EP1217295B1 - Burner for generating a hot gas - Google Patents

Burner for generating a hot gas Download PDF

Info

Publication number
EP1217295B1
EP1217295B1 EP01129165A EP01129165A EP1217295B1 EP 1217295 B1 EP1217295 B1 EP 1217295B1 EP 01129165 A EP01129165 A EP 01129165A EP 01129165 A EP01129165 A EP 01129165A EP 1217295 B1 EP1217295 B1 EP 1217295B1
Authority
EP
European Patent Office
Prior art keywords
burner
outlet
combustion chamber
bodies
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01129165A
Other languages
German (de)
French (fr)
Other versions
EP1217295A2 (en
EP1217295A3 (en
Inventor
Christian Oliver Dr. Paschereit
Ephraim Prof. Dr. Gutmark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1217295A2 publication Critical patent/EP1217295A2/en
Publication of EP1217295A3 publication Critical patent/EP1217295A3/en
Application granted granted Critical
Publication of EP1217295B1 publication Critical patent/EP1217295B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to the field of burner technology. It relates to a burner for the production of hot gases according to the preamble of claim 1.
  • thermoacoustic Vibrations pose a threat to any type of combustion application. They result in high amplitude pressure oscillations, a limitation of the operating range, and can increase pollutant emissions. This is especially true for low acoustic attenuation combustion systems. In order to allow high power conversion over a wide operating range with respect to pulsations and emissions, active control of the combustion vibrations may be necessary.
  • EP-A1-0 918 152 it is proposed to control the thermoacoustic oscillations in a combustion system by arranging means for the acoustic excitation of the working gas in the region of the burner. However, this is associated with additional equipment and control effort.
  • a similar acoustic concept (EP-A1-1 050 713) works with an active suppression by a feedback control loop with corresponding phase rotation.
  • EP-A1-0 987 495 it is proposed to additionally mix an inert gas such as N 2 , CO 2 or the like for minimizing thermoacoustic oscillations in gas turbine combustors to the fuel stream.
  • an inert gas such as N 2 , CO 2 or the like for minimizing thermoacoustic oscillations in gas turbine combustors to the fuel stream.
  • EP-A1-0 985 877 further proposes to accelerate the flow in the axial direction by minimizing thermoacoustic oscillations in gas turbine combustion chambers by nozzle-like design of the burner outlet, or nozzle-like shaped attachments are attached to the burner.
  • EP-A1-1 048 898 discloses a burner (double-cone burner) in which a plurality of internals projecting into the flow are provided in the burner cone for introducing axial vortical strength.
  • Coherent structures play a crucial role in mixing processes between air and fuel.
  • the dynamics of these structures consequently influence the combustion and thus the heat release.
  • Controlling the combustion instabilities is possible by influencing the shear layer between the fresh gas mixture and the recirculated exhaust gas (see, for example, Paschereit et al., "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner, Combustion, Slicing & Technology, Vol. 138, pp. 213-232 (1998)).
  • Paschereit et al. "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner, Combustion, Slicing & Technology, Vol. 138, pp. 213-232 (1998).
  • it makes sense to influence the formation of coherent structures by influencing the outflow boundary layer at the burner outlet.
  • thermoacoustic oscillations It is an object of the invention to provide a burner in which limited by very simple structural means thermoacoustic oscillations or can be completely suppressed.
  • the basic idea of the invention is to influence the formation of coherent structures so that the generation of high-frequency combustion-driven vibrations is prevented.
  • Coherent structures are to be understood as flow vortices that arise due to flow instabilities in the shear layers forming at the burner exit.
  • the influence of coherent structures on combustion instabilities is most pronounced when the flow instability has overlapped its highest growth rate and the vortices have reached their maximum size.
  • the axial position of the highest growth rate can be influenced inter alia by changing the thickness of the outflow boundary layer.
  • a preferred embodiment of the invention is characterized in that the means for changing the thickness of the Abströmgrenz für comprise a shear layer fence, which extends along the exit edge of the burner outlet and protrudes with its height substantially parallel to the flow direction into the combustion chamber. Due to the shear layer fence, which preferably has a height of a few millimeters, the thickness of the outflow boundary layer is increased in a particularly simple manner and thus the vortex formation in the axial direction is displaced out of the area of the flame, so that the periodic heat release associated with the vortex formation is avoided.
  • the burner is preferably designed as a double-cone burner and comprises at least two hollow, conical, nested in the flow direction part body whose center axes are offset from each other, such that adjacent walls of the body part tangential air inlet channels for the inflow of combustion air in the bounded by the partial body interior, wherein the combustion chamber side edges of the partial body form the outlet edges of the burner outlet.
  • Fig. 1 the structure of a double-cone burner is shown in the plan view from the front (contrary to the flow direction), as known for example from EP-A1-1 048 898 and is particularly suitable for the realization of the invention.
  • the burner 10 comprises two conical partial bodies 11 and 12, which are offset from one another in a central plane, such that adjacent walls of the partial bodies 11, 12 form tangential air inlet ducts for the inflow of combustion air into the interior 25 delimited by the partial bodies 11, 12.
  • Of the Interior 25 opens with a burner outlet 22 to a subsequent combustion chamber 23 (Fig. 2).
  • the combustion chamber side edges of the body parts 11, 12 form the outlet edges 16, 17 of the burner outlet 22.
  • Around the burner outlet 22 around a transverse to the flow direction extending front plate 14 is attached, which is provided with a plurality of distributed holes 15 is provided.
  • the axial position of the highest growth rate of the coherent structures can be influenced inter alia by changing the thickness of the outflow boundary layer 18. According to a preferred embodiment of the invention, this is achieved in that, according to FIG. 3, a shear layer fence 21, for example in the form of a sheet metal strip, is provided, which extends along the exit edge 16, 17 of the burner outlet 22 and with its height substantially parallel to the flow direction in FIG the combustion chamber 23 protrudes.
  • FIG. 3 shows the effect of the invention on the suppression of a pressure oscillation in the 1000 Hz range.
  • FIG. 3 shows the pressure amplitudes (Amp) measured with two transducers as a function of the thermal output (power) of a burner with shear layer fence 21 (solid circles and rectangles) and without shear layer fence (empty circles and rectangles). It is clearly evident from FIG. 3 that the occurrence of vibrations above a certain power point can be largely prevented with the aid of the shear layer fence.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Brennertechnik. Sie betrifft einen Brenner zur Erzeugung von Heissgasen gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of burner technology. It relates to a burner for the production of hot gases according to the preamble of claim 1.

STAND DER TECHNIKSTATE OF THE ART

Die strömungsmechanische Stabilität eines Gasturbinenbrenners ist von entscheidender Bedeutung für das Auftreten thermoakustischer Schwingungen. Strömungsmechanische Instabilitätswellen, die am Brenner entstehen, führen zur Ausbildung von Wirbeln (kohärente Strukturen), die die Verbrennung beeinflussen und zu periodischer Wärmefreisetzung mit den damit verbundenen Druckschwankungen (thermoakustischen Schwingungen) führen können. Thermoakustische Schwingungen stellen eine Gefahr für jede Art von Verbrennungsanwendungen dar. Sie führen zu Druckschwingungen hoher Amplitude, zu einer Einschränkung des Betriebsbereiches und können die Schadstoffemissionen erhöhen. Dieses trifft insbesondere für Verbrennungssysteme mit geringer akustischer Dämpfung zu. Um in bezug auf Pulsationen und Emissionen eine hohe Leistungskonversion über einen weiten Betriebsbereich zu ermöglichen, kann eine aktive Kontrolle der Verbrennungsschwingungen notwendig sein.The fluid mechanical stability of a gas turbine burner is of crucial importance for the occurrence of thermoacoustic vibrations. Fluid-mechanical instability waves, which arise at the burner, lead to the formation of vortices (coherent structures), which influence the combustion and can lead to periodic heat release with the associated pressure fluctuations (thermoacoustic oscillations). The thermoacoustic Vibrations pose a threat to any type of combustion application. They result in high amplitude pressure oscillations, a limitation of the operating range, and can increase pollutant emissions. This is especially true for low acoustic attenuation combustion systems. In order to allow high power conversion over a wide operating range with respect to pulsations and emissions, active control of the combustion vibrations may be necessary.

In der Vergangenheit sind bereits eine Vielzahl von Vorschlägen gemacht und Möglichkeiten aufgezeigt worden, wie man die unerwünschten thermoakustischen Schwingungen bei derartigen Brennern, insbesondere auch den sogenannten Doppelkegelbrennern, wie sie beispielsweise in der EP-A2-0 881 432 beschrieben sind, dämpfen oder ganz unterdrücken kann.In the past, a large number of proposals have already been made and possibilities shown how to damp or completely suppress the undesired thermoacoustic oscillations in such burners, in particular also the so-called double-cone burners, as described, for example, in EP-A2-0 881 432 can.

In der EP-A1-0 918 152 wird vorgeschlagen, die thermoakustischen Schwingungen in einem Verbrennungssystem dadurch zu kontrollieren, dass im Bereich des Brenners Mittel zur akustischen Anregung des Arbeitsgases angeordnet werden. Dies ist allerdings mit einem zusätzlichen apparativen und Regelaufwand verbunden. Ein ähnliches akustisches Konzept (EP-A1-1 050 713) arbeitet mit einer aktiven Unterdrückung durch eine rückgekoppelte Regelschleife mit entsprechender Phasendrehung.In EP-A1-0 918 152 it is proposed to control the thermoacoustic oscillations in a combustion system by arranging means for the acoustic excitation of the working gas in the region of the burner. However, this is associated with additional equipment and control effort. A similar acoustic concept (EP-A1-1 050 713) works with an active suppression by a feedback control loop with corresponding phase rotation.

In der EP-A1-0 987 495 wird vorgeschlagen, zur Minimierung von thermoakustischen Schwingungen in Gasturbinenbrennkammern zu dem Brennstoffstrom zusätzlich ein inertes Gas wie z.B. N2, CO2 oder dgl. zuzumischen. Dies bedeutet jedoch ein zusätzliches Versorgungs- und Leitungssystem für das zugemischte Inertgas.In EP-A1-0 987 495 it is proposed to additionally mix an inert gas such as N 2 , CO 2 or the like for minimizing thermoacoustic oscillations in gas turbine combustors to the fuel stream. However, this means an additional supply and piping system for the mixed inert gas.

Andere Lösungen modifizieren die Geometrie des Brenners, insbesondere am Brenneraustritt: In der EP-A1-1 002 992 wird vorgeschlagen, zur Kontrolle von Strömungsinstabilitäten im Brenner an der Innenseite des Brenneraustritts entlang dem Umfang eine Mehrzahl von Düsen anzuordnen, die durch Eindüsung von Luft unter einem Winkel zur Strömungsrichtung axiale Wirbelstärke in die Strömung einbringen.Other solutions modify the geometry of the burner, in particular at the burner outlet: In EP-A1-1 002 992 it is proposed to arrange a plurality of nozzles for controlling flow instabilities in the burner on the inside of the burner outlet along the circumference, which are injected by injection of air introduce axial vorticity into the flow at an angle to the flow direction.

Die EP-A1-0 985 877 schlägt weiterhin vor, zur Minimierung von thermoakustischen Schwingungen in Gasturbinenbrennkammern die Strömung in axialer Richtung zu beschleunigen, indem der Brenneraustritt düsenartig ausgebildet wird, oder düsenartig geformte Anbauten am Brenner angebracht werden.EP-A1-0 985 877 further proposes to accelerate the flow in the axial direction by minimizing thermoacoustic oscillations in gas turbine combustion chambers by nozzle-like design of the burner outlet, or nozzle-like shaped attachments are attached to the burner.

In der EP-A1-1 048 898 schliesslich wird ein Brenner (Doppelkegelbrenner) offenbart, bei dem zum Einbringen axialer Wirbelstärke im Brennerkegel eine Mehrzahl von in die Strömung hineinragenden Einbauten vorgesehen werden.Finally, EP-A1-1 048 898 discloses a burner (double-cone burner) in which a plurality of internals projecting into the flow are provided in the burner cone for introducing axial vortical strength.

Die vorliegende Erfindung geht demgegenüber von der folgenden Ueberlegung aus: Kohärente Strukturen spielen eine entscheidende Rolle bei Mischungsvorgängen zwischen Luft und Brennstoff. Die Dynamik dieser Strukturen beeinflusst demzufolge die Verbrennung und damit die Wärmefreisetzung. Durch Beeinflussung der Scherschicht zwischen dem Frischgasgemisch und dem rezirkulierten Abgas ist eine Kontrolle der Verbrennungsinstabilitäten möglich (siehe z. B. Paschereit et al., "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner, Combustion, Sclence & Technology, Vol. 138, p. 213-232 (1998)). Insbesondere bietet es sich dabei an, die Ausbildung kohärenter Strukturen durch die Beeinflussung der Abströmgrenzschicht am Brenneraustritt zu beeinflussen.In contrast, the present invention is based on the following consideration: Coherent structures play a crucial role in mixing processes between air and fuel. The dynamics of these structures consequently influence the combustion and thus the heat release. Controlling the combustion instabilities is possible by influencing the shear layer between the fresh gas mixture and the recirculated exhaust gas (see, for example, Paschereit et al., "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner, Combustion, Slicing & Technology, Vol. 138, pp. 213-232 (1998)). In particular, it makes sense to influence the formation of coherent structures by influencing the outflow boundary layer at the burner outlet.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist Aufgabe der Erfindung, einen Brenner zu schaffen, bei dem mit sehr einfachen konstruktiven Mitteln thermoakustische Schwingungen begrenzt bzw. ganz unterdrückt werden können.It is an object of the invention to provide a burner in which limited by very simple structural means thermoacoustic oscillations or can be completely suppressed.

Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst.The object is solved by the entirety of the features of claim 1.

Der Grundgedanke der Erfindung ist, die Ausbildung kohärenter Strukturen so zu beeinflussen, daß die Entstehung von hochfrequenten verbrennungsgetriebenen Schwingungen verhindert wird. Kohärente Strukturen sind hierbei als Strömungswirbel zu verstehen, die durch Strömungsinstabilitäten in den sich am Brenneraustritt bildenden Scherschichten entstehen. Der Einfluß kohärenter Strukturen auf die Verbrennungsinstabilitäten ist am ausgeprägtesten, wenn die Strömungsinstabilität ihre höchste Wachstumsrate überschnitten hat und die Wirbel ihre maximale Größe erreicht haben. Die axiale Position der höchsten Wachstumsrate läßt sich unter anderem durch Änderung der Dicke der Abströmgrenzschicht beeinflussen. Durch die Verhinderung der Entstehung von Wirbelstrukturen im Bereich der Flamme wird eine periodische Wärmefreisetzung unterbunden. Eine periodische Wärmefreisetzung wäre jedoch die Grundlage für das Auftreten thermoakustischer Schwingungen, was somit verhindert wird.The basic idea of the invention is to influence the formation of coherent structures so that the generation of high-frequency combustion-driven vibrations is prevented. Coherent structures are to be understood as flow vortices that arise due to flow instabilities in the shear layers forming at the burner exit. The influence of coherent structures on combustion instabilities is most pronounced when the flow instability has overlapped its highest growth rate and the vortices have reached their maximum size. The axial position of the highest growth rate can be influenced inter alia by changing the thickness of the outflow boundary layer. By preventing the formation of vortex structures in the region of the flame, a periodic heat release is prevented. However, a periodic heat release would be the basis for the occurrence of thermoacoustic vibrations, which is thus prevented.

Eine bevorzugte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Mittel zur Aenderung der Dicke der Abströmgrenzschicht einen Scherschichtzaun umfassen, welcher entlang der Austrittskante des Brenneraustritts verläuft und mit seiner Höhe im wesentlichen parallel zur Strömungsrichtung in den Brennraum hineinragt. Durch den Scherschichtzaun, der vorzugsweise eine Höhe von wenigen Millimetern aufweist, wird auf besonders einfache Weise die Dicke der Abströmgrenzschicht vergrössert und damit die Wirbelbildung in axialer Richtung aus dem Bereich der Flamme heraus verlagert, so dass die mit der Wirbelbildung verbundenen periodischen Wärmefreisetzungen unterbleiben.A preferred embodiment of the invention is characterized in that the means for changing the thickness of the Abströmgrenzschicht comprise a shear layer fence, which extends along the exit edge of the burner outlet and protrudes with its height substantially parallel to the flow direction into the combustion chamber. Due to the shear layer fence, which preferably has a height of a few millimeters, the thickness of the outflow boundary layer is increased in a particularly simple manner and thus the vortex formation in the axial direction is displaced out of the area of the flame, so that the periodic heat release associated with the vortex formation is avoided.

Der Brenner ist vorzugsweise als Doppelkegelbrenner ausgebildet und umfasst wenigstens zwei hohle, kegelförmige, in Strömungsrichtung ineinandergeschachtelte Teilkörper, deren Mittelachsen zueinander versetzt verlaufen, derart, dass benachbarte Wandungen der Teilkörper tangentiale Lufteintrittskanäle für das Einströmen von Verbrennungsluft in den von den Teilkörpern begrenzten Innenraum bilden, wobei die brennraumseitigen Ränder der Teilkörper die Austrittskanten des Brenneraustritts bilden.The burner is preferably designed as a double-cone burner and comprises at least two hollow, conical, nested in the flow direction part body whose center axes are offset from each other, such that adjacent walls of the body part tangential air inlet channels for the inflow of combustion air in the bounded by the partial body interior, wherein the combustion chamber side edges of the partial body form the outlet edges of the burner outlet.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen

Fig. 1
in der Draufsicht von vorn (entgegen der Strömungsrichtung) die Struktur eines an sich bekannten Doppelkegelbrenners, wie er zur Verwirklichung der Erfindung besonders geeignet ist;
Fig. 2
im Längsschnitt entlang der Ebene II-II aus Fig. 1 den Doppelkegelbrenner aus Fig. 1 in der herkömmlichen Ausgestaltung;
Fig. 3
in einer zu Fig. 2 analogen Darstellung einen Doppelkegelbrenner gemäss einem bevorzugten Ausführungsbeispiel der Erfindung mit einem Scherschichtzaun an der Austrittskante des Brenneraustritts; und
Fig. 4
ein Diagramm von gemessenen Druckamplituden in Abhängigkeit von der thermischen Leistung eines beispielhaften Brenners mit und ohne Scherschichtzaun.
The invention will be explained in more detail with reference to embodiments in conjunction with the drawings. Show it
Fig. 1
in the plan view from the front (opposite to the flow direction), the structure of a conventional double-cone burner, as it is particularly suitable for implementing the invention;
Fig. 2
in a longitudinal section along the plane II-II of Figure 1 the double-cone burner of Figure 1 in the conventional embodiment.
Fig. 3
in a representation analogous to Fig. 2 a double-cone burner according to a preferred embodiment of the invention with a shear layer fence at the exit edge of the burner outlet; and
Fig. 4
a diagram of measured pressure amplitudes as a function of the thermal performance of an exemplary burner with and without shear layer fence.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

In Fig. 1 ist in der Draufsicht von vorn (entgegen der Strömungsrichtung) die Struktur eines Doppelkegelbrenners dargestellt, wie er z.B. aus der EP-A1-1 048 898 bekannt und zur Verwirklichung der Erfindung besonders geeignet ist. Der Brenner 10 umfasst zwei kegelförmige Teilkörper 11 und 12, die in einer Mittelebene gegeneinander versetzt sind, derart, dass benachbarte Wandungen der Teilkörper 11, 12 tangentiale Lufteintrittskanäle für das Einströmen von Verbrennungsluft in den von den Teilkörpern 11, 12 umgrenzten Innenraum 25 bilden. Der Innenraum 25 öffnet sich mit einem Brenneraustritt 22 zu einem nachfolgenden Brennraum 23 (Fig. 2). Die brennraumseitigen Ränder der Teilkörper 11, 12 bilden dabei die Austrittskanten 16, 17 des Brenneraustritts 22. Um den Brenneraustritt 22 herum ist eine sich quer zur Strömungsrichtung erstreckende Frontplatte 14 angebracht, die mit einer Mehrzahl von verteilt angeordneten Bohrungen 15 versehen ist.In Fig. 1, the structure of a double-cone burner is shown in the plan view from the front (contrary to the flow direction), as known for example from EP-A1-1 048 898 and is particularly suitable for the realization of the invention. The burner 10 comprises two conical partial bodies 11 and 12, which are offset from one another in a central plane, such that adjacent walls of the partial bodies 11, 12 form tangential air inlet ducts for the inflow of combustion air into the interior 25 delimited by the partial bodies 11, 12. Of the Interior 25 opens with a burner outlet 22 to a subsequent combustion chamber 23 (Fig. 2). The combustion chamber side edges of the body parts 11, 12 form the outlet edges 16, 17 of the burner outlet 22. Around the burner outlet 22 around a transverse to the flow direction extending front plate 14 is attached, which is provided with a plurality of distributed holes 15 is provided.

In den Innenraum 25 des Brenners 10 wird durch eine zentrale Brennstoffdüse 13 Brennstoff eingedüst und mit der tangential einströmenden Luft zu einem Brennstoff-Luft-Gemisch verwirbelt. Parallel zu dem aus dem Brenneraustritt 22 austretenden Brennstoff-Luft-Gemisch strömt durch die Bohrungen 15 Luft. Das Brennstoff-Luft-Gemisch verbrennt im Brennraum 23 mit einer Flamme 20. An den Austrittskanten 16, 17 des Brenneraustritts 22 bilden sich zwischen dem ausströmenden Brennstoff-Luft-Gemisch und der umgebenden Luft eine Abströmgrenzschicht 18. In der Abströmgrenzschicht 18 bilden sich Scherschichten mit Strömungsinstabilitäten, die zur Bildung von kohärenten Strukturen in Form von Strömungswirbeln führen. Der Einfluß dieser kohärenten Strukturen auf die Verbrennungsinstabilitäten im Brennraum 23 ist am ausgeprägtesten, wenn die Strömungsinstabilität ihre höchste Wachstumsrate überschnitten hat und die Wirbel 19 ihre maximale Größe erreicht haben (Fig. 2)In the interior 25 of the burner 10 fuel is injected through a central fuel nozzle 13 and swirled with the tangential incoming air to a fuel-air mixture. Parallel to the emerging from the burner outlet 22 fuel-air mixture flows through the holes 15 air. The fuel-air mixture burns in the combustion chamber 23 with a flame 20. At the outlet edges 16, 17 of the burner outlet 22 form between the outflowing fuel-air mixture and the surrounding air, a Abströmgrenzschicht 18. In the Abströmgrenzschicht 18 shear layers are formed Flow instabilities that lead to the formation of coherent structures in the form of flow vortices. The influence of these coherent structures on the combustion instabilities in the combustion chamber 23 is most pronounced when the flow instability has overlapped its highest growth rate and the vortices 19 have reached their maximum size (FIG. 2).

Liegt die Position der Wirbel maximaler Grösse 19 im Bereich der Flamme 20, wie dies in Fig. 2 gezeigt ist, kommt zu periodischen Wärmefreisetzungen, die zu den unerwünschten thermoakustischen Schwingungen führen. Die axiale Position der höchsten Wachstumsrate der kohärenten Strukturen läßt sich jedoch unter anderem durch Änderung der Dicke der Abströmgrenzschicht 18 beeinflussen. Gemäss einer bevorzugten Ausgestaltung der Erfindung wird dies dadurch erreicht, dass gemäss Fig. 3 ein Scherschichtzaun 21, z.B. in Form eines Blechstreifens, vorgesehen wird, welcher entlang der Austrittskante 16, 17 des Brenneraustritts 22 verläuft und mit seiner Höhe im wesentlichen parallel zur Strömungsrichtung in den Brennraum 23 hineinragt. Durch den vorzugsweise einige Millimeter, z.B. 5 mm hohen Scherschichtzaun 21, wird die Entstehung von Wirbelstrukturen im Bereich der Flamme 20 und damit eine periodische Wärmefreisetzung unterbunden (die Wirbel maximaler Grösse 19 verschieben sich in einen Bereich ausserhalb der Flamme 20). Eine periodische Wärmefreisetzung wäre jedoch die Grundlage für das Auftreten thermoakustischer Schwingungen, was somit verhindert wird.If the position of the maximum size swirls 19 in the region of the flame 20, as shown in Fig. 2, comes to periodic heat releases that lead to the unwanted thermoacoustic oscillations. However, the axial position of the highest growth rate of the coherent structures can be influenced inter alia by changing the thickness of the outflow boundary layer 18. According to a preferred embodiment of the invention, this is achieved in that, according to FIG. 3, a shear layer fence 21, for example in the form of a sheet metal strip, is provided, which extends along the exit edge 16, 17 of the burner outlet 22 and with its height substantially parallel to the flow direction in FIG the combustion chamber 23 protrudes. By preferably a few millimeters, for example 5 mm high shear layer fence 21, the formation of vortex structures in the area the flame 20 and thus prevent a periodic heat release (the vortex maximum size 19 move into an area outside the flame 20). However, a periodic heat release would be the basis for the occurrence of thermoacoustic vibrations, which is thus prevented.

In Fig. 3 ist die Wirkung der Erfindung auf die Unterdrückung einer Druckschwingung im 1000 Hz-Bereich dargestellt. In Fig. 3 sind die mit zwei Aufnehmern gemessenen Druckamplituden (Amp) in Abhängigkeit von der thermischen Leistung (Power) eines Brenners mit Scherschichtzaun 21 (volle Kreise und Rechtecke) und ohne Scherschichtzaun (leere Kreise und Rechtecke) wiedergegeben. Man erkennt aus der Fig. 3 deutlich, dass das Auftreten der Schwingungen ab einem bestimmtem Leistungspunkt mit Hilfe des Scherschichtzauns weitgehend verhindert werden kann.FIG. 3 shows the effect of the invention on the suppression of a pressure oscillation in the 1000 Hz range. FIG. 3 shows the pressure amplitudes (Amp) measured with two transducers as a function of the thermal output (power) of a burner with shear layer fence 21 (solid circles and rectangles) and without shear layer fence (empty circles and rectangles). It is clearly evident from FIG. 3 that the occurrence of vibrations above a certain power point can be largely prevented with the aid of the shear layer fence.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Brenner (Doppelkegelbrenner)Burner (double cone burner)
11,1211.12
kegelförmiger Teilkörperconical part body
1313
Brennstoffdüsefuel nozzle
1414
Frontplattefront panel
1515
Bohrung (Frontplatte)Bore (front panel)
16,1716.17
Austrittskante (Brenneraustritt)Exit edge (burner exit)
18,18'18.18 '
Abströmgrenzschichtoutflow boundary
1919
Wirbel maximaler GrösseWhirl of maximum size
2020
Flammeflame
2121
ScherschichtzaunShear layer fence
2222
Brenneraustrittburner outlet
2323
Brennraumcombustion chamber
2424
Mittelebenemidplane
2525
Innenrauminner space

Claims (4)

  1. Burner (10) for generating a hot gas, which burner (10) opens out, by way of a burner outlet (22) delimited by an outlet edge (16, 17), into a combustion chamber (23), in which a fuel/air mixture which flows out of the burner outlet (22), forming an outflow boundary layer (18, 18'), after ignition of the burner (10), forms a flame (20), characterized in that to prevent the periodic release of heat and associated thermo-acoustic oscillations in the combustion chamber (23), means (21) for altering the thickness of the outflow boundary layer (18, 18') are arranged at the burner outlet (22).
  2. Burner according to Claim 1, characterized in that the means for altering the thickness of the outflow boundary layer (18, 18') comprise a shearing layer fence (21) which runs along the outlet edge (16, 17) of the burner outlet (22) and the height of which projects into the combustion chamber (23) substantially parallel to the direction of flow.
  3. Burner according to Claim 2, characterized in that the height of the shearing layer fence (21) is a few millimetres, preferably about 5 mm.
  4. Burner according to one of Claims 1 to 3, characterized in that the burner (10) is designed as a double-cone burner and comprises at least two hollow, conical part-bodies (11, 12) which are offset with respect to one another in a centre plane (24) in such a manner that adjacent walls of the part-bodies (11, 12) form tangential air inlet passages for combustion air to flow into the interior (25) delimited by the part-bodies (11, 12), the combustion chamber edges of the part-bodies (11, 12) forming the outlet edges (16, 17) of the burner outlet (22).
EP01129165A 2000-12-23 2001-12-08 Burner for generating a hot gas Expired - Lifetime EP1217295B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10065206 2000-12-23
DE10065206 2000-12-23
DE10120960 2001-04-27
DE10120960 2001-04-27

Publications (3)

Publication Number Publication Date
EP1217295A2 EP1217295A2 (en) 2002-06-26
EP1217295A3 EP1217295A3 (en) 2002-11-20
EP1217295B1 true EP1217295B1 (en) 2006-08-23

Family

ID=26008099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01129165A Expired - Lifetime EP1217295B1 (en) 2000-12-23 2001-12-08 Burner for generating a hot gas

Country Status (3)

Country Link
US (1) US6773257B2 (en)
EP (1) EP1217295B1 (en)
DE (1) DE50110801D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100119984A1 (en) * 2008-11-10 2010-05-13 Fox Allen G Abatement system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4330083A1 (en) * 1993-09-06 1995-03-09 Abb Research Ltd Method of operating a premix burner
DE19547912A1 (en) * 1995-12-21 1997-06-26 Abb Research Ltd Burners for a heat generator
DE19548853A1 (en) * 1995-12-27 1997-07-03 Abb Research Ltd Cone burner
US5865609A (en) * 1996-12-20 1999-02-02 United Technologies Corporation Method of combustion with low acoustics
DE19721937B4 (en) 1997-05-26 2008-12-11 Alstom Premix burner for operating a unit for generating a hot gas
WO1999006767A1 (en) * 1997-07-31 1999-02-11 Siemens Aktiengesellschaft Burner
DE19736902A1 (en) 1997-08-25 1999-03-04 Abb Research Ltd Burners for a heat generator
EP0918152A1 (en) 1997-11-24 1999-05-26 Abb Research Ltd. Method and apparatus for controlling thermo-acoustic vibratins in combustion chambers
DE19757189B4 (en) * 1997-12-22 2008-05-08 Alstom Method for operating a burner of a heat generator
EP0931979A1 (en) 1998-01-23 1999-07-28 DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- Method and apparatus for supressing flame and pressure fluctuations in a furnace
DE19831933C1 (en) * 1998-07-16 2000-01-27 Viessmann Werke Kg Process and burner for avoiding thermoacoustic flame or pressure vibrations in furnaces operated with fan-assisted burners
EP0985877A1 (en) 1998-09-10 2000-03-15 Abb Research Ltd. Device and method for minimizing thermoacoustic oscillations in gas turbine combustion chambers
EP0987495B1 (en) 1998-09-16 2003-10-29 ALSTOM (Switzerland) Ltd Method for minimizing thermo-acoustic vibrations in gas turbine combustion chambers
EP1002992B1 (en) 1998-11-18 2004-09-29 ALSTOM Technology Ltd Burner
EP1048898B1 (en) 1998-11-18 2004-01-14 ALSTOM (Switzerland) Ltd Burner
DE19928226A1 (en) 1999-05-07 2001-02-01 Abb Alstom Power Ch Ag Process for suppressing or controlling thermoacoustic vibrations in a combustion system and combustion system for carrying out the process

Also Published As

Publication number Publication date
DE50110801D1 (en) 2006-10-05
EP1217295A2 (en) 2002-06-26
US20020182553A1 (en) 2002-12-05
EP1217295A3 (en) 2002-11-20
US6773257B2 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
DE10205839B4 (en) Premix burner for reducing combustion-driven vibrations in combustion systems
EP1199516B1 (en) Burner
DE19839085C2 (en) Burner arrangement with primary and secondary pilot burner
EP0675322B1 (en) Premix burner
EP1182398B1 (en) Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process
DE60007946T2 (en) A combustion chamber
DE60224141T2 (en) Gas turbine and combustion chamber for it
EP0733861A2 (en) Combustor for staged combustion
DE10064259B4 (en) Burner with high flame stability
WO2005095863A1 (en) Burner
EP0931979A1 (en) Method and apparatus for supressing flame and pressure fluctuations in a furnace
EP0694740A2 (en) Combustion chamber
EP2257736B1 (en) Method for the production of hot gas
EP0687860A2 (en) Self igniting combustion chamber
DE4411623A1 (en) Premix burner
DE102008016931A1 (en) System for reducing combustion chamber dynamics
EP1279898A2 (en) Premix burner with high flame stability
EP0851172B1 (en) Burner and method for operating a combustion chamber with a liquid and/or gaseous fuel
WO1999004196A1 (en) Arrangement of burners for heating installation, in particular a gas turbine combustion chamber
EP0742411B1 (en) Air supply for a premix combustor
DE19939235B4 (en) Method for producing hot gases in a combustion device and combustion device for carrying out the method
EP1002992B1 (en) Burner
EP1217295B1 (en) Burner for generating a hot gas
WO1999056060A1 (en) Combustion chamber assembly
EP0730121A2 (en) Premix burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23R 3/16 A, 7F 23D 14/46 B, 7F 23C 7/00 B

17P Request for examination filed

Effective date: 20030505

AKX Designation fees paid

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110801

Country of ref document: DE

Date of ref document: 20061005

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061016

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101230

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110801

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171208