EP1218105B1 - Structured reaction substrate - Google Patents

Structured reaction substrate Download PDF

Info

Publication number
EP1218105B1
EP1218105B1 EP00966127A EP00966127A EP1218105B1 EP 1218105 B1 EP1218105 B1 EP 1218105B1 EP 00966127 A EP00966127 A EP 00966127A EP 00966127 A EP00966127 A EP 00966127A EP 1218105 B1 EP1218105 B1 EP 1218105B1
Authority
EP
European Patent Office
Prior art keywords
reaction substrate
sample
substrate according
compartment
base portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00966127A
Other languages
German (de)
French (fr)
Other versions
EP1218105A1 (en
Inventor
Susanne Brakmann
Helmut Peuker
Wolfgang Simm
Ulrich Kettling
Andre Koltermann
Jens Stephan
Thorsten Winkler
Klaus DÖRRE
Manfred Eigen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Bayer Pharma AG
Original Assignee
Evotec OAI AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evotec OAI AG filed Critical Evotec OAI AG
Publication of EP1218105A1 publication Critical patent/EP1218105A1/en
Application granted granted Critical
Publication of EP1218105B1 publication Critical patent/EP1218105B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric

Definitions

  • the invention relates to a reaction substrate for recording and / or manipulation of a large number of separate ones Specimens that are used in particular for a structured reaction substrate forms microscopic sample amounts, and uses of the reaction substrate.
  • HTS high throughput screening
  • reaction substrate is shown in WO 95/01559.
  • the bottoms towards the bottom are at least partially porous.
  • These reaction substrates allow Although examinations from both sides, have Disadvantages with regard to the reproducibility of the production of the individual recesses and the manageability of the Reaction substrate.
  • covering the recesses is provided is, it must be mechanically clamped, glued or be bonded.
  • DE-OS 197 52 085 describes a reaction substrate that is easier to manufacture for microscopic examinations of a variety of Samples known to be made using injection molding technology and / or hot stamping formed sample compartments.
  • a disadvantage of this reaction substrate is that it is microscopic Examinations only from one side of the substrate which the sample compartments are open can be carried out.
  • this reaction substrate is not general for HTS process can be used.
  • the structure of a microsystem is known from WO 99/19717, at the at least one flexible, micro-structured film as a laminate is arranged between solid supports.
  • the film has application-dependent formed microstructures, in which if necessary Electrodes are integrated and in cooperation with form compartments for fluidic samples.
  • This Stacking technology is again disadvantageous because of separate measures to connect the carrier to the film must be taken that affect the handling of the samples or the samples themselves.
  • a process for the production of microstructures on a metal surface is described in WO 97/29223.
  • the metal surface is through a photolithographically structured polymer layer edited through. With this technique it will However, the problem of covering microstructures has not been solved either.
  • Other structuring techniques for metal materials or semiconductors are described in EP 869 556, WO 97/13633 and WO 98/09745.
  • a general disadvantage of the conventional reaction substrates for use in microscopy concerns their relatively thick, irregular and / or sagging floors.
  • the floors of the conventional reaction substrates can be made of different materials, z. B. glass. Typical glass thicknesses are around 500 ⁇ m. But it can also be pronounced, unreproducible Variations in the soil (e.g. over 400 ⁇ m) occur.
  • the focal length of immersion objectives is typical limited to 250 to 300 ⁇ m.
  • a cover slip of around 150 microns still remains a permissible Variance of the soil from around 100 to 150 ⁇ m to reproducible, continuous measurements on the reaction substrate without constant readjustment of the position of the lens in a direction perpendicular to the plane of the reaction substrate (hereinafter referred to as the z-direction).
  • It is the object of the invention to provide an improved reaction substrate provide with the disadvantages of conventional Reaction substrates are avoided, in particular has a simple structure, among those interested Reaction conditions are inert as well as easy with any Structures can be produced and are easy to handle.
  • the new Reaction substrate in particular should also be reusable several times or be recyclable.
  • the object of the invention is in particular to provide an improved reaction substrate, sample handling and analysis when used, z. B. with a Microscope, especially with a confocal microscope, simplified become.
  • the object of the invention is also a Process for producing the reaction substrate and a tool to provide for its implementation.
  • a structured reaction substrate that by a composition of one characterized below Sample carrier (compartment layer) with a fixed Bottom part is formed on which the sample holder independently liable.
  • the bottom part is preferably made of glass, plastic, Metal or a semiconductor material. It essentially forms one flat, smooth surface to which the sample carrier adheres is.
  • a particular advantage of the reaction substrate according to the invention is that the compartment layer is essentially damage free is separable from the bottom part.
  • the compartment layer from the base plate e.g. one Cover glass
  • the compartment layer from the base plate can be removed in such a way that they can be significant loss of shape, adhesion and / or flexibility can be used again.
  • the compartment layer with a new or cleaned Base plate by light, e.g. B. manual, print to a new one Reaction substrate connected its tightness completely the tightness of that previously formed with the compartment layer Reaction substrates corresponds.
  • An essentially damage free one Detachment of the compartment layer means that the Functionality of the compartment layer by the detachment for later applications remain unchanged.
  • the compartment layer can preferably be lifted off the bottom part by lifting off the compartment layer at one corner from the bottom part, while this at its four corners is held.
  • the compartment layer is on the raised corner bent up and unrolled over the bottom part, whereby the compartment layer is essentially residue-free from the Bottom plate is separated.
  • a particular advantage of the invention is that this takes off and thus reuse as many times as possible. Experimentally, a 50-fold Reuse can be confirmed without loss of functionality.
  • this is Reaction substrate designed for microscopic examinations.
  • the bottom part is made of a transparent material (e.g. Glass) with an application-specific thickness. It will be the filing the sample holder on a cover glass known per se preferred for microscopy.
  • the thickness of the cover slip is preferably a few hundred micrometers ( ⁇ m), particularly preferably around 150 ⁇ m.
  • Microscope is preferably a confocal Microscope.
  • the confocal microscope is preferred in conjunction with detection technologies based on the detection of fluorescence based, combined.
  • Those according to the invention are particularly suitable Reaction substrates for fluorescence correlation spectroscopy, Fluorescence coincidence analysis, fluorescence distribution analysis, Fluorescence lifetime measurements, Fuorescence energy transfer analysis or fluorescence polarization measurements using confocal microscopes.
  • the reaction substrates according to the invention are therefore suitable very good for single molecule detection.
  • a sample carrier is provided in the form of a flexible compartment layer with recesses to form a predetermined compartment structure, in which the compartment layer consists of a viscoelastic polymer composition which is self-adhesive on glass, plastic, metal or semiconductor substrates.
  • the compartment layer is a dimensionally stable mat which can be produced with the aid of a simple impression process, the material of which has an adhesive connection, for example even with a slight manual contact pressure of a few grams per cm 2 . B. by electrostatic forces and / or van der Waals forces, with one of the substrates mentioned.
  • the compartment layer preferably comprises essentially solvent-free natural or synthetic rubbers or compositions composed of these.
  • the polymer composition of the compartment layer is particularly preferably formed from adhesive and solvent-free natural and synthetic rubbers.
  • the compartment layer is preferably free of additives such as resins, plasticizers and / or antioxidants.
  • the compartment layer of the reaction substrate according to the invention comprises silicone rubber.
  • the recesses for the formation of the compartment structures are through holes through the compartment layer or on one side wells worked into the compartment layer. It will closed compartment structures in the form of sample reservoirs or storage pots and / or open compartment structures in the form of those running in the layer plane of the sample carrier Channels formed.
  • the sample reservoirs, storage pots and channels are also referred to below as sample compartments.
  • the compartment structures form a multitude of matrix-like recesses arranged in straight rows and columns (sample reservoirs), the grid dimension of the matrix arrangement preferably the arrangement of sample reservoirs (so-called wells) from Corresponds to micro and nanotiter plates.
  • Reaction substrate is the compartment layer with manipulation and examination facilities.
  • these include in particular fluid lines for feeding the sample compartments formed by the compartment structures or for deriving substances from these, sensor devices for Detection of predetermined sample properties in the sample compartments, Piezo pumps for conveying fluid flows and / or Electrode devices which are used to apply the samples in the sample compartments with electric fields are.
  • a fluid line is, for example, through a in the layer plane of the compartment layer extending capillary, which from the edge of the reaction substrate into one certain sample compartment.
  • sensor devices For example, temperature, pH or conductivity sensors.
  • the Electrode devices are preferably made by electrode strips formed on the walls of the sample compartments extend.
  • the compartment structures in a reaction substrate according to the invention or form sample carriers according to preferred embodiments Microstructures with characteristic dimensions in the area from 500 nm to 1.5 mm.
  • the stack structure consisting of the bottom part and the sample carrier be modified in such a way that on the sample carrier a cover is attached to the side opposite to the base part which in turn becomes relative through independent attachment is fixed to the sample holder.
  • the cover can be rigid Material like the bottom part or through a flexible. foil be educated.
  • the cover may also have predetermined openings to have access to the compartment structures.
  • the stack construction in sandwich form gives the reaction substrate additional Stability.
  • the cover serves to prevent the Evaporation of liquids introduced.
  • the compartment layer is formed from several separate parts that are on a common bottom part to form an inventive Reaction substrates are arranged. You can also have several Compartment layers bonded together as a stack to build a three-dimensional fluidic microsystem.
  • an impression tool with the desired polymer material of the compartment layer in solution State filled and then the solvent by annealing and / or drying, preferably at room temperature, from the filling withdrawn or a crosslinking of the polymer composition brought about.
  • the impression tool consists in particular of a structured base plate and a counter plate, 'the liquid-tight be held together.
  • the base plate carries protruding structures according to the desired compartment structures in the sample holder. These protruding structures protrude from the base plate to or in depending on the application the counter plate (formation of through holes) or up to a height at a distance from the counter plate (formation of depressions).
  • the counter plate is preferably in the form of through holes a coating facing the base plate, e.g. B. made of PTFE, Mistake.
  • the individual components of the impression device are assembled via detachable plug or screw connections. After solvent removal or crosslinking of the polymer composition these connections are loosened and the dried one firm, dimensionally stable compartment layer as a sample carrier Impression tool removed.
  • the sample carrier or the reaction substrate according to the invention are for the manipulation and / or examination of any liquid Samples with characteristic sample volumes e.g. B. in the area from 1 nl to 10 ⁇ l.
  • the liquid samples can in particular solutions of predetermined reaction partners and / or Suspensions include those that are synthetic in a suspension liquid or contain biological objects.
  • To the one Reaction substrate manipulated objects count in particular Solid particles (so-called beads) as synthetic objects and biological cells or cell components, microorganisms, Viruses and biologically relevant macromolecules as biological objects.
  • the invention has the following advantages Reaction substrates or sample carriers can be used with simple Averaging with an essentially pressure-free tool be mass-produced.
  • About the design of the Mask or imprint form of the tool is any format design sample compartments from macro to nano sizes possible.
  • Compartment structures are known processing techniques for glass or semiconductors, such as. B. the LIGA process or conventional etching.
  • the compartment structures can be precisely positioned over the entire thickness of the compartment layer.
  • the structures can be in the Layer-level characteristic dimensions in the sub-micrometer range and perpendicular to it in the mm range.
  • the compartment structures can be of any format, e.g. B. round, square, rectangular or with more complicated geometric Shapes to be trained.
  • the production of the compartment layer made of a viscoelastic polymer has several Benefits.
  • the attachment of the sample holder is on compared to a base part by simply pressing it conventional sandwich constructions with mechanical clamping devices or laminate connections simplified.
  • the material of the compartment layer in particular when using silicone rubber, due to its excellent properties in the form that unspecific adsorption does not occur. This is particularly important for miniaturized samples.
  • the sample carrier is under the reaction conditions of interest for applications in medicine, biochemistry and molecular Biotechnology inert.
  • the biologically inert material enables biological dressing, cultivation and measurement Samples or substrates in the reaction substrates or sample carriers.
  • the sample carrier material also allows after the actual use, cleaning in a bath or a dishwasher with conventional cleaning agents or solvents, without the shape or stability of the sample carrier be adversely affected.
  • the sample carrier is essentially without loss of shape and without influencing its adhesive properties autoclavable and sterilizable. By simply pulling it off from the bottom part the sample carriers are reusable.
  • the reaction substrate according to the invention from the bottom part with attached Sample holder has special advantages with regard to the Structure of the reaction substrate, the sealing of the sample compartments and the mutual alignment of the sample compartments.
  • the sample holder is pressed evenly with a defined, e.g. B. manually applied pressure with the bottom part connected.
  • the sample holder can be used without a frame nevertheless allows, when applying alignment marks, a exact spatial orientation and positioning, e.g. in relation on a microscope or a sample feeder.
  • the Sealing of the sample compartments by continuous recesses are formed in the compartment layer, opposite the bottom part is made without additional sealants or adhesives. Influencing the biochemical reactions in the compartments is excluded by such means.
  • the adhesive bond between the sample holder and the bottom part and the cover allows the planarity of larger areas Reaction substrates or sample carriers with characteristic Dimensions up to 118 mm • 82 mm.
  • Over the whole Surface area of the bottom portion can vary sample chamber positions in the z direction (perpendicular to the sample carrier plane) preferably to values less than 250 ⁇ m, particularly preferred are kept smaller than 150 ⁇ m, in particular smaller than 100 ⁇ m. This is of particular advantage for microscopic examinations. It is during the measurement of a reaction substrate not required, the z position of the microscope objective is running readjust.
  • reaction substrates according to the invention are therefore very suitable for use in test procedures with high Sample throughput (so-called high throughput screening, HTS) in biotechnical and / or chemical research and development, since the time-consuming readjustment, e.g. B. microscope objectives, in the z direction, not applicable.
  • HTS high throughput screening
  • the stability of the reaction substrate is as high as in conventional sample chamber structures, but according to the invention dispense with additional adhesives or clamps can be. The stability is when the cover is applied still significantly increased.
  • the reaction substrate has a wide range of uses, depending on the requirements, a suitable floor part can be used as a base for the sample holder.
  • the Bottom part can be freely varied in terms of material and thickness. Glass of any kind is preferably used as the transparent base part Starch, e.g. B. with cover glass thickness, for use in of microscopy.
  • the bottom part can be made of UV-permeable Quartz glass exist. It has excellent optical properties and is neither chemically modified by the sample carrier still physically stressed.
  • the impression tool has the advantage of one simple, modular structure.
  • the tool can go through Change the mask or impression form to the desired one Requirements are adjusted. It is alike for applications in the laboratory or in mass production suitable.
  • any Structures can be produced without any special effort. This is a special advantage over the conventional ones Techniques for structuring glass or semiconductors.
  • the invention is described below with reference to a reaction substrate with a microstructured sample holder for Handling of biological samples described.
  • the invention is but not limited to applications where microscopic small sample amounts are manipulated in microstructures.
  • the invention is not limited to those illustrated Forms of sample compartments limited. Depending on the application can also use any other shapes with straight or curved walls of the sample compartments can be realized.
  • Figure 1 illustrates in a schematic perspective view Reaction substrate with a sample carrier according to the invention.
  • Various compartment structures are on the sample carrier and additional devices shown that are application-dependent individually or can be provided simultaneously.
  • the reaction substrate 100 comprises the base part 10 and the sample carrier 20.
  • the base part 10 is, for example, a flat glass plate with a Thickness corresponding to the thickness of coverslips for use in microscopy (around 150 ⁇ m) and an area of around 120 mm • 70 mm.
  • the bottom part 10 can also by any other body with a substantially smooth, flat or curved surface are formed. Preferably owns the bottom part has an essentially smooth, flat surface.
  • the sample carrier 20 comprises a compartment layer 21 (mat) with compartment structures 30.
  • the compartment layer 21 is preferably made of silicone rubber and has one Thickness from around 0.5 mm to 4 mm.
  • the mat can be a tab 22 for pulling the sample carrier 20 from the bottom part 10 and / or alignment marks 23 for Position the sample carrier 20 relative to a measuring or Sample loading device may be provided.
  • the adjustment marks 23 are, for example, punctiform or cross-shaped recesses in the surface of the sample carrier 20, which if necessary with an additional marker substance (e.g. Fluorescent dye) are provided.
  • the adjustment marks have characteristic dimensions that are significantly smaller than the dimensions of the compartment structures 30 can.
  • the silicone rubber is, for example, polydimethylsiloxsan (PDMS, Manufacturer Wacker-Chemie GmbH, designation M 4600).
  • PDMS polydimethylsiloxsan
  • M 4600 Manufacturer Wacker-Chemie GmbH
  • elastomers elastomers
  • the molecular chains (carbon chains) are loose elastomers cross-linked so that the elastomers are rubber-elastic. That preferred
  • the silicone used is a plastic from the group of elastomers and consists mainly of silicon and Oxygen. When uncrosslinked, the silicones are oil-like, water-clear and heat-resistant. Form in a networked state the silicones a silicone rubber.
  • the compartment structures 30 include closed ones in detail Sample reservoirs 31 in the form of through holes 31a or depressions recessed in the surface of the sample carrier 31b (diameter e.g. around 200 ⁇ m to 1.5 mm) or in the layer plane of the sample carrier is straight, curved or branching channels 32.
  • the reference symbol 33 refers to so-called stock pots, which are like the sample reservoirs 31 for sample collection and delivery, but with larger volumes are designed.
  • the manipulation and examination devices 40 comprise for example, a fluid line in the form of at least one capillary 41, at least one electrode 42 and / or at least one Sensor 43, in the layer plane of the sample carrier 20 the walls of the compartment structures 30 or in the compartment structures 30 are arranged.
  • the capillary 41 can e.g. with a sample or reagent delivery system (not shown). It is made during manufacture of the sample carrier 20 (see below) embedded in this or subsequently inserted into the sample holder 20.
  • the electrodes are built in the way it is from microsystems technology of microelectrodes for electroosmotic pumping processes, Manipulation of particles using negative Dielectrophoresis or particle processing, such as.
  • B. Electroporation on biological cells is known.
  • the Electrodes or their leads are preferably used during the manufacture of the sample carrier 20 embedded in this or on its inner surfaces (walls of the compartments) arranged.
  • Figure 1 also shows a cover 50.
  • the cover 50 is no mandatory feature of the reaction substrate according to the invention. It is intended depending on the application and consists of how the base part 10 made of a solid plate (e.g. made of glass) or from a flexible cover film. It can be provided be that the cover 50 has openings 51 corresponding to the positions which has compartment structures 30. The openings 51 serve to load sample reservoirs 31 or Storage pots 33 or the sample entry in the channels 32. You can with an additional (not shown) film as Evaporation protection must be closed.
  • the compartment layer 21 is a flexible one Mat made of silicone rubber (e.g. Elastosil M 4600 A + B, Manufacturer Wacker-Chemie GmbH, Germany). She has one Area of 118 mm x 82 mm and a thickness of 4 mm.
  • the sample reservoirs 31 (partially shown) are matrix-like in arranged even rows and columns in the format 48 ⁇ 32 and each have a center-to-center distance of 2.25 mm. This corresponds to the standard format for microtiter plates with 1536 Wells.
  • the diameter of each sample reservoir 31 is 1.5 mm.
  • the reference numeral 23 refers to an alignment mark, which also in this embodiment by a Recess how the sample reservoir is formed and a Can record reference sample.
  • the sample carrier 20 illustrated in FIG. 2 or the compartment layer 21 is with a bottom part (not shown) connected, preferably the same area dimensions as the Has compartment layer 21.
  • the bottom part is preferred a cover slip with a thickness of around 150 ⁇ m.
  • the following is the production with reference to Figures 3 to 5 of a reaction substrate or sample carrier according to the invention by casting the compartment layer in an impression tool explained.
  • the figures show the impression tool in a perspective phantom view or pulled apart in Perspective or side view.
  • the impression tool 200 exists basically from a closed container with an inner one Cavity according to the outer shape of the desired compartment layer or with inner surfaces, the projections according to the desired compartment structures.
  • the container is modular for universal use of a base plate 60, an intermediate plate 70 and one Counter plate 80 constructed, which are connected to each other in a liquid-tight manner can be.
  • the basic, intermediate, and counter plates releasably connected together.
  • the base plate 60 carries on the inside of the impression tool 200 facing side protrusions for structure formation in the compartment layer. Aside from the tabs the surface of this inner side is uniform and smooth educated.
  • the projections include Pins 61 arranged in a matrix (partially shown) with a diameter corresponding to the desired one Diameter of the sample reservoirs 31 (see Fig. 2).
  • the pencils 61 are in corresponding recesses on the inside the base plate 60 inserted.
  • the base plate and the pins are preferably made of metal (e.g. stainless steel or Aluminum).
  • For the ledges to structure formation can but also other materials such. As silicon or glass be used. These materials can be used in themselves known, special molding techniques (e.g.
  • the base plate 60 have a separate mask insert.
  • Figure 4 shows also the metal pin 61a, which is used to form the alignment mark 23 (see Fig. 2) is provided.
  • the intermediate plate 70 is a spacer which is the thickness the compartment layer (silicone mat) determined and its Internal dimensions, the outer dimensions of the compartment layer.
  • the intermediate plate 70 has a filling opening 71 which interacts with the filler neck 90 (see below), and Outlet openings 72 equipped.
  • the outlet openings 72 serve to discharge displaced air or excess Layer material from the impression tool 200.
  • the intermediate plate 70 is not a mandatory feature of an invention Footprint tool.
  • the function of the spacer can alternatively also through appropriate structures (surrounding steps) on the base plate and / or the counter plate.
  • the counter plate 80 is the end of the impression tool 200 compared to the base plate 60. It is also one Metal plate. Pointing to the inside of the impression tool 200 is a frame 81 with a plastic insert in the counter plate 80 82 arranged.
  • the plastic insert 82 is one Layer of elastically deformable plastic with a thickness of around 10 mm. It is preferably made of PTFE.
  • the plastic insert 82 has recesses 83 that lead to the projections on the base plate 60 are complementary. In the illustrated Examples are 82 1536 holes in the plastic insert (partially shown) for receiving the metal pins 61 in Assembled state of the impression tool 200 provided. The introduction of the complementary recesses is not mandatory. If the ledges on the Base plate 60 is sufficiently stable or the plastic insert 82 is sufficiently easily deformable so that when assembled Condition of the impression tool 200 the projections are not damaged can be on separate recesses in the plastic insert 82 can be dispensed with.
  • the reference numeral 20 refers to the finished sample carrier (According to Figure 2), which with an impression tool 200 according to the Figures 3 to 5 is produced.
  • the recesses 83 completely drilled through in the plastic insert 82 are and also in corresponding recesses 84 in continue the counterplate 80. These openings serve the Escape of displaced air or excess layer material.
  • the filler neck 90 is on the outside of the composite impression tool 200 attached to the fill opening 71. He serves that Introducing the dissolved polymer material into the composite Mold.
  • the impression tool 200 is fastened with mounting pins 62, 63, 64, 65 held together by appropriate holes the corners of the base, intermediate and counter plates.
  • Fixing the parts is a screw connection (in detail not shown) provided.
  • outer Clamping devices or a separate frame to hold together the plates may be provided.
  • the impression tool 200 can be modified as follows. in the A metal frame can additionally be provided inside the intermediate plate 70 be attached, the desired external dimensions of the compartment layer owns and with this also for later use stays connected.
  • the pins 61 can be at their ends for relief in the introduction to the corresponding recesses be rounded in the base or counter plate. to Integration of the manipulation mentioned with reference to FIG. and examination devices in the sample carrier 20 can be provided with the intermediate plate 70 accordingly To provide brackets for these additional facilities.
  • brackets include passage openings in the frame formed by the intermediate plate 70 from the inside of the Impression tool 200 to the outside, each with fixations (e.g. terminals) for the respective additional devices are equipped. After all, it is not imperative that all structures of the desired compartment layer actually as protrusions on the base plate 60 are trained.
  • the finished sample holder can easily be used can be provided with additional structures (e.g. drilling of the stock pots 33).
  • the impression tool is used to manufacture the sample holder 200 composed.
  • the pins 61 are in the Base plate 60 inserted.
  • the base, intermediate and counter plates are assembled so that the pins 61 into the recesses 83 protrude into the plastic insert 82. In this way there is an essentially closed on all sides Container, between the side plates (base and counter plates) the pins 61 extend.
  • the guide pins 62 to 65 are e.g. B. tightened with wing nuts.
  • the composite Tool is aligned with vertically Plates placed upright.
  • the filling opening 71 has up.
  • the impression tool 200 is then passed through the filling opening 71 with a solution of the desired polymer composition filled. This is preferably done directly in with a syringe the fill opening 71 or using the filler neck 90.
  • the filling takes place as slow running in avoiding of splashes or swirls, so that the inside of the impression tool 200 is filled as uniformly as possible.
  • the polymer composition is essentially pressure-free in the Impression tool filled.
  • the filling takes place until the dissolved polymer composition from the outlet openings 72 oozes out. These are then closed, for example, with an adhesive tape. After closing, there will be a little more Refilled material.
  • the polymer composition is then dried or crosslinked preferably at room temperature. This can, for example, take around 8 to 12 hours.
  • the solvent withdrawal or the crosslinking of the polymer composition be accelerated by tempering.
  • a particular advantage of using silicone rubber here is that this peeling off with no problems and can be done without damaging the sample holder.
  • Crosslinking takes place when the polymer Elastosil M is used 4600 preferably at room temperature, but can also be used at higher ones Temperatures are carried out in a drying cabinet or an oven become.
  • Crosslinking is essentially chemical Networking, where necessary in the presence of a Catalyst carried out a polymerization reaction becomes. In the case of other polymers, the crosslinking takes place in the specified cross-linking temperature.
  • compartment structures e.g. storage pots
  • additional manipulation and connect examination facilities e.g. storage pots
  • one chemical post-treatment of the surface of the sample carrier possible.
  • the finished sample holder is then placed on a bottom part applied and with this by simple manual pressing connected.
  • FIG. 6 first shows one Size comparison between a reaction substrate according to the invention or a sample carrier 20 (left part of the figure) and a conventional sample carrier 20 'made of silicon is made.
  • the sample carrier 20 carries a matrix arrangement of 15 mm overall around 600 funnel-shaped compartments (see below). Each compartment has a characteristic Cross-sectional dimension of around 0.5 mm.
  • the conventional one Silicon sample carrier 20 ' on the other hand, has a considerably coarser one Raster, which also with complex processing techniques was produced.
  • Figure 7 shows an enlarged section of the sample holder 20. This image was taken with an inverted microscope recorded on a CCD camera.
  • the sample carrier 20 carries the compartments 34 arranged in straight rows and columns. These are located on the surface of the sample carrier 20 cross-sectional shape tapering into the compartment layer like an inverted, truncated pyramid. At the Soil the compartments have a characteristic side length, which is approximately 1/3 of the top edge length.
  • the floor which is shown brightly, is created by the common floor part 10 (see Fig. 1) formed.
  • the compartment layer 21 of the sample carrier 20 becomes complete from the compartments punctured.
  • a sample carrier according to Figures 6 to 8 is with a correspondingly adapted impression tool analogous to that under Produced with reference to Figures 3 to 5 described method.
  • the protrusions on the base plate are in the impression tool then not through inserted pins, but pyramid-shaped formed by mechanical milling.
  • the compartment layer 21 is on a glass bottom part adhered.
  • the microscopic measurement of the samples in the compartments takes place from the side of the bottom part 10 through the lower smaller openings in the compartment layer 21.
  • the edge length the lower openings are each around 150 ⁇ m.
  • Figure 8 shows details of the between the compartments formed webs.
  • the Compartment layer shaped so that the walls between the Compartments 34 in the row direction continuous webs 35 and Form webs 36 interrupted in the column direction. Between the ends of the interrupted webs 36 and the adjacent one continuous web 35 forms an overflow 37.
  • the Overflow 37 allows a fluid connection to be made between neighboring compartments without trespassing over the top surface of the sample carrier 20.
  • the arrangement the overflows can be modified depending on the application his.
  • FIG. 9 shows different designs of channel structures shown enlarged in a sample carrier according to the invention.
  • the channels 32 are generally open in the layer plane Sample compartments or compartment structures whose Expansion significantly larger in one direction than in one are perpendicular to this. Channels are in the sample holder molded by using a mask shape to make it web-shaped projections on the base plate of the impression tool be used.
  • the channels can be straight or curved individually or branching or with each other run together. Depending on the design of the sample holder closed channels can even be formed, if the channel floor itself is part of the sample holder, the corresponding compartment structures are not complete go through the compartment layer.
  • FIG. 9A shows a channel structure with a plurality of channels 32a to 32c, which are connected at a mixing cross 32d. On there are storage pots 33a to the channel ends 33d.
  • the reference symbol 32e indicates a constriction point.
  • the constriction 32e can be flow mechanically through barriers (arched channel wall) or electrically through electrical field barriers are formed, for example around the fluid flow to delay before this area and take measurements there on suspended particles in the fluid flow.
  • FIG. 9B A modification is shown in Figure 9B. Two sub-channels 32a, 32b connect in a common channel 32c. This Structure is used to mix two fluid flows into one single fluid flow. The angle ⁇ between the subchannels 32a, 32b is application dependent to achieve uniformity Flow set at the mixing point 32d.
  • Figure 9C A further modification of structures for mixing the fluid flows is in Figure 9C as a double cross arrangement with several Subchannels illustrated in two mix points 32d flow out.
  • the meander shape 32f according to FIG. 9D serves to create a particularly long measuring distance. Between the storage pots 33a to 33c on the one hand and the storage pot 33d extends long, sinuous channel in an area that, for example, forms a target for illumination for fluorescence measurements.
  • the reaction substrates or sample carriers according to the invention have particular advantages in terms of training the Channel structures.
  • any Channel profiles are prepared.
  • Channels of this type can be down to channel widths of around 6 ⁇ m with conventional precision mechanical tools and produce reproducibly.
  • Projections can be made in the channels or edges are incorporated, which is an improved Mixing several fluid flows when merging allow multiple channels.
  • the channels can be with Electrodes for measuring the properties of fluid flows or to manipulate it on the basis of electroosmosis, with sensors or temperature control elements and also with Blocking or valve elements as well as piezo pumps his.
  • FIG. 10 Another embodiment of the invention with a macroscopic Compartment structure is in Figure 10 in top and bottom Illustrated sectional view.
  • An inventive reaction substrate or an inventive one Sample carrier 20 can also be used with a single chamber compartment 38 be equipped.
  • the compartment layer 21 is just a ring of the polymer composition used in each case, z. B. silicone rubber. This ring sticks between a bottom part 10, e.g. B. a glass plate, and one Cover 50 so that a closed, layered Cuvette e.g. B. is formed for fluorescence spectroscopy. Because of the liquid-tight adherence of the sample carrier 20 on the glass materials of the bottom part 10 or the cover 50 this cuvette can permanently with solvents or sample solutions loaded and like a solid layer sample fluorescence measurements be subjected.
  • Figures 11 and 12 illustrate particular advantages of the invention Reaction substrates with regard to the planarity of the Sample arrangement, which is important for microscopic examinations and the well-to-well tightness of the compartment structures.
  • the variation was used to demonstrate planarity the z position over the entire area of the floor area of the reaction substrate with a confocal microscope assembly (Reflection of the laser beam on the glass surface of the floor, recorded with a CCD camera) in a conventional, commercially available reaction substrate or sample carrier (left Partial image in Figure 11) and for a reaction substrate according to the invention (right drawing in Figure 11) measured.
  • Figure 12 are the 1536 wells of a reaction substrate according to the invention with the results of each in the wells performed measurements shown.
  • a reaction substrate alternately in the form of a "checkerboard pattern" with suspensions of so-called active and so-called filled with inactive bacteria (330 nl per well).
  • inactive bacteria 330 nl per well.
  • 1 ⁇ l assay added after a further incubation period from 30 min all wells of the reaction substrate with Measure using CFCA measurements (1 s measurement time per well).
  • reaction substrate is also after at least 48 hours (Time from sample preparation to incubation to completion of measurements) is still stable in such a way that the wells are completed against each other and measurements in the plate can be carried out (without gluing the floor glass, the can be removed again after the end of the measurements).
  • the result illustrated in FIG. 12 also shows that the Bacterial growth from the compartment layer is not prevented becomes (biocompatibility).
  • sample carriers or reaction substrates according to the invention can be common in all areas of biochemistry, biology or molecular biotechnology, where one or more samples held, manipulated in a defined form or should be changed. Preferred applications are in the processing of suspensions with certain Particle mixtures.
  • reaction substrates according to the invention can for example cell sorters, molecular sorters or other Cell manipulators are built. They are all applications of fluidic microsystem technology can be implemented.
  • the reaction substrates according to the invention are special Benefit usable in synthetic processes based on combinatorial Chemistry based.
  • the inventive Reaction substrates for the identification and validation of targets d. H. specific biological molecules, such as enzymes, Receptors or ion channels can be used.
  • you can they are very good for identifying biologically active substances and / or active pharmaceutical ingredients are used.
  • the possibility of using the reaction substrates according to the invention in test procedures with high sample throughput can do much more Substances within a short time in terms of their biological Activity and / or pharmaceutical efficacy are examined. This is of particular importance in order to be combinatorial Substance banks obtained in relation to their chemistry biological activity and / or pharmaceutical effectiveness investigate. It is with the reaction substrates according to the invention possible to achieve a high sample throughput and between investigate several thousand up to 100,000 substances per day.
  • the reaction substrates according to the invention are still very good suitable for performing assay procedures. With these Assay methods are used to target and chemical compounds Investigation of chemical and / or biological interactions combined. It is thus easily possible to create a model system establish that allows substances to be identified, that affect the target in the desired way.
  • the reaction substrates according to the invention can be used both for biochemical as well as cellular assay methods can be used. This also includes assay procedures based on use of vesicular particles or solid particles (so-called Beads).
  • the reaction substrates according to the invention are also suitable very good for performing assay procedures based on use based on simplified model systems that represent the physiology reproduce in humans or animals.
  • Assay systems can include: a. used to information about the solubility of biologically active and / or pharmaceutical active substances in blood plasma, their penetration properties, their liver toxicity, their bioavailability, their Stability in the blood or its breakdown profiles after passage through the liver to obtain.
  • the chemical and biotechnical investigations can, for example. i) for the identification and characterization of synthetic or biological objects, ii) for identification and Characterization of chemical compounds, iii) for identification and / or validation of targets, iv) for searching for biologically active substances and / or pharmaceutical Active substances, v) for the identification of lead structures, vi) for genome analysis, vii) for proteome analysis, viii) for purification and concentration of substrates, or ix) for evolutionary Optimization of biologically relevant macromolecules used become.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Saccharide Compounds (AREA)
  • Laminated Bodies (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a reaction substrate (20) comprised of a base part (10) and of a flexible compartment layer (21) which is made of a polymer material and which is provided with predetermined compartment structures (30) for forming sample compartments. According to the invention, the polymer material is a viscoelastic polymer composition (e.g. silicone rubber) which has an inherent adhesive property with regard to substrates made of glass, plastic, metal or of semiconductors. The invention also relates to a tool for producing the reaction substrate.

Description

Die Erfindung betrifft ein Reaktionssubstrat zur Aufnahme und/oder Manipulierung einer Vielzahl voneinander getrennter Proben, das insbesondere ein strukturiertes Reaktionsubstrat für mikroskopisch kleine Probenmengen bildet, und Verwendungen des Reaktionssubstrates.The invention relates to a reaction substrate for recording and / or manipulation of a large number of separate ones Specimens that are used in particular for a structured reaction substrate forms microscopic sample amounts, and uses of the reaction substrate.

In der Biochemie, Medizin und Gentechnik besteht ein breiter Bedarf an Verfahren zur Manipulierung, Beobachtung und/oder Analyse einer Vielzahl von Proben. Es wurden Testverfahren mit hohem Probendurchsatz (sogenanntes high throughput screening, HTS) entwickelt, bei denen Tausende von Proben hochparallel bspw. isoliert, kultiviert oder bestimmten Behandlungen unterzogen werden. Diese Verfahren werden in speziell angepassten Reaktionssubstraten oder -behältern mit vielen Probenkompartimenten durchgeführt, die eine Vielzahl von Anforderungen erfüllen müssen. Die Reaktionssubstrate müssen bspw. eine schnelle und parallele Probenbeschickung, eine Beobachtung der Probe während der Reaktion und eine weitere Verfügbarkeit der Probe nach einer Reaktion sicherstellen und gegenüber der jeweiligen Reaktion inert sein. Mit dem Fortschreiten des biochemischen Kenntnisstandes und Verbesserungen der Methoden aus Biotechnologie und kombinatorischer Chemie geht das Bedürfnis einher, eine möglichst große Anzahl von möglichst kleinen Probenvolumina parallel verarbeiten, das heißt z. B. handhaben, kontrollieren und vermessen zu können. In jüngster Zeit können auf der Grundlage moderner (Fluoreszenz-)Screeningtechniken pro Tag 103 bis 105 Proben bei benötigten Volumina von bspw. 10-6 bis 10-10 1 charakterisiert werden. Zur Erhöhung des Probendurchsatzes, Reduzierung des Substanzverbrauchs und auch aus Platzgründen wird eine Miniaturisierung der Probenkompartimente angestrebt. Damit steigen unmittelbar auch die Anforderungen an Reaktionssubstrate mit Kompartimentierung für einzelne Proben stark an. Dies gilt insbesondere in Bezug auf die Anzahl verfügbarer Kompartimente, das Miniaturisierungspotential, die einfache Handhabung und die Kosten bzw. Wiederverwendbarkeit.In biochemistry, medicine and genetic engineering, there is a broad need for methods for manipulating, observing and / or analyzing a large number of samples. Test methods with high sample throughput (so-called high throughput screening, HTS) have been developed, in which thousands of samples are isolated, cultivated or subjected to specific treatments, for example, in high parallel. These methods are carried out in specially adapted reaction substrates or containers with many sample compartments that have to meet a variety of requirements. The reaction substrates must ensure, for example, rapid and parallel sample loading, observation of the sample during the reaction and further availability of the sample after a reaction, and be inert to the respective reaction. With the advancement of biochemical knowledge and improvements in methods from biotechnology and combinatorial chemistry, there is a need to process as large as possible the smallest possible number of sample volumes in parallel. B. to handle, control and measure. Recently, 10 3 to 10 5 samples per day with required volumes of, for example, 10 -6 to 10 -10 1 can be characterized on the basis of modern (fluorescence) screening techniques. In order to increase the sample throughput, reduce the substance consumption and also for reasons of space, miniaturization of the sample compartments is sought. As a result, the requirements for reaction substrates with compartmentalization for individual samples also increase sharply. This applies in particular with regard to the number of compartments available, the miniaturization potential, the ease of use and the cost or reusability.

Probenträger oder Reaktionssubstrate mit mikroskopisch kleinen Strukturen für den Einsatz bei Fluoreszenz-, Lumineszenz- oder Szintillationsmessungen, z. B. zur Lösung chemischer oder molekular-biologischer Fragestellungen, sind an sich bekannt. In DE-OS 197 12 484, EP 131 934, US 54 17 923 und US 54 87 872 werden Reaktionssubstrate in Form strukturierter Mikroplatten beschrieben, die jeweils eine Vielzahl flächlich angeordneter, einseitig offener Probenkompartimente bilden. Eine Mikroplatte mit einer Filtermembran ist in EP 408 940 beschrieben. Diese Mikroplatte ist wegen ihres komplizierten Aufbaus sowohl für die Herstellung als auch für die Reinigung nachteilig. Die Anzahl verfügbarer Kompartimente ist beschränkt.Sample carriers or reaction substrates with microscopic Structures for use in fluorescence, luminescence or Scintillation measurements, e.g. B. to solve chemical or molecular biological Questions are known per se. In DE-OS 197 12 484, EP 131 934, US 54 17 923 and US 54 87 872 Described reaction substrates in the form of structured microplates, which each have a large number of flat, form sample compartments that are open on one side. A microplate with a filter membrane is described in EP 408 940. This Microplate is because of its complicated structure for both Manufacturing as well as disadvantageous for cleaning. The number available compartments is limited.

Ein weiteres mikrostrukturiertes Reaktionssubstrat wird in WO 95/01559 beschrieben. Auf der Oberseite des Reaktionssubstrates aus einem Halbleitermaterial oder einem Kunststoff sind durch Ätzen Ausnehmungen gebildet, deren Böden hin zur Unterseite zumindest teilweise porös sind. Diese Reaktionssubstrate erlauben zwar Untersuchungen von beiden Seiten her, besitzen jedoch Nachteile in Bezug auf die Reproduzierbarkeit der Herstellung der einzelnen Ausnehmungen und auf die Handhabbarkeit des Reaktionssubstrates. Wenn eine Abdeckung der Ausnehmungen vorgesehen ist, so muss diese gesondert mechanisch festgeklemmt, geklebt oder gebondet werden.Another microstructured reaction substrate is shown in WO 95/01559. On the top of the reaction substrate are made of a semiconductor material or a plastic formed by etching recesses, the bottoms towards the bottom are at least partially porous. These reaction substrates allow Although examinations from both sides, have Disadvantages with regard to the reproducibility of the production of the individual recesses and the manageability of the Reaction substrate. When covering the recesses is provided is, it must be mechanically clamped, glued or be bonded.

Aus DE-OS 197 52 085 ist ein vereinfacht herstellbares Reaktionssubstrat für mikroskopische Untersuchungen einer Vielzahl von Proben bekannt, das ein Substrat mit durch Spritzgusstechnik und/oder Heißprägen gebildeten Probenkompartimenten aufweist. Ein Nachteil dieses Reaktionssubstrates ist, dass die mikroskopischen Untersuchungen nur von einer Seite des Substrats, auf der die Probenkompartimente offen sind, durchgeführt werden können. Außerdem ist dieses Reaktionssubstrat nicht allgemein für HTS-Verfahren einsetzbar.DE-OS 197 52 085 describes a reaction substrate that is easier to manufacture for microscopic examinations of a variety of Samples known to be made using injection molding technology and / or hot stamping formed sample compartments. A disadvantage of this reaction substrate is that it is microscopic Examinations only from one side of the substrate which the sample compartments are open can be carried out. In addition, this reaction substrate is not general for HTS process can be used.

Aus WO 99/19717 ist der Aufbau eines Mikrosystems bekannt, bei dem mindestens ein flexibler, mikrostrukturierter Film als Laminat zwischen festen Trägern angeordnet ist. Der Film besitzt anwendungsabhängig gebildete Mikrostrukturen, in die gegebenenfalls Elektroden integriert sind und die in Zusammenwirkung mit den Trägern Kompartimente für fluidische Proben bilden. Diese Stapeltechnik ist wiederum nachteilig, da gesonderte Maßnahmen zum Verbinden der Träger mit dem Film getroffen werden müssen, die die Handhabung der Proben oder die Proben selbst beeinflussen.The structure of a microsystem is known from WO 99/19717, at the at least one flexible, micro-structured film as a laminate is arranged between solid supports. The film has application-dependent formed microstructures, in which if necessary Electrodes are integrated and in cooperation with form compartments for fluidic samples. This Stacking technology is again disadvantageous because of separate measures to connect the carrier to the film must be taken that affect the handling of the samples or the samples themselves.

Ein ähnlicher Aufbau ist in EP 324 153 beschrieben. Dabei wird insbesondere ein mit bestimmten Mikrostrukturen versehenes Photopolymer schichtförmig auf einen festen Träger auflaminiert. Der Nachteil dieser Technik besteht darin, dass die Polymerschicht nicht ohne Beschädigung vom Träger entfernt werden kann. Es besteht aber Interesse an Reaktionssubstraten bzw. Probenträgern, die zur Wiederverwendung oder für weitere Verfahrensschritte zur Probenbearbeitung bspw. ohne Beschädigung aus einem Substratverbund lösbar sind.A similar structure is described in EP 324 153. Doing so in particular a photopolymer provided with certain microstructures laminated on a solid support. The disadvantage of this technique is that the polymer layer cannot be removed from the carrier without damage. But there is interest in reaction substrates or sample carriers, those for reuse or for further process steps for sample processing, for example, without damage from a Substrate composite are detachable.

Ein Verfahren zur Herstellung von Mikrostrukturen auf einer Metalloberfläche ist in WO 97/29223 beschrieben. Die Metalloberfläche wird durch eine photolithographisch strukturierte Polymerschicht hindurch bearbeitet. Mit dieser Technik wird das Problem der Abdeckung von Mikrostrukturen jedoch auch nicht gelöst. Weitere Strukturierungstechniken für Materialien aus Metall oder Halbleitern sind in EP 869 556, WO 97/13633 und WO 98/09745 beschrieben.A process for the production of microstructures on a metal surface is described in WO 97/29223. The metal surface is through a photolithographically structured polymer layer edited through. With this technique it will However, the problem of covering microstructures has not been solved either. Other structuring techniques for metal materials or semiconductors are described in EP 869 556, WO 97/13633 and WO 98/09745.

Ein genereller Nachteil der herkömmlichen Reaktionssubstrate für den Einsatz in der Mikroskopie betrifft deren relativ dicke, unregelmäßige und/oder durchhängende Böden. Die Böden der herkömmlichen Reaktionssubstrate können aus verschiedenen Materialien, z. B. Glas, bestehen. Typische Glasstärken betragen rund 500 µm. Es können aber auch ausgeprägte, unreproduzierbare Variationen des Bodens (z. B. über 400 µm) auftreten. Die fokale Länge von Immersionsobjektiven ist jedoch typischerweise auf 250 bis 300 µm begrenzt. Bei Abzug der Glasstärke, z. B. eines Deckglases, von rund 150 µm verbleibt noch eine zulässige Varianz des Bodens von rund 100 bis 150 µm, um reproduzierbare, kontinuierliche Messungen an dem Reaktionssubstrat ohne ständige Nachjustierungen der Position des Objektivs in einer Richtung senkrecht zur Ebene des Reaktionssubstrates (nachfolgend als z-Richtung bezeichnet) durchführen zu können.A general disadvantage of the conventional reaction substrates for use in microscopy concerns their relatively thick, irregular and / or sagging floors. The floors of the conventional reaction substrates can be made of different materials, z. B. glass. Typical glass thicknesses are around 500 µm. But it can also be pronounced, unreproducible Variations in the soil (e.g. over 400 µm) occur. The focal length of immersion objectives, however, is typical limited to 250 to 300 µm. When subtracting the glass thickness, e.g. B. a cover slip of around 150 microns still remains a permissible Variance of the soil from around 100 to 150 µm to reproducible, continuous measurements on the reaction substrate without constant readjustment of the position of the lens in a direction perpendicular to the plane of the reaction substrate (hereinafter referred to as the z-direction).

In den meisten der obengenannten Anforderungen, aber auch hinsichtlich der Zuverlässigkeit und Reproduzierbarkeit, können die bisher verfügbaren Reaktionssubstrate oder -behälter oder Probenträger mit der Entwicklung der Screeningtechnik nicht standhalten.In most of the above requirements, but also in terms of reliability and reproducibility the previously available reaction substrates or containers or Sample carriers with the development of the screening technique did not withstand.

Weitere mehrkomponentige Probenträger sind aus US-A-4 798 706, US-A-5 738 825, US-A-5 487 872, US-A-5 681 741, WO 86/06488 A und EP-A-0 983 795 bekannt.Further multi-component sample carriers are known from US-A-4 798 706, US-A-5 738 825, US-A-5 487 872, US-A-5 681 741, WO 86/06488 A. and EP-A-0 983 795.

Es ist die Aufgabe der Erfindung, ein verbessertes Reaktionssubstrat bereitzustellen, mit dem die Nachteile der herkömmlichen Reaktionssubstrate vermieden werden und das insbesondere einen einfachen Aufbau besitzt, unter den interessierenden Reaktionsbedingungen inert ist sowie leicht mit beliebigen Strukturen herstellbar und einfach handhabbar ist. Das neue Reaktionssubstrat soll insbesondere auch mehrfach wiederverwendbar bzw. recyclebar sein. Die Aufgabe der Erfindung ist es insbesondere, ein verbessertes Reaktionssubstrat bereitzustellen, bei dessen Verwendung die Probenhandhabung und -untersuchung, z. B. mit einem Mikroskop, insbesondere mit einem konfokalen Mikroskop, vereinfacht werden. Die Aufgabe der Erfindung ist es ferner, ein Verfahren zur Herstellung des Reaktionssubstrates und ein Werkzeug zu dessen Durchführung bereitzustellen.It is the object of the invention to provide an improved reaction substrate provide with the disadvantages of conventional Reaction substrates are avoided, in particular has a simple structure, among those interested Reaction conditions are inert as well as easy with any Structures can be produced and are easy to handle. The new Reaction substrate in particular should also be reusable several times or be recyclable. The object of the invention is in particular to provide an improved reaction substrate, sample handling and analysis when used, z. B. with a Microscope, especially with a confocal microscope, simplified become. The object of the invention is also a Process for producing the reaction substrate and a tool to provide for its implementation.

Diese Aufgaben werden insbesondere durch ein Reaktionssubstrat mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausführungsformen und Verwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.These tasks are particularly through a reaction substrate solved with the features according to claim 1. advantageous Embodiments and uses of the invention result from the dependent claims.

Erfindungsgemäß wird ein strukturiertes Reaktionssubstrat bereitgestellt, das durch eine Zusammensetzung eines unten charakterisierten Probenträgers (Kompartimentschicht) mit einem festen Bodenteil gebildet wird, auf der der Probenträger selbständig haftet. Das Bodenteil besteht vorzugsweise aus Glas, Kunststoff, Metall oder einem Halbleitermaterial. Es bildet eine im Wesentlichen ebene, glatte Oberfläche, an der der Probenträger adhäriert ist.According to the invention, a structured reaction substrate is provided, that by a composition of one characterized below Sample carrier (compartment layer) with a fixed Bottom part is formed on which the sample holder independently liable. The bottom part is preferably made of glass, plastic, Metal or a semiconductor material. It essentially forms one flat, smooth surface to which the sample carrier adheres is.

Ein besonderer Vorteil des erfindungsgemäßen Reaktionssubstrates besteht darin, dass die Kompartimentschicht im Wesentlichen beschädigungsfrei vom Bodenteil abtrennbar ist. Dies bedeutet, dass die Kompartimentschicht von der Bodenplatte (z. B. einem Deckglas) derart entfernt werden kann, dass sie in der Folge ohne wesentliche Einbußen an Form, Haftfähigkeit und/oder Flexibilität wieder eingesetzt werden kann. Zur erneuten Verwendung wird die Kompartimentschicht mit einer neuen oder gereinigten Bodenplatte durch leichten, z. B. manuellen, Druck zu einem neuen Reaktionssubstrat verbunden, dessen Dichtigkeit vollständig der Dichtigkeit des vorher mit der Kompartimentschicht gebildeten Reaktionssubstrates entspricht. Eine im Wesentlichen beschädigungsfreie Ablösung der Kompartimentschicht bedeutet, dass die Funktionalität der Kompartimentschicht durch die Ablösung für spätere Anwendungen unverändert erhalten bleibt. A particular advantage of the reaction substrate according to the invention is that the compartment layer is essentially damage free is separable from the bottom part. This means, that the compartment layer from the base plate (e.g. one Cover glass) can be removed in such a way that they can be significant loss of shape, adhesion and / or flexibility can be used again. For reuse the compartment layer with a new or cleaned Base plate by light, e.g. B. manual, print to a new one Reaction substrate connected, its tightness completely the tightness of that previously formed with the compartment layer Reaction substrates corresponds. An essentially damage free one Detachment of the compartment layer means that the Functionality of the compartment layer by the detachment for later applications remain unchanged.

Die Abhebung der Kompartimentschicht von dem Bodenteil kann vorzugsweise durch Abheben der Kompartimentschicht an einer Ecke vom Bodenteil erfolgen, während dieses an seinen vier Ecken festgehalten wird. An der abgehobenen Ecke wird die Kompartimentschicht hochgebogen und über dem Bodenteil abgerollt, wobei die Kompartimentschicht im Wesentlichen rückstandsfrei von der Bodenplatte getrennt wird. Ein besonderer Vorteil der Erfindung besteht darin, dass dieses Abheben und damit die Wiederverwendung beliebig oft möglich sind. Experimentell konnte eine 50-fache Wiederverwendung ohne Funktionseinbuße bestätigt werden.The compartment layer can preferably be lifted off the bottom part by lifting off the compartment layer at one corner from the bottom part, while this at its four corners is held. The compartment layer is on the raised corner bent up and unrolled over the bottom part, whereby the compartment layer is essentially residue-free from the Bottom plate is separated. A particular advantage of the invention is that this takes off and thus reuse as many times as possible. Experimentally, a 50-fold Reuse can be confirmed without loss of functionality.

Gemäß einer bevorzugten Ausführungsform der Erfindung ist das Reaktionssubstrat für mikroskopische Untersuchungen ausgelegt. Das Bodenteil besteht aus einem transparenten Material (z. B. Glas) mit anwendungsabhängig gewählter Dicke. Es wird die Aufbringung des Probenträgers auf einem an sich bekannten Deckglas für die Mikroskopie bevorzugt.According to a preferred embodiment of the invention, this is Reaction substrate designed for microscopic examinations. The bottom part is made of a transparent material (e.g. Glass) with an application-specific thickness. It will be the filing the sample holder on a cover glass known per se preferred for microscopy.

Die Dicke des Deckglases beträgt bevorzugt wenige hundert Mikrometer (µm), besonders bevorzugt rund 150 µm. Bei dem verwendeteten Mikroskop handelt es sich vorzugsweise um ein konfokales Mikroskop. Das konfokale Mikroskop wird bevorzugt in Verbindung mit Detektionstechnologien, die auf der Detektion von Fluoreszenz basieren, kombiniert. Besonders gut geeignet sind die erfindungsgemäßen Reaktionssubstrate für die Fluoreszenz-Korrelations-Spektroskopie, Fluoreszenz-Koinzidenzanalysen, Fluoreszenzverteilungsanalysen, Fluoreszenzlebensdauermessungen, Fuoreszenz-Energie-Transfer-Analysen oder Fluoreszenz-Polarisationsmessungen unter Verwendung von konfokalen Mikroskopen. Die erfindungsgemäßen Reaktionssubstrate eignen sich somit sehr gut zur Einzelmolekül-Detektion.The thickness of the cover slip is preferably a few hundred micrometers (µm), particularly preferably around 150 µm. With the one used Microscope is preferably a confocal Microscope. The confocal microscope is preferred in conjunction with detection technologies based on the detection of fluorescence based, combined. Those according to the invention are particularly suitable Reaction substrates for fluorescence correlation spectroscopy, Fluorescence coincidence analysis, fluorescence distribution analysis, Fluorescence lifetime measurements, Fuorescence energy transfer analysis or fluorescence polarization measurements using confocal microscopes. The reaction substrates according to the invention are therefore suitable very good for single molecule detection.

Gemäß einem wichtigen Gesichtspunkt der Erfindung wird ein Probenträger in Form einer flexiblen Kompartimentschicht mit Ausnehmungen zur Bildung einer vorbestimmten Kompartimentstruktur bereitgestellt, bei dem die Kompartimentschicht aus einer viskoelastischen Polymerzusammensetzung besteht, die selbständig auf Glas-, Kunststoff-, Metall- oder Halbleitersubstraten haftfähig ist. Die Kompartimentschicht ist eine mit Hilfe eines einfachen Abdruckverfahrens herstellbare formstabile Matte, deren Material schon bei einem leichten manuellen Anpressdruck von wenigen Gramm pro cm2 eine Adhäsionsverbindung, z. B. durch elektrostatische Kräfte und/oder van-der-Waals-Kräfte, mit einem der genannten Substrate eingeht. Die Kompartimentschicht umfasst vorzugsweise im Wesentlichen lösungsmittelfreie Natur- oder Synthese-Kautschuke oder Zusammensetzungen aus diesen. Besonders bevorzugt wird die Polymerzusammensetzung der Kompartimentschicht aus Klebstoff- und lösungsmittelfreien Natur- und Synthesekautschuken gebildet. Die Kompartimentsschicht ist vorzugsweise frei von Zusatzstoffen wie Harzen, Weichmachern und/oder Antioxidantien. Gemäß einer bevorzugten Ausführungsform umfasst die Kompartimentschicht des erfindungsgemäßen Reaktionssubstrates Silikonkautschuk.According to an important aspect of the invention, a sample carrier is provided in the form of a flexible compartment layer with recesses to form a predetermined compartment structure, in which the compartment layer consists of a viscoelastic polymer composition which is self-adhesive on glass, plastic, metal or semiconductor substrates. The compartment layer is a dimensionally stable mat which can be produced with the aid of a simple impression process, the material of which has an adhesive connection, for example even with a slight manual contact pressure of a few grams per cm 2 . B. by electrostatic forces and / or van der Waals forces, with one of the substrates mentioned. The compartment layer preferably comprises essentially solvent-free natural or synthetic rubbers or compositions composed of these. The polymer composition of the compartment layer is particularly preferably formed from adhesive and solvent-free natural and synthetic rubbers. The compartment layer is preferably free of additives such as resins, plasticizers and / or antioxidants. According to a preferred embodiment, the compartment layer of the reaction substrate according to the invention comprises silicone rubber.

Die Ausnehmungen zur Bildung der Kompartimentstrukturen sind durch die Kompartimentschicht durchgehende Löcher oder einseitig in die Kompartimentschicht eingearbeitete Vertiefungen. Es werden geschlossene Kompartimentstrukturen in Form von Probenreservoiren oder Vorratstöpfen und/oder offene Kompartimentstrukturen in Form von in der Schichtebene des Probenträgers verlaufenden Kanälen gebildet. Die Probenreservoire, Vorratstöpfe und Kanäle werden im Folgenden auch als Probenkompartimente bezeichnet.The recesses for the formation of the compartment structures are through holes through the compartment layer or on one side wells worked into the compartment layer. It will closed compartment structures in the form of sample reservoirs or storage pots and / or open compartment structures in the form of those running in the layer plane of the sample carrier Channels formed. The sample reservoirs, storage pots and channels are also referred to below as sample compartments.

Die Kompartimentstrukturen bilden eine Vielzahl von matrixartig in geraden Reihen und Spalten angeordneten Ausnehmungen (Probenreservoire), wobei das Rastermaß der Matrixanordnung vorzugsweise der Anordnung von Probenreservoiren (sogenannte Wells) von Mikro- und Nanotiterplatten entspricht. The compartment structures form a multitude of matrix-like recesses arranged in straight rows and columns (sample reservoirs), the grid dimension of the matrix arrangement preferably the arrangement of sample reservoirs (so-called wells) from Corresponds to micro and nanotiter plates.

Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Reaktionssubstrates ist die Kompartimentschicht mit Manipulations- und Untersuchungseinrichtungen ausgestattet. Zu diesen zählen insbesondere Fluidleitungen zur Beschickung der durch die Kompartimentstrukturen gebildeten Probenkompartimente bzw. zur Substanzableitung aus diesen, Sensoreinrichtungen zur Erfassung vorbestimmmter Probeneigenschaften in den Probenkompartimenten, Piezopumpen zur Förderung von Fluidströmen und/oder Elektrodeneinrichtungen, die zur Beaufschlagung der Proben in den Probenkompartimenten mit elektrischen Feldern ausgelegt sind. Eine Fluidleitung wird bspw. durch eine in der Schichtebene der Kompartimentschicht verlaufende Kapillare gebildet, die sich vom Rand des Reaktionssubstrates in diesen hinein zu einem bestimmten Probenkompartiment erstreckt. Sensoreinrichtungen umfassen bspw. Temperatur-, pH- oder Leitfähigkeitssensoren. Die Elektrodeneinrichtungen werden vorzugsweise durch Elektrodenstreifen gebildet, die sich an den Wänden der Probenkompartimente erstrecken.According to a further preferred embodiment of the invention Reaction substrate is the compartment layer with manipulation and examination facilities. To these include in particular fluid lines for feeding the sample compartments formed by the compartment structures or for deriving substances from these, sensor devices for Detection of predetermined sample properties in the sample compartments, Piezo pumps for conveying fluid flows and / or Electrode devices which are used to apply the samples in the sample compartments with electric fields are. A fluid line is, for example, through a in the layer plane of the compartment layer extending capillary, which from the edge of the reaction substrate into one certain sample compartment. Include sensor devices For example, temperature, pH or conductivity sensors. The Electrode devices are preferably made by electrode strips formed on the walls of the sample compartments extend.

Die Kompartimentstrukturen in einem erfindungsgemäßen Reaktionssubstrat bzw. Probenträger bilden gemäß bevorzugter Ausführungsformen Mikrostrukturen mit charakteristischen Dimensionen im Bereich von 500 nm bis 1,5 mm.The compartment structures in a reaction substrate according to the invention or form sample carriers according to preferred embodiments Microstructures with characteristic dimensions in the area from 500 nm to 1.5 mm.

Der Stapelaufbau aus Bodenteil und Probenträger kann erfindungsgemäß dahingehend modifiziert sein, dass auf dem Probenträger auf der zum Bodenteil entgegengesetzten Seite eine Abdeckung angebracht wird, die wiederum durch selbständiges Anhaften relativ zum Probenträger fixiert ist. Die Abdeckung kann aus einem starren Material wie das Bodenteil oder durch eine flexible. Folie gebildet sein. Die Abdeckung kann ferner vorbestimmte Öffnungen zum Zugriff auf die Kompartimentstrukturen aufweisen. Der Stapelaufbau in Sandwich-Form verleiht dem Reaktionssubstrat zusätzliche Stabilität. Die Abdeckung dient zum Unterbinden der Verdunstung von eingebrachten Flüssigkeiten. According to the invention, the stack structure consisting of the bottom part and the sample carrier be modified in such a way that on the sample carrier a cover is attached to the side opposite to the base part which in turn becomes relative through independent attachment is fixed to the sample holder. The cover can be rigid Material like the bottom part or through a flexible. foil be educated. The cover may also have predetermined openings to have access to the compartment structures. The stack construction in sandwich form gives the reaction substrate additional Stability. The cover serves to prevent the Evaporation of liquids introduced.

Anwendungsabhängig kann vorgesehen sein, dass die Kompartimentschicht aus mehreren getrennten Teilen gebildet wird, die auf einem gemeinsamen Bodenteil zur Bildung eines erfindungsgemäßen Reaktionssubstrates angeordnet werden. Es können auch mehrere Kompartimentschichten aneinander haftend als Stapel verbunden sein, um ein dreidimensionales fluidisches Mikrosystem aufzubauen.Depending on the application, it can be provided that the compartment layer is formed from several separate parts that are on a common bottom part to form an inventive Reaction substrates are arranged. You can also have several Compartment layers bonded together as a stack to build a three-dimensional fluidic microsystem.

Es wird auch ein Verfahren zur Herstellung des oben beschriebenen Probenträgers beschrieben. Hierzu wird ein Abdruckwerkzeug mit dem jeweils gewünschten Polymermaterial der Kompartimentschicht im gelösten Zustand gefüllt und anschließend das Lösungsmittel durch Tempern und/oder Trocknen, vorzugsweise bei Raumtemperatur, aus der Füllung entzogen bzw. eine Vernetzung der Polymerzusammensetzung herbeigeführt. Das Abdruckwerkzeug besteht insbesondere aus einer strukturierten Grundplatte und einer Gegenplatte, 'die flüssigkeitsdicht zusammengehalten werden. Die Grundplatte trägt vorspringende Strukturen entsprechend den gewünschten Kompartimentstrukturen im Probenträger. Diese vorspringenden Strukturen ragen von der Grundplatte je nach Anwendungsfall bis zur oder in die Gegenplatte (Ausbildung durchgehender Löcher) oder bis zu einer Höhe mit Abstand von der Gegenplatte (Ausbildung von Vertiefungen). Zur reproduzierbaren Herstellung von Strukturen in Form durchgehender Löcher ist die Gegenplatte vorzugsweise mit einer zur Grundplatte weisenden Beschichtung, z. B. aus PTFE, versehen. Die einzelnen Komponenten der Abdruckvorrichtung sind über lösbare Steck- oder Schraubverbindungen zusammengefügt. Nach dem Lösungsmittelentzug bzw. der Vernetzung der Polymerzusammensetzung werden diese Verbindungen gelöst und die getrocknete feste, formstabile Kompartimentschicht als Probenträger dem Abdruckwerkzeug entnommen. It will also be a procedure for the preparation of the sample carrier described above. For this purpose, an impression tool with the desired polymer material of the compartment layer in solution State filled and then the solvent by annealing and / or drying, preferably at room temperature, from the filling withdrawn or a crosslinking of the polymer composition brought about. The impression tool consists in particular of a structured base plate and a counter plate, 'the liquid-tight be held together. The base plate carries protruding structures according to the desired compartment structures in the sample holder. These protruding structures protrude from the base plate to or in depending on the application the counter plate (formation of through holes) or up to a height at a distance from the counter plate (formation of depressions). For the reproducible production of structures in The counter plate is preferably in the form of through holes a coating facing the base plate, e.g. B. made of PTFE, Mistake. The individual components of the impression device are assembled via detachable plug or screw connections. After solvent removal or crosslinking of the polymer composition these connections are loosened and the dried one firm, dimensionally stable compartment layer as a sample carrier Impression tool removed.

Der Probenträger bzw. das Reaktionssubstrat gemäß der Erfindung sind zur Manipulierung und/oder Untersuchung beliebiger flüssiger Proben mit charakteristischen Probenvolumina z. B. im Bereich von 1 nl bis 10 µl ausgelegt. Die flüssigen Proben können insbesondere Lösungen vorbestimmter Reaktionspartner und/oder Suspensionen umfassen, die in einer Suspensionsflüssigkeit synthetische oder biologische Objekte enthalten. Zu den in einem Reaktionssubstrat manipulierten Objekten zählen insbesondere Feststoffpartikel (sogenannte Beads) als synthetische Objekte und biologische Zellen oder Zellbestandteile, Mikroorganismen, Viren und biologisch relevante Makromoleküle als biologische Objekte.The sample carrier or the reaction substrate according to the invention are for the manipulation and / or examination of any liquid Samples with characteristic sample volumes e.g. B. in the area from 1 nl to 10 µl. The liquid samples can in particular solutions of predetermined reaction partners and / or Suspensions include those that are synthetic in a suspension liquid or contain biological objects. To the one Reaction substrate manipulated objects count in particular Solid particles (so-called beads) as synthetic objects and biological cells or cell components, microorganisms, Viruses and biologically relevant macromolecules as biological objects.

Die Erfindung besitzt die folgenden Vorteile.- Die erfindungsgemäßen Reaktionssubstrate oder Probenträger können mit einfachen Mitteln mit einem im Wesentlichen drucklos arbeitenden Werkzeug in Massenproduktion hergestellt werden. Über die Gestaltung der Maske oder Abdruckform des Werkzeugs ist ein beliebiges Formatdesign der Probenkompartimente von Makro- bis zu Nanogrößen einfach möglich. Zur Herstellung von Masken für mikroskopisch kleine Kompartimentstrukturen stehen an sich bekannte Bearbeitungstechniken für Glas oder Halbleiter, wie z. B. das LIGA-Verfahren oder konventionelles Ätzen, zur Verfügung. Die Kompartimentstrukturen lassen sich hochpräzise über die gesamte Dicke der Kompartimentschicht herstellen. Die Strukturen können in der Schichtebene charakteristische Dimensionen im Sub-Mikrometer-Bereich und senkrecht dazu im mm-Bereich besitzen.The invention has the following advantages Reaction substrates or sample carriers can be used with simple Averaging with an essentially pressure-free tool be mass-produced. About the design of the Mask or imprint form of the tool is any format design sample compartments from macro to nano sizes possible. For the production of masks for microscopic Compartment structures are known processing techniques for glass or semiconductors, such as. B. the LIGA process or conventional etching. The compartment structures can be precisely positioned over the entire thickness of the compartment layer. The structures can be in the Layer-level characteristic dimensions in the sub-micrometer range and perpendicular to it in the mm range.

Die Kompartimentstrukturen können mit beliebigen Formaten, z. B. rund, quadratisch, rechteckig oder mit komplizierteren geometrischen Formen, ausgebildet werden. Die Herstellung der Kompartimentschicht aus einem viskoelastischen Polymer besitzt mehrere Vorteile. Einerseits wird die Anbringung des Probenträgers auf einem Bodenteil durch einfaches Andrücken erheblich gegenüber herkömmlichen Sandwich-Konstruktionen mit mechanischen Klemm-Mitteln oder Laminatverbindungen vereinfacht. Andererseits zeichnet sich das Material der Kompartimentschicht, insbesondere bei Verwendung von Silikonkautschuk, durch exzellente Eigenschaften in der Form aus, dass unspezifische Adsorptionen ausbleiben. Dies ist vor allem bei miniaturisierten Proben von Bedeutung. Der Probenträger ist unter den interessierenden Reaktionsbedingungen bei Anwendungen in der Medizin, Biochemie und molekularen Biotechnologie inert. Das biologisch inerte Material ermöglicht das Anziehen, Kultivieren und Messen biologischer Proben oder Substrate in den Reaktionssubstraten oder Probenträgern. Schließlich erlaubt das Material des Probenträgers auch nach dem eigentlichen Einsatz eine Reinigung in einem Bad oder einer Spülmaschine mit herkömmlichen Reinigungs- oder Lösungsmitteln, ohne dass die Form oder Stabilität des Probenträgers nachteilig beeinflusst werden. Der Probenträger ist im Wesentlichen ohne Formverlust und ohne Beeinflussung seiner Hafteigenschaften autoklavier- und sterilisierbar. Durch einfaches Abziehen vom Bodenteil sind die Probenträger wiederverwendbar.The compartment structures can be of any format, e.g. B. round, square, rectangular or with more complicated geometric Shapes to be trained. The production of the compartment layer made of a viscoelastic polymer has several Benefits. On the one hand, the attachment of the sample holder is on compared to a base part by simply pressing it conventional sandwich constructions with mechanical clamping devices or laminate connections simplified. on the other hand stands out the material of the compartment layer, in particular when using silicone rubber, due to its excellent properties in the form that unspecific adsorption does not occur. This is particularly important for miniaturized samples. The sample carrier is under the reaction conditions of interest for applications in medicine, biochemistry and molecular Biotechnology inert. The biologically inert material enables biological dressing, cultivation and measurement Samples or substrates in the reaction substrates or sample carriers. Finally, the sample carrier material also allows after the actual use, cleaning in a bath or a dishwasher with conventional cleaning agents or solvents, without the shape or stability of the sample carrier be adversely affected. The sample carrier is essentially without loss of shape and without influencing its adhesive properties autoclavable and sterilizable. By simply pulling it off from the bottom part the sample carriers are reusable.

Das erfindungsgemäße Reaktionssubstrat aus Bodenteil mit aufgesetztem Probenträger besitzt besondere Vorteile in Bezug auf den Aufbau des Reaktionssubstrats, die Abdichtung der Probenkompartimente und die gegenseitige Ausrichtung der Probenkompartimente. Der Probenträger wird durch gleichmäßiges Andrücken mit einem definierten, z. B. manuell ausgeübten Druck, mit dem Bodenteil verbunden. Der Probenträger ist ohne Rahmen verwendbar und erlaubt dennoch, bei Aufbringung von Justiermarkierungen, eine exakte räumliche Orientierung und Positionierung, bspw. in Bezug auf ein Mikroskop oder eine Probenbeschickungseinrichtung. Die Abdichtung der Probenkompartimente, die durch durchgehende Ausnehmungen in der Kompartimentschicht gebildet werden, gegenüber dem Bodenteil erfolgt ohne zusätzliche Dicht- oder Klebemittel. Eine Beeinflussung der biochemischen Reaktionen in den Kompartimenten durch derartige Mittel wird ausgeschlossen. The reaction substrate according to the invention from the bottom part with attached Sample holder has special advantages with regard to the Structure of the reaction substrate, the sealing of the sample compartments and the mutual alignment of the sample compartments. The sample holder is pressed evenly with a defined, e.g. B. manually applied pressure with the bottom part connected. The sample holder can be used without a frame nevertheless allows, when applying alignment marks, a exact spatial orientation and positioning, e.g. in relation on a microscope or a sample feeder. The Sealing of the sample compartments by continuous recesses are formed in the compartment layer, opposite the bottom part is made without additional sealants or adhesives. Influencing the biochemical reactions in the compartments is excluded by such means.

Die Adhäsionsverbindung zwischen dem Probenträger und dem Bodenteil und der Abdeckung ermöglicht die Planarität auch von großflächigeren Reaktionssubstraten oder Probenträgern mit charakteristischen Dimensionen bis zu 118 mm • 82 mm. Über die gesamte Fläche des Bodenteils hinweg können Variationen der Probenkammerpositionen in z-Richtung (senkrecht zur Probenträgerebene) vorzugsweise auf Werte kleiner als 250 µm, besonders bevorzugt kleiner als 150µm, insbesondere kleiner als 100 µm gehalten werden. Dies ist von besonderem Vorteil für mikroskopische Untersuchungen. Während der Vermessung eines Reaktionssubstrats ist es nicht erforderlich, die z-Position des Mikroskopobjektivs laufend nachzujustieren. Die erfindungsgemäßen Reaktionssubstrate eignen sich somit sehr gut zum Einsatz in Testverfahren mit hohem Probendurchsatz (sogenanntes high throughput screening, HTS) in der biotechnischen und/oder chemischen Forschung- und Entwicklung, da die zeitaufwendige Nachjustierung, z. B. von Mikroskopobjektiven, in z-Richtung, entfällt.The adhesive bond between the sample holder and the bottom part and the cover allows the planarity of larger areas Reaction substrates or sample carriers with characteristic Dimensions up to 118 mm • 82 mm. Over the whole Surface area of the bottom portion can vary sample chamber positions in the z direction (perpendicular to the sample carrier plane) preferably to values less than 250 μm, particularly preferred are kept smaller than 150 µm, in particular smaller than 100 µm. This is of particular advantage for microscopic examinations. It is during the measurement of a reaction substrate not required, the z position of the microscope objective is running readjust. The reaction substrates according to the invention are therefore very suitable for use in test procedures with high Sample throughput (so-called high throughput screening, HTS) in biotechnical and / or chemical research and development, since the time-consuming readjustment, e.g. B. microscope objectives, in the z direction, not applicable.

Die Stabilität des Reaktionssubstrats ist so hoch wie bei herkömmlichen Probenkammerstrukturen, wobei jedoch erfindungsgemäß auf zusätzliche Kleb- oder Klemmittel verzichtet werden kann. Die Stabilität wird bei Aufbringung der Abdeckung noch wesentlich erhöht.The stability of the reaction substrate is as high as in conventional sample chamber structures, but according to the invention dispense with additional adhesives or clamps can be. The stability is when the cover is applied still significantly increased.

Das Reaktionssubstrat besitzt einen breiten Anwendungsbereich, da je nach den Anforderungen ein passendes Bodenteil als Unterlage für den Probenträger verwendet werden kann. Das Bodenteil ist in Bezug auf Material und Dicke frei variierbar. Als transparentes Bodenteil dient vorzugsweise Glas beliebiger Stärke, z. B. mit Deckglasstärke, für den Einsatz in der Mikroskopie. Das Bodenteil kann aus UV-durchlässigem Quarzglas bestehen. Es besitzt hervorragende optische Eigenschaften und wird durch den Probenträger weder chemisch modifiziert noch physikalisch belastet. The reaction substrate has a wide range of uses, depending on the requirements, a suitable floor part can be used as a base for the sample holder. The Bottom part can be freely varied in terms of material and thickness. Glass of any kind is preferably used as the transparent base part Starch, e.g. B. with cover glass thickness, for use in of microscopy. The bottom part can be made of UV-permeable Quartz glass exist. It has excellent optical properties and is neither chemically modified by the sample carrier still physically stressed.

Das Abdruckwerkzeug besitzt den Vorteil eines einfachen, modularen Aufbaus. Das Werkzeug kann durch Wechsel der Maske oder Abdruckform einfach an die jeweils gewünschten Anforderungen angepasst werden. Es ist gleichermaßen für Anwendungen im Laborbereich oder in der Massenproduktion geeignet. Mit dem erfindungsgemäßen Verfahren können beliebige Strukturen ohne besonderen Aufwand hergestellt werden. Dies ist ein besonderer Vorteil gegenüber den herkömmlichen Techniken zur Strukturierung von Glas oder Halbleitern.The impression tool has the advantage of one simple, modular structure. The tool can go through Change the mask or impression form to the desired one Requirements are adjusted. It is alike for applications in the laboratory or in mass production suitable. With the method according to the invention, any Structures can be produced without any special effort. This is a special advantage over the conventional ones Techniques for structuring glass or semiconductors.

Weitere Einzelheiten und Vorteile der Erfindung werden aus der Beschreibung der beigefügten Zeichnungen ersichtlich. Es zeigen:

Fig. 1
eine schematische Perspektivansicht eines Reaktionssubstrates mit einem Probenträger gemäß der Erfindung,
Fig. 2
eine Draufsicht auf eine erste Ausführungsform einer erfindungsgemäßen Kompartimentschicht,
Fig. 3, 4 und 5
Illustrationen eines Abdruckwerkzeugs im zusammengesetzten bzw. auseinandergenommenen Zustand,
Fig. 6
eine Draufsicht auf ein erfindungsgemäßes Reaktionssubstrat in Form eines Mikroprobenträgers und auf eine herkömmliche Halbleiterstruktur,
Fig. 7
eine vergrößerte Ausschnittsansicht eines Mikroprobenträgers gemäß Fig. 6,
Fig. 8
eine Illustration von Einzelheiten der Kompartimentstrukturen bei einem Reaktionssubstrat gemäß den Figuren 6 und 7,
Fig. 9
eine Draufsicht auf weitere Ausführungsformen eines erfindungsgemäßen Reaktionssubstrates mit Mikrokanälen,
Fig. 10
ein erfindungsgemäßes Reaktionssubstrat in Form einer schichtförmigen Fluoreszenzküvette,
Fig. 11
experimentelle Ergebnisse zur Illustration der hervorragenden Planarität erfindungsgemäßer Reaktionssubstrate, und
Fig. 12
experimentelle Ergebnisse zur Illustration der Dichtheit von Kompartimenten erfindungsgemäßer Reaktionssubstrate.
Further details and advantages of the invention will become apparent from the description of the accompanying drawings. Show it:
Fig. 1
2 shows a schematic perspective view of a reaction substrate with a sample carrier according to the invention,
Fig. 2
2 shows a top view of a first embodiment of a compartment layer according to the invention,
3, 4 and 5
Illustrations of an impression tool in the assembled or disassembled state,
Fig. 6
2 shows a plan view of a reaction substrate according to the invention in the form of a micro sample carrier and onto a conventional semiconductor structure,
Fig. 7
6 shows an enlarged detail view of a micro sample carrier according to FIG. 6,
Fig. 8
an illustration of details of the compartment structures in a reaction substrate according to FIGS. 6 and 7,
Fig. 9
2 shows a top view of further embodiments of a reaction substrate according to the invention with microchannels,
Fig. 10
a reaction substrate according to the invention in the form of a layered fluorescence cuvette,
Fig. 11
experimental results to illustrate the excellent planarity of reaction substrates according to the invention, and
Fig. 12
experimental results to illustrate the tightness of compartments of reaction substrates according to the invention.

Die Erfindung wird im Folgenden unter Bezug auf ein Reaktionssubstrat mit einem mikrostrukturierten Probenträger zur Handhabung biologischer Proben beschrieben. Die Erfindung ist jedoch nicht auf Anwendungen beschränkt, bei denen mikroskopisch kleine Probenmengen in Mikrostrukturen manipuliert werden. Des Weiteren ist die Erfindung nicht auf die illustrierten Formen von Probenkompartimenten beschränkt. Anwendungsabhängig können auch beliebige andere Formen mit geraden oder gekrümmten Wänden der Probenkompartimente realisiert werden.The invention is described below with reference to a reaction substrate with a microstructured sample holder for Handling of biological samples described. The invention is but not limited to applications where microscopic small sample amounts are manipulated in microstructures. Furthermore, the invention is not limited to those illustrated Forms of sample compartments limited. Depending on the application can also use any other shapes with straight or curved walls of the sample compartments can be realized.

Figur 1 illustriert in schematischer Perspektivansicht ein Reaktionssubstrat mit einem Probenträger gemäß der Erfindung. Auf dem Probenträger sind verschiedene Kompartimentstrukturen und Zusatzeinrichtungen gezeigt, die anwendungsabhängig einzeln oder simultan vorgesehen sein können. Das Reaktionssubstrat 100 umfasst das Bodenteil 10 und den Probenträger 20. Figure 1 illustrates in a schematic perspective view Reaction substrate with a sample carrier according to the invention. Various compartment structures are on the sample carrier and additional devices shown that are application-dependent individually or can be provided simultaneously. The reaction substrate 100 comprises the base part 10 and the sample carrier 20.

Das Bodenteil 10 ist bspw. eine ebene Glasplatte mit einer Dicke entsprechend der Stärke von Deckgläsern zum Einsatz in der Mikroskopie (rund 150 µm) und einer Fläche von rund 120 mm • 70 mm. Das Bodenteil 10 kann auch durch einen beliebigen anderen Körper mit einer im Wesentlichen glatten, ebenen oder gekrümmten Oberfläche gebildet werden. Vorzugsweise besitzt das Bodenteil eine im Wesentlichen glatte, ebene Oberfläche.The base part 10 is, for example, a flat glass plate with a Thickness corresponding to the thickness of coverslips for use in microscopy (around 150 µm) and an area of around 120 mm • 70 mm. The bottom part 10 can also by any other body with a substantially smooth, flat or curved surface are formed. Preferably owns the bottom part has an essentially smooth, flat surface.

Der Probenträger 20 umfasst eine Kompartimentschicht 21 (Matte) mit Kompartimentstrukturen 30. Die Kompartimentschicht 21 besteht vorzugsweise aus Silikonkautschuk und besitzt eine Dicke von rund 0,5 mm bis 4 mm. An einer oder mehreren Seiten der Matte können eine Lasche 22 zum Abziehen des Probenträgers 20 vom Bodenteil 10 und/oder Justiermarkierungen 23 zum Positionieren des Probenträgers 20 relativ zu einer Messoder Probenbeschickungseinrichtung vorgesehen sein. Die Justiermarkierungen 23 sind bspw. punkt- oder kreuzförmige Ausnehmungen in der Oberfläche des Probenträgers 20, die gegebenenfalls mit einer zusätzlichen Markierungssubstanz (z. B. Fluoreszenzfarbstoff) versehen sind. Die Justiermarkierungen besitzen charakteristische Dimensionen, die erheblich geringer als die Dimensionen der Kompartimentstrukturen 30 sein können.The sample carrier 20 comprises a compartment layer 21 (mat) with compartment structures 30. The compartment layer 21 is preferably made of silicone rubber and has one Thickness from around 0.5 mm to 4 mm. On one or more sides the mat can be a tab 22 for pulling the sample carrier 20 from the bottom part 10 and / or alignment marks 23 for Position the sample carrier 20 relative to a measuring or Sample loading device may be provided. The adjustment marks 23 are, for example, punctiform or cross-shaped recesses in the surface of the sample carrier 20, which if necessary with an additional marker substance (e.g. Fluorescent dye) are provided. The adjustment marks have characteristic dimensions that are significantly smaller than the dimensions of the compartment structures 30 can.

Der Silikonkautschuk ist bspw. Polydimethylsiloxsan (PDMS, Hersteller Wacker-Chemie GmbH, Bezeichnung M 4600). Allgemein können elastische Kunststoffe (Elastomere) verwendet werden, die bei verschiedenen Temperaturen elastisch bleiben. In den Elastomeren sind die Molekülketten (Kohlenstoffketten) locker vernetzt, so dass die Elastomere gummielastisch sind. Das bevorzugt verwendete Silikon ist ein Kunststoff aus der Gruppe der Elastomere und besteht hauptsächlich aus Silizium und Sauerstoff. Im unvernetzten Zustand sind die Silikone ölartig, wasserklar und wärmefest. Im vernetzten Zustand bilden die Silikone einen Silikonkautschuk. The silicone rubber is, for example, polydimethylsiloxsan (PDMS, Manufacturer Wacker-Chemie GmbH, designation M 4600). Generally elastic plastics (elastomers) can be used, that remain elastic at different temperatures. In the The molecular chains (carbon chains) are loose elastomers cross-linked so that the elastomers are rubber-elastic. That preferred The silicone used is a plastic from the group of elastomers and consists mainly of silicon and Oxygen. When uncrosslinked, the silicones are oil-like, water-clear and heat-resistant. Form in a networked state the silicones a silicone rubber.

Die Kompartimentstrukturen 30 umfassen im Einzelnen geschlossene Probenreservoire 31 in Form durchgehender Löcher 31a oder in der Oberfläche des Probenträgers abgesenkter Vertiefungen 31b (Durchmesser z. B. rd. 200 µm bis 1,5 mm) oder in der Schichtebene des Probenträgers verlaufende gerade, gekrümmte oder sich verzweigende Kanäle 32. Das Bezugszeichen 33 verweist auf sogenannte Vorratstöpfe, die wie die Probenreservoire 31 zur Probenaufnahme und -abgabe, allerdings mit größeren Volumina, ausgelegt sind.The compartment structures 30 include closed ones in detail Sample reservoirs 31 in the form of through holes 31a or depressions recessed in the surface of the sample carrier 31b (diameter e.g. around 200 µm to 1.5 mm) or in the layer plane of the sample carrier is straight, curved or branching channels 32. The reference symbol 33 refers to so-called stock pots, which are like the sample reservoirs 31 for sample collection and delivery, but with larger volumes are designed.

Die Manipulations- und Untersuchungseinrichtungen 40 umfassen bspw. eine Fluidleitung in Form mindestens einer Kapillare 41, mindestens einer Elektrode 42 und/oder mindestens eines Sensors 43, die in der Schichtebene des Probenträgers 20, an den Wänden der Kompartimentstrukturen 30 oder in den Kompartimentstrukturen 30 angeordnet sind. Die Kapillare 41 kann bspw. mit einem Proben- oder Reagenzienzufuhrsystem (nicht dargestellt) verbunden sein. Sie wird während der Herstellung des Probenträgers 20 (siehe unten) in diesen eingebettet oder nachträglich in den Probenträger 20 eingestochen. Die Elektroden sind so aufgebaut, wie es an sich aus der Mikrosystemtechnik von Mikroelektroden für elektroosmotische Pumpvorgänge, Manipulationen an Partikeln unter Ausnutzung negativer Dielektrophorese oder Partikelbearbeitungen, wie z. B. Elektroporation an biologischen Zellen, bekannt ist. Die Elektroden bzw. ihre Zuleitungen werden vorzugsweise während der Herstellung des Probenträgers 20 in diesen eingebettet bzw. auf dessen inneren Oberflächen (Wände der Kompartimente) angeordnet.The manipulation and examination devices 40 comprise For example, a fluid line in the form of at least one capillary 41, at least one electrode 42 and / or at least one Sensor 43, in the layer plane of the sample carrier 20 the walls of the compartment structures 30 or in the compartment structures 30 are arranged. The capillary 41 can e.g. with a sample or reagent delivery system (not shown). It is made during manufacture of the sample carrier 20 (see below) embedded in this or subsequently inserted into the sample holder 20. The electrodes are built in the way it is from microsystems technology of microelectrodes for electroosmotic pumping processes, Manipulation of particles using negative Dielectrophoresis or particle processing, such as. B. Electroporation on biological cells is known. The Electrodes or their leads are preferably used during the manufacture of the sample carrier 20 embedded in this or on its inner surfaces (walls of the compartments) arranged.

Figur 1 zeigt ferner eine Abdeckung 50. Die Abdeckung 50 ist kein zwingendes Merkmal des erfindungsgemäßen Reaktionssubstrats. Sie ist anwendungsabhängig vorgesehen und besteht wie das Bodenteil 10 aus einer festen Platte (z. B. aus Glas) oder aus einer flexiblen Abdeckfolie. Es kann vorgesehen sein, dass die Abdeckung 50 Öffnungen 51 entsprechend den Positionen der Kompartimentstrukturen 30 aufweist. Die Öffnungen 51 dienen der Beschickung von Probenreservoiren 31 oder Vorratstöpfen 33 oder dem Probeneintrag in die Kanäle 32. Sie können mit einer zusätzlichen (nicht dargestellten) Folie als Verdunstungsschutz verschlossen sein.Figure 1 also shows a cover 50. The cover 50 is no mandatory feature of the reaction substrate according to the invention. It is intended depending on the application and consists of how the base part 10 made of a solid plate (e.g. made of glass) or from a flexible cover film. It can be provided be that the cover 50 has openings 51 corresponding to the positions which has compartment structures 30. The openings 51 serve to load sample reservoirs 31 or Storage pots 33 or the sample entry in the channels 32. You can with an additional (not shown) film as Evaporation protection must be closed.

Eine für praktische Anwendungen in der Biochemie interessierende Ausführungsform einer Kompartimentschicht 21 ist in Figur 2 dargestellt. Die Kompartimentschicht 21 ist eine flexible Matte aus Silikonkautschuk (z. B. Elastosil M 4600 A+B, Hersteller Wacker-Chemie GmbH, Deutschland). Sie besitzt eine Fläche von 118 mm · 82 mm und eine Dicke von 4 mm. Die Probenreservoire 31 (teilweise dargestellt) sind matrixartig in geraden Reihen und Spalten im Format 48 · 32 angeordnet und besitzen jeweils einen Mittelpunktabstand von 2,25 mm. Dies entspricht dem Standardformat für Mikrotiterplatten mit 1536 Wells. Der Durchmesser jedes Probenreservoirs 31 beträgt 1,5 mm. Das Bezugszeichen 23 verweist auf eine Justiermarkierung, die bei dieser Ausführungsform ebenfalls durch eine Ausnehmung wie die Probenreservoire gebildet wird und eine Referenzprobe aufnehmen kann.An interesting one for practical applications in biochemistry An embodiment of a compartment layer 21 is shown in FIG 2 shown. The compartment layer 21 is a flexible one Mat made of silicone rubber (e.g. Elastosil M 4600 A + B, Manufacturer Wacker-Chemie GmbH, Germany). She has one Area of 118 mm x 82 mm and a thickness of 4 mm. The sample reservoirs 31 (partially shown) are matrix-like in arranged even rows and columns in the format 48 · 32 and each have a center-to-center distance of 2.25 mm. This corresponds to the standard format for microtiter plates with 1536 Wells. The diameter of each sample reservoir 31 is 1.5 mm. The reference numeral 23 refers to an alignment mark, which also in this embodiment by a Recess how the sample reservoir is formed and a Can record reference sample.

Der in Figur 2 illustrierte Probenträger 20 oder die Kompartimentschicht 21 wird mit einem Bodenteil (nicht dargestellt) verbunden, das vorzugsweise die gleichen Flächenmaße wie die Kompartimentschicht 21 besitzt. Das Bodenteil ist vorzugsweise ein Deckglas mit einer Dicke von rund 150 µm.The sample carrier 20 illustrated in FIG. 2 or the compartment layer 21 is with a bottom part (not shown) connected, preferably the same area dimensions as the Has compartment layer 21. The bottom part is preferred a cover slip with a thickness of around 150 µm.

Im Folgenden wird unter Bezug auf die Figuren 3 bis 5 die Herstellung eines erfindungsgemäßen Reaktionssubstrates oder Probenträgers durch Gießen der Kompartimentschicht in einem Abdruckwerkzeug erläutert. Die Figuren zeigen das Abdruckwerkzeug in perspektivischer Phantomansicht bzw. auseinandergezogen in Perspektiv- bzw. Seitenansicht. Das Abdruckwerkzeug 200 besteht grundsätzlich aus einem geschlossenen Behältnis mit einem inneren Hohlraum entsprechend der äußeren Form der gewünschten Kompartimentschicht bzw. mit inneren Oberflächen, die Vorsprünge entsprechend den gewünschten Kompartimentstrukturen aufweisen. Für einen möglichst universellen Einsatz ist das Behältnis modular aus einer Grundplatte 60, einer Zwischenplatte 70 und einer Gegenplatte 80 aufgebaut, die flüssigkeitsdicht miteinander verbunden werden können. Vorzugsweise sind die Grund-, Zwischen-, und Gegenplatten lösbar miteinander verbunden.The following is the production with reference to Figures 3 to 5 of a reaction substrate or sample carrier according to the invention by casting the compartment layer in an impression tool explained. The figures show the impression tool in a perspective phantom view or pulled apart in Perspective or side view. The impression tool 200 exists basically from a closed container with an inner one Cavity according to the outer shape of the desired compartment layer or with inner surfaces, the projections according to the desired compartment structures. The container is modular for universal use of a base plate 60, an intermediate plate 70 and one Counter plate 80 constructed, which are connected to each other in a liquid-tight manner can be. The basic, intermediate, and counter plates releasably connected together.

Die Grundplatte 60 trägt auf ihrer zum Inneren des Abdruckwerkzeugs 200 weisenden Seite Vorsprünge zur Strukturbildung in der Kompartimentschicht. Abgesehen von den Vorsprüngen ist die Oberfläche dieser inneren Seite gleichförmig und glatt ausgebildet. Beim dargestellten Beispiel umfassen die Vorsprünge matrixartig angeordnete Stifte 61 (teilweise dargestellt) mit einem Durchmesser entsprechend dem gewünschten Durchmesser der Probenreservoire 31 (siehe Fig. 2). Die Stifte 61 sind in entsprechende Ausnehmungen auf der Innenseite der Grundplatte 60 eingesteckt. Die Grundplatte und die Stifte bestehen vorzugsweise aus Metall (z. B. Edelstahl oder Aluminium). Für die Vorsprünge zur Strukturbildung können aber auch andere Materialien wie z. B. Silizium oder Glas verwendet werden. Diese Materialien lassen sich mit an sich bekannten, speziellen Ausformungstechniken (z. B. LIGA-Verfahren oder Ätzen) hochpräzise bis in den Sub-Mikrometer-Bereich bearbeiten, wobei die entstehenden Vorsprünge Höhen von bis zu 1 mm aufweisen können. Zur Halterung der Vorsprünge (Metallstifte oder andere Strukturen) kann die Grundplatte 60 einen gesonderten Maskeneinsatz aufweisen. Figur 4 zeigt auch den Metallstift 61a, der zur Bildung der Justiermarkierung 23 (siehe Fig. 2) vorgesehen ist. The base plate 60 carries on the inside of the impression tool 200 facing side protrusions for structure formation in the compartment layer. Aside from the tabs the surface of this inner side is uniform and smooth educated. In the example shown, the projections include Pins 61 arranged in a matrix (partially shown) with a diameter corresponding to the desired one Diameter of the sample reservoirs 31 (see Fig. 2). The pencils 61 are in corresponding recesses on the inside the base plate 60 inserted. The base plate and the pins are preferably made of metal (e.g. stainless steel or Aluminum). For the ledges to structure formation can but also other materials such. As silicon or glass be used. These materials can be used in themselves known, special molding techniques (e.g. LIGA process or etching) with high precision down to the sub-micrometer range edit, with the resulting projections heights can have up to 1 mm. To hold the projections (Metal pins or other structures) can be the base plate 60 have a separate mask insert. Figure 4 shows also the metal pin 61a, which is used to form the alignment mark 23 (see Fig. 2) is provided.

Die Zwischenplatte 70 ist ein Abstandhalter, der die Dicke der Kompartimentschicht (Silikonmatte) bestimmt und dessen Innenmaße, die Außenmaße der Kompartimentschicht festlegen. Die Zwischenplatte 70 ist mit einer Einfüllöffnung 71, die mit dem Einfüllstutzen 90 (siehe unten) zusammenwirkt, und Austrittsöffnungen 72 ausgestattet. Die Austrittsöffnungen 72 dienen dem Austritt von verdrängter Luft bzw. überschüssigem Schichtmaterial aus dem Abdruckwerkzeug 200. Die Zwischenplatte 70 ist kein zwingendes Merkmal eines erfindungsgemäßen Abdruckwerkzeugs. Die Funktion des Abstandhalters kann alternativ auch durch entsprechende Strukturen (umlaufende Stufen) an der Grundplatte und/oder der Gegenplatte erfüllt werden.The intermediate plate 70 is a spacer which is the thickness the compartment layer (silicone mat) determined and its Internal dimensions, the outer dimensions of the compartment layer. The intermediate plate 70 has a filling opening 71 which interacts with the filler neck 90 (see below), and Outlet openings 72 equipped. The outlet openings 72 serve to discharge displaced air or excess Layer material from the impression tool 200. The intermediate plate 70 is not a mandatory feature of an invention Footprint tool. The function of the spacer can alternatively also through appropriate structures (surrounding steps) on the base plate and / or the counter plate.

Die Gegenplatte 80 stellt den Abschluss des Abdruckwerkzeugs 200 gegenüber zur Grundplatte 60 dar. Sie ist ebenfalls eine Metallplatte. Zur Innenseite des Abdruckwerkzeugs 200 hinweisend ist in der Gegenplatte 80 ein Rahmen 81 mit einem Kunststoffeinsatz 82 angeordnet. Der Kunststoffeinsatz 82 ist eine Schicht aus elastisch verformbarem Kunststoff mit einer Dicke von rund 10 mm. Er besteht vorzugsweise aus PTFE. Der Kunststoffeinsatz 82 besitzt Ausnehmungen 83, die zu den Vorsprüngen auf der Grundplatte 60 komplementär sind. Im dargestellten Beispiel sind im Kunststoffeinsatz 82 1536 Bohrungen (teilweise dargestellt) zum Aufnehmen der Metallstifte 61 im zusammengesetzten Zustand des Abdruckwerkzeugs 200 vorgesehen. Die Einbringung der komplementären Ausnehmungen ist nicht zwingend erforderlich. Wenn die Vorsprünge auf der Grundplatte 60 genügend stabil oder der Kunststoffeinsatz 82 genügend leicht deformierbar ist, damit im zusammengesetzten Zustand des Abdruckwerkzeugs 200 die Vorsprünge nicht beschädigt werden, so kann auf gesonderte Ausnehmungen im Kunststoffeinsatz 82 verzichtet werden. The counter plate 80 is the end of the impression tool 200 compared to the base plate 60. It is also one Metal plate. Pointing to the inside of the impression tool 200 is a frame 81 with a plastic insert in the counter plate 80 82 arranged. The plastic insert 82 is one Layer of elastically deformable plastic with a thickness of around 10 mm. It is preferably made of PTFE. The plastic insert 82 has recesses 83 that lead to the projections on the base plate 60 are complementary. In the illustrated Examples are 82 1536 holes in the plastic insert (partially shown) for receiving the metal pins 61 in Assembled state of the impression tool 200 provided. The introduction of the complementary recesses is not mandatory. If the ledges on the Base plate 60 is sufficiently stable or the plastic insert 82 is sufficiently easily deformable so that when assembled Condition of the impression tool 200 the projections are not damaged can be on separate recesses in the plastic insert 82 can be dispensed with.

Das Bezugszeichen 20 verweist auf den fertigen Probenträger (gemäß Figur 2), der mit einem Abdruckwerkzeug 200 gemäß den Figuren 3 bis 5 hergestellt wird.The reference numeral 20 refers to the finished sample carrier (According to Figure 2), which with an impression tool 200 according to the Figures 3 to 5 is produced.

Es kann vorgesehen sein, dass die Ausnehmungen 83 im Kunststoffeinsatz 82 durch diesen vollständig durchgebohrt sind und sich auch in entsprechenden Ausnehmungen 84 in der Gegenplatte 80 fortsetzen. Diese Öffnungen dienen dem Austritt von verdrängter Luft bzw. überschüssigem Schichtmaterial.It can be provided that the recesses 83 completely drilled through in the plastic insert 82 are and also in corresponding recesses 84 in continue the counterplate 80. These openings serve the Escape of displaced air or excess layer material.

Der Einfüllstutzen 90 ist außen am zusammengesetzten Abdruckwerkzeug 200 an der Einfüllöffnung 71 befestigt. Er dient dem Einbringen des gelösten Polymermaterials in die zusammengesetzte Werkzeugform.The filler neck 90 is on the outside of the composite impression tool 200 attached to the fill opening 71. He serves that Introducing the dissolved polymer material into the composite Mold.

Das Abdruckwerkzeug 200 wird mit Halterungsstiften 62, 63, 64, 65 zusammengehalten, die durch entsprechende Bohrungen an den Ecken der Grund-, Zwischen- und Gegenplatten führen. Zur Fixierung der Teile ist eine Schraubverbindung (im Einzelnen nicht dargestellt) vorgesehen. Alternativ können auch äußere Klemmeinrichtungen oder ein gesonderter Rahmen zum Zusammenhalten der Platten vorgesehen sein.The impression tool 200 is fastened with mounting pins 62, 63, 64, 65 held together by appropriate holes the corners of the base, intermediate and counter plates. to Fixing the parts is a screw connection (in detail not shown) provided. Alternatively, outer Clamping devices or a separate frame to hold together the plates may be provided.

Das Abdruckwerkzeug 200 kann wie folgt modifiziert sein. Im Innern der Zwischenplatte 70 kann zusätzlich ein Metallrahmen angebracht sein, der die gewünschten Außenmaße der Kompartimentschicht besitzt und mit dieser auch beim späteren Einsatz verbunden bleibt. Die Stifte 61 können an ihren Enden zur Erleichterung in die Einführung in die entsprechenden Ausnehmungen in der Grund- bzw. Gegenplatte abgerundet sein. Zur Integration der unter Bezug auf Figur 1 genannten Manipulations- und Untersuchungseinrichtungen in den Probenträger 20 kann vorgesehen sein, die Zwischenplatte 70 entsprechend mit Halterungen für diese zusätzlichen Einrichtungen zu versehen. The impression tool 200 can be modified as follows. in the A metal frame can additionally be provided inside the intermediate plate 70 be attached, the desired external dimensions of the compartment layer owns and with this also for later use stays connected. The pins 61 can be at their ends for relief in the introduction to the corresponding recesses be rounded in the base or counter plate. to Integration of the manipulation mentioned with reference to FIG. and examination devices in the sample carrier 20 can be provided with the intermediate plate 70 accordingly To provide brackets for these additional facilities.

Diese Halterungen umfassen bspw. Durchtrittsöffnungen im durch die Zwischenplatte 70 gebildeten Rahmen vom Inneren des Abdruckwerkzeugs 200 nach außen, die jeweils mit Fixierungen (z. B. Klemmen) für die jeweiligen zusätzlichen Einrichtungen ausgestattet sind. Schließlich ist es nicht zwingend erforderlich, dass sämtliche Strukturen der gewünschten Kompartimentschicht tatsächlich als Vorsprünge auf der Grundplatte 60 ausgebildet sind. Der fertige Probenträger kann ohne Weiteres noch mit zusätzlichen Strukturen versehen werden (z. B. Einbohren der Vorratstöpfe 33).These brackets include passage openings in the frame formed by the intermediate plate 70 from the inside of the Impression tool 200 to the outside, each with fixations (e.g. terminals) for the respective additional devices are equipped. After all, it is not imperative that all structures of the desired compartment layer actually as protrusions on the base plate 60 are trained. The finished sample holder can easily be used can be provided with additional structures (e.g. drilling of the stock pots 33).

Zur Herstellung des Probenträgers wird zunächst das Abdruckwerkzeug 200 zusammengesetzt. Die Stifte 61 werden in die Grundplatte 60 gesteckt. Die Grund-, Zwischen- und Gegenplatten werden zusammengesetzt, so dass die Stifte 61 in die Ausnehmungen 83 im Kunststoffeinsatz 82 ragen. Auf diese Weise entsteht ein nach allen Seiten im Wesentlichen geschlossenes Behältnis, zwischen dessen seitlichen Platten (Grund- und Gegenplatten) sich die Stifte 61 erstrecken. Die Führungsstifte 62 bis 65 werden z. B. mit Flügelmuttern festgezogen. Das zusammengesetzte Werkzeug wird mit vertikal ausgerichteten Platten aufrecht aufgestellt. Die Einfüllöffnung 71 weist nach oben.The impression tool is used to manufacture the sample holder 200 composed. The pins 61 are in the Base plate 60 inserted. The base, intermediate and counter plates are assembled so that the pins 61 into the recesses 83 protrude into the plastic insert 82. In this way there is an essentially closed on all sides Container, between the side plates (base and counter plates) the pins 61 extend. The guide pins 62 to 65 are e.g. B. tightened with wing nuts. The composite Tool is aligned with vertically Plates placed upright. The filling opening 71 has up.

Danach wird das Abdruckwerkzeug 200 durch die Einfüllöffnung 71 mit einer Lösung der jeweils gewünschten Polymerzusammensetzung gefüllt. Dies erfolgt vorzugsweise mit einer Spritze direkt in die Einfüllöffnung 71 oder unter Verwendung des Einfüllstutzens 90. Das Einfüllen erfolgt als langsames Einlaufen unter Vermeidung von Spritzern oder Wirbeln, damit das Innere des Abdruckwerkzeugs 200 möglichst gleichförmig gefüllt wird. Vorzugsweise wird die Polymerzusammensetzung im Wesentlichen druckfrei in das Abdruckwerkzeug eingefüllt. Das Einfüllen erfolgt solange, bis die gelöste Polymerzusammensetzung aus den Austrittsöffnungen 72 herausquillt. Diese werden dann bspw. mit einem Klebeband verschlossen. Nach dem Verschließen wird noch geringfügig weiteres Material nachgefüllt.The impression tool 200 is then passed through the filling opening 71 with a solution of the desired polymer composition filled. This is preferably done directly in with a syringe the fill opening 71 or using the filler neck 90. The filling takes place as slow running in avoiding of splashes or swirls, so that the inside of the impression tool 200 is filled as uniformly as possible. Preferably the polymer composition is essentially pressure-free in the Impression tool filled. The filling takes place until the dissolved polymer composition from the outlet openings 72 oozes out. These are then closed, for example, with an adhesive tape. After closing, there will be a little more Refilled material.

Anschließend erfolgt das Trocknen oder das Vernetzen der Polymerzusammensetzung vorzugsweise bei Raumtemperatur. Dies kann bspw. rund 8 bis 12 Stunden dauern. Der Lösungsmittelentzug bzw. das Vernetzen der Polymerzusammensetzung kann durch eine Temperierung beschleunigt werden. Schließlich werden die Verbindungen der Platten über die Führungsstifte 62 bis 65 gelöst, die Platten voneinander getrennt und die elastische Kompartimentschicht von der Maske bzw. Abdruckform gezogen. Ein besonderer Vorteil des Einsatzes von Silikonkautschuk besteht hier darin, dass dieses Abziehen ohne Probleme und ohne Beschädigungen des Probenträgers erfolgen kann.The polymer composition is then dried or crosslinked preferably at room temperature. This can, for example, take around 8 to 12 hours. The solvent withdrawal or the crosslinking of the polymer composition be accelerated by tempering. Finally be the connections of the plates via the guide pins 62 to 65 solved, the plates separated and the elastic Compartment layer pulled from the mask or impression form. A particular advantage of using silicone rubber here is that this peeling off with no problems and can be done without damaging the sample holder.

Das Vernetzen erfolgt bei Verwendung des Polymers Elastosil M 4600 vorzugsweise bei Raumtemperatur, kann aber auch bei höheren Temperaturen im Trockenschrank oder einem Ofen durchgeführt werden. Das Vernetzen ist im Wesentlichen ein chemisches Vernetzen, bei dem gegebenenfalls unter Anwesenheit eines Katalysators eine Polymerisierungsreaktion durchgeführt wird. Bei anderen Polymeren erfolgt die Vernetzung bei der jeweils spezifizierten Vernetzungstemperatur.Crosslinking takes place when the polymer Elastosil M is used 4600 preferably at room temperature, but can also be used at higher ones Temperatures are carried out in a drying cabinet or an oven become. Crosslinking is essentially chemical Networking, where necessary in the presence of a Catalyst carried out a polymerization reaction becomes. In the case of other polymers, the crosslinking takes place in the specified cross-linking temperature.

Es kann sich eine Abschlussbehandlung zum nachträglichen Einbringen von Kompartimentstrukturen (z. B. Vorratstöpfe) oder zur Anpassung bzw. Ausrichtung der zusätzlichen Manipulations- und Untersuchungseinrichtungen anschließen. Auch eine chemische Nachbehandlung der Oberfläche des Probenträgers ist möglich. Der fertige Probenträger wird dann auf ein Bodenteil aufgelegt und mit diesem durch einfaches manuelles Andrücken verbunden.There can be a final treatment for subsequent application of compartment structures (e.g. storage pots) or to adjust or align the additional manipulation and connect examination facilities. Also one chemical post-treatment of the surface of the sample carrier possible. The finished sample holder is then placed on a bottom part applied and with this by simple manual pressing connected.

Eine weitere Ausführungsform der Erfindung ist am Beispiel eines Mikroprobenträgers für kleinste Flüssigkeitsmengen in den Figuren 6 bis 8 illustriert. Figur 6 zeigt zunächst einen Größenvergleich zwischen einem erfindungsgemäßen Reaktionssubstrat bzw. einem Probenträger 20 (linker Teil der Abbildung) und einem herkömmlichen Probenträger 20', der aus Silizium hergestellt ist. Auf einer Grundfläche von rund 10 mm • 15 mm trägt der Probenträger 20 eine Matrixanordnung aus insgesamt rund 600 trichterförmig gebildeten Kompartimenten (siehe unten). Jedes Kompartiment besitzt eine charakteristische Querschnittsdimension von rund 0,5 mm. Der herkömmliche Siliziumprobenträger 20' hingegen besitzt ein erheblich gröberes Raster, das darüber hinaus mit aufwendigen Prozessierungstechniken hergestellt wurde.Another embodiment of the invention is based on the example a micro sample holder for the smallest amounts of liquid in Figures 6 to 8 illustrated. Figure 6 first shows one Size comparison between a reaction substrate according to the invention or a sample carrier 20 (left part of the figure) and a conventional sample carrier 20 'made of silicon is made. On a base area of around 10 mm • The sample carrier 20 carries a matrix arrangement of 15 mm overall around 600 funnel-shaped compartments (see below). Each compartment has a characteristic Cross-sectional dimension of around 0.5 mm. The conventional one Silicon sample carrier 20 ', on the other hand, has a considerably coarser one Raster, which also with complex processing techniques was produced.

Figur 7 zeigt einen vergrößerten Ausschnitt des Probenträgers 20. Diese Abbildung wurde mit einem inversen Mikroskop mit einer CCD-Kamera aufgenommen. Der Probenträger 20 trägt die in geraden Reihen und Spalten angeordneten Kompartimente 34. Diese besitzen eine sich von der Oberfläche des Probenträgers 20 in die Kompartimentschicht hinein verjüngende Querschnittsform wie eine umgekehrte, abgeschnittene Pyramide. Am Boden besitzen die Kompartimente eine charakteristische Seitenlänge, die ungefähr 1/3 der oberen Kantenlänge beträgt. Der jeweils hell gezeigte Boden wird durch das gemeinsame Bodenteil 10 (siehe Fig. 1) gebildet. Die Kompartimentschicht 21 des Probenträgers 20 wird von den Kompartimenten vollständig durchstoßen.Figure 7 shows an enlarged section of the sample holder 20. This image was taken with an inverted microscope recorded on a CCD camera. The sample carrier 20 carries the compartments 34 arranged in straight rows and columns. These are located on the surface of the sample carrier 20 cross-sectional shape tapering into the compartment layer like an inverted, truncated pyramid. At the Soil the compartments have a characteristic side length, which is approximately 1/3 of the top edge length. The floor, which is shown brightly, is created by the common floor part 10 (see Fig. 1) formed. The compartment layer 21 of the sample carrier 20 becomes complete from the compartments punctured.

Ein Probenträger gemäß den Figuren 6 bis 8 wird mit einem entsprechend angepassten Abdruckwerkzeug analog zu dem unter Bezug auf die Figuren 3 bis 5 beschriebenen Verfahren hergestellt. Im Abdruckwerkzeug sind die Vorsprünge auf der Grundplatte dann nicht durch eingesteckte Stifte, sondern pyramidenförmig durch mechanisches Fräsen gebildet. Nach Herstellung der Kompartimentschicht 21 wird diese auf ein Glas-Bodenteil haftend aufgebracht. Dann werden die Kompartimente gefüllt und anschließend gegebenenfalls mit einem weiteren Glas als Abdeckung oder mit einer Folie verschlossen. Die mikroskopische Vermessung der Proben in den Kompartimenten erfolgt von der Seite des Bodenteils 10 her durch die unteren kleineren Öffnungen der Kompartimentschicht 21. Die Kantenlänge der unteren Öffnungen beträgt jeweils rund 150 µm.A sample carrier according to Figures 6 to 8 is with a correspondingly adapted impression tool analogous to that under Produced with reference to Figures 3 to 5 described method. The protrusions on the base plate are in the impression tool then not through inserted pins, but pyramid-shaped formed by mechanical milling. After manufacture the compartment layer 21 is on a glass bottom part adhered. Then the compartments filled and then optionally with another Glass as cover or closed with a film. The microscopic measurement of the samples in the compartments takes place from the side of the bottom part 10 through the lower smaller openings in the compartment layer 21. The edge length the lower openings are each around 150 µm.

Figur 8 zeigt Einzelheiten der zwischen den Kompartimenten gebildeten Stege. Wie auch aus Figur 7 ersichtlich, ist die Kompartimentschicht so geformt, dass die Wände zwischen den Kompartimenten 34 in Reihenrichtung durchgehende Stege 35 und in Spaltenrichtung unterbrochene Stege 36 bilden. Zwischen den Enden der unterbrochenen Stege 36 und dem jeweils angrenzenden durchgehenden Steg 35 bildet sich ein Überlauf 37. Der Überlauf 37 erlaubt die Herstellung einer Flüssigkeitsverbindung zwischen benachbarten Kompartimenten, ohne ein Übertreten über die obere Oberfläche des Probenträgers 20. Die Anordnung der Überläufe kann anwendungsabhängig modifiziert sein.Figure 8 shows details of the between the compartments formed webs. As can also be seen from FIG. 7, the Compartment layer shaped so that the walls between the Compartments 34 in the row direction continuous webs 35 and Form webs 36 interrupted in the column direction. Between the ends of the interrupted webs 36 and the adjacent one continuous web 35 forms an overflow 37. The Overflow 37 allows a fluid connection to be made between neighboring compartments without trespassing over the top surface of the sample carrier 20. The arrangement the overflows can be modified depending on the application his.

In Figur 9 sind verschiedene Gestaltungen von Kanalstrukturen in einem erfindungsgemäßen Probenträger vergrößert dargestellt. Die Kanäle 32 sind allgemein in der Schichtebene offene Probenkompartimente oder Kompartimentstrukturen, deren Ausdehnung in einer Richtung erheblich größer als in einer dazu senkrechten Richtung sind. Kanäle werden im Probenträger geformt, indem zu dessen Herstellung eine Maskenform mit stegförmigen Vorsprüngen auf der Grundplatte des Abdruckwerkzeugs verwendet werden. Die Kanäle können beliebig gerade oder gekrümmt einzeln oder sich verzweigend oder miteinander verbunden verlaufen. Je nach Gestaltung des Probenträgers können sogar in sich geschlossene Kanäle gebildet werden, falls der Kanalboden selbst Teil des Probenträgers ist, die entsprechenden Kompartimentstrukturen also nicht vollständig durch die Kompartimentschicht hindurchgehen. FIG. 9 shows different designs of channel structures shown enlarged in a sample carrier according to the invention. The channels 32 are generally open in the layer plane Sample compartments or compartment structures whose Expansion significantly larger in one direction than in one are perpendicular to this. Channels are in the sample holder molded by using a mask shape to make it web-shaped projections on the base plate of the impression tool be used. The channels can be straight or curved individually or branching or with each other run together. Depending on the design of the sample holder closed channels can even be formed, if the channel floor itself is part of the sample holder, the corresponding compartment structures are not complete go through the compartment layer.

Figur 9A zeigt eine Kanalstruktur mit mehreren Kanälen 32a bis 32c, die an einem Mischungskreuz 32d verbunden sind. An den Kanalenden befinden sich jeweils Vorratstöpfe 33a bis 33d. Das Bezugszeichen 32e weist auf eine Verengungsstelle. Die Verengungsstelle 32e kann strömungsmechanisch durch Barrieren (ausgewölbte Kanalwand) oder auch elektrisch durch elektrische Feldbarrieren gebildet werden, bspw. um die Fluidströmung vor diesem Bereich zu verzögern und dort Messungen an suspendierten Partikeln in der Fluidströmung durchzuführen.FIG. 9A shows a channel structure with a plurality of channels 32a to 32c, which are connected at a mixing cross 32d. On there are storage pots 33a to the channel ends 33d. The reference symbol 32e indicates a constriction point. The constriction 32e can be flow mechanically through barriers (arched channel wall) or electrically through electrical field barriers are formed, for example around the fluid flow to delay before this area and take measurements there on suspended particles in the fluid flow.

Eine Abwandlung ist in Figur 9B gezeigt. Zwei Teilkanäle 32a, 32b verbinden sich in einem gemeinsamen Kanal 32c. Diese Struktur dient dem Vermischen von zwei Fluidströmen in einen einzigen Fluidstrom. Der Winkel α zwischen den Teilkanälen 32a, 32b ist anwendungsabhängig zur Erzielung eines gleichförmigen Strömens an dem Mischungspunkt 32d eingestellt. Eine weitere Abwandlung von Strukturen zum Vermischen der Fluidströmungen ist in Figur 9C als Doppelkreuzanordnung mit mehreren Teilkanälen illustriert, die in zwei Mischungspunkte 32d münden.A modification is shown in Figure 9B. Two sub-channels 32a, 32b connect in a common channel 32c. This Structure is used to mix two fluid flows into one single fluid flow. The angle α between the subchannels 32a, 32b is application dependent to achieve uniformity Flow set at the mixing point 32d. A further modification of structures for mixing the fluid flows is in Figure 9C as a double cross arrangement with several Subchannels illustrated in two mix points 32d flow out.

Die Mäanderform 32f gemäß Figur 9D dient der Schaffung einer besonders langen Messstrecke. Zwischen den Vorratstöpfen 33a bis 33c einerseits und dem Vorratstopf 33d erstreckt sich ein langer, gewundener Kanal in einem Flächenbereich, der bspw. ein Target zur Beleuchtung für Fluoreszenzmessungen bildet.The meander shape 32f according to FIG. 9D serves to create a particularly long measuring distance. Between the storage pots 33a to 33c on the one hand and the storage pot 33d extends long, sinuous channel in an area that, for example, forms a target for illumination for fluorescence measurements.

Die erfindungsgemäßen Reaktionssubstrate oder Probenträger besitzen besondere Vorteile in Bezug auf die Ausbildung der Kanalstrukturen. Zur Herstellung der Maske für das Abdruckwerkzeug können mit herkömmlichen feinmechanischen Werkzeugen (z. B. CNC-Maschinen) aus gebräuchlichem Werkstoff, vorzugsweise Aluminium oder andere metallische Werkstoffe, beliebige Kanalverläufe vorbereitet werden. Sie können insbesondere in Bezug auf die Länge, die relative Orientierung (Winkel), die Biegungen und Wendungen, Mischungsstrukturen und Teilkanäle anwendungsabhängig in vorbestimmter Weise gestaltet werden. Kanäle dieser Art lassen sich bis hinab zu Kanalbreiten von rund 6 µm mit herkömmlichen feinmechanischen Werkzeugen präzise und reproduzierbar fertigen. In die Kanäle können Vorsprünge oder Kanten eingearbeitet werden, die ein verbessertes Vermischen mehrerer Fluidströmungen bei der Zusammenführung mehrerer Kanäle ermöglichen. Die Kanäle können mit Elektroden zum Messen der Eigenschaften der Fluidströmungen oder zu deren Manipulierung auf der Grundlage der Elektroosmose, mit Sensoren oder Temperierelementen und auch mit Sperr- oder Ventilelementen sowie Piezopumpen ausgestattet sein.The reaction substrates or sample carriers according to the invention have particular advantages in terms of training the Channel structures. For the production of the mask for the impression tool can with conventional precision mechanical tools (e.g. CNC machines) made of common material, preferably Aluminum or other metallic materials, any Channel profiles are prepared. You can in particular Terms of length, relative orientation (angle), the Bends and twists, mix structures and sub-channels be designed depending on the application in a predetermined manner. Channels of this type can be down to channel widths of around 6 µm with conventional precision mechanical tools and produce reproducibly. Projections can be made in the channels or edges are incorporated, which is an improved Mixing several fluid flows when merging allow multiple channels. The channels can be with Electrodes for measuring the properties of fluid flows or to manipulate it on the basis of electroosmosis, with sensors or temperature control elements and also with Blocking or valve elements as well as piezo pumps his.

Eine weitere Ausführungsform der Erfindung mit einer makroskopischen Kompartimentstruktur ist in Figur 10 in Drauf- und Schnittansicht illustriert.Another embodiment of the invention with a macroscopic Compartment structure is in Figure 10 in top and bottom Illustrated sectional view.

Ein erfindungsgemäßes Reaktionssubstrat oder ein erfindungsgemäßer Probenträger 20 kann auch mit einem einzigen Kammerkompartiment 38 ausgestattet sein. Die Kompartimentschicht 21 ist lediglich ein Ring aus der jeweils verwendeten Polymerzusammensetzung, z. B. Silikonkautschuk. Dieser Ring haftet zwischen einem Bodenteil 10, z. B. einer Glasplatte, und einer Abdeckung 50, so dass eine geschlossene, schichtförmige Küvette z. B. für die Fluoreszenzspektroskopie gebildet wird. Wegen des flüssigkeitsdichten Anhaftens des Probenträgers 20 an den Glasmaterialien des Bodenteils 10 bzw. der Abdeckung 50 kann diese Küvette dauerhaft mit Lösungsmitteln oder Probelösungen beschickt und wie eine Festschichtprobe Fluoreszenzmessungen unterzogen werden. An inventive reaction substrate or an inventive one Sample carrier 20 can also be used with a single chamber compartment 38 be equipped. The compartment layer 21 is just a ring of the polymer composition used in each case, z. B. silicone rubber. This ring sticks between a bottom part 10, e.g. B. a glass plate, and one Cover 50 so that a closed, layered Cuvette e.g. B. is formed for fluorescence spectroscopy. Because of the liquid-tight adherence of the sample carrier 20 on the glass materials of the bottom part 10 or the cover 50 this cuvette can permanently with solvents or sample solutions loaded and like a solid layer sample fluorescence measurements be subjected.

Die Figuren 11 und 12 illustrieren besondere Vorteile erfindungsgemäßer Reaktionssubstrate hinsichtlich der Planarität der Probenanordnung, die für mikroskopische Untersuchungen von Bedeutung ist, und der well-to-well-Dichtigkeit der Kompartimentstrukturen. Zur Demonstration der Planarität wurde die Variation der z-Position über dem gesamten Bereich der Bodenfläche des Reaktionssubstrates mit einem konfokalen Mikroskopaufbau (Reflektion des Laserstrahls auf der Glasoberfläche des Bodens, aufgenommen mit einer CCD-Kamera) bei einem konventionellen, handelsüblichen Reaktionssubstrat oder Probenträger (linkes Teilbild in Figur 11) und für ein erfindungsgemäßes Reaktionssubstrat (rechtes Teilbild in Figur 11) vermessen.Figures 11 and 12 illustrate particular advantages of the invention Reaction substrates with regard to the planarity of the Sample arrangement, which is important for microscopic examinations and the well-to-well tightness of the compartment structures. The variation was used to demonstrate planarity the z position over the entire area of the floor area of the reaction substrate with a confocal microscope assembly (Reflection of the laser beam on the glass surface of the floor, recorded with a CCD camera) in a conventional, commercially available reaction substrate or sample carrier (left Partial image in Figure 11) and for a reaction substrate according to the invention (right drawing in Figure 11) measured.

Bei den konventionellen, handelsüblichen Probenträgern oder Reaktionssubstraten ergibt sich eine für konfokal-fluorimetrische Anwendungen nicht mehr tolerierbare Variation des Plattenbodens in z-Richtung um bis zu 300 µm vom Rand der Platte bis zu ihrer Mitte. Es ist ein eindeutiger Verlauf in eine Richtung ("Durchhängen" des Reaktionssubstrates in seiner Mitte) zu erkennen. Das Reaktionssubstrat, das Gegenstand dieser Anmeldung ist, weist eine Variation des Plattenbodens in z-Richtung von weit weniger als 100 µm auf. Diese Abweichung liegt deutlich unterhalb der Toleranz von rund 150 µm für konfokal-fluorimetrische Anwendungen. Weiterhin ist lediglich eine statistische Fluktuation der z-Abweichung um den Mittelwert nach oben bzw. unten hin zu erkennen, eine Tendenz in der Abweichung findet sich nicht (z. B. kein "Durchhängen" des Reaktionssubstrates in seiner Mitte).With conventional, commercially available sample carriers or reaction substrates one results for confocal fluorimetric Applications no longer tolerable variation of the slab floor in the z direction by up to 300 µm from the edge of the plate to its Center. It is a clear course in one direction ("sagging" of the reaction substrate in the middle). The reaction substrate which is the subject of this application shows a variation of the plate bottom in the z-direction from far less than 100 µm. This deviation is significantly below the tolerance of around 150 µm for confocal fluorimetric Applications. Furthermore, there is only a statistical fluctuation the z deviation around the mean upwards or downwards to recognize, there is no tendency in the deviation (e.g. no "sagging" of the reaction substrate in the middle).

In Figur 12 sind die 1536 Wells eines erfindungsgemäßen Reaktionssubstrates mit den Ergebnissen von jeweils in den Wells durchgeführten Messungen dargestellt. Für die Untersuchung wurde ein Reaktionssubstrat in Form eines "Schachbrettmusters" alternierend mit Suspensionen von sogenannten aktiven und sogenannten nicht aktiven Bakterien befüllt (jeweils 330 nl pro Well). Nach einer Inkubationszeit von 21 h wurden alle Wells gleichmäßig mit jeweils 1 µl Assay versetzt, nach einer weiteren Inkubationszeit von 30 min wurden sämtliche Wells des Reaktionssubstrates mit Hilfe von CFCA-Messungen (1 s Messzeit pro Well) vermessen.In Figure 12 are the 1536 wells of a reaction substrate according to the invention with the results of each in the wells performed measurements shown. For the investigation a reaction substrate alternately in the form of a "checkerboard pattern" with suspensions of so-called active and so-called filled with inactive bacteria (330 nl per well). To After an incubation period of 21 h, all wells were evenly mixed with 1 µl assay added after a further incubation period from 30 min all wells of the reaction substrate with Measure using CFCA measurements (1 s measurement time per well).

In Wells, die mit aktiven Bakterien versetzt sind, werden die zweifarbig markierten Assaymoleküle gespalten, so dass das CFCA-Signal klein wird (schwarze Felder im Plot). In Proben, die mit nicht-aktiven Bakterien versetzt sind, werden die zweifarbig markierten Assaymoleküle nicht gespalten, so dass das CFCA-Signal groß bleibt (weiße Felder im Plot). Nur bei insgesamt sechs von 1536 Wells tritt ein "Fehler" auf, der von einer Undichtigkeit zwischen einzelnen Wells herrühren könnte. Es kann sich dabei aber auch um Fehler handeln, die bereits beim Pipettieren der Bakterien-Suspensionen entstanden sind. Die obere Grenze für Fehler, die durch Undichtigkeiten von Well zu Well auftreten beträgt also höchstens 0,4 %.In wells that contain active bacteria, the two-tone labeled assay molecules cleaved so that the CFCA signal becomes small (black fields in the plot). In samples with non-active bacteria are added, they become two-colored labeled assay molecules are not cleaved, so the CFCA signal remains large (white fields in the plot). Only in total Six out of 1536 wells encountered an "error" that resulted from a leak between individual wells. It can but these are also errors that are already evident when pipetting of the bacterial suspensions have arisen. The upper Limit for errors caused by leaks from well to well occur therefore is at most 0.4%.

Dieses hervorragende Ergebnis ist vorteilhafterweise auch zeitstabil. Das Reaktionssubstrat ist auch nach wenigstens 48 h (Zeit vom Vorbereiten der Proben über Inkubation bis zum Abschluss der Messungen) noch in der Weise stabil, dass die Wells gegeneinander abgeschlossen sind und Messungen in der Platte durchgeführt werden können (ohne Verklebung des Bodenglases, das nach Ende der Messungen wieder entfernt werden kann).This excellent result is advantageously also time-stable. The reaction substrate is also after at least 48 hours (Time from sample preparation to incubation to completion of measurements) is still stable in such a way that the wells are completed against each other and measurements in the plate can be carried out (without gluing the floor glass, the can be removed again after the end of the measurements).

Das in Figur 12 illustrierte Ergebnis zeigt auch, dass das Wachstum der Bakterien von der Kompartimentschicht nicht unterbunden wird (Biokompatibilität).The result illustrated in FIG. 12 also shows that the Bacterial growth from the compartment layer is not prevented becomes (biocompatibility).

Die erfindungsgemäßen Probenträger bzw. Reaktionssubstrate können allgemein in allen Gebieten der Biochemie, Biologie oder molekularen Biotechnologie angewendet werden, bei denen eine oder mehrere Proben in definierter Form gehaltert, manipuliert oder verändert werden sollen. Bevorzugte Anwendungen liegen in der Bearbeitung von Suspensionen mit bestimmten Partikelgemischen. Mit erfindungsgemäßen Reaktionssubstraten können bspw. Zellsortierer, Molekülsortierer oder anderweitige Zellmanipulatoren aufgebaut werden. Es sind sämtliche Anwendungen der fluidischen Mikrosystemtechnik implementierbar.The sample carriers or reaction substrates according to the invention can be common in all areas of biochemistry, biology or molecular biotechnology, where one or more samples held, manipulated in a defined form or should be changed. Preferred applications are in the processing of suspensions with certain Particle mixtures. With reaction substrates according to the invention can for example cell sorters, molecular sorters or other Cell manipulators are built. They are all applications of fluidic microsystem technology can be implemented.

Die erfindungsgemäßen Reaktionssubstrate sind mit besonderem Vorteil in Syntheseverfahren verwendbar, die auf kombinatorischer Chemie beruhen. Insbesondere können die erfindungsgemäßen Reaktionssubstrate zur Identifizierung und Validierung von Targets, d. h. spezifischen biologischen Molekülen, wie Enzymen, Rezeptoren oder Ionenkanälen verwendet werden. Des Weiteren können sie sehr gut zur Identifizierung von biologisch aktiven Substanzen und/oder pharmazeutischen Wirkstoffen eingesetzt werden. Durch die Möglichkeit der Verwendung der erfindungsgemäßen Reaktionssubstrate in Testverfahren mit hohem Probendurchsatz (sogenanntes high throughput screening, HTS) können deutlich mehr Substanzen innerhalb kurzer Zeit in Bezug auf ihre biologische Aktivität und/oder pharmazeutische Wirksamkeit untersucht werden. Dies ist von besonderer Bedeutung, um die mittels kombinatorischer Chemie erhaltenen Substanzbanken in Bezug auf ihre biologische Aktivität und/oder pharmazeutische Wirksamkeit zu untersuchen. Es ist mit den erfindungsgemäßen Reaktionssubstraten möglich, einen hohen Probendurchsatz zu erreichen und zwischen mehreren Tausend bis zu 100000 Substanzen pro Tag zu untersuchen.The reaction substrates according to the invention are special Benefit usable in synthetic processes based on combinatorial Chemistry based. In particular, the inventive Reaction substrates for the identification and validation of targets, d. H. specific biological molecules, such as enzymes, Receptors or ion channels can be used. Furthermore, you can they are very good for identifying biologically active substances and / or active pharmaceutical ingredients are used. The possibility of using the reaction substrates according to the invention in test procedures with high sample throughput (so-called high throughput screening (HTS) can do much more Substances within a short time in terms of their biological Activity and / or pharmaceutical efficacy are examined. This is of particular importance in order to be combinatorial Substance banks obtained in relation to their chemistry biological activity and / or pharmaceutical effectiveness investigate. It is with the reaction substrates according to the invention possible to achieve a high sample throughput and between investigate several thousand up to 100,000 substances per day.

Die erfindungsgemäßen Reaktionssubstrate sind weiterhin sehr gut für die Durchführung von Assay-Verfahren geeignet. Bei diesen Assay-Verfahren werden Targets und chemische Verbindungen zur Untersuchung von chemischen und/oder biologischen Wechselwirkungen kombiniert. Es ist somit auf einfachem Wege möglich, ein Modellsystem zu etablieren, das es erlaubt, Substanzen zu identifizieren, die das Target in der gewünschten Weise beeinflussen. Die erfindungsgemäßen Reaktionssubstrate können sowohl für biochemische als auch zelluläre Assay-Verfahren verwendet werden. Eingeschlossen sind dabei auch Assay-Verfahren die auf der Verwendung von vesikulären Partikeln oder Feststoffpartikeln (sogenannte Beads) basieren.The reaction substrates according to the invention are still very good suitable for performing assay procedures. With these Assay methods are used to target and chemical compounds Investigation of chemical and / or biological interactions combined. It is thus easily possible to create a model system establish that allows substances to be identified, that affect the target in the desired way. The reaction substrates according to the invention can be used both for biochemical as well as cellular assay methods can be used. This also includes assay procedures based on use of vesicular particles or solid particles (so-called Beads).

Die erfindungsgemäßen Reaktionssubstrate eignen sich weiterhin sehr gut zur Durchführung von Assay-Verfahren, die auf der Verwendung von vereinfachten Modellsystemen beruhen, die die Physiologie im Menschen oder im Tier nachbilden. Dies bedeutet, die Assay-Systeme können u. a. dazu verwendet werden, Informationen über die Löslichkeit von biologisch aktiven und/oder pharmazeutisch wirksamen Substanzen im Blutplasma, ihre Penetrationseigenschaften, ihre Leber-Toxizität, ihre Bioverfügbarkeit, ihre Stabilität im Blut oder ihre Abbauprofile nach Passage der Leber zu erhalten.The reaction substrates according to the invention are also suitable very good for performing assay procedures based on use based on simplified model systems that represent the physiology reproduce in humans or animals. This means that Assay systems can include: a. used to information about the solubility of biologically active and / or pharmaceutical active substances in blood plasma, their penetration properties, their liver toxicity, their bioavailability, their Stability in the blood or its breakdown profiles after passage through the liver to obtain.

Die chemischen und biotechnischen Untersuchungen können bspw. i) zur Identifizierung und Charakterisierung von synthetischen oder biologischen Objekten, ii) zur Identifizierung und Charakterisierung von chemischen Verbindungen, iii) zur Identifizierung und/oder Validierung von Targets, iv) zur Suche nach biologisch aktiven Substanzen und/oder pharmazeutischen Wirkstoffen, v) zur Identifizierung von Leitstrukturen, vi) zur Genomanalyse, vii) zur Proteomanalyse, viii) zur Reinigung und Konzentrierung von Substraten, oder ix) zur evolutiven Optimierung von biologisch relevanten Makromolekülen verwendet werden.The chemical and biotechnical investigations can, for example. i) for the identification and characterization of synthetic or biological objects, ii) for identification and Characterization of chemical compounds, iii) for identification and / or validation of targets, iv) for searching for biologically active substances and / or pharmaceutical Active substances, v) for the identification of lead structures, vi) for genome analysis, vii) for proteome analysis, viii) for purification and concentration of substrates, or ix) for evolutionary Optimization of biologically relevant macromolecules used become.

Claims (16)

  1. Reaction substrate (100) having a compartment structure (30) by which sample reservoirs (31) are formed which are arranged in matrix fashion in straight rows and columns, and a base portion (10), which includes a glass, plastics material, metal or semiconductor substrate and has a substantially flat, smooth surface, and said reaction substrate having a flexible compartment layer (21) made of a polymer material in which the sample reservoirs (31) are formed,
    characterised in that
    the polymer material is a viscoelastic polymer composition which is fixed with respect to the surface of the glass, plastics material, metal or semiconductor substrate by an inherent adhesiveness relative to the base portion (10) and is separable from the base portion (10) in a substantially damage-free manner without sacrificing shape, adhesiveness and flexibility, the compartment layer (21) being completely pierced by the sample reservoirs (31) such that the surface of the base portion is exposed at the bases of the sample reservoirs (31).
  2. Reaction substrate according to claim 1, wherein the base portion consists of a transparent material.
  3. Reaction substrate according to claim 2, wherein the base portion (10) is a substantially flat, smooth glass plate.
  4. Reaction substrate according to claim 3, wherein the glass plate has the thickness of a cover glass used in microscopy.
  5. Reaction substrate according to claim 4, wherein the thickness of the cover glass is about 150 mm.
  6. Reaction substrate according to one of the preceding claims, wherein the polymer composition includes natural or synthetic rubbers which are free of adhesive and solvent.
  7. Reaction substrate according to claim 6, wherein the polymer composition includes silicon rubber.
  8. Reaction substrate according to claim 6, wherein the polymer composition adheres to the base portion (10) without any adhesive.
  9. Reaction substrate according to one of the preceding claims, wherein the compartment layer (21) is separable from the base portion (10) in a substantially damage-free manner without sacrificing shape, adhesiveness and flexibility.
  10. Reaction substrate according to one of the preceding claims, wherein the compartment layer (21) bears a covering (50) on the opposite side to the base portion (10).
  11. Reaction substrate according to claim 10, wherein the covering (50) has through apertures (51) for charging the compartment structures (30) with liquid samples or for removing such samples.
  12. Reaction substrate according to one of the preceding claims, wherein the compartment structures (30) comprise ducts (32) and/or storage jars (33) in addition to the sample reservoirs (31).
  13. Reaction substrate according to one of the preceding claims, wherein manipulating and testing devices (40) are provided in the compartment layer (21) which include fluid lines (41), electrodes (42) and/or sensors (43).
  14. Reaction substrate according to one of the preceding claims which forms a micro- or nano-titration plate.
  15. Reaction substrate according to one of the preceding claims, wherein variations of the sample reservoir positions in a direction perpendicular to the plane of the reaction substrate over the entire area of the base portion are less than 250 mm, preferably less than 150 mm, by particular preference less than 100 mm.
  16. Use of a reaction substrate according to one of claims 1 to 15:
    to identify and characterise synthetic or biological objects,
    to identify and characterise chemical compounds,
    to identify and/or validate targets,
    to search for biologically active substances and/or active pharmaceutical agents,
    to identify conducting structures,
    for genome analysis,
    for proteome analysis,
    to clean and concentrate substrates, or
    for the evolutive optimisation of biologically relevant macromolecules.
EP00966127A 1999-10-06 2000-10-06 Structured reaction substrate Expired - Lifetime EP1218105B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19948087 1999-10-06
DE19948087A DE19948087B4 (en) 1999-10-06 1999-10-06 Process for the preparation of a reaction substrate
PCT/EP2000/009808 WO2001024933A1 (en) 1999-10-06 2000-10-06 Structured reaction substrate and method for producing the same

Publications (2)

Publication Number Publication Date
EP1218105A1 EP1218105A1 (en) 2002-07-03
EP1218105B1 true EP1218105B1 (en) 2004-02-18

Family

ID=7924652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00966127A Expired - Lifetime EP1218105B1 (en) 1999-10-06 2000-10-06 Structured reaction substrate

Country Status (6)

Country Link
EP (1) EP1218105B1 (en)
JP (1) JP2003511654A (en)
AT (1) ATE259677T1 (en)
DE (2) DE19948087B4 (en)
DK (1) DK1218105T3 (en)
WO (1) WO2001024933A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054833A1 (en) * 2000-05-26 2002-05-09 Daqing Qu Use of membrane cover in prevention of cross-contamination in multiple biological material isolation processing
DE10028323A1 (en) * 2000-06-07 2001-12-20 Evotec Biosystems Ag Microtiter plate or chip for containing biological or chemical samples, comprises a flat plastic sheet containing wells, a supporting core made from high melting point material surrounding each well being embedded in plastic sheet
CA2449193C (en) * 2001-06-08 2010-04-20 Centre National De La Recherche Scientifique Method of manufacturing a microfluidic structure, in particular a biochip, and structure obtained by said method
DE10142788A1 (en) * 2001-08-31 2003-03-27 Advalytix Ag To form a thin liquid film on a carrier, for chemical/biological sample analysis, the flat carrier is shrouded by a spaced cover, for liquid to pass through a passage drilling and spread by capillary action
CA2468674A1 (en) * 2001-12-05 2003-06-12 University Of Washington Microfluidic device and surface decoration process for solid phase affinity binding assays
DE10316723A1 (en) * 2003-04-09 2004-11-18 Siemens Ag Test slide with sample wells, forming sealed reaction chamber with casing, also includes bonded seal forming resting surface for casing
JP3727026B2 (en) * 2003-04-10 2005-12-14 博行 野地 Micro chamber used for detecting single-molecule enzyme activity and method for preparing droplets of 1000 fL or less
US7335504B2 (en) 2003-06-18 2008-02-26 Direvo Biotechnology Ag Engineered enzymes and uses thereof
DE10336849A1 (en) * 2003-08-11 2005-03-10 Thinxxs Gmbh flow cell
DE10356838A1 (en) 2003-12-05 2005-07-21 Tecpharma Licensing Ag sealing element
JP2006162538A (en) * 2004-12-10 2006-06-22 Seiko Instruments Inc Apparatus for measuring trace mass
DE102005003966A1 (en) * 2005-01-27 2006-08-10 Ehrfeld Mikrotechnik Bts Gmbh Apparatus for the continuous implementation of photochemical processes with low optical layer thicknesses, narrow residence time distribution and high throughputs
US9637715B2 (en) 2005-07-07 2017-05-02 Emd Millipore Corporation Cell culture and invasion assay method and system
US9388374B2 (en) 2005-07-07 2016-07-12 Emd Millipore Corporation Microfluidic cell culture systems
US8257964B2 (en) 2006-01-04 2012-09-04 Cell ASIC Microwell cell-culture device and fabrication method
US9354156B2 (en) 2007-02-08 2016-05-31 Emd Millipore Corporation Microfluidic particle analysis method, device and system
US9376658B2 (en) 2008-01-03 2016-06-28 Emd Millipore Corporation Cell culture array system for automated assays and methods of operation and manufacture thereof
US9260688B2 (en) 2005-07-07 2016-02-16 The Regents Of The University Of California Methods and apparatus for cell culture array
WO2007097229A1 (en) * 2006-02-20 2007-08-30 Shimadzu Corporation Reaction kit
WO2007139056A1 (en) * 2006-06-01 2007-12-06 Shimadzu Corporation Dispensing tip, reaction kit using the same, and dispensing tip drive mechanism
US20080069732A1 (en) * 2006-09-20 2008-03-20 Robert Yi Diagnostic test system
US9353342B2 (en) 2010-01-21 2016-05-31 Emd Millipore Corporation Cell culture and gradient migration assay methods and devices
US10526572B2 (en) 2011-04-01 2020-01-07 EMD Millipore Corporaticn Cell culture and invasion assay method and system
SG10201604400RA (en) 2011-12-03 2016-07-28 Emd Millipore Corp Micro-incubation systems for microfluidic cell culture and methods
DE102017004567A1 (en) * 2017-05-11 2018-11-15 Innome Gmbh Device for the analysis of biological samples

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704255A (en) * 1983-07-15 1987-11-03 Pandex Laboratories, Inc. Assay cartridge
EP0221105A1 (en) * 1985-04-29 1987-05-13 Hichem Diagnostics, Inc., Dba Bural Technologies Diagnostic test kit
US4731335A (en) * 1985-09-13 1988-03-15 Fisher Scientific Company Method for treating thin samples on a surface employing capillary flow
JPH0833395B2 (en) * 1986-04-15 1996-03-29 住友ベークライト株式会社 Method for producing molded article for solid-phase immunoassay
US4832814A (en) * 1987-12-28 1989-05-23 E. I. Du Pont De Nemours And Company Electrofusion cell and method of making the same
US5009780A (en) * 1989-07-20 1991-04-23 Millipore Corporation Multi-well filtration apparatus
WO1991009970A1 (en) * 1989-12-22 1991-07-11 Willingham Mark C A removable multi-well chamber device and method for incubation of cultured cells with small volumes
JPH0413915U (en) * 1990-05-22 1992-02-04
JPH0724571B2 (en) * 1990-06-29 1995-03-22 株式会社ピーシーシーテクノロジー Aseptic chamber for microscope observation
US5417923A (en) * 1991-04-24 1995-05-23 Pfizer Inc. Assay tray assembly
US5364790A (en) * 1993-02-16 1994-11-15 The Perkin-Elmer Corporation In situ PCR amplification system
US5342581A (en) * 1993-04-19 1994-08-30 Sanadi Ashok R Apparatus for preventing cross-contamination of multi-well test plates
EP0706646B1 (en) * 1993-07-02 1998-03-25 Institut Für Molekulare Biologie E.V. Sample holder and its use
GB9314991D0 (en) * 1993-07-20 1993-09-01 Sandoz Ltd Mechanical device
US5487872A (en) * 1994-04-15 1996-01-30 Molecular Device Corporation Ultraviolet radiation transparent multi-assay plates
US5604130A (en) * 1995-05-31 1997-02-18 Chiron Corporation Releasable multiwell plate cover
JP3643863B2 (en) * 1995-08-09 2005-04-27 アークレイ株式会社 Liquid holder and manufacturing method thereof
EP0854781A1 (en) * 1995-10-12 1998-07-29 Minnesota Mining And Manufacturing Company Microstructured polymeric substrate
AU3426697A (en) * 1996-02-09 1997-08-28 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College, The High aspect ratio, microstructure-covered, macroscopic surfaces
DE19636367A1 (en) * 1996-09-06 1998-03-12 Emitec Emissionstechnologie Method and devices for producing a metal sheet with a corrugation and a transverse microstructure
WO1998022799A2 (en) * 1996-11-18 1998-05-28 Novartis Ag Measurement device and its use
DE19752085A1 (en) * 1996-12-21 1998-06-25 Evotec Biosystems Gmbh Polycarbonate carrier disc for large numbers of samples
DE19712484C2 (en) * 1997-03-25 1999-07-08 Greiner Gmbh Microplate with transparent bottom and process for its production
US5926716A (en) * 1997-03-31 1999-07-20 Siemens Aktiengesellschaft Method for forming a structure
AU744879B2 (en) * 1997-09-19 2002-03-07 Aclara Biosciences, Inc. Apparatus and method for transferring liquids
CA2306126A1 (en) * 1997-10-15 1999-04-22 Aclara Biosciences, Inc. Laminate microstructure device and method for making same
WO1999044742A1 (en) * 1998-03-03 1999-09-10 Merck & Co., Inc. Sealing apparatus for use with microplates
JP3445501B2 (en) * 1998-09-04 2003-09-08 日立ソフトウエアエンジニアリング株式会社 Manufacturing method of sheet-like member laminate and sheet-like probe holder

Also Published As

Publication number Publication date
DE19948087B4 (en) 2008-04-17
WO2001024933A1 (en) 2001-04-12
DE50005348D1 (en) 2004-03-25
EP1218105A1 (en) 2002-07-03
DK1218105T3 (en) 2004-06-21
JP2003511654A (en) 2003-03-25
DE19948087A1 (en) 2001-05-03
ATE259677T1 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
EP1218105B1 (en) Structured reaction substrate
EP2263797B1 (en) Sample chamber
EP1718409B1 (en) Device for microfluidic analyses
DE60125598T2 (en) METHOD FOR PRODUCING A MICROFLUIDITY STRUCTURE, IN PARTICULAR A "BIOCHIP", AND STRUCTURE PRODUCED THEREFOR
DE19941905C2 (en) Sample chamber for the liquid treatment of biological samples
US20080257735A1 (en) Microfluidic Device for Enabling the Controlled Growth of Cells and Methods Relating to Same
EP1750155B1 (en) Method of fabricating a sample chamber
DE4132379A1 (en) SUBSTRATE FOR CELL CULTURES AND CULTURE OF CELLS OR CELL AGGREGATES
WO2003056330A2 (en) Cell sorting system for the size-based sorting or separation of cells suspended in a flowing fluid
DE102009039956A1 (en) Microfluidic system and method for its production
DE602004009775T2 (en) Device for reliable analysis
EP2169383A1 (en) Body for flow through cuvettes and use thereof
DE602004010546T2 (en) LIMITED MACHINING ZONES COMPREHENSIVE MACHINING DEVICE, ON-CHIP LABORATORY AND MICROSYSTEM
EP1379622B1 (en) Method and device for cultivating and/or distributing particles
DE60005023T2 (en) ANALYSIS DEVICE WITH A BIOCHIP
EP2095876B1 (en) Cover for a sample carrier
DE10117723A1 (en) Carrier for biological or synthetic samples has a sample holding plate with reservoirs and a dosing plate with projections, fitted with membranes, of an optically transparent material with trouble-free light beam transparency
WO2017092859A1 (en) Microstructured polymer article, microbioreactor, and methods for the production thereof
DE19823660C1 (en) Process and assembly to apply and fix biochemically-active micro- and nano- micro-spheres on a substrate, especially useful in biochemical analysis such as DNA, viral and genetic testing
EP1360492B1 (en) Sample support for chemical and biological samples
EP2894456A1 (en) Microfluidic system and method for preparing and analysing a sample of biological material containing cells
DE10159091A1 (en) Production of carriers comprising a base plate and a bottom plate, especially microtiter plates or microsystem chips, comprises using the same adhesive to bond the plates and coat the wells
DE20312088U1 (en) Flow chamber for molecules and macromolecules and cells, for study under light with a microscope or spectrometer, has a structured base plate to form a closed channel with a transparent film on the under side
DE102006049560A1 (en) Carrier for use in chemical or biochemical assays comprises immobilization zones with membranes that comprise a layer of immobilization material and are overmolded with a thermoplastic material
DE102004025269A1 (en) Biochip cell, useful for performing rapid DNA assays, e.g. for assessing response to treatment, comprises a chip substrate, with analytical islands on its surface, and a sealed cover

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WINKLER, THORSTEN

Inventor name: DOERRE, KLAUS

Inventor name: KOLTERMANN, ANDRE

Inventor name: KETTLING, ULRICH

Inventor name: SIMM, WOLFGANG

Inventor name: PEUKER, HELMUT

Inventor name: STEPHAN, JENS

Inventor name: BRAKMANN, SUSANNE

17Q First examination report despatched

Effective date: 20021030

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: STRUCTURED REACTION SUBSTRATE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040218

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040218

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005348

Country of ref document: DE

Date of ref document: 20040325

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040518

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040518

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & PARTNER AG PATENTANWAELTE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040603

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041006

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041119

BERE Be: lapsed

Owner name: *EVOTEC OAI A.G.

Effective date: 20041031

BERE Be: lapsed

Owner name: *EVOTEC OAI A.G.

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: RITSCHER & PARTNER AG;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSEN

Free format text: EVOTEC OAI AG#SCHNACKENBURGALLEE 114#22525 HAMBURG (DE) -TRANSFER TO- MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.#HOFGARTENSTRASSE 8#80539 MUENCHEN (DE) $ DIREVO BIOTECH AG#NATTERMANNALLEE 1#50829 KOELN (DE)

NLS Nl: assignments of ep-patents

Owner name: DIREVO BIOTECH AG

Effective date: 20090130

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENS

Effective date: 20090130

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: EVOTEC AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSEN

Free format text: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.#HOFGARTENSTRASSE 8#80539 MUENCHEN (DE) $ DIREVO BIOTECH AG#NATTERMANNALLEE 1#50829 KOELN (DE) -TRANSFER TO- MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.#HOFGARTENSTRASSE 8#80539 MUENCHEN (DE) $ BAYER SCHERING PHARMA AKTIENGESELLSCHAFT#MUELLERSTRASSE 178#13353 BERLIN (DE)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090507 AND 20090513

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & PARTNER AG

NLS Nl: assignments of ep-patents

Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT

Effective date: 20090814

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENS

Effective date: 20090814

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: TQ

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110303 AND 20110309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101006

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111103

Year of fee payment: 12

Ref country code: FI

Payment date: 20111011

Year of fee payment: 12

Ref country code: DK

Payment date: 20111011

Year of fee payment: 12

Ref country code: NL

Payment date: 20111020

Year of fee payment: 12

Ref country code: CH

Payment date: 20111012

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50005348

Country of ref document: DE

Representative=s name: V. BEZOLD & PARTNER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50005348

Country of ref document: DE

Effective date: 20120612

Representative=s name: ,

Ref country code: DE

Ref legal event code: R081

Ref document number: 50005348

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNERS: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT, 13353 BERLIN, DE; MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., 80539 MUENCHEN, DE

Effective date: 20120612

Ref country code: DE

Ref legal event code: R081

Ref document number: 50005348

Country of ref document: DE

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WIS, DE

Free format text: FORMER OWNERS: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT, 13353 BERLIN, DE; MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., 80539 MUENCHEN, DE

Effective date: 20120612

Ref country code: DE

Ref legal event code: R081

Ref document number: 50005348

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNER: BAYER SCHERING PHARMA AKTIENGES, MAX-PLANCK-GESELLSCHAFT ZUR FOER, , DE

Effective date: 20120612

Ref country code: DE

Ref legal event code: R081

Ref document number: 50005348

Country of ref document: DE

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WIS, DE

Free format text: FORMER OWNER: BAYER SCHERING PHARMA AKTIENGES, MAX-PLANCK-GESELLSCHAFT ZUR FOER, , DE

Effective date: 20120612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50005348

Country of ref document: DE

Representative=s name: ,

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50005348

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNERS: BAYER PHARMA AKTIENGESELLSCHAFT, 13353 BERLIN, DE; MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., 10117 BERLIN, DE

Effective date: 20130410

Ref country code: DE

Ref legal event code: R081

Ref document number: 50005348

Country of ref document: DE

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WIS, DE

Free format text: FORMER OWNERS: BAYER PHARMA AKTIENGESELLSCHAFT, 13353 BERLIN, DE; MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V., 10117 BERLIN, DE

Effective date: 20130410

Ref country code: DE

Ref legal event code: R081

Ref document number: 50005348

Country of ref document: DE

Owner name: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WIS, DE

Free format text: FORMER OWNER: BAYER PHARMA AKTIENGESELLSCHAFT, MAX-PLANCK-GESELLSCHAFT ZUR FOER, , DE

Effective date: 20130410

Ref country code: DE

Ref legal event code: R081

Ref document number: 50005348

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNER: BAYER PHARMA AKTIENGESELLSCHAFT, MAX-PLANCK-GESELLSCHAFT ZUR FOER, , DE

Effective date: 20130410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121006

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190924

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50005348

Country of ref document: DE