsprechende Funktion r(T) einzusetzen. Nötigenfalls muss die Lösung von Gleichungssystem (7) sodann numerisch bestimmt werden.
    In den obigen Beispielen wird als elektro-optisches Medium ein BGO-Kristall verwendet, wobei das Feld in z-Richtung angelegt wird und das Licht sich in z-Richtung ausbreitet. Es ist auch möglich, andere Geometrien und andere elektro-optische Medien zu verwenden, wie z.B. Kristalle aus LiNbO3 oder BSO oder nichtzentrisch polarisierte Polymere.
    Die hier beschriebenen Techniken sind ferner auch auf Medien anwendbar, bei denen der elektro-optische Effekt nicht linear (Pockels-Effekt) sondern quadratisch (Kerr-Effekt) auftritt, wobei insbesondere die Gleichungen (4), (5) und (8) entsprechend anzupassen sind. So ist z.B. in Gleichung (1') der Sinus von einem Quadrat der angelegten Spannung zu berechnen.
    Bezugszeichenliste
    1:
    BGO-Kristall
    2,
    3: Elektroden
    4:
    Erdpotential-Anschluss
    5:
    Hochspannungspotential-Anschluss
    6:
    Umlenkprisma
    7, 8:
    Kollimatoren
    9, 10:
    Polarisatoren
    11, 12:
    eingekoppelter und ausgekoppelter Lichtstrahl
    A 0, i :
    Signalamplituden
    a, b, c, d, e, f:
    Koeffizienten
    K:
    Temperaturkoeffizient
    n:
    Brechungsindex
    r:
    elektro-optischer Koeffizient
    T:
    Temperatur
    ΔT:
    Temperaturabweichung
    V:
    Spannung
    Vh :
    Halbwellenspannung
    λ1, λ2:
    Wellenlängen der eingekoppelten Strahlen

    Claims (6)

    1. Verfahren zur Messung einer elektrischen Spannung mit einem elektro-optischen Medium (1), wobei das Medium einem von der Spannung abhängigen elektrischen Feld ausgesetzt wird und mindestens zwei polarisierte Lichtstrahlen (11) unterschiedlicher Wellenlänge (λ1, λ2) in das Medium (1) eingestrahlt und nach dem Medium (1) polarisiert werden, und wobei Ausgangssignale A 1 und A 2 der Lichtstrahlen gemessen werden, wobei A 1 und A 2 temperaturabhängige Funktionen f 1 und f 2 der Spannung sind, dadurch gekennzeichnet, dass diejenigen Werte der Temperatur T und der Spannung V gesucht werden, die das Gleichungssystem A 1 = f 1(T, V) und A 2 = f 2(T, V) lösen.
    2. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine spannungsinduzierte Brechungsindex-Änderung im Medium (1) über den Pockels-Effekt vom elektrischen Feld abhängt.
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Spannungsabhängigkeit der Brechungsindex-Änderung durch einen effektiven elektro-optischen Koeffizienten r beschrieben wird, wobei für den effektiven elektro-optischen Koeffizienten r eine bekannte Temperaturabhängigkeit r = r(T) vorausgesetzt wird.
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass für den effektiven elektro-optischen Koeffizienten eine lineare Temperaturabhängigkeit r(T) = r(T 0) + K·ΔT mit ΔT = T - T 0 mit bekannter Grösse r(T 0) bei einer Referenztemperatur T 0 und mit bekannter Proportionalitätskonstante K vorausgesezt wird.
    5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Funktionen f 1 und f 2 in nicht-eindeutiger Weise von der Spannung V abhängen und dass diejenige Spannung ermittelt wird, für welche beide Gleichungen des Gleichungssystems erfüllt sind.
    6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Medium ein Kristall, insbesondere ein BGO-Kristall ist.
    EP01810120A 2001-02-06 2001-02-06 Verfahren zur temparaturkompensierten elektro-optischen Messung einer elektrischen Spannung Withdrawn EP1229337A1 (de)

    Priority Applications (7)

    Application Number Priority Date Filing Date Title
    EP01810120A EP1229337A1 (de) 2001-02-06 2001-02-06 Verfahren zur temparaturkompensierten elektro-optischen Messung einer elektrischen Spannung
    JP2002563010A JP2004525361A (ja) 2001-02-06 2002-02-05 温度補償した形で電圧を電気光学的に測定する方法とその方法を実施するための装置
    US10/467,305 US6930475B2 (en) 2001-02-06 2002-02-05 Method for the temperature-compensated, electro-optical measurement of an electrical voltage and device for carrying out the method
    EP02709953A EP1358492B1 (de) 2001-02-06 2002-02-05 Verfahren zur temperaturkompensierten elektro-optischen messung einer elektrischen spannung und vorrichtung zur durchführung des verfahrens
    DE50203564T DE50203564D1 (de) 2001-02-06 2002-02-05 Verfahren zur temperaturkompensierten elektro-optischen messung einer elektrischen spannung und vorrichtung zur durchführung des verfahrens
    PCT/CH2002/000068 WO2002063317A1 (de) 2001-02-06 2002-02-05 Verfahren zur temperaturkompensierten elektro-optischen messung einer elektrischen spannung und vorrichtung zur durchführung des verfahrens
    AT02709953T ATE299269T1 (de) 2001-02-06 2002-02-05 Verfahren zur temperaturkompensierten elektro- optischen messung einer elektrischen spannung und vorrichtung zur durchführung des verfahrens

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP01810120A EP1229337A1 (de) 2001-02-06 2001-02-06 Verfahren zur temparaturkompensierten elektro-optischen Messung einer elektrischen Spannung

    Publications (1)

    Publication Number Publication Date
    EP1229337A1 true EP1229337A1 (de) 2002-08-07

    Family

    ID=8183714

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP01810120A Withdrawn EP1229337A1 (de) 2001-02-06 2001-02-06 Verfahren zur temparaturkompensierten elektro-optischen Messung einer elektrischen Spannung
    EP02709953A Expired - Lifetime EP1358492B1 (de) 2001-02-06 2002-02-05 Verfahren zur temperaturkompensierten elektro-optischen messung einer elektrischen spannung und vorrichtung zur durchführung des verfahrens

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP02709953A Expired - Lifetime EP1358492B1 (de) 2001-02-06 2002-02-05 Verfahren zur temperaturkompensierten elektro-optischen messung einer elektrischen spannung und vorrichtung zur durchführung des verfahrens

    Country Status (6)

    Country Link
    US (1) US6930475B2 (de)
    EP (2) EP1229337A1 (de)
    JP (1) JP2004525361A (de)
    AT (1) ATE299269T1 (de)
    DE (1) DE50203564D1 (de)
    WO (1) WO2002063317A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2018035313A1 (en) 2016-08-17 2018-02-22 Micatu Inc. An optical pockels voltage sensor assembly device and methods of use thereof

    Families Citing this family (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP6192890B2 (ja) * 2011-11-25 2017-09-06 東芝三菱電機産業システム株式会社 表面電位分布計測装置および表面電位分布計測方法
    BR112015023970B1 (pt) 2013-03-19 2022-03-15 The University Of Tokyo Dispositivo de medição de distribuição de potencial de superfície
    US9410931B1 (en) * 2013-10-17 2016-08-09 Sandia Corporation Miniaturized photoacoustic spectrometer
    CN103809012A (zh) * 2014-02-19 2014-05-21 广西电网公司电力科学研究院 基于光学电场传感器的电压波形信号同步输出装置
    CN107123348B (zh) * 2017-06-01 2023-03-21 国网湖北省电力公司电力科学研究院 一种高精度中压配电线路真型等效模型及其参数计算方法
    CN108828493B (zh) * 2018-06-21 2021-02-09 清华大学 消除温度和其它相电场对光学电压互感器精度影响的方法
    CN109030904B (zh) * 2018-07-13 2020-08-11 福州大学 一种纵向调制光学电压互感器的温度自补偿方法
    FR3110000B1 (fr) * 2020-05-06 2022-05-27 Commissariat Energie Atomique Capteur de courant basé sur l’effet Faraday dans un gaz atomique

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4629323A (en) * 1982-07-23 1986-12-16 Tokyo Shibaura Denki Kabushiki Kaisha Birefringence type measuring device
    EP0729033A2 (de) * 1995-02-21 1996-08-28 Hitachi, Ltd. Optischer Stromtransformator
    US5895912A (en) * 1994-10-10 1999-04-20 Siemens Aktiengesellschaft Method and device for measuring an alternating electric quantity with temperature compensation by fitting

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4346712A (en) 1979-04-06 1982-08-31 Kuraray Company, Ltd. Releasable balloon catheter
    US4364392A (en) 1980-12-04 1982-12-21 Wisconsin Alumni Research Foundation Detachable balloon catheter
    DE3267860D1 (en) * 1982-02-10 1986-01-23 Fibraconsult Management Und Be Mineral fibre laminate
    US4819637A (en) 1987-09-01 1989-04-11 Interventional Therapeutics Corporation System for artificial vessel embolization and devices for use therewith
    US5122136A (en) 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
    US6083220A (en) 1990-03-13 2000-07-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
    JP2514087Y2 (ja) 1990-05-25 1996-10-16 幸三 牧田 離脱式両端逆止弁付きバル―ン
    US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
    IL116561A0 (en) 1994-12-30 1996-03-31 Target Therapeutics Inc Severable joint for detachable devices placed within the body
    WO1996032153A1 (en) 1995-04-14 1996-10-17 Interventional Therapeutics Corporation Dual valve detachable occlusion balloon and over-the-wire delivery apparatus and method for use therewith
    US6077260A (en) 1998-02-19 2000-06-20 Target Therapeutics, Inc. Assembly containing an electrolytically severable joint for endovascular embolic devices

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4629323A (en) * 1982-07-23 1986-12-16 Tokyo Shibaura Denki Kabushiki Kaisha Birefringence type measuring device
    US5895912A (en) * 1994-10-10 1999-04-20 Siemens Aktiengesellschaft Method and device for measuring an alternating electric quantity with temperature compensation by fitting
    EP0729033A2 (de) * 1995-02-21 1996-08-28 Hitachi, Ltd. Optischer Stromtransformator

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2018035313A1 (en) 2016-08-17 2018-02-22 Micatu Inc. An optical pockels voltage sensor assembly device and methods of use thereof
    EP3501068A4 (de) * 2016-08-17 2020-05-13 Micatu Inc. Optische pockels-spannungssensoranordnung und verfahren zur verwendung davon
    US11402410B2 (en) 2016-08-17 2022-08-02 Micatu Inc. Optical Pockels voltage sensor assembly device and methods of use thereof

    Also Published As

    Publication number Publication date
    US6930475B2 (en) 2005-08-16
    EP1358492A1 (de) 2003-11-05
    JP2004525361A (ja) 2004-08-19
    US20040095570A1 (en) 2004-05-20
    ATE299269T1 (de) 2005-07-15
    EP1358492B1 (de) 2005-07-06
    WO2002063317A1 (de) 2002-08-15
    DE50203564D1 (de) 2005-08-11

    Similar Documents

    Publication Publication Date Title
    DE68922951T2 (de) Elektrooptisches Spannungsdifferenz-Messverfahren und -Gerät in einem Messsystem für phasenverschobene Signale.
    DE3049033C2 (de)
    EP0316619B1 (de) Faseroptischer Sensor
    EP0682261A2 (de) Verfahren und Vorrichtung zur optischen Ermittlung einer physikalischen Grösse
    EP0706662B1 (de) Optisches messverfahren zum messen eines elektrischen wechselstromes mit temperaturkompensation und vorrichtung zur durchführung des verfahrens
    EP0410234B1 (de) Verfahren zur Messung eines elektrischen Feldes oder einer elektrischen Spannung und Einrichtung zur Durchführung des Verfahrens
    EP0721589B1 (de) Verfahren und vorrichtung zum messen einer elektrischen wechselgrösse mit temperaturkompensation
    EP0706661A1 (de) Optisches messverfahren zum messen eines elektrischen wechselstromes mit temperaturkompensation und vorrichtung zur durchführung des verfahrens
    DE69101445T2 (de) Fühler zum Feststellen und Messen der Drehung der Polarisationsebene von Licht.
    DE2806777C2 (de)
    DE8905259U1 (de) Elektrooptische Meßvorrichtung für Spannungskurvenformen auf elektrischen Leitern
    DE2541072C3 (de) Magnetooptischer Meßwandler zur Herstellung von Hochspannungsströmen
    DE69109535T2 (de) Gerichteter, polarimetrischer Feldsensor.
    DE19716477B4 (de) Verfahren und Einrichtung zur Messung einer elektrischen Spannung
    EP1229337A1 (de) Verfahren zur temparaturkompensierten elektro-optischen Messung einer elektrischen Spannung
    DE69225611T2 (de) Optischer spannungs- und elektrischer feld-sensor nach pockels-effekt wirkend
    DE69003002T2 (de) Druckwandler mit optischer Faser.
    EP1421393B1 (de) Optische stromsensoren
    EP0864098B1 (de) Verfahren und anordnung zum messen einer messgrösse, insbesondere eines elektrischen stromes, mit hoher messauflösung
    EP0854354A1 (de) Verfahren zur Temperaturkompensation von Messsignalen eines faseroptischen Sensors
    DE112012002258B4 (de) Faseroptischer Spannungssensor
    DE4436454A1 (de) Optisches Meßverfahren und optische Meßvorrichtung zum Messen einer elektrischen Wechselspannung oder eines elektrischen Wechselfeldes mit Temperaturkompensation durch AC/DC-Trennung
    EP1179735A1 (de) Verfahren zur Messung einer elektrischen Spannung und Spannungswandler
    DE3906119C2 (de) Anordnung zum Messen polarisationsoptischer Gangunterschiede
    EP0786092B1 (de) Optisches messverfahren und optische messvorrichtung zum messen einer elektrischen wechselspannung oder eines elektrischen wechselfeldes mit temperaturkompensation

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20030111

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

    18W Application withdrawn

    Effective date: 20030521