EP1223585B1 - Tri-layer stack spin polarised magnetic device and memory using the same - Google Patents

Tri-layer stack spin polarised magnetic device and memory using the same Download PDF

Info

Publication number
EP1223585B1
EP1223585B1 EP01403132A EP01403132A EP1223585B1 EP 1223585 B1 EP1223585 B1 EP 1223585B1 EP 01403132 A EP01403132 A EP 01403132A EP 01403132 A EP01403132 A EP 01403132A EP 1223585 B1 EP1223585 B1 EP 1223585B1
Authority
EP
European Patent Office
Prior art keywords
layer
magnetic
tri
layers
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01403132A
Other languages
German (de)
French (fr)
Other versions
EP1223585A1 (en
Inventor
Olivier Redon
Bernard Dieny
Bernard Rodmacq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1223585A1 publication Critical patent/EP1223585A1/en
Application granted granted Critical
Publication of EP1223585B1 publication Critical patent/EP1223585B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3218Exchange coupling of magnetic films via an antiferromagnetic interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a magnetic device spin polarization and stack (s) tri-layer (s) and a memory using this device.
  • MRAM Magnetic Random Access Memory
  • magnetic memory direct access or random
  • MRAM magnetic memories have been renewed with the development of magnetic tunnel junctions (abbreviated MTJ for "Magnetic Tunnel Junction”) with a high magnetoresistance at room temperature.
  • MTJ magnetic tunnel junction
  • FIGS 1A and 1B annexed schematically illustrate the structure and function of such a junction.
  • the junction bears the reference 2. It is a stack comprising an oxide layer sandwiched between two magnetic layers. This system functions as a spin valve, with the difference that the current flows perpendicular to the plane of the layers.
  • One of the magnetic layers is called “free” because its magnetization can be oriented in an external magnetic field (bidirectional arrow); the other is said “trapped” because its direction of magnetization is fixed by an antiferromagnetic exchange layer (unidirectional arrow).
  • the magnetizations of the magnetic layers are antiparallel, the strength of the junction is high; when the magnetizations are parallel, the resistance becomes weak.
  • the relative variation of resistance between these two states can reach 40% by an appropriate choice of materials.
  • junction 2 is placed between a switching transistor 4 and a current supply line 6. A current flowing in it produces a magnetic field 7.
  • a conductor 8 orthogonal to the current supply line 6 (c) that is to say in this case, perpendicular to the plane of the figure) makes it possible to produce a second magnetic field 9 (located in the plane of the figure).
  • the transistor 4 In the "write" mode ( Fig. 1A ), the transistor 4 is blocked. Currents flow in the current supply 6 and in the conductor 8. The junction 2 is therefore subjected to two orthogonal magnetic fields. One is applied along the axis of difficult magnetization of the free layer, in order to reduce its reversal field, the other being applied along its easy axis in order to cause the reversal of the magnetization and the writing of the memory point . In principle, only the memory point placed at the intersection of the two lines 6 and 8 is likely to turn over, because each magnetic field taken individually is not large enough to cause a tilting of the magnetization.
  • the transistor In the "reading" mode ( Fig. 1B ), the transistor is placed in saturated mode (that is to say that the current passing through it is maximum) by sending a positive current pulse in the base.
  • the current sent in line 6 passes only the memory point whose transistor is open. This current makes it possible to measure the resistance of the junction. By comparison with a reference memory point, the state of the memory point ("O" or "1") can thus be determined.
  • the present invention precisely aims to overcome these disadvantages.
  • US-A-5,966,323 describes a low-field magneto-resistive tunnel junction for high-density networks.
  • EP-A-1,187,103 discloses a magnetoresistive effect device and a memory using this device.
  • the invention aims to reduce the critical current density from which the reversal of magnetization occurs in the free layer.
  • the work and reflections of the Applicant made it possible to understand that this critical density was linked to the demagnetizing field specific to the free layer.
  • the invention proposes a device in which this demagnetizing field is very weak or even zero.
  • a three-layer stack hereinafter referred to as a "tri-layer stack” or simply a "tri-layer” layer
  • thickness sufficiently low that the coupling between the two magnetic layers is strong enough that the magnetizations in these layers are antiparallel. Overall, such a system does not present (or little) demagnetizing field.
  • the Applicant qualifies such stacks as "synthetic".
  • the invention therefore relates to a magnetic device according to claim 1.
  • the trapped layer is also constituted by a tri-layer stack, this second stack being covered with an antiferromagnetic exchange layer fixing the direction of the magnetizations in said second tri-layer stack.
  • the device comprises a third tri-layer stack separated from the first by a non-magnetic conductive layer, this third tri-layer stack resting on a second antiferromagnetic exchange layer fixing the magnetizations in this third tri-layer .
  • the material of the magnetic layers of the first and / or second and / or the third stack is preferably of a material selected from the group consisting of Co, Fe, Ni and their alloys.
  • the non-magnetic conductive layer of the first and / or second and / or third trilayer stack is preferably a metal selected from the group consisting of Ru, Re, Cu, Cr, Pt, Ag.
  • the first and / or second antiferromagnetic layer may be an Mn-based alloy (for example FeMn, IrMn, NiMn, PtMn, PtPdMn, RuRhMn).
  • Mn-based alloy for example FeMn, IrMn, NiMn, PtMn, PtPdMn, RuRhMn.
  • An electric current flowing in a conductor consists of electrons whose spin has no reason a priori to be oriented in a particular direction.
  • this current passes through a magnetic layer having a particular magnetization, the spins will be oriented by magnetic moment exchange phenomena, so that the electrons will emerge from this layer with a polarized spin.
  • a layer or a set of such layers
  • This phenomenon can play both in transmission (through the layer) and in reflection (on this layer), depending on the flow direction of the current. It can also act in the opposite direction by preferably passing electrons having a polarized spin in a certain direction.
  • the function of the layer is that of an analyzer.
  • the first embodiment of the invention consists in using a tunnel junction formed of two tri-layer stacks disposed on either side of an insulating layer, for example alumina (Al 2 O 3 ).
  • an insulating layer for example alumina (Al 2 O 3 ).
  • One of the three-layers has its magnetization direction fixed by exchange coupling with an antiferromagnetic layer.
  • This layer plays a dual role of polarizer (writing) and parser (writing and reading).
  • the choice of a tri-layer was chosen to eliminate the magnetostatic coupling with the second tri-layer and thus to be able to use the memory without an external compensating field.
  • the other tri-layer is free to orient itself in the spin polarization direction.
  • This layer has a planar anisotropy defining an easy axis and a hard magnetization axis in order to reduce the write time.
  • the thicknesses of the magnetic layers of this tri-layer system are almost equal in order to eliminate the demagnetizing field effect and thus allow the magnetization of this layer to precede easily out of the plane.
  • a current of density greater than the critical density crossing the junction will cause precession and alignment of the magnetization of the free layer (closest to the oxide barrier) by transfer of the magnetic moment of the electrons polarized at the magnetic moment of the free layer.
  • the voltage appearing at the terminals of the junction makes it possible to follow the magnetic state of the free layer.
  • the writing can be done in direct current or in pulsed current, the duration of the pulse to be adjusted according to the process of reversal of the magnetization.
  • a current of density less than the critical density crosses the junction and makes it possible to read the magnetic state of the device, which thus behaves like a memory point.
  • the device comprises two tri-layer (or “synthetic") stacks, respectively 12 and 16, one for the trapped layer (12) and the other for the free layer (16).
  • the device comprises successively, from top to bottom, an antiferromagnetic exchange layer 10, the trapped layer 12, a non-magnetic insulating layer 14, the free layer 16, the assembly referenced 18 forming a magnetic tunnel junction .
  • This junction rests on a conductive substrate 20 and is interposed between a conductor 22 and a transistor 24.
  • the trapped layer 12 is a tri-layer composed of two magnetic layers 121, 123 separated by a non-magnetic conductive layer 122.
  • the free layer 16 is a tri-layer composed of two magnetic layers 161, 163 separated by a non-magnetic conductive layer 162.
  • the magnetizations of the two magnetic layers are antiparallel, as represented symbolically in the figure by the arrows of alternating directions, arrows which represent the magnetization.
  • This antiparallelism is due to a very strong antiferromagnetic coupling existing between the magnetic layers.
  • the thicknesses of the magnetic layers 121, 123 are advantageously the same in order to have a zero magnetostatic coupling on the free layer 16.
  • the free layer 16 has characteristics similar to the trapped layer 12. However, not being trapped by exchange, it is free, and sees the direction of its magnetization change when a spin polarized current passes through it. This change is related to the transfer of magnetic moment of the electrons towards the magnetization of the layer.
  • the barrier 14 is preferably formed of an oxidized or nitrided aluminum layer, and is obtained by methods known to those skilled in the art (plasma oxidation, natural oxidation in situ, atomic oxygen source,. ..). Semiconductor materials may also be employed but the magnetoresistive properties are not as good as with nitrides and oxides.
  • FIG. 3A illustrates the writing of an "O" and FIG. 3B the writing of a "1".
  • the current supply and the transistor have not been shown.
  • the different directions are marked with respect to a trirectangular trihedron Oxyz, the direction Oz being perpendicular to the plane of the layers.
  • the Figure 4A shows how the component My of the magnetization of the layer 161 changes sign and the Figure 4B shows the oscillation of the Mz component during the precession movement that accompanies the reversal of the magnetization.
  • a current (continuous or pulsed) of positive sign that is to say circulating from top to bottom (hence to the transistor) is circulated in the stack.
  • the electrons see their spin polarized in the layer 123 in the direction (-y). They will transmit their magnetic moment to the moments of the layer 161 whose magnetization will align parallel to that of the layer 123.
  • the magnetization of the layer 161 will precede around the axis (-y) with a component Mz that will oscillate over time, as shown in FIG. Figure 4B .
  • the angle of the precession cone exceeds 90 °, the direction of rotation will reverse and the magnetization will realign according to (+ y).
  • the number of precessions required for the reversal depends on the anisotropy of the layer in its plane.
  • the anisotropy is weak (curves 30 and 32)
  • the inversion requires a large number of oscillations of precessions but a weak critical current.
  • the turning time is shorter but a stronger current is needed to overcome the anisotropy.
  • the writing can be done in direct current or pulsed.
  • pulsed current the duration of the pulse must be long enough for the reversal to be complete.
  • the overturn control can be done by measuring the voltage across the junction. When the magnetizations of the layers 123 and 161 are parallel, the Electron transfer probability by tunnel effect is high and the resistance of the junction is low. If the flipping did not occur completely, the resistance is great. In comparison with the voltage taken at the terminals of a reference junction, the magnetic state of the device is determined. In this magnetic state control step, the 123 (exchange-fixed) layer acts as an analyzer to probe the orientation of the free layer 161.
  • a current of negative sign is circulated as shown in FIG. 3B.
  • the polarized majority electrons in the layer 161 according to (-y) will cross the layer 123, while the minority electrons polarized according to (+ y) will accumulate in front of the layer 123.
  • Antiparallel spin electrons at layer 161 will transfer their magnetic moment to the moments of layer 41 and cause a precession until the magnetization of layer 161 reverses as shown in FIG. 3B.
  • This magnetic configuration corresponds to the writing of a "1" and the resistance of the junction is maximum.
  • a current whose density is less than the critical density is sent and the output voltage is compared with the voltage of a reference junction, in order to determine the magnetic state of the device.
  • the device comprises three tri-layers, two of the tri-layers being disposed on either side of an insulating layer, by example alumina (Al 2 O 3 ).
  • an insulating layer by example alumina (Al 2 O 3 ).
  • One of these tri-layers has its magnetization directions fixed by exchange coupling with an antiferromagnetic layer. This layer plays a dual role of polarizer (writing) and parser (writing and reading).
  • the choice of a tri-layer makes it possible to eliminate the magnetostatic coupling on the second tri-layer and thus to be able to use the memory without an external compensating field.
  • the other tri-layer is free to orient itself in the direction of polarization of the spins.
  • This layer may have a planar anisotropy defining an easy axis and a hard magnetization axis in order to reduce the write time.
  • the thicknesses of the magnetic layers of this system are almost equal in order to eliminate the demagnetizing field effect.
  • the device also comprises a polarizer separated from the tunnel junction by a non-magnetic conductive layer and preferably formed of a tri-layer stack trapped by exchange with an antiferromagnetic layer in order to maintain its direction of magnetization.
  • the figure 5 illustrates this second embodiment.
  • the three tri-layers bear respectively the references 16, 12 and 32.
  • the third tri-layer 32 is separated from the first 16 by a non-magnetic conductive layer 30.
  • This third tri-layer comprises two magnetic layers 321, 323 separated by a layer non-magnetic conductor 322. It is based on an antiferromagnetic coupling layer 34 which fixes the magnetization in the layer 323, therefore in the layer 321.
  • the third tri-layer 32 is thus of the trapped type, like the second (12).
  • the assembly rests on a conductive substrate 36.
  • the layer 30 separating the first and third tri-layers may be formed from a noble metal. Its thickness is chosen between 3 and 10 nm to avoid inadvertent magnetic couplings between the tri-layers 16 and 32.
  • the writing of the magnetic states "1" and “O” is effected, as before, by the choice of the orientation of the direction of the current as shown by the Figures 6A and 6B .
  • the addition of the third tri-layer 32 will stabilize the magnetic states and thus reduce the critical current density by a factor of 2.
  • the current biased in the curve 123 according to (-y) (with respect to the same Oxyz trirectangeal trihedron not shown) will cause the alignment of the layer 161 by transfer of the moment of the electrons to the magnetization of the layer 161.
  • the electrons are always polarized along (-y) and polarize according to (+ y) after passing through the layer 163, without causing the layer 163 to tilt because of the antiferromagnetic exchange between the layers 161 and 163 which is much higher than the coupling exerted by the electrons.
  • the polarizer 32 eliminates the magneto-static coupling field on the layer 16 and also makes it possible to have an identical direction of exchange between the layers 121 and 323 in order to make possible the magnetic ordering of the antiferromagnetic exchange layers 10 and 34. It is indeed difficult to define two opposite directions of exchange in a system using a single type of antiferromagnetic material.
  • the reading is performed as in the first variant by injecting a current of density less than the critical density and comparing the voltage read to the voltage of a reference junction.
  • Mode of realization 1 2 t (nm) 5 5 Ms (emu / cc) 1500 1500 Effective Hk (G) 40 40 JC (writing) (A / cm 2 ) 3,2E + 05 1.6E + 05 RA max (Ohm. ⁇ m 2 ) 188 375 Jc (reading) (A / cm 2 ) 1.6E + 05 8E + 04 a min (micron) 0.12 0.12
  • Such RA products can be obtained either by plasma oxidation or, preferably, by natural oxidation in situ.
  • the figure 7 finally, shows a memory formed of a matrix of memory points addressable by rows and columns.
  • Each memory point comprises a device according to the invention, with a stack of layers symbolized by a resistor 60 and a switching means 70 constituted by a transistor.
  • Each stack is connected to an address line 80 and the base (or gate) of the transistor to an address column 90.
  • the lines 80 are called “bit lines” and the columns 90 "word lines” (or digit).
  • the lines 80 are connected to the outputs of a line addressing circuit 85 and the columns 90 to the outputs of a column addressing circuit 95.
  • a reference column 100 which allows reading.
  • the reading voltage of each point is compared with the voltage read on the memory point of the reference column belonging to the same line.
  • This column write and read mechanism significantly reduces the memory cycle time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Thin Magnetic Films (AREA)

Description

Domaine techniqueTechnical area

La présente invention a pour objet un dispositif magnétique à polarisation de spin et à empilement(s) tri-couche(s) et une mémoire utilisant ce dispositif.The present invention relates to a magnetic device spin polarization and stack (s) tri-layer (s) and a memory using this device.

Elle trouve une application en électronique et notamment dans la réalisation de points mémoire et de mémoire de type MRAM ("Magnetic Random Access Memory" ou mémoire magnétique à accès direct (ou aléatoire)).It finds an application in electronics and in particular in the realization of memory points and memory type MRAM ("Magnetic Random Access Memory" or magnetic memory direct access (or random)).

Etat de la technique antérieureState of the art

Les mémoires magnétiques MRAM ont connu un regain d'intérêt avec la mise au point de jonctions tunnel magnétiques (en abrégé MTJ pour "Magnetic Tunnel Junction") présentant une forte magnétorésistance à température ambiante. Les figures 1A et 1B annexées illustrent schématiquement la structure et la fonction d'une telle jonction.MRAM magnetic memories have been renewed with the development of magnetic tunnel junctions (abbreviated MTJ for "Magnetic Tunnel Junction") with a high magnetoresistance at room temperature. The Figures 1A and 1B annexed schematically illustrate the structure and function of such a junction.

La jonction porte la référence 2. Il s'agit d'un empilement comprenant une couche d'oxyde en sandwich entre deux couches magnétiques. Ce système fonctionne comme une vanne de spin, à la différence que le courant circule perpendiculairement aux plans des couches. L'une des couches magnétiques est dite "libre" car son aimantation peut s'orienter dans un champ magnétique extérieur (flèche bidirectionnelle) ; l'autre est dite "piégée" car sa direction d'aimantation est fixée par une couche d'échange antiferromagnétique (flèche unidirectionnelle). Lorsque les aimantations des couches magnétiques sont antiparallèles, la résistance de la jonction est élevée ; lorsque les aimantations sont parallèles, la résistance devient faible. La variation relative de résistance entre ces deux états peut atteindre 40% par un choix approprié des matériaux.The junction bears the reference 2. It is a stack comprising an oxide layer sandwiched between two magnetic layers. This system functions as a spin valve, with the difference that the current flows perpendicular to the plane of the layers. One of the magnetic layers is called "free" because its magnetization can be oriented in an external magnetic field (bidirectional arrow); the other is said "trapped" because its direction of magnetization is fixed by an antiferromagnetic exchange layer (unidirectional arrow). When the magnetizations of the magnetic layers are antiparallel, the strength of the junction is high; when the magnetizations are parallel, the resistance becomes weak. The relative variation of resistance between these two states can reach 40% by an appropriate choice of materials.

La jonction 2 est placée entre un transistor de commutation 4 et une ligne d'amenée de courant 6. Un courant passant dans celle-ci produit un champ magnétique 7. Un conducteur 8, orthogonal à la ligne d'amenée de courant 6 (c'est-à-dire en l'espèce, perpendiculaire au plan de la figure) permet de produire un second champ magnétique 9 (situé dans le plan de la figure).The junction 2 is placed between a switching transistor 4 and a current supply line 6. A current flowing in it produces a magnetic field 7. A conductor 8 orthogonal to the current supply line 6 (c) that is to say in this case, perpendicular to the plane of the figure) makes it possible to produce a second magnetic field 9 (located in the plane of the figure).

Dans le mode "écriture" (Fig. 1A), le transistor 4 est bloqué. Des courants circulent dans l'amenée de courant 6 et dans le conducteur 8. La jonction 2 est donc soumise à deux champs magnétiques orthogonaux. L'un est appliqué selon l'axe de difficile aimantation de la couche libre, afin de réduire son champ de retournement, l'autre étant appliqué selon son axe facile afin de provoquer le retournement de l'aimantation et l'écriture du point mémoire. Dans le principe, seul le point mémoire placé à l'intersection des deux lignes 6 et 8 est susceptible de se retourner, car chaque champ magnétique pris individuellement n'est pas suffisamment grand pour provoquer un basculement de l'aimantation.In the "write" mode ( Fig. 1A ), the transistor 4 is blocked. Currents flow in the current supply 6 and in the conductor 8. The junction 2 is therefore subjected to two orthogonal magnetic fields. One is applied along the axis of difficult magnetization of the free layer, in order to reduce its reversal field, the other being applied along its easy axis in order to cause the reversal of the magnetization and the writing of the memory point . In principle, only the memory point placed at the intersection of the two lines 6 and 8 is likely to turn over, because each magnetic field taken individually is not large enough to cause a tilting of the magnetization.

Dans le mode "lecture" (Fig. 1B), le transistor est placé en régime saturé (c'est-à-dire que le courant le traversant est maximum) par l'envoi d'une impulsion de courant positive dans la base. Le courant envoyé dans la ligne 6 traverse uniquement le point mémoire dont le transistor est ouvert. Ce courant permet de mesurer la résistance de la jonction. Par comparaison avec un point mémoire de référence, l'état du point mémoire ("O" ou "1") peut ainsi être déterminé.In the "reading" mode ( Fig. 1B ), the transistor is placed in saturated mode (that is to say that the current passing through it is maximum) by sending a positive current pulse in the base. The current sent in line 6 passes only the memory point whose transistor is open. This current makes it possible to measure the resistance of the junction. By comparison with a reference memory point, the state of the memory point ("O" or "1") can thus be determined.

Un tel mécanisme d'écriture présente des inconvénients en particulier dans un réseau de jonctions :

  1. 1) Comme le renversement de l'aimantation de la couche libre d'une jonction se produit sous l'effet de champs extérieurs, et comme les champs de retournement sont statistiquement distribués, il n'est pas impossible de retourner accidentellement certaines jonctions voisines simplement par l'effet du champ magnétique produit le long de la ligne d'adressage 6. Comme, pour des mémoires à haute densité, la taille des points mémoires est nettement submicronique, le nombre d'erreurs d'adressage augmente.
  2. 2) La diminution de la taille des points mémoires entraîne une augmentation de la valeur du champ de retournement individuel ; un courant plus important est alors nécessaire pour écrire les points mémoires, ce qui tend à augmenter la consommation électrique.
  3. 3) L'écriture nécessitant deux lignes de courant à 90°, la densité d'intégration se trouve limitée par la présence de ces lignes.
  4. 4) Le mode d'écriture utilisé ne permet d'écrire qu'un seul point mémoire à la fois, si l'on veut minimiser le risque d'erreur d'adressage.
Such a writing mechanism has drawbacks in particular in a network of junctions:
  1. 1) As the reversal of the magnetization of the free layer of a junction occurs under the effect of external fields, and as the turning fields are statistically distributed, it is not impossible to accidentally return some neighboring junctions simply by the effect of the magnetic field produced along the address line 6. As, for high-density memories, the size of the memory points is clearly submicron, the number of addressing errors increases.
  2. 2) The decrease in the size of the memory points results in an increase in the value of the individual reversal field; a larger current is then required to write the memory points, which tends to increase the power consumption.
  3. 3) Since the writing requires two 90 ° current lines, the integration density is limited by the presence of these lines.
  4. 4) The write mode used allows only one memory point to be written at a time, in order to minimize the risk of an error in addressing.

Récemment sont apparus d'autres types de dispositifs magnétiques où le reversement de l'aimantation se produit non plus par des champs magnétiques extérieurs mais par des électrons traversant l'empilement perpendiculairement au plan des couches. Ces dispositifs sont décrits dans le document US-A-5,695,864 . Le mécanisme mis en oeuvre est fondé sur un transfert de moment magnétique entre les électrons d'une part et l'aimantation de la couche libre, d'autre part. Dans un tel système, l'empilement est formé de couches toutes conductrices de l'électricité, afin de limiter la puissance dissipée. Il en résulte plusieurs inconvénients :

  1. a) la résistance du dispositif est si faible qu'il faut injecter un courant très intense pour avoir une tension aux bornes comparable à celle des systèmes anciens,
  2. b) une telle intensité nécessite un transistor de grande taille, ce qui limite la densité d'intégration de la mémoire,
  3. c) l'amplitude de la variation de résistance obtenue est très faible (2-3%), ce qui limite la tension de sortie,
  4. d) dans l'application aux MRAM, le document cité prévoit trois niveaux de conducteurs et deux sources de tension. Un conducteur central a pour but de récupérer le courant polarisé ayant servi au retournement de la couche libre. Le dispositif est donc complexe.
Recently, other types of magnetic devices have appeared where the reverse of the magnetization is no longer produced by external magnetic fields but by electrons crossing the stack perpendicularly to the plane of the layers. These devices are described in the document US Patent 5,695,864 . The mechanism used is based on a transfer of magnetic moment between the electrons on the one hand and the magnetization of the free layer, on the other hand. In such a system, the stack is formed of electrically conductive layers, in order to limit the power dissipated. This results in several disadvantages:
  1. a) the resistance of the device is so low that it is necessary to inject a very intense current to have a terminal voltage comparable to that of the old systems,
  2. b) such an intensity requires a large transistor, which limits the integration density of the memory,
  3. c) the amplitude of the resistance variation obtained is very small (2-3%), which limits the output voltage,
  4. d) in the application to MRAMs, the cited document provides for three levels of conductors and two sources of voltage. A central conductor aims to recover the polarized current used to turn the free layer. The device is therefore complex.

La présente invention a justement pour but de remédier à ces inconvénients.The present invention precisely aims to overcome these disadvantages.

US-A-5 966 323 décrit une jonction tunnel magnétorésistive à faible champ de commutation pour réseaux à haute densité. EP-A-1 187 103 décrit un dispositif à effet magnétorésistif et une mémoire utilisant ce dispositif. US-A-5,966,323 describes a low-field magneto-resistive tunnel junction for high-density networks. EP-A-1,187,103 discloses a magnetoresistive effect device and a memory using this device.

Exposé de l'inventionPresentation of the invention

L'invention vise à réduire la densité critique de courant à partir de laquelle le retournement de l'aimantation se produit dans la couche libre. Les travaux et réflexions du Demandeur ont permis de comprendre que cette densité critique était liée au champ démagnétisant propre à la couche libre. L'invention propose alors un dispositif dans lequel ce champ démagnétisant est très faible, voire nul. Pour cela, on utilise un empilement à trois couches (que l'on appellera par la suite "empilement tri-couche" ou simplement "tri-couche") formé de deux couches magnétiques séparées par une couche conductrice non magnétique, cette dernière ayant une épaisseur suffisamment faible pour que le couplage entre les deux couches magnétiques soit suffisamment fort pour que les aimantations dans ces couches soient antiparallèles. Globalement, un tel système ne présente pas (ou peu) de champ démagnétisant. Le Demandeur qualifie de tels empilements de "synthétiques".The invention aims to reduce the critical current density from which the reversal of magnetization occurs in the free layer. The work and reflections of the Applicant made it possible to understand that this critical density was linked to the demagnetizing field specific to the free layer. The invention then proposes a device in which this demagnetizing field is very weak or even zero. For this purpose, a three-layer stack (hereinafter referred to as a "tri-layer stack" or simply a "tri-layer" layer) formed of two magnetic layers separated by a non-magnetic conductive layer is used. thickness sufficiently low that the coupling between the two magnetic layers is strong enough that the magnetizations in these layers are antiparallel. Overall, such a system does not present (or little) demagnetizing field. The Applicant qualifies such stacks as "synthetic".

De façon précise, l'invention a donc pour objet un dispositif magnétique conforme à la revendication 1.Precisely, the invention therefore relates to a magnetic device according to claim 1.

Dans un mode de réalisation, la couche piégée est, elle aussi constituée d'un empilement tri-couche, ce deuxième empilement étant recouvert d'une couche d'échange antiferromagnétique fixant la direction des aimantations dans ledit deuxième empilement tri-couche.In one embodiment, the trapped layer is also constituted by a tri-layer stack, this second stack being covered with an antiferromagnetic exchange layer fixing the direction of the magnetizations in said second tri-layer stack.

Dans un autre mode de réalisation, le dispositif comprend un troisième empilement tri-couche séparé du premier par une couche conductrice non magnétique, ce troisième empilement tri-couche reposant sur une seconde couche d'échange antiferromagnétique fixant les aimantations dans ce troisième tri-couche.In another embodiment, the device comprises a third tri-layer stack separated from the first by a non-magnetic conductive layer, this third tri-layer stack resting on a second antiferromagnetic exchange layer fixing the magnetizations in this third tri-layer .

Le matériau des couches magnétiques du premier et/ou du deuxième et/ou du troisième empilement tricouche est de préférence en un matériau pris dans le groupe constitué par Co, Fe, Ni et leurs alliages.The material of the magnetic layers of the first and / or second and / or the third stack The trilayer is preferably of a material selected from the group consisting of Co, Fe, Ni and their alloys.

La couche conductrice non magnétique du premier et/ou du deuxième et/ou du troisième empilement tricouche est de préférence en un métal pris dans le groupe constitué par Ru, Re, Cu, Cr, Pt, Ag.The non-magnetic conductive layer of the first and / or second and / or third trilayer stack is preferably a metal selected from the group consisting of Ru, Re, Cu, Cr, Pt, Ag.

La première et/ou la seconde couche antiferromagnétique peut être en alliage à base de Mn (par exemple FeMn, IrMn, NiMn, PtMn, PtPdMn, RuRhMn).The first and / or second antiferromagnetic layer may be an Mn-based alloy (for example FeMn, IrMn, NiMn, PtMn, PtPdMn, RuRhMn).

Brève description des dessinsBrief description of the drawings

  • les figures 1A et 1B, déjà décrites, montrent un dispositif connu pour l'écriture et la lecture d'une information binaire dans une jonction magnétique à effet tunnel par des champs magnétiques extérieurs ;the Figures 1A and 1B , already described, show a known device for writing and reading a binary information in a tunnel magnetic junction by external magnetic fields;
  • la figure 2 montre, en coupe, un premier mode de réalisation d'un dispositif selon l'invention ;the figure 2 shows, in section, a first embodiment of a device according to the invention;
  • les figures 3A et 3B montrent les orientations des aimantations dans les différentes couches selon qu'on a écrit un "0" ou un "1" pour ce premier mode de réalisation ;FIGS. 3A and 3B show the orientations of the magnetizations in the different layers according to whether a "0" or "1" has been written for this first embodiment;
  • les figures 4A et 4B montrent les variations transitoires de la composante de l'aimantation selon un axe Oz perpendiculaire au plan des couches et selon un axe Oy parallèle au plan des couches, pour une faible et une forte anisotropie ;the Figures 4A and 4B show the transient variations of the magnetization component along an axis Oz perpendicular to the plane of the layers and along an axis Oy parallel to the plane of the layers, for a weak and a strong anisotropy;
  • la figure 5 montre, en coupe, un second mode de réalisation d'un dispositif selon l'invention ;the figure 5 shows, in section, a second embodiment of a device according to the invention;
  • les figures 6A et 6B montrent les orientations des aimantations dans les différentes couches selon qu'on a écrit un "O" ou un "1", pour ce second mode de réalisation ;the Figures 6A and 6B show the orientations of the magnetizations in the different layers according to whether an "O" or a "1" has been written, for this second embodiment;
  • la figure 7 montre schématiquement une mémoire utilisant une matrice de dispositifs selon l'invention.the figure 7 schematically shows a memory using a matrix of devices according to the invention.
Description de modes particuliers de réalisationDescription of particular embodiments

A propos du phénomène de polarisation de spin pour des électrons circulant dans des dispositifs à jonction tunnel, on peut rappeler les principes suivants. Un courant électrique circulant dans un conducteur est constitué d'électrons dont le spin n'a aucune raison a priori d'être orienté dans une direction particulière. Lorsque ce courant traverse une couche magnétique présentant une aimantation particulière, les spins vont se trouver orientés par des phénomènes d'échange de moment magnétique, de sorte que les électrons sortiront de cette couche avec un spin polarisé. Une telle couche (ou un ensemble de telles couches) constitue ainsi un "polariseur". Ce phénomène peut jouer aussi bien en transmission (à travers la couche) qu'en réflexion (sur cette couche), selon la direction de circulation du courant. Il peut également jouer en sens inverse en laissant passer de préférence des électrons ayant un spin polarisé dans une certaine direction. La fonction de la couche est alors celle d'un analyseur.With regard to the spin polarization phenomenon for electrons circulating in tunnel junction devices, the following principles can be recalled. An electric current flowing in a conductor consists of electrons whose spin has no reason a priori to be oriented in a particular direction. When this current passes through a magnetic layer having a particular magnetization, the spins will be oriented by magnetic moment exchange phenomena, so that the electrons will emerge from this layer with a polarized spin. Such a layer (or a set of such layers) thus constitutes a "polarizer". This phenomenon can play both in transmission (through the layer) and in reflection (on this layer), depending on the flow direction of the current. It can also act in the opposite direction by preferably passing electrons having a polarized spin in a certain direction. The function of the layer is that of an analyzer.

S'agissant maintenant du premier mode de réalisation de l'invention, il consiste à utiliser une jonction tunnel formée de deux empilements tri-couches disposés de part et d'autre d'une couche isolante, par exemple en alumine (Al2O3). Un des tri-couches a sa direction d'aimantation fixée par couplage d'échange avec une couche antiferromagnétique. Cette couche joue un double rôle de polariseur (à l'écriture) et d'analyseur (à l'écriture et la lecture). Le choix d'un tri-couche a été retenu pour éliminer le couplage magnétostatique avec le second tri-couche et donc pour pouvoir utiliser la mémoire sans champ extérieur de compensation. L'autre tri-couche est libre de s'orienter dans la direction de polarisation des spins.. Cette couche possède une anisotropie planaire définissant un axe de facile et un axe de difficile aimantation afin de réduire le temps d'écriture. Les épaisseurs des couches magnétiques de ce système tri-couche sont quasiment égales afin d'éliminer l'effet de champ démagnétisant et donc permettre l'aimantation de cette couche de précessionner facilement hors du plan.Turning now to the first embodiment of the invention, it consists in using a tunnel junction formed of two tri-layer stacks disposed on either side of an insulating layer, for example alumina (Al 2 O 3 ). One of the three-layers has its magnetization direction fixed by exchange coupling with an antiferromagnetic layer. This layer plays a dual role of polarizer (writing) and parser (writing and reading). The choice of a tri-layer was chosen to eliminate the magnetostatic coupling with the second tri-layer and thus to be able to use the memory without an external compensating field. The other tri-layer is free to orient itself in the spin polarization direction. This layer has a planar anisotropy defining an easy axis and a hard magnetization axis in order to reduce the write time. The thicknesses of the magnetic layers of this tri-layer system are almost equal in order to eliminate the demagnetizing field effect and thus allow the magnetization of this layer to precede easily out of the plane.

Dans le mode écriture, un courant de densité supérieure à la densité critique traversant la jonction va provoquer une précession et un alignement de l'aimantation de la couche libre (la plus proche de la barrière d'oxyde) par transfert du moment magnétique des électrons polarisés au moment magnétique de la couche libre. La tension apparaissant aux bornes de la jonction, permet de suivre l'état magnétique de la couche libre. L'écriture peut se faire en courant continu ou en courant pulsé, la durée de l'impulsion devant être ajustée en fonction du processus de retournement de l'aimantation.In the write mode, a current of density greater than the critical density crossing the junction will cause precession and alignment of the magnetization of the free layer (closest to the oxide barrier) by transfer of the magnetic moment of the electrons polarized at the magnetic moment of the free layer. The voltage appearing at the terminals of the junction makes it possible to follow the magnetic state of the free layer. The writing can be done in direct current or in pulsed current, the duration of the pulse to be adjusted according to the process of reversal of the magnetization.

Dans le mode lecture, un courant de densité inférieure à la densité critique traverse la jonction et permet de lire l'état magnétique du dispositif, lequel se comporte ainsi comme un point mémoire.In the read mode, a current of density less than the critical density crosses the junction and makes it possible to read the magnetic state of the device, which thus behaves like a memory point.

La figure 2 illustre ce premier mode de réalisation. Tel que représenté, le dispositif comprend deux empilements tri-couches (ou "synthétiques"), respectivement 12 et 16, l'un pour la couche piégée (12) et l'autre pour la couche libre (16). Dans la variante illustrée, le dispositif comprend successivement, de haut en bas, une couche d'échange antiferromagnétique 10, la couche piégée 12, une couche isolante non magnétique 14, la couche libre 16, l'ensemble référencé 18 formant une jonction tunnel magnétique. Cette jonction repose sur un substrat conducteur 20 et se trouve intercalé entre un conducteur 22 et un transistor 24.The figure 2 illustrates this first embodiment. As shown, the device comprises two tri-layer (or "synthetic") stacks, respectively 12 and 16, one for the trapped layer (12) and the other for the free layer (16). In the variant illustrated, the device comprises successively, from top to bottom, an antiferromagnetic exchange layer 10, the trapped layer 12, a non-magnetic insulating layer 14, the free layer 16, the assembly referenced 18 forming a magnetic tunnel junction . This junction rests on a conductive substrate 20 and is interposed between a conductor 22 and a transistor 24.

Selon le mode de réalisation illustré, la couche piégée 12 est un tri-couche composé de deux couches magnétiques 121, 123 séparées par une couche conductrice non magnétique 122. De même, la couche libre 16 est un tri-couche composé de deux couches magnétiques 161, 163 séparées par une couche conductrice non magnétique 162.According to the illustrated embodiment, the trapped layer 12 is a tri-layer composed of two magnetic layers 121, 123 separated by a non-magnetic conductive layer 122. Similarly, the free layer 16 is a tri-layer composed of two magnetic layers 161, 163 separated by a non-magnetic conductive layer 162.

Dans les deux tri-couches 12 et 16, les aimantations des deux couches magnétiques sont antiparallèles, comme représenté symboliquement sur la figure par les flèches de directions alternées, flèches qui représentent l'aimantation. Cet antiparallélisme est dû à un couplage antiferromagnétique très fort existant entre les couches magnétiques. Les épaisseurs des couches magnétiques 121, 123 sont avantageusement les mêmes afin d'avoir un couplage magnétostatique nul sur la couche libre 16.In the two tri-layers 12 and 16, the magnetizations of the two magnetic layers are antiparallel, as represented symbolically in the figure by the arrows of alternating directions, arrows which represent the magnetization. This antiparallelism is due to a very strong antiferromagnetic coupling existing between the magnetic layers. The thicknesses of the magnetic layers 121, 123 are advantageously the same in order to have a zero magnetostatic coupling on the free layer 16.

La couche libre 16 a des caractéristiques similaires à la couche piégée 12. Cependant, n'étant pas piégée par échange, elle est libre, et voit la direction de son aimantation changer lorsqu'un courant polarisé en spin la traverse. Ce changement est lié au transfert de moment magnétique des électrons vers l'aimantation de la couche.The free layer 16 has characteristics similar to the trapped layer 12. However, not being trapped by exchange, it is free, and sees the direction of its magnetization change when a spin polarized current passes through it. This change is related to the transfer of magnetic moment of the electrons towards the magnetization of the layer.

La barrière 14 est formée préférentiellement d'une couche d'aluminium oxydée ou nitrurée, et elle est obtenue par des méthodes connues de l'homme de l'art (oxydation par plasma, oxydation naturelle in situ, source d'oxygène atomique, ...). Des matériaux semi-conducteurs peuvent aussi être employés mais les propriétés magnétorésistives ne sont pas aussi bonnes qu'avec les nitrures et oxydes.The barrier 14 is preferably formed of an oxidized or nitrided aluminum layer, and is obtained by methods known to those skilled in the art (plasma oxidation, natural oxidation in situ, atomic oxygen source,. ..). Semiconductor materials may also be employed but the magnetoresistive properties are not as good as with nitrides and oxides.

La figure 3A permet d'illustrer l'écriture d'un "O" et la figure 3B l'écriture d'un "1". Sur ces figures, on n'a pas représenté l'amenée de courant ni le transistor. Les différentes directions sont repérées par rapport à un trièdre trirectangle Oxyz, la direction Oz étant perpendiculaire au plan des couches. Par ailleurs, la figure 4A montre comment la composante My de l'aimantation de la couche 161 change de signe et la figure 4B montre l'oscillation de la composante Mz lors du mouvement de précession qui accompagne le renversement de l'aimantation.FIG. 3A illustrates the writing of an "O" and FIG. 3B the writing of a "1". In these figures, the current supply and the transistor have not been shown. The different directions are marked with respect to a trirectangular trihedron Oxyz, the direction Oz being perpendicular to the plane of the layers. Moreover, the Figure 4A shows how the component My of the magnetization of the layer 161 changes sign and the Figure 4B shows the oscillation of the Mz component during the precession movement that accompanies the reversal of the magnetization.

Pour écrire un "0", on fait circuler dans l'empilement un courant (continu ou pulsé) de signe positif, c'est-à-dire circulant de haut en bas (donc vers le transistor). Les électrons voient leur spin polarisé dans la couche 123 selon la direction (-y). Ils vont transmettre leur moment magnétique aux moments de la couche 161 dont l'aimantation va s'aligner parallèlement à celle de la couche 123. La couche 163, couplée antiparallèlement à la couche 161, va donc aussi se réorienter. Lors du transfert de moment magnétique, l'aimantation de la couche 161 va entrer en précession autour de l'axe (-y) avec une composante Mz qui va osciller au cours du temps, comme le montre la figure 4B. Lorsque l'angle du cône de précession dépassera 90°, le sens de rotation s'inversera et l'aimantation se réalignera selon (+y). Le nombre de précessions nécessaire au retournement dépend de l'anisotropie de la couche dans son plan. Lorsque l'anisotropie est faible (courbes 30 et 32), le retournement demande un grand nombre d'oscillations de précessions mais un faible courant critique. Pour une plus forte anisotropie (courbes 31 et 34) le temps de retournement est plus court mais un courant plus fort est nécessaire pour vaincre l'anisotropie.To write a "0", a current (continuous or pulsed) of positive sign, that is to say circulating from top to bottom (hence to the transistor), is circulated in the stack. The electrons see their spin polarized in the layer 123 in the direction (-y). They will transmit their magnetic moment to the moments of the layer 161 whose magnetization will align parallel to that of the layer 123. The layer 163, coupled antiparallel to the layer 161, so will also reorient. During the magnetic moment transfer, the magnetization of the layer 161 will precede around the axis (-y) with a component Mz that will oscillate over time, as shown in FIG. Figure 4B . When the angle of the precession cone exceeds 90 °, the direction of rotation will reverse and the magnetization will realign according to (+ y). The number of precessions required for the reversal depends on the anisotropy of the layer in its plane. When the anisotropy is weak (curves 30 and 32), the inversion requires a large number of oscillations of precessions but a weak critical current. For a stronger anisotropy (curves 31 and 34) the turning time is shorter but a stronger current is needed to overcome the anisotropy.

Comme dit précédemment, l'écriture peut se faire en courant continu ou pulsé. Dans le cas d'un courant pulsé, la durée de l'impulsion doit être suffisamment longue pour que le retournement soit complet. Le contrôle du retournement peut s'effectuer par la mesure de la tension aux bornes de la jonction. Lorsque les aimantations des couches 123 et 161 sont parallèles, la probabilité de transfert des électrons par effet tunnel est grande et la résistance de la jonction est faible. Si le retournement ne s'est pas effectué complètement, la résistance est grande. Par comparaison avec la tension prise aux bornes d'une jonction de référence, on détermine l'état magnétique du dispositif. Dans cette étape de contrôle de l'état magnétique, la couche 123 (fixée par échange) joue le rôle d'analyseur pour sonder l'orientation de la couche libre 161.As said above, the writing can be done in direct current or pulsed. In the case of pulsed current, the duration of the pulse must be long enough for the reversal to be complete. The overturn control can be done by measuring the voltage across the junction. When the magnetizations of the layers 123 and 161 are parallel, the Electron transfer probability by tunnel effect is high and the resistance of the junction is low. If the flipping did not occur completely, the resistance is great. In comparison with the voltage taken at the terminals of a reference junction, the magnetic state of the device is determined. In this magnetic state control step, the 123 (exchange-fixed) layer acts as an analyzer to probe the orientation of the free layer 161.

Pour écrire un "1", on fait circuler un courant de signe négatif comme le montre la figure 3B. En partant de l'état "0", les électrons majoritaires polarisés dans la couche 161 selon (-y) vont traverser la couche 123, alors que les électrons minoritaires polarisés selon (+y) vont s'accumuler devant la couche 123. Ces électrons de spins antiparallèles à la couche 161 vont transférer leur moment magnétique aux moments de la couche 41 et provoquer une précession jusqu'au retournement de l'aimantation de la couche 161 comme montré sur la figure 3B. Cette configuration magnétique correspond à l'écriture d'un "1" et la résistance de la jonction est maximum.To write a "1", a current of negative sign is circulated as shown in FIG. 3B. Starting from the state "0", the polarized majority electrons in the layer 161 according to (-y) will cross the layer 123, while the minority electrons polarized according to (+ y) will accumulate in front of the layer 123. Antiparallel spin electrons at layer 161 will transfer their magnetic moment to the moments of layer 41 and cause a precession until the magnetization of layer 161 reverses as shown in FIG. 3B. This magnetic configuration corresponds to the writing of a "1" and the resistance of the junction is maximum.

Pour la lecture, on envoie un courant dont la densité est inférieure à la densité critique et on compare la tension de sortie à la tension d'une jonction de référence, afin de déterminer l'état magnétique du dispositif.For reading, a current whose density is less than the critical density is sent and the output voltage is compared with the voltage of a reference junction, in order to determine the magnetic state of the device.

Dans un second mode de réalisation, le dispositif comprend trois tri-couches, deux des tri-couches étant disposés de part et d'autre d'une couche isolante, par exemple en alumine (Al2O3). L'un de ces tri-couches a ses directions d'aimantation fixées par couplage d'échange avec une couche antiferromagnétique. Cette couche joue un double rôle de polariseur (à l'écriture) et d'analyseur (à l'écriture et la lecture). Le choix d'un tri-couche permet d'éliminer le couplage magnétostatique sur le second tri-couche et donc de pouvoir utiliser la mémoire sans champ extérieur de compensation. L'autre tri-couche est libre de s'orienter dans la direction de polarisation des spins. Cette couche peut posséder une anisotropie planaire définissant un axe de facile et un axe de difficile aimantation afin de réduire le temps d'écriture. Les épaisseurs des couches magnétiques de ce système sont quasiment égales afin d'éliminer l'effet de champ démagnétisant. Le dispositif comprend encore un polariseur séparé de la jonction tunnel par une couche conductrice non magnétique et formé préférentiellement d'un empilement tri-couche piégé par échange avec une couche antiferromagnétique afin de maintenir sa direction d'aimantation.In a second embodiment, the device comprises three tri-layers, two of the tri-layers being disposed on either side of an insulating layer, by example alumina (Al 2 O 3 ). One of these tri-layers has its magnetization directions fixed by exchange coupling with an antiferromagnetic layer. This layer plays a dual role of polarizer (writing) and parser (writing and reading). The choice of a tri-layer makes it possible to eliminate the magnetostatic coupling on the second tri-layer and thus to be able to use the memory without an external compensating field. The other tri-layer is free to orient itself in the direction of polarization of the spins. This layer may have a planar anisotropy defining an easy axis and a hard magnetization axis in order to reduce the write time. The thicknesses of the magnetic layers of this system are almost equal in order to eliminate the demagnetizing field effect. The device also comprises a polarizer separated from the tunnel junction by a non-magnetic conductive layer and preferably formed of a tri-layer stack trapped by exchange with an antiferromagnetic layer in order to maintain its direction of magnetization.

La figure 5 illustre ce second mode de réalisation. Les trois tri-couches portent respectivement les références 16, 12 et 32. Le troisième tri-couche 32 est séparé du premier 16 par une couche conductrice non magnétique 30. Ce troisième tri-couche comprend deux couches magnétiques 321, 323 séparées par une couche conductrice non magnétique 322. Il repose sur une couche de couplage antiferromagnétique 34 qui fixe l'aimantation dans la couche 323, donc dans la couche 321. Le troisième tri-couche 32 est donc du type piégé, comme le deuxième (12). L'ensemble repose sur un substrat conducteur 36.The figure 5 illustrates this second embodiment. The three tri-layers bear respectively the references 16, 12 and 32. The third tri-layer 32 is separated from the first 16 by a non-magnetic conductive layer 30. This third tri-layer comprises two magnetic layers 321, 323 separated by a layer non-magnetic conductor 322. It is based on an antiferromagnetic coupling layer 34 which fixes the magnetization in the layer 323, therefore in the layer 321. The third tri-layer 32 is thus of the trapped type, like the second (12). The assembly rests on a conductive substrate 36.

La couche 30 séparant le premier et le troisième tri-couches peut être formée à partir d'un métal noble. Son épaisseur est choisie entre 3 et 10 nm pour éviter des couplages magnétiques intempestifs entre les tri-couches 16 et 32.The layer 30 separating the first and third tri-layers may be formed from a noble metal. Its thickness is chosen between 3 and 10 nm to avoid inadvertent magnetic couplings between the tri-layers 16 and 32.

L'écriture des états magnétiques "1" et "O" s'effectue, comme précédemment, par le choix de l'orientation du sens du courant comme le montrent les figures 6A et 6B. L'ajout du troisième tri-couche 32 va stabiliser les états magnétiques et permettre ainsi de réduire la densité de courant critique d'un facteur 2. Dans le cas de l'écriture d'un "0" (figure 6A), le courant polarisé dans la courbe 123 selon (-y) (par rapport à un même trièdre trirectangle Oxyz non représenté) va provoquer l'alignement de la couche 161 par transfert du moment des électrons vers l'aimantation de la couche 161. En sortie de la couche 161, les électrons sont toujours polarisés selon (-y) et se polarisent selon (+y) après passage dans la couche 163, sans provoquer de basculement de la couche 163 à cause de l'échange antiferromagnétique entre les couches 161 et 163 qui est très supérieur au couplage exercé par les électrons. En arrivant au niveau de la couche 321, les électrons majoritaires vont s'accumuler dans les couches 30 et 163, ce qui stabilisera l'orientation de la couche 163. On peut donc considérer que le polariseur 12 agit par transmission d'électrons polarisés alors que le polariseur 32 agit par réflexion d'électrons polarisés.The writing of the magnetic states "1" and "O" is effected, as before, by the choice of the orientation of the direction of the current as shown by the Figures 6A and 6B . The addition of the third tri-layer 32 will stabilize the magnetic states and thus reduce the critical current density by a factor of 2. In the case of writing a "0" ( Figure 6A ), the current biased in the curve 123 according to (-y) (with respect to the same Oxyz trirectangeal trihedron not shown) will cause the alignment of the layer 161 by transfer of the moment of the electrons to the magnetization of the layer 161. At the output of the layer 161, the electrons are always polarized along (-y) and polarize according to (+ y) after passing through the layer 163, without causing the layer 163 to tilt because of the antiferromagnetic exchange between the layers 161 and 163 which is much higher than the coupling exerted by the electrons. Arriving at the level of the layer 321, the majority electrons will accumulate in the layers 30 and 163, which will stabilize the orientation of the layer 163. It can therefore be considered that the polarizer 12 acts by transmission of polarized electrons then that the polarizer 32 acts by reflection of polarized electrons.

Pour l'écriture d'un "1", les rôles des polariseurs sont inversés, mais les effets de stabilisation et d'abaissement de la densité critique demeurent.For the writing of a "1", the roles of the polarizers are reversed, but the stabilizing and lowering effects of the critical density remain.

Le polariseur 32 élimine le champ de couplage magnéto-statique sur la couche 16 et permet aussi d'avoir une direction d'échange identique entre les couches 121 et 323 afin de rendre possible la mise en ordre magnétique des couches antiferromagnétiques d'échange 10 et 34. Il est en effet difficile de définir deux directions d'échange opposées dans un système utilisant un seul type de matériau antiferromagnétique.The polarizer 32 eliminates the magneto-static coupling field on the layer 16 and also makes it possible to have an identical direction of exchange between the layers 121 and 323 in order to make possible the magnetic ordering of the antiferromagnetic exchange layers 10 and 34. It is indeed difficult to define two opposite directions of exchange in a system using a single type of antiferromagnetic material.

La lecture s'effectue comme dans la première variante en injectant un courant de densité inférieure à la densité critique et en comparant la tension lue à la tension d'une jonction de référence.The reading is performed as in the first variant by injecting a current of density less than the critical density and comparing the voltage read to the voltage of a reference junction.

Les deux modes de réalisation qui viennent d'être décrits peuvent être comparés dans le tableau ci-dessous, où :

  • t est l'épaisseur de la couche magnétique à retourner,
  • Ms est l'aimantation à saturation de la couche à retourner, dans le cas de CoFe (Ms=1500 emu/cc)),
  • Hk est l'anisotropie de la couche magnétique à retourner,
  • Jc (écriture) est la densité de courant pour écrire un point mémoire,
  • RAmax est le produit de la résistance par la surface de la jonction tunnel, défini de telle façon que la tension à l'écriture n'excède pas 0,6 V,
  • Jc (lecture) est la densité de courant pour une tension de lecture de 0,3 V avec RAmax,
  • amin est la taille minimale d'un côté du point mémoire (pour un point mémoire carré) avant d'atteindre la limite superparamagnétique.
The two embodiments that have just been described can be compared in the table below, where:
  • t is the thickness of the magnetic layer to be returned,
  • Ms is the saturation magnetization of the layer to be returned, in the case of CoFe (Ms = 1500 emu / cc),
  • Hk is the anisotropy of the magnetic layer to be returned,
  • Jc (write) is the current density to write a memory point,
  • RA max is the product of the resistance of the tunnel junction surface, defined in such a way that the write voltage does not exceed 0.6 V,
  • Jc (reading) is the current density for a reading voltage of 0.3 V with RA max ,
  • a min is the minimum size of one side of the memory point (for a square memory point) before reaching the superparamagnetic limit.

La valeur de amin est calculée d'après la formule : a min = 84 k B T M s H K T

Figure imgb0001

dans laquelle la valeur 84 est calculée en considérant une durée de fonctionnement de la mémoire de 100 ans à une température de 100°C. Mode de réalisation 1 2 t(nm) 5 5 Ms (emu/cc) 1500 1500 Hk effectif (G) 40 40 Jc (écriture) (A/cm2) 3,2E + 05 1,6E + 05 RAmax (Ohm.µm2) 188 375 Jc (lecture) (A/cm2) 1,6E + 05 8E + 04 amin (micron) 0,12 0,12 The value of a min is calculated from the formula: at min = 84 k B T M s H K T
Figure imgb0001

wherein the value 84 is calculated considering a running time of the 100-year memory at a temperature of 100 ° C. Mode of realization 1 2 t (nm) 5 5 Ms (emu / cc) 1500 1500 Effective Hk (G) 40 40 JC (writing) (A / cm 2 ) 3,2E + 05 1.6E + 05 RA max (Ohm.μm 2 ) 188 375 Jc (reading) (A / cm 2 ) 1.6E + 05 8E + 04 a min (micron) 0.12 0.12

On voit, d'après ce tableau, qu'avec l'invention on peut atteindre de faibles densités de courant d'écriture, compatibles avec des jonctions de produit RA raisonnables (>100 Ω.µm2). De tels produits RA peuvent être obtenus, soit par oxydation plasma, soit et de préférence par oxydation naturelle in situ.It can be seen from this table that with the invention it is possible to achieve low write current densities compatible with reasonable RA product junctions (> 100 Ω.μm 2 ). Such RA products can be obtained either by plasma oxidation or, preferably, by natural oxidation in situ.

La figure 7, enfin, montre une mémoire formée d'une matrice de points mémoires adressables par lignes et par colonnes. Chaque point mémoire comprend un dispositif conforme à l'invention, avec un empilement de couches symbolisé par une résistance 60 et un moyen de commutation 70 constitué par un transistor. Chaque empilement est relié à une ligne d'adressage 80 et la base (ou la porte) du transistor à une colonne d'adressage 90. Les lignes 80 sont dites "lignes de bit" et les colonnes 90 "lignes de mot" (ou de digit). Les lignes 80 sont reliées aux sorties d'un circuit d'adressage ligne 85 et les colonnes 90 aux sorties d'un circuit d'adressage colonne 95.The figure 7 finally, shows a memory formed of a matrix of memory points addressable by rows and columns. Each memory point comprises a device according to the invention, with a stack of layers symbolized by a resistor 60 and a switching means 70 constituted by a transistor. Each stack is connected to an address line 80 and the base (or gate) of the transistor to an address column 90. The lines 80 are called "bit lines" and the columns 90 "word lines" (or digit). The lines 80 are connected to the outputs of a line addressing circuit 85 and the columns 90 to the outputs of a column addressing circuit 95.

Lorsqu'une séquence de bits doit être écrite (par exemple 100110), on commande l'adressage d'une colonne par une impulsion apte à ouvrir les transistors de la colonne en question et l'on envoie sur chaque ligne une impulsion de courant ayant une polarité appropriée (dans l'exemple pris respectivement +--++-). Tous les bits se trouvent ainsi écrits dans la colonne de cette mémoire, simultanément.When a sequence of bits has to be written (for example 100110), the addressing of a column is controlled by a pulse able to open the transistors of the column in question and a current pulse is sent on each line having an appropriate polarity (in the example taken respectively + - ++ -). All the bits are thus written in the column of this memory, simultaneously.

Cet adressage multiple est possible grâce à l'invention puisque, comme expliqué dans l'introduction, un point mémoire peut être écrit sans risque d'écriture intempestive sur les points voisins.This multiple addressing is possible thanks to the invention since, as explained in the introduction, a memory point can be written without risk of inadvertent writing on neighboring points.

Quelque part dans la mémoire, par exemple au centre, se trouve une colonne de référence 100, qui permet la lecture. Lorsqu'un courant de lecture circule dans les points mémoires d'une colonne 90, on compare la tension de lecture de chaque point avec la tension lue sur le point mémoire de la colonne de référence appartenant à la même ligne.Somewhere in the memory, for example in the center, is a reference column 100, which allows reading. When a reading current flows in the memory points of a column 90, the reading voltage of each point is compared with the voltage read on the memory point of the reference column belonging to the same line.

Ce mécanisme d'écriture et de lecture par colonne réduit considérablement le temps de cycle de la mémoire.This column write and read mechanism significantly reduces the memory cycle time.

Claims (11)

  1. Magnetic device consisting of:
    • a first magnetic layer called the "anchored" layer (12) which has a fixed magnetisation direction,
    • a second magnetic layer called the "free" layer (16) which has a variable magnetisation direction,
    • an insulating or semiconducting layer (14) which separates the anchored layer from the free layer,
    • means (22, 24) for passing a current of electrons through and perpendicular to the layers,
    • the anchored magnetic layer or the free magnetic layer being able to polarize the spin of said electronics,
    the free magnetic layer (16), at least, consisting of a first tri-layer stack which consists of two magnetic layers (161, 163) with anti-parallel magnetisation, separated by a conducting non-magnetic layer (162), characterized in that the means (22, 24) for passing into the layers and perpendicular thereto an electron current are writing means making an electron current pass through the layers in a first direction and in the opposite direction.
  2. Device in accordance with claim 1, in which the said anchored magnetic layer (12) consists of a second tri-layer stack which consists of two magnetic layers (121, 123) with anti-parallel magnetisation, separated by a conducting non-magnetic layer (122), this second stack being covered with a first layer of anti-ferromagnetic exchange (10) which fixes the direction of magnetisation in the said second tri-layer stack (12).
  3. Device in accordance with claim 2, including additionally a third tri-layer stack (32) formed of two magnetic layers (321, 323) with anti-parallel magnetisation, separated by a conducting non-magnetic layer (322), this third stack (32) being separated from the first (16) by a conducting non-magnetic layer (30), this third tri-layer stack (32) being mounted on a second anti-ferromagnetic exchange layer (34) which fixes the magnetisation in the said third tri-layer stack (32).
  4. Device in accordance with any of claims 1 to 3, in which the two magnetic layers (161, 163), in the first tri-layer stack (16) are of the same thickness.
  5. Device in accordance with any of claims 1 to 3, in which the magnetic layers of the first tri-layer stack (16) and/or the second tri-layer stack (12) and/or the third tri-layer stack (32) are made from a material taken from the group formed by Co, Fe, Ni and their alloys.
  6. Device in accordance with any of claims 1 to 3, in which the conducting non-magnetic layer of the first tri-layer stack (162), and/or the second tri-layer stack (122) and/or the third tri-layer stack (322) is made from a metal taken from the group formed by Ru, Re, Cu, Cr, Pt, Ag.
  7. Device in accordance with either of claims 2 and 3, in which the first anti-ferromagnetic layer (10) and/or the second anti-ferromagnetic layer (34) is made from a Mn-based alloy.
  8. Device in accordance with any of claims 1 to 7, wherein the current of electrons has a density greater than a certain critical density.
  9. Device in accordance with claim 8, including additionally reading means suitable for passing a current of electrons through the layers, with a density less than the said critical density, and means for measuring the voltage appearing at the terminals of the layer stack terminals.
  10. Memory consisting of a matrix of memory cells addressable in rows (80) and columns (90), characterized in that each memory cell consists of a magnetic device (60) in accordance with any of claims 1 to 7, and by a current switching means (70) connected in series with the device (60), each magnetic device (60) being connected to an addressing row (80) and each switching means (70) to an addressing column (90).
  11. Memory in accordance with claim 10, including additionally a reference column (100) and means for comparing the voltage read at the terminals of a device located at the intersection between a specific row (80) and a column (90), and the voltage read at the terminals of the device located on the same row (80) but in the reference column (100).
EP01403132A 2000-12-07 2001-12-05 Tri-layer stack spin polarised magnetic device and memory using the same Expired - Lifetime EP1223585B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0015895A FR2817999B1 (en) 2000-12-07 2000-12-07 MAGNETIC DEVICE WITH POLARIZATION OF SPIN AND A STRIP (S) TRI-LAYER (S) AND MEMORY USING THE DEVICE
FR0015895 2000-12-07

Publications (2)

Publication Number Publication Date
EP1223585A1 EP1223585A1 (en) 2002-07-17
EP1223585B1 true EP1223585B1 (en) 2008-04-16

Family

ID=8857352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01403132A Expired - Lifetime EP1223585B1 (en) 2000-12-07 2001-12-05 Tri-layer stack spin polarised magnetic device and memory using the same

Country Status (5)

Country Link
US (1) US6603677B2 (en)
EP (1) EP1223585B1 (en)
JP (2) JP4398127B2 (en)
DE (1) DE60133622T2 (en)
FR (1) FR2817999B1 (en)

Families Citing this family (301)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093175A (en) * 1983-10-27 1985-05-24 Nippon Denso Co Ltd Injection timing detector of fuel injection timing regulator
DE10059181C2 (en) * 2000-11-29 2002-10-24 Infineon Technologies Ag Integrated magnetoresistive semiconductor memory and manufacturing process therefor
JP4043438B2 (en) * 2001-07-24 2008-02-06 シーゲイト テクノロジー エルエルシー Write head for highly anisotropic media
JP4780878B2 (en) * 2001-08-02 2011-09-28 ルネサスエレクトロニクス株式会社 Thin film magnetic memory device
FR2832542B1 (en) 2001-11-16 2005-05-06 Commissariat Energie Atomique MAGNETIC DEVICE WITH MAGNETIC TUNNEL JUNCTION, MEMORY AND METHODS OF WRITING AND READING USING THE DEVICE
JP3866567B2 (en) * 2001-12-13 2007-01-10 株式会社東芝 Semiconductor memory device and manufacturing method thereof
JP3583102B2 (en) * 2001-12-27 2004-10-27 株式会社東芝 Magnetic switching element and magnetic memory
US6606262B2 (en) * 2002-01-10 2003-08-12 Hewlett-Packard Development Company, L.P. Magnetoresistive random access memory (MRAM) with on-chip automatic determination of optimized write current method and apparatus
US6714444B2 (en) 2002-08-06 2004-03-30 Grandis, Inc. Magnetic element utilizing spin transfer and an MRAM device using the magnetic element
JP4146202B2 (en) * 2002-09-24 2008-09-10 株式会社東芝 Spin tunnel transistor, magnetic reproducing head, magnetic information reproducing system, and magnetic storage device
US6838740B2 (en) * 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6958927B1 (en) 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US8553517B2 (en) * 2002-10-14 2013-10-08 Samsung Electronics Co., Ltd. Magnetic medium using spin-polarized electrons and apparatus and method of recording data on the magnetic medium
AU2003276387A1 (en) * 2002-10-22 2004-05-13 Btg International Limited Magnetic memory device
KR100493161B1 (en) * 2002-11-07 2005-06-02 삼성전자주식회사 Magnetic RAM and methods for manufacturing and driving the same
US6791867B2 (en) * 2002-11-18 2004-09-14 Hewlett-Packard Development Company, L.P. Selection of memory cells in data storage devices
US6956766B2 (en) * 2002-11-26 2005-10-18 Kabushiki Kaisha Toshiba Magnetic cell and magnetic memory
JP2004179483A (en) * 2002-11-28 2004-06-24 Hitachi Ltd Nonvolatile magnetic memory
JP4873338B2 (en) * 2002-12-13 2012-02-08 独立行政法人科学技術振興機構 Spin injection device and magnetic apparatus using the same
JP2011171756A (en) * 2002-12-13 2011-09-01 Japan Science & Technology Agency Spin injection device and magnetic device using the same
US7190611B2 (en) * 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US6829161B2 (en) * 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6847547B2 (en) * 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
KR100615600B1 (en) * 2004-08-09 2006-08-25 삼성전자주식회사 High density magnetic random access memory device and method of fabricating the smae
US6952364B2 (en) * 2003-03-03 2005-10-04 Samsung Electronics Co., Ltd. Magnetic tunnel junction structures and methods of fabrication
KR100542743B1 (en) * 2003-04-22 2006-01-11 삼성전자주식회사 Magnetic random access memory
US6933155B2 (en) * 2003-05-21 2005-08-23 Grandis, Inc. Methods for providing a sub .15 micron magnetic memory structure
US7006375B2 (en) * 2003-06-06 2006-02-28 Seagate Technology Llc Hybrid write mechanism for high speed and high density magnetic random access memory
US6865109B2 (en) * 2003-06-06 2005-03-08 Seagate Technology Llc Magnetic random access memory having flux closure for the free layer and spin transfer write mechanism
JP4966483B2 (en) * 2003-06-25 2012-07-04 パナソニック株式会社 Magnetoresistive element, magnetic head using magnetoresistive element, recording / reproducing apparatus, memory element, memory array, and method for manufacturing magnetoresistive element
JP2005064050A (en) * 2003-08-14 2005-03-10 Toshiba Corp Semiconductor memory device and method of writing data therein
US8755222B2 (en) 2003-08-19 2014-06-17 New York University Bipolar spin-transfer switching
US7911832B2 (en) * 2003-08-19 2011-03-22 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7573737B2 (en) * 2003-08-19 2009-08-11 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US6980469B2 (en) * 2003-08-19 2005-12-27 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
JP2005093488A (en) * 2003-09-12 2005-04-07 Sony Corp Magnetoresistive effect element, its manufacturing method, magnetic memory device, and its manufacturing method
US7161829B2 (en) * 2003-09-19 2007-01-09 Grandis, Inc. Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
KR100568512B1 (en) * 2003-09-29 2006-04-07 삼성전자주식회사 Magnetic thermal random access memory cells having a heat-generating layer and methods of operating the same
KR100615089B1 (en) * 2004-07-14 2006-08-23 삼성전자주식회사 Magnetic random access memory with low switching current
KR100835275B1 (en) * 2004-08-12 2008-06-05 삼성전자주식회사 Methods of operating a magnetic random access memory device using a spin injection mechanism
US7372722B2 (en) * 2003-09-29 2008-05-13 Samsung Electronics Co., Ltd. Methods of operating magnetic random access memory devices including heat-generating structures
US7369428B2 (en) * 2003-09-29 2008-05-06 Samsung Electronics Co., Ltd. Methods of operating a magnetic random access memory device and related devices and structures
JP2005109263A (en) * 2003-09-30 2005-04-21 Toshiba Corp Magnetic element and magnetic memory
US7027320B2 (en) * 2003-10-21 2006-04-11 Hewlett-Packard Development Company, L.P. Soft-reference magnetic memory digitized device and method of operation
US7282755B2 (en) 2003-11-14 2007-10-16 Grandis, Inc. Stress assisted current driven switching for magnetic memory applications
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
US7602000B2 (en) 2003-11-19 2009-10-13 International Business Machines Corporation Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
JP2005166087A (en) * 2003-11-28 2005-06-23 Toshiba Corp Semiconductor integrated circuit device
JP4581394B2 (en) * 2003-12-22 2010-11-17 ソニー株式会社 Magnetic memory
US20050136600A1 (en) 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
JP2005209248A (en) * 2004-01-20 2005-08-04 Hitachi Ltd Magnetic head, and magnetic recording/reproducing apparatus
US7110287B2 (en) 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US7242045B2 (en) * 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US6967863B2 (en) 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US20110140217A1 (en) * 2004-02-26 2011-06-16 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
JP2006148039A (en) * 2004-03-03 2006-06-08 Toshiba Corp Magneto-resistance effect element and magnetic memory
JP2005294376A (en) 2004-03-31 2005-10-20 Toshiba Corp Magnetic recording element and magnetic memory
US6946698B1 (en) 2004-04-02 2005-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM device having low-k inter-metal dielectric
JP4747507B2 (en) * 2004-04-16 2011-08-17 ソニー株式会社 Magnetic memory and recording method thereof
US7233039B2 (en) * 2004-04-21 2007-06-19 Grandis, Inc. Spin transfer magnetic elements with spin depolarization layers
US7057921B2 (en) * 2004-05-11 2006-06-06 Grandis, Inc. Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same
US7088609B2 (en) * 2004-05-11 2006-08-08 Grandis, Inc. Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same
US7576956B2 (en) * 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
KR100660539B1 (en) * 2004-07-29 2006-12-22 삼성전자주식회사 Magnetic memory devices and methods of forming the same
US7221584B2 (en) * 2004-08-13 2007-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM cell having shared configuration
JP4568152B2 (en) * 2004-09-17 2010-10-27 株式会社東芝 Magnetic recording element and magnetic recording apparatus using the same
JP4920881B2 (en) * 2004-09-27 2012-04-18 株式会社日立製作所 Low power consumption magnetic memory and magnetization information writing device
JP2006108316A (en) * 2004-10-04 2006-04-20 Sony Corp Memory element and memory
JP4626253B2 (en) * 2004-10-08 2011-02-02 ソニー株式会社 Storage device
KR100642638B1 (en) * 2004-10-21 2006-11-10 삼성전자주식회사 Methods of operating a magnetic random access memory device with low critical current density
US7149106B2 (en) * 2004-10-22 2006-12-12 Freescale Semiconductor, Inc. Spin-transfer based MRAM using angular-dependent selectivity
US20060092688A1 (en) * 2004-10-29 2006-05-04 International Business Machines Corporation Stacked magnetic devices
JP2006165264A (en) * 2004-12-07 2006-06-22 Sony Corp Memory, magnetic head, magnetic sensor, and method of manufacturing them
JP2006179694A (en) * 2004-12-22 2006-07-06 Sony Corp Memory element
US7170775B2 (en) * 2005-01-06 2007-01-30 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM cell with reduced write current
JP2007027197A (en) * 2005-07-12 2007-02-01 Sony Corp Storage element
JP2007027575A (en) * 2005-07-20 2007-02-01 Toshiba Corp Magnetoresistance effect element and magnetic memory
JP5096702B2 (en) * 2005-07-28 2012-12-12 株式会社日立製作所 Magnetoresistive element and nonvolatile magnetic memory equipped with the same
US7224601B2 (en) 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
JP2007081280A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Magnetoresistance effect element and magnetic memory apparatus
US7777261B2 (en) 2005-09-20 2010-08-17 Grandis Inc. Magnetic device having stabilized free ferromagnetic layer
US7859034B2 (en) * 2005-09-20 2010-12-28 Grandis Inc. Magnetic devices having oxide antiferromagnetic layer next to free ferromagnetic layer
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
JP5120699B2 (en) * 2005-10-03 2013-01-16 日本電気株式会社 Magnetic random access memory and operation method thereof
US7286395B2 (en) * 2005-10-27 2007-10-23 Grandis, Inc. Current driven switched magnetic storage cells having improved read and write margins and magnetic memories using such cells
FR2892871B1 (en) * 2005-11-02 2007-11-23 Commissariat Energie Atomique SPEED POLARIZED ELELECTIC CURRENT FREQUENCY RADIO OSCILLATOR
US7430135B2 (en) * 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
US7732881B2 (en) * 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US8063459B2 (en) * 2007-02-12 2011-11-22 Avalanche Technologies, Inc. Non-volatile magnetic memory element with graded layer
US8058696B2 (en) * 2006-02-25 2011-11-15 Avalanche Technology, Inc. High capacity low cost multi-state magnetic memory
US8018011B2 (en) * 2007-02-12 2011-09-13 Avalanche Technology, Inc. Low cost multi-state magnetic memory
US8508984B2 (en) * 2006-02-25 2013-08-13 Avalanche Technology, Inc. Low resistance high-TMR magnetic tunnel junction and process for fabrication thereof
US20070253245A1 (en) * 2006-04-27 2007-11-01 Yadav Technology High Capacity Low Cost Multi-Stacked Cross-Line Magnetic Memory
US8084835B2 (en) * 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US8183652B2 (en) * 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US20080246104A1 (en) * 2007-02-12 2008-10-09 Yadav Technology High Capacity Low Cost Multi-State Magnetic Memory
US8535952B2 (en) * 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
US20070246787A1 (en) * 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
JP2007273523A (en) * 2006-03-30 2007-10-18 Tdk Corp Magnetic memory and spin injection method
JP4277870B2 (en) 2006-04-17 2009-06-10 ソニー株式会社 Storage element and memory
JP5096690B2 (en) 2006-04-26 2012-12-12 株式会社日立製作所 Magnetic memory cell and random access memory
JP2007294737A (en) 2006-04-26 2007-11-08 Hitachi Ltd Tunnel magnetoresistance effect element, and magnetic memory cell and magnetic random access memory using the same
DE602006013948D1 (en) * 2006-05-04 2010-06-10 Hitachi Ltd Magnetic memory device
JP2007305882A (en) * 2006-05-12 2007-11-22 Sony Corp Memory element and memory
JP5076361B2 (en) * 2006-05-18 2012-11-21 株式会社日立製作所 Semiconductor device
US7502249B1 (en) * 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US7532505B1 (en) * 2006-07-17 2009-05-12 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US7851840B2 (en) * 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
JP5147212B2 (en) * 2006-10-04 2013-02-20 株式会社日立製作所 Magnetic memory cell and magnetic random access memory
TWI449040B (en) 2006-10-06 2014-08-11 Crocus Technology Sa System and method for providing content-addressable magnetoresistive random access memory cells
US7742329B2 (en) * 2007-03-06 2010-06-22 Qualcomm Incorporated Word line transistor strength control for read and write in spin transfer torque magnetoresistive random access memory
JP4682998B2 (en) * 2007-03-15 2011-05-11 ソニー株式会社 Memory element and memory
JP5397902B2 (en) * 2007-03-16 2014-01-22 国立大学法人東北大学 Spin relaxation variation method, spin current detection method, and spintronic device using spin relaxation
US7573736B2 (en) * 2007-05-22 2009-08-11 Taiwan Semiconductor Manufacturing Company Spin torque transfer MRAM device
WO2008154519A1 (en) * 2007-06-12 2008-12-18 Grandis, Inc. Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled
JP4625936B2 (en) * 2007-06-12 2011-02-02 独立行政法人産業技術総合研究所 Random number generator
US7688616B2 (en) * 2007-06-18 2010-03-30 Taiwan Semicondcutor Manufacturing Company, Ltd. Device and method of programming a magnetic memory element
US7957179B2 (en) * 2007-06-27 2011-06-07 Grandis Inc. Magnetic shielding in magnetic multilayer structures
FR2918761B1 (en) * 2007-07-10 2009-11-06 Commissariat Energie Atomique MAGNETIC FIELD SENSOR WITH LOW NOISE.
FR2918762B1 (en) * 2007-07-10 2010-03-19 Commissariat Energie Atomique LOW NOISE MAGNETIC FIELD SENSOR USING LATERAL SPIN TRANSFER.
JP4874884B2 (en) 2007-07-11 2012-02-15 株式会社東芝 Magnetic recording element and magnetic recording apparatus
US7982275B2 (en) * 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
WO2009074411A1 (en) 2007-12-13 2009-06-18 Crocus Technology Magnetic memory with a thermally assisted writing procedure
JP2009158877A (en) 2007-12-28 2009-07-16 Hitachi Ltd Magnetic memory cell and random access memory
US8013406B2 (en) * 2008-01-02 2011-09-06 The Hong Kong University Of Science And Technology Method and apparatus for generating giant spin-dependent chemical potential difference in non-magnetic materials
US7919794B2 (en) * 2008-01-08 2011-04-05 Qualcomm, Incorporated Memory cell and method of forming a magnetic tunnel junction (MTJ) of a memory cell
JP5283922B2 (en) * 2008-02-14 2013-09-04 株式会社東芝 Magnetic memory
JP5455313B2 (en) * 2008-02-21 2014-03-26 株式会社東芝 Magnetic storage element and magnetic storage device
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
EP2109111B1 (en) 2008-04-07 2011-12-21 Crocus Technology S.A. System and method for writing data to magnetoresistive random access memory cells
US8659852B2 (en) 2008-04-21 2014-02-25 Seagate Technology Llc Write-once magentic junction memory array
FR2931011B1 (en) * 2008-05-06 2010-05-28 Commissariat Energie Atomique MAGNETIC ELEMENT WITH THERMALLY ASSISTED WRITING
EP2124228B1 (en) 2008-05-20 2014-03-05 Crocus Technology Magnetic random access memory with an elliptical junction
US7855911B2 (en) 2008-05-23 2010-12-21 Seagate Technology Llc Reconfigurable magnetic logic device using spin torque
JP5339272B2 (en) 2008-06-05 2013-11-13 国立大学法人東北大学 Spintronic device and information transmission method
US8031519B2 (en) 2008-06-18 2011-10-04 Crocus Technology S.A. Shared line magnetic random access memory cells
US8274818B2 (en) 2008-08-05 2012-09-25 Tohoku University Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same
US7881098B2 (en) 2008-08-26 2011-02-01 Seagate Technology Llc Memory with separate read and write paths
US7894248B2 (en) * 2008-09-12 2011-02-22 Grandis Inc. Programmable and redundant circuitry based on magnetic tunnel junction (MTJ)
EP2328194A4 (en) 2008-09-22 2013-07-10 Hitachi Ltd Magnetic recording element, magnetic memory cell, and magnetic random access memory
US7985994B2 (en) 2008-09-29 2011-07-26 Seagate Technology Llc Flux-closed STRAM with electronically reflective insulative spacer
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US8089132B2 (en) * 2008-10-09 2012-01-03 Seagate Technology Llc Magnetic memory with phonon glass electron crystal material
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US8039913B2 (en) 2008-10-09 2011-10-18 Seagate Technology Llc Magnetic stack with laminated layer
US8228703B2 (en) 2008-11-04 2012-07-24 Crocus Technology Sa Ternary Content Addressable Magnetoresistive random access memory cell
US8043732B2 (en) 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US7826181B2 (en) 2008-11-12 2010-11-02 Seagate Technology Llc Magnetic memory with porous non-conductive current confinement layer
KR101255474B1 (en) * 2008-12-10 2013-04-16 가부시키가이샤 히타치세이사쿠쇼 Magnetoresistance effect element and magnetic memory cell and magnetic random access memory using same
US8344433B2 (en) * 2009-04-14 2013-01-01 Qualcomm Incorporated Magnetic tunnel junction (MTJ) and methods, and magnetic random access memory (MRAM) employing same
EP2249350B1 (en) 2009-05-08 2012-02-01 Crocus Technology Magnetic memory with a thermally assisted spin transfer torque writing procedure using a low writing current
EP2249349B1 (en) * 2009-05-08 2012-02-08 Crocus Technology Magnetic memory with a thermally assisted writing procedure and reduced writng field
US8218349B2 (en) 2009-05-26 2012-07-10 Crocus Technology Sa Non-volatile logic devices using magnetic tunnel junctions
US7999338B2 (en) 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions
US8102703B2 (en) 2009-07-14 2012-01-24 Crocus Technology Magnetic element with a fast spin transfer torque writing procedure
US20110031569A1 (en) * 2009-08-10 2011-02-10 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US8913350B2 (en) * 2009-08-10 2014-12-16 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US10446209B2 (en) * 2009-08-10 2019-10-15 Samsung Semiconductor Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US8385106B2 (en) * 2009-09-11 2013-02-26 Grandis, Inc. Method and system for providing a hierarchical data path for spin transfer torque random access memory
US8159866B2 (en) * 2009-10-30 2012-04-17 Grandis, Inc. Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
US8422285B2 (en) * 2009-10-30 2013-04-16 Grandis, Inc. Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
US20110141802A1 (en) * 2009-12-15 2011-06-16 Grandis, Inc. Method and system for providing a high density memory cell for spin transfer torque random access memory
US8199553B2 (en) * 2009-12-17 2012-06-12 Hitachi Global Storage Technologies Netherlands B.V. Multilevel frequency addressable field driven MRAM
US8063460B2 (en) * 2009-12-18 2011-11-22 Intel Corporation Spin torque magnetic integrated circuits and devices therefor
US9130151B2 (en) 2010-01-11 2015-09-08 Samsung Electronics Co., Ltd. Method and system for providing magnetic tunneling junctions usable in spin transfer torque magnetic memories
US8254162B2 (en) 2010-01-11 2012-08-28 Grandis, Inc. Method and system for providing magnetic tunneling junctions usable in spin transfer torque magnetic memories
JP4903277B2 (en) 2010-01-26 2012-03-28 株式会社日立製作所 Magnetoresistive element, magnetic memory cell using the same, and random access memory
WO2011108359A1 (en) * 2010-03-05 2011-09-09 株式会社日立製作所 Magnetic memory cell and magnetic random access memory
US8891290B2 (en) 2010-03-17 2014-11-18 Samsung Electronics Co., Ltd. Method and system for providing inverted dual magnetic tunneling junction elements
US8411497B2 (en) 2010-05-05 2013-04-02 Grandis, Inc. Method and system for providing a magnetic field aligned spin transfer torque random access memory
US8546896B2 (en) 2010-07-16 2013-10-01 Grandis, Inc. Magnetic tunneling junction elements having magnetic substructures(s) with a perpendicular anisotropy and memories using such magnetic elements
US8374048B2 (en) 2010-08-11 2013-02-12 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having a biaxial anisotropy
FR2964248B1 (en) 2010-09-01 2013-07-19 Commissariat Energie Atomique MAGNETIC DEVICE AND READING AND WRITING PROCESS IN SUCH A MAGNETIC DEVICE
JP5742142B2 (en) * 2010-09-08 2015-07-01 ソニー株式会社 Memory element and memory device
FR2965654B1 (en) 2010-10-01 2012-10-19 Commissariat Energie Atomique MAGNETIC DEVICE WITH THERMALLY ASSISTED WRITING
US8399941B2 (en) 2010-11-05 2013-03-19 Grandis, Inc. Magnetic junction elements having an easy cone anisotropy and a magnetic memory using such magnetic junction elements
US8796794B2 (en) 2010-12-17 2014-08-05 Intel Corporation Write current reduction in spin transfer torque memory devices
US8432009B2 (en) 2010-12-31 2013-04-30 Grandis, Inc. Method and system for providing magnetic layers having insertion layers for use in spin transfer torque memories
US9478730B2 (en) 2010-12-31 2016-10-25 Samsung Electronics Co., Ltd. Method and system for providing magnetic layers having insertion layers for use in spin transfer torque memories
EP2477227B1 (en) 2011-01-13 2019-03-27 Crocus Technology S.A. Magnetic tunnel junction comprising a polarizing layer
JP5686626B2 (en) * 2011-02-22 2015-03-18 ルネサスエレクトロニクス株式会社 Magnetic memory and manufacturing method thereof
FR2976113B1 (en) 2011-06-06 2013-07-12 Commissariat Energie Atomique MAGNETIC DEVICE WITH COUPLING EXCHANGE
FR2976396B1 (en) 2011-06-07 2013-07-12 Commissariat Energie Atomique MAGNETIC STACK AND MEMORY POINT COMPRISING SUCH A STACK
US8766383B2 (en) 2011-07-07 2014-07-01 Samsung Electronics Co., Ltd. Method and system for providing a magnetic junction using half metallic ferromagnets
JP2012028798A (en) * 2011-09-14 2012-02-09 Sony Corp Memory
US8570792B2 (en) * 2012-01-24 2013-10-29 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetoresistive random access memory
US8884386B2 (en) 2012-02-02 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM device and fabrication method thereof
US9007818B2 (en) 2012-03-22 2015-04-14 Micron Technology, Inc. Memory cells, semiconductor device structures, systems including such cells, and methods of fabrication
FR2989211B1 (en) 2012-04-10 2014-09-26 Commissariat Energie Atomique MAGNETIC DEVICE WITH THERMALLY ASSISTED WRITING
US8923038B2 (en) 2012-06-19 2014-12-30 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US9054030B2 (en) 2012-06-19 2015-06-09 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
FR2993387B1 (en) 2012-07-11 2014-08-08 Commissariat Energie Atomique MAGNETIC DEVICE WITH THERMALLY ASSISTED WRITING
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US8879205B2 (en) 2012-11-13 2014-11-04 HGST Netherlands B.V. High spin-torque efficiency spin-torque oscillator (STO) with dual spin polarization layer
KR102199622B1 (en) * 2013-01-11 2021-01-08 삼성전자주식회사 Method and system for providing magnetic tunneling juntion elements having easy cone anisotropy
US9379315B2 (en) 2013-03-12 2016-06-28 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, and memory systems
JP6078643B2 (en) * 2013-05-22 2017-02-08 株式会社日立製作所 Spin wave device
US8982613B2 (en) 2013-06-17 2015-03-17 New York University Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates
US9368714B2 (en) 2013-07-01 2016-06-14 Micron Technology, Inc. Memory cells, methods of operation and fabrication, semiconductor device structures, and memory systems
US9466787B2 (en) 2013-07-23 2016-10-11 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
US9608197B2 (en) 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US10454024B2 (en) 2014-02-28 2019-10-22 Micron Technology, Inc. Memory cells, methods of fabrication, and memory devices
US9281466B2 (en) 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
US9269888B2 (en) 2014-04-18 2016-02-23 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9263667B1 (en) 2014-07-25 2016-02-16 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US9337412B2 (en) * 2014-09-22 2016-05-10 Spin Transfer Technologies, Inc. Magnetic tunnel junction structure for MRAM device
US9349945B2 (en) 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
US9768377B2 (en) 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
US9502642B2 (en) 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9520553B2 (en) 2015-04-15 2016-12-13 Micron Technology, Inc. Methods of forming a magnetic electrode of a magnetic tunnel junction and methods of forming a magnetic tunnel junction
US9530959B2 (en) 2015-04-15 2016-12-27 Micron Technology, Inc. Magnetic tunnel junctions
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9257136B1 (en) 2015-05-05 2016-02-09 Micron Technology, Inc. Magnetic tunnel junctions
US9960346B2 (en) 2015-05-07 2018-05-01 Micron Technology, Inc. Magnetic tunnel junctions
JP6763887B2 (en) 2015-06-05 2020-09-30 アレグロ・マイクロシステムズ・エルエルシー Spin valve magnetoresistive sensor with improved response to magnetic field
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US10573363B2 (en) 2015-12-02 2020-02-25 Samsung Electronics Co., Ltd. Method and apparatus for performing self-referenced read in a magnetoresistive random access memory
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
JP2017139399A (en) * 2016-02-05 2017-08-10 Tdk株式会社 Magnetic memory
US9680089B1 (en) 2016-05-13 2017-06-13 Micron Technology, Inc. Magnetic tunnel junctions
US11151042B2 (en) 2016-09-27 2021-10-19 Integrated Silicon Solution, (Cayman) Inc. Error cache segmentation for power reduction
US11119910B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10628316B2 (en) 2016-09-27 2020-04-21 Spin Memory, Inc. Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US11119936B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Error cache system with coarse and fine segments for power optimization
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10679685B2 (en) 2017-12-27 2020-06-09 Spin Memory, Inc. Shared bit line array architecture for magnetoresistive memory
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10516094B2 (en) 2017-12-28 2019-12-24 Spin Memory, Inc. Process for creating dense pillars using multiple exposures for MRAM fabrication
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10388861B1 (en) 2018-03-08 2019-08-20 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US20190296220A1 (en) 2018-03-23 2019-09-26 Spin Transfer Technologies, Inc. Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US11193989B2 (en) 2018-07-27 2021-12-07 Allegro Microsystems, Llc Magnetoresistance assembly having a TMR element disposed over or under a GMR element
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression
CN116096210A (en) * 2023-01-09 2023-05-09 苏州凌存科技有限公司 Magnetic multilayer film and magnetic memory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966323A (en) * 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
EP1187103A2 (en) * 2000-08-04 2002-03-13 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, head, and memory element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243358A1 (en) * 1992-12-21 1994-06-23 Siemens Ag Magnetic resistance sensor with artificial antiferromagnet and method for its production
US5477482A (en) * 1993-10-01 1995-12-19 The United States Of America As Represented By The Secretary Of The Navy Ultra high density, non-volatile ferromagnetic random access memory
US5541868A (en) * 1995-02-21 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Annular GMR-based memory element
US5695864A (en) * 1995-09-28 1997-12-09 International Business Machines Corporation Electronic device using magnetic components
US5640343A (en) * 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
JP4066477B2 (en) * 1997-10-09 2008-03-26 ソニー株式会社 Nonvolatile random access memory device
US5959880A (en) * 1997-12-18 1999-09-28 Motorola, Inc. Low aspect ratio magnetoresistive tunneling junction
FR2774774B1 (en) * 1998-02-11 2000-03-03 Commissariat Energie Atomique TUNNEL EFFECT MAGNETORESISTANCE AND MAGNETIC SENSOR USING SUCH A MAGNETORESISTANCE
US5953248A (en) * 1998-07-20 1999-09-14 Motorola, Inc. Low switching field magnetic tunneling junction for high density arrays
US6055178A (en) * 1998-12-18 2000-04-25 Motorola, Inc. Magnetic random access memory with a reference memory array
JP2001156357A (en) * 1999-09-16 2001-06-08 Toshiba Corp Magneto-resistance effect element and magnetic recording element
JP2001196661A (en) * 1999-10-27 2001-07-19 Sony Corp Magnetization control method, information storage method, magnetic function element, and information storage element
US6473336B2 (en) * 1999-12-16 2002-10-29 Kabushiki Kaisha Toshiba Magnetic memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966323A (en) * 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
EP1187103A2 (en) * 2000-08-04 2002-03-13 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, head, and memory element

Also Published As

Publication number Publication date
JP5148566B2 (en) 2013-02-20
FR2817999B1 (en) 2003-01-10
DE60133622T2 (en) 2009-06-10
EP1223585A1 (en) 2002-07-17
JP2009239317A (en) 2009-10-15
JP4398127B2 (en) 2010-01-13
FR2817999A1 (en) 2002-06-14
DE60133622D1 (en) 2008-05-29
US20020105827A1 (en) 2002-08-08
US6603677B2 (en) 2003-08-05
JP2002305337A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
EP1223585B1 (en) Tri-layer stack spin polarised magnetic device and memory using the same
EP1225593B1 (en) Magnetic device based on spin polarization and rotating magnetization, memory and writing procedure utlilizing said device
EP1808862B1 (en) Magnetic device with magnetic tunnel junction, memory and read and write methods using this device
EP2436035B1 (en) Magnetic memory device using spin polarisation and method of using the same
EP2599138B1 (en) Writeable magnetic element
EP2073210B1 (en) Magnetic memory with heat-assisted writing
EP1430484B1 (en) Magnetic memory with spin-polarized current writing, using amorphous ferromagnetic alloys, writing method for same
EP2140455B1 (en) Magnetic memory with magnetic tunnel junction
EP2633525B1 (en) Writable magnetic element
FR3037185B1 (en) MAGNETIC CONTROLLED MAGNETIC ANISOTROPY SWITCHING DEVICE USING EXTERNAL FERROMAGNETIC POLARIZATION FILM.
EP2218072B1 (en) Thermally-assisted magnetic writing element
EP2599085B1 (en) Magnetic memory element
WO2005086171A1 (en) Magnetic memory with a magnetic tunnel junction written in a thermally assisted manner, and method for writing the same
FR2882459A1 (en) MAGNETORESISTIVE MEMORY ELEMENT HAVING A STACKED STRUCTURE.
FR2889348A1 (en) Magnetoresistive device for e.g. latch, has magnetoresistive elements, in magnetostatic interaction, with soft and hard ferromagnetic layers, traversed by perpendicular current, respectively having anti-parallel and parallel magnetizations
FR2944910A1 (en) VORTEX MAGNETIC MEMORIZATION DEVICE
EP2685458A1 (en) Magnetic device with thermally assisted writing
EP1419506A2 (en) Control device for reversing the direction of magnetisation without an external magnetic field
EP2681739B1 (en) Magnetic device and method for writing and reading an item of information stored in such a magnetic device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021219

AKX Designation fees paid

Designated state(s): DE GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 20061222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 60133622

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201209

Year of fee payment: 20

Ref country code: GB

Payment date: 20201217

Year of fee payment: 20

Ref country code: IT

Payment date: 20201210

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60133622

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20211204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211204