EP1212768B1 - Vorrichtung zur innendruckmessung, spannungskonditionierung und stromkonditionierung von vakuumschaltröhren und verfahren hierfür - Google Patents

Vorrichtung zur innendruckmessung, spannungskonditionierung und stromkonditionierung von vakuumschaltröhren und verfahren hierfür Download PDF

Info

Publication number
EP1212768B1
EP1212768B1 EP00964008A EP00964008A EP1212768B1 EP 1212768 B1 EP1212768 B1 EP 1212768B1 EP 00964008 A EP00964008 A EP 00964008A EP 00964008 A EP00964008 A EP 00964008A EP 1212768 B1 EP1212768 B1 EP 1212768B1
Authority
EP
European Patent Office
Prior art keywords
current
internal pressure
vacuum interrupter
conditioning
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00964008A
Other languages
English (en)
French (fr)
Other versions
EP1212768A1 (de
Inventor
Johannes Meissner
Klaus Heidelberger
Jerrie Lipperts
Joachim Walter
Thomas Freyermuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Industries GmbH
Original Assignee
Moeller GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moeller GmbH filed Critical Moeller GmbH
Publication of EP1212768A1 publication Critical patent/EP1212768A1/de
Application granted granted Critical
Publication of EP1212768B1 publication Critical patent/EP1212768B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/668Means for obtaining or monitoring the vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H2001/0205Conditioning of the contact material through arcing during manufacturing, e.g. vacuum-depositing of layer on contact surface

Definitions

  • the invention relates to a device for internal pressure measurement, voltage conditioning and current conditioning of vacuum interrupters and processes for this using the device.
  • the basic condition for the safe functioning of vacuum interrupters that is, interruption of the vacuum arc when switching off and sufficient internal dielectric strength of the switching path, is an internal pressure of approximately 10 -7 bar or less. This pressure must not be exceeded during the entire service life of the vacuum interrupter. For the quality assurance of vacuum interrupters, it is therefore necessary to measure the internal pressure of vacuum interrupters in order to ensure a long service life and high quality of the vacuum interrupters.
  • the measurement of the internal pressure of vacuum interrupters is usually carried out according to the magnetron principle, as described, for example, in CALOREMAG notices I / 1983, pages 19 to 21 in the essay "Measurement of the internal pressure of vacuum interrupters” by Siegbert Berger or in Siemens-Zeitschrift 51 (1977) No. 5, page 427 to page 430 "Measuring device for determining the internal pressure of vacuum interrupters" by Wilfried Kuhl and Klemens Wiehl.
  • the magnetron process is based on the ionization of residual gas molecules according to the cold cathode measuring principle (also known as Penning principle): when a DC high voltage of a few kV is applied, the electrons that are always present in the vacuum container are accelerated towards the anode, primarily due to field emissions and cosmic radiation, where they are accelerated by collision processes ionize other residual gas molecules. Since the mean free path of an electron in a high vacuum is a few meters, the probability of collision is increased accordingly by connecting a DC magnetic field that forces the electrodes on spiral tracks. At the pressures typical for vacuum interrupters (10 -7 - 10 -4 mbar), the ion flow generated in this way is approximately proportional to the residual gas pressure.
  • the cold cathode measuring principle also known as Penning principle
  • the current conditioning is targeted Property of vacuum arcs of type A used that the cathode base stochastically at high speed on the entire contact surface hike; due to the high current density with a very small footprint area microscopic on the surface of the cathode small melting and evaporation.
  • One leaves in the vacuum interrupter Burning a DC arc over a defined time is achieved in this way, a more even distribution of the contact structure, continues a cleaning of the immediate contact surface and the near surface Range of possible impurities, on the other hand are processing-related Inhomogeneities such as Rotation grooves smoothed.
  • Voltage conditioning takes advantage of the fact that there are high-voltage discharges preferably form at selective surface inhomogeneities, where there are increases in the electric field strength. In the These micro inhomogeneities are suitable for voltage conditioning selected discharge current efficiently removed, so that the insulation resistance the vacuum path compared to the unconditioned case has increased significantly. In order to smooth both contact surfaces as evenly as possible To achieve in the shortest possible time, it is advisable to condition with AC breakdowns, the high voltage depending on on the progress of conditioning (number of rollovers per time interval, related to the respective high voltage (peak) value) increased becomes.
  • the object of the invention is to carry out the measurement method and conditioning procedures for quality assurance of vacuum interrupters and vacuum interrupters more economical and less expensive to design.
  • the invention is characterized by a device for measuring internal pressure, Voltage conditioning and current conditioning of vacuum interrupters comprising a coil for generating magnetic fields for internal pressure measurement, a high current transformer that builds the coil current the magnetic field as well as the DC current for the current conditioning, a high-voltage generator that is used on the one hand for internal pressure measurement required DC high voltage and on the other hand a variable AC high voltage for voltage conditioning supplies, a mounting device for the vacuum interrupter, which has a locking device on one side for the contact base point of the vacuum interrupter and on the opposite one Side a clamping and fixing device for the vacuum interrupter has, the clamping and fixing device with a linear drive device for moving the vacuum interrupter in manufacturing positions defined distances between the contacts of the vacuum interrupter for voltage conditioning, current conditioning or internal pressure measurement and is connected to a removal position, and wherein the locking device with a pneumatic drive for quick separation the contacts from the closed position at a defined distance equipped to ignite a direct current arc for current conditioning is.
  • the system according to the invention is a Combination device in which the individual device components for several Procedures are used. Realizing stress conditioning, internal pressure measurement and current conditioning in one device furthermore enables a in a further development according to the invention automated sequence of all process steps, starting from the individual Component recognition, through process control to evaluation and Logging of the measurement results for the individual test objects.
  • the invention is particularly characterized by the union of all three Functions in a single device: a single high-current transformer delivers on the one hand the coil current for the magnetic field of the internal pressure test, on the other others the DC current for current conditioning; a special high voltage generator firstly supplies the DC high voltage for the internal pressure test, secondly, a variable AC high voltage for the (breakdown) Conditioning as well as for the final dielectric strength test of the Vacuum interrupters.
  • the high voltage generator can an AC voltage of 0 - 30 kV and a DC voltage of 0 - 20 kV be generated. It can be used for both voltage conditioning as well be used for the internal pressure measurement.
  • the high voltage generator consists essentially of a control and monitoring unit, a electronically controlled high-voltage power supply, with which the DC voltage is adjustable, and an adjustable AC voltage source.
  • the DC voltage conducts the internal pressure measurement when the magnetic field is applied to the coil on.
  • the AC voltage is via a high voltage transformer with an upstream motor operated variable transformer adjustable and serves for voltage conditioning.
  • the High voltage generator with a microprocessor-controlled operating and Display unit that shows the test parameters on a display. All functions of the high voltage generator are also via one isolated optical interface - optical interface - controllable. Commands and Messages are sent via fiber optics between the high voltage generator and Computer (PC) control unit that transmits the high voltage generator controls.
  • PC Computer
  • the high current transformer used in the device according to the invention has two tasks. The first is to create the coil to supply the magnetic field with direct current for the internal pressure measurement, so as to generate a homogeneous magnetic field within the vacuum tube. The second task is to provide DC power for power conditioning ,
  • a transformer in the form of a three-phase thyristor is controlled as a high-current transformer Rectifier used.
  • a direct current is lower Preserved ripple.
  • the high current transformer should be able to generate an adjustable direct current in the range of up to 600 A.
  • a smoothing capacitor can be connected in parallel to the coil the remaining ripple of the direct current smooth.
  • you can use a device for cooling for example water cooling his. Coils which can be used for the device according to the invention are shown in able to briefly generate a magnetic field of up to 0.5 Tesla.
  • the high current transformer with an additional interface to programmable logic controller (PLC). Via the interface the high current transformer can be controlled externally and its Messages are processed in the PLC.
  • PLC programmable logic controller
  • the interface points for the control signals for on and off of the DC circuit, signals vacuum arc does not burn or burn, signals for the setpoint of the direct current, Signals for the actual value of the direct current, signals for an existing short circuit, if the contacts of the vacuum interrupter are switched on DC are closed on.
  • the magnetic field required for measuring the internal pressure is generated using a high-current coil generated, which is equipped with a cooling system. Is preferred the coil is cooled by water flowing through the waveguide of the coil and by means of a high pressure coolant pump with sufficient pressure provided.
  • the flow achieved due to the pressure for example at a pressure of 50 bar, is necessary because it is for internal pressure measurement required magnetic field only through large currents of several 100 A. can be achieved, which in turn results in a strong heating of the coil pull.
  • the cooling system of the solenoid is also monitored, for example by means of a flow meter and a temperature sensor. Also this measurement data is fed to the programmable logic controller and processed in it and in particular for controlling the flow used via the coolant pump.
  • a high voltage generator is provided with which the device A sufficiently high voltage of up to 30 kV (AC) can be generated is.
  • the high voltage generator used for the device is in the Able to generate both DC and AC voltage
  • For voltage conditioning the AC voltage is used to maintain a uniform Conditioning both contact surfaces of the vacuum interrupter to reach.
  • vacuum interrupters not installed in switching devices are always closed Condition, i.e. the contacts are on top of each other a device is required with which a defined distance between the Contacts can be set as precisely as possible.
  • the device provided a linear drive. With the vacuum interrupter To be able to move the linear drive, it must be in a specially made one Holding device can be clamped. This holding device can then be connected to the linear drive and thus enables opening and closing Closing movements of the vacuum switch contacts. So that the contacts in the vacuum interrupter are pulled apart or moved together it is necessary to clamp the vacuum interrupter on both sides and additionally to lock on one side in the holding device. This locking takes place, for example, by means of a pneumatic device.
  • the Linear drive enables a defined distance between the contact pieces, to manufacture the vacuum interrupter clamped in the device. It is necessary here for each clamped in the device as a test object Vacuum interrupter first the contact opening point by means of the linear drive to find the contacts. For the various functional tests Different distances between the contacts are required and depending on set the contact opening point found using the linear drive. By means of the linear drive, the clamped vacuum interrupter move between the inspection position and the removal position. in this connection the linear drive is automatically operated using the programmable logic Control (PLC) or in manual operation via one Handwheel or corresponding function keys of an operator terminal controlled.
  • PLC programmable logic Control
  • the linear drive only develops a relatively slow movement speed, on the other hand, it enables the drive to be accurate to 1/100 mm.
  • the drive itself includes a DC motor, a servo amplifier, a position controller and a position control.
  • the control of the DC motor is done in automatic mode by the PLC.
  • the rotary motion the motor of the drive is turned into a with the help of a linear axis linear motion implemented, which makes it possible to change the position of the test object - Vacuum switching tube - to change.
  • the linear axis preferably exists consisting of two spindles, which are connected by a cover plate, ensuring that these parts run in sync and high power transmission is.
  • the spindle drive and the drive motor are over, for example a toothed belt connected to one another, which ensures slip-free operation precise position control allowed.
  • the linear drive has an upper one and lower mechanical stop, using one stop as a reference point serves for the drive. In between are the removal positions for the Tube change and the test positions, the defined contact distances - Contact strokes - can be controlled via the PLC.
  • the device is the design of the holder for the vacuum interrupter DUT, not only to retract the vacuum interrupter into a test position to enable, but beyond that for the different procedures required different states of the switch contacts or their distance to produce each other.
  • the vacuum interrupter on a Side fixed with a clamping and fixing device, which is pneumatic has working cylinder for clamping the vacuum interrupter, which is controlled via the PLC.
  • a locking device for the tube base - i.e. the contact base - provided the vacuum interrupter which is preferred as Rotary stroke cylinder is formed and on the one hand the locking of the vacuum interrupter serves and on the other hand a quick contact stroke for ignition a vacuum arc by separating the contacts.
  • the rotary stroke cylinder can be a linear movement parallel to the axis of movement the contacts of the vacuum interrupter as well as a rotary movement To run.
  • the rotary stroke cylinder is attached to the piston and gags or the like running perpendicular to the linear movement axis equipped that attached to the contact base of the vacuum interrupter Mechanics locked.
  • a pneumatic cylinder is provided as a compensating cylinder, which has the task of the weight of the contact base of the vacuum interrupter to compensate for clamped mechanics, the one originating from it and force extending in the direction of the axis of movement of the contacts but is less than the force emanating from the linear drive, whereby a backlash-free linear movement with sufficient mechanical drive pressure is possible.
  • a particular exact distance control of the contacts and adjustment of the same achieved with the help of the linear drive.
  • a pneumatically operated isolator provided during the voltage conditioning and the internal pressure measurement is open so the high voltage does not roll over to the high current circuit.
  • the separator is during the current conditioning closed to the high conditioning current to lead safely to the contact of the vacuum interrupter.
  • For internal pressure measurement is the acquisition and preparation of the measured values for the through the vacuum interrupter flowing ion current and the applied high voltage provided by means of a measured value acquisition and evaluation system.
  • the Acquisition and preparation of the measurement data takes place with the help of measurement amplifiers, those emitted by the measuring amplifiers, preferably in the form of light signals Signals are converted into digital voltage signals in a transient recorder converted to then processed in the PC control unit become.
  • the PC can also use software to archive the data be equipped so that all measurement data of each test object, i.e. every vacuum interrupter can not only be recorded but also saved.
  • the test object a vacuum interrupter 1
  • the locking device for the contact base of the vacuum interrupter 1 is from a Rotary stroke cylinder 5, 5A formed, the pneumatic cylinder 5 in the direction of the arrow P1, P2 are movable. 5A toggle are attached to the piston, which by a Rotary movement of the rotary stroke cylinder locks the contact base point the vacuum interrupter in the holding device. Takes place after graduation Check the instruction to put the vacuum interrupter in the removal position to drive, the rotary stroke cylinders move upwards and the toggles 5A turn away from the vacuum interrupter, so that the extension distance is released for the vacuum interrupter.
  • the clamping and fixing device 7 is with the linear drive 2,3 connected, 2 the linear axis, and 3 the drive module with the DC motor includes.
  • the coil 4 is from the high current transformer 13 is fed and is further connected to a coolant pump 12 for cooling water connected.
  • the high voltage generator is designated 11.
  • the switch S3 is used to connect the coil current when measuring the internal pressure.
  • the measuring amplifier 9 is used to record the internal pressure measurement applied voltage.
  • the measuring amplifier 8 for recording the internal pressure current signal is switched on via switch S1.
  • the switch S2 serves to connect the condition current during the current conditioning and voltage conditioning.
  • the cooling device for the vacuum interrupter is schematic schematically in the current conditioning in the form of compressed air nozzles 10 indicated.
  • the separator T which is by means of a pneumatic cylinder 6 can be operated to separate the high-current circuit from the high-voltage circuit as well as a safety earthing switch S4.
  • the measuring amplifiers are to a measurement data acquisition and evaluation device 14 with a PC Control unit connected, which also the voltage from the high voltage generator 11 recorded.
  • the clamped vacuum interrupter is between move the test positions and the removal position in the direction of the arrow P.
  • the movement to disconnect the contacts for testing - current conditioning - takes place by means of the pneumatic device 5, 5A.
  • the linear drive For voltage conditioning it is necessary to measure the distance between adjust the contacts of the vacuum interrupter as precisely as possible. Therefor the linear drive is used. The contacts can be pulled apart however only take place if the vacuum interrupter is locked on one side. If the linear drive is set in motion, it pulls depending on a contact piece with the installation position of the vacuum interrupter. To the Performing the voltage conditioning is the contact gap first adjusted with the linear drive. After that, the high voltage associated with the upper bracket of the switching tube is connected, switched on. In detail the contact opening point is found by moving the linear drive and then the linear drive to that assigned to the voltage conditioning Move contact stroke II, i.e.
  • the pneumatic isolator T is opened, contact base the vacuum interrupter and the isolator are earthed, then the Instruction given via the PC "Voltage ON for voltage conditioning" and after the termination of the high-voltage release, the earthing of the isolator and the contact base of the vacuum interrupter canceled and the linear drive move into a waiting position for the Execution of a further sub-process.
  • the internal pressure measurement is carried out with the invention Device according to the Penning or Magnetron method. prerequisite for this is a DC voltage source for generating an electrical one High voltage field and a magnetic field.
  • the DC voltage will provided by the high voltage generator 11, which with the upper part of the holder H is connected by the vacuum interrupter.
  • the Magnetic field is flowed through by a direct current through the water-cooled Coil 4 generated.
  • the ignition of a discharge current within the Vacuum interrupter 1 requires that the contacts back through at a distance the defined contact stroke I must be brought so that the electrical and magnetic field lines between the upper contact and the Metal vapor screen of the vacuum interrupter partly perpendicular to each other stand. The distance is adjusted with the linear drive as before explained.
  • the internal pressure measurement of the vacuum interrupter takes place in the first the desired contact distance, for example 2 mm, is set. Then the magnetic field and finally the high voltage are switched on. The charge current ignited is measured. Thus the following treatment steps for the internal pressure measurement.
  • the Linear drive is used to reach and find the contact opening point move and then the linear drive to the desired set Move contact stroke I and reset after reaching position, whereby the two contacts of the vacuum interrupter on a defined distance are open.
  • the disconnector T is then opened, and for safety reasons grounded, as well as the fixed contact base of the vacuum interrupter, so that the total voltage over the open contacts drops. Then the high voltage is released and instructed the PC to perform voltage pre-conditioning.
  • the Voltage preconditioning prevents it from turning on suddenly The DC high voltage will breakdown, which the internal pressure measurement signal affect. After its completion, the release the high voltage and the grounding of the contact base and the disconnector withdrawn and now the measuring amplifier for recording the internal pressure current signal switched on. At the same time, the coolant pump 12 is switched on, whereby the high-current coil 4 is flowed through with cooling water. After that becomes the galvanic connection between coil 4 and the high current transformer 13 manufactured and the power supply switched on and then the Transformer current switched on.
  • the current flow of the transformer 13 is interrupted and the release of the high voltage as well as the earthing of the disconnector, as well as the control the mains contactor of the transformer and then the galvanic connection separated between coil and transformer, then the measuring amplifier switched off, the coolant pump is switched off. Finally, the linear drive again set in motion and the vacuum interrupter in one Waiting position or removal position spent.
  • Current conditioning requires the ignition of a vacuum arc conditioned the contact surfaces. This DC arc can be ignited by a current when the contacts of the vacuum interrupter are closed is switched on. By disconnecting the contacts to a desired defined one Distance -contact stroke III - the DC arc then arises can split into several partial arcs depending on the current.
  • a pneumatic device is used with the contacts predefined contact distance - contact stroke III - can be set in Shape preferably of the rotary stroke cylinder 5, 5A. Before the pneumatic Device 5, 5A is used, the vacuum interrupter, such as described above, be locked.
  • the one contact is jerky on the by means of the contact distance set by the linear drive and the DC arc can be ignited in this way.
  • the opening of the contacts to the The purpose of igniting the DC arc is with the contact point locked the vacuum interrupter. As already described, these are locked by means of the toggle 5A of the rotary stroke cylinder. Then the rotary stroke cylinder 5 moved upwards parallel to the axis of movement of the contacts, whereby the contacts close. Then the arc ignition current switched on and the rotary stroke cylinder suddenly down again driven, whereupon a vacuum arc is created and the defined contact opening distance - Contact distance - is restored.
  • the end positions of the Rotary stroke cylinders can be monitored using magnetic switches, for example become. Through this process, the current conditioning occurs only in each case one of the two contacts. The other contact is conditioned then in the same way after reversing the polarity of the power supply.
  • the individual steps, switching operations to carry out the sub-processes voltage conditioning, internal pressure measurement or current conditioning can be programmed automatically using a programmable logic controller PLC run, the individual devices and switches are controlled accordingly. If a malfunction occurs, as well as if the Operators are reset to their basic state, if necessary the vacuum interrupter is also in a corresponding starting position spent by means of the linear drive.
  • an actuator (not shown here) for generating and transmitting a mechanical shock pulse to the vacuum interrupter to be tested for igniting the discharge current, since the Penning discharge at internal pressures in the range of • 10 -7 mbar does not always ignite promptly, but it can be triggered by shock impulse-initiated desorption of loosely bound residual gas molecules.
  • the shock transmission can be purely mechanical, e.g. B. via a ratchet / cam disk, but preferably electromechanically via switch armature, protective drive or piezo stack actuator.
  • This mechanical pulse generator including a control can also be integrated into the programmable logic controller of the device for carrying out the three functional tests.

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Innendruckmessung, Spannungskonditionierung und Stromkonditionierung von Vakuumschaltröhren sowie Verfahren hierfür unter Einsatz der Vorrichtung, die als Kombinationsanlage für alle drei genannten Funktionen ausgebildet ist.

Description

Die Erfindung betrifft eine Vorrichtung zur Innendruckmessung, Spannungskonditionierung und Stromkonditionierung von Vakuumschaltröhren sowie Verfahren hierfür unter Einsatz der Vorrichtung.
Stand der Technik
Die Grundbedingung für das sichere Funktionieren von Vakuumschaltröhren, das heißt vor allem, Unterbrechung des Vakuumbogens beim Ausschalten sowie genügende innere dielektrische Festigkeit der Schaltstrecke, ist ein Innendruck von etwa 10-7 bar oder kleiner. Dieser Druck darf während der gesamten Lebensdauer der Vakuumschaltröhre nicht überschritten werden. Für die Qualitätssicherung von Vakuumschaltröhren ist es daher erforderlich, den Innendruck von Vakuumschaltkammern zu messen, um eine lange Lebensdauer und hohe Qualität der Vakuumschaltröhren zu gewährleisten.
Die Messung des Innendruckes von Vakuumschaltkammern wird üblicherweise nach dem Magnetron-Prinzip durchgeführt, wie beispielsweise in CALOR- EMAG-Mitteilungen Heft I/1983, Seiten 19 bis 21 in dem Aufsatz "Messung des Innendruckes von Vakuum-Schaltkammern" von Siegbert Berger beschrieben oder in Siemens-Zeitschrift 51 (1977) Heft 5, Seite 427 bis Seite 430 "Messeinrichtung zum Bestimmen des Innendrucks von Vakuumschaltröhren" von Wilfried Kuhl und Klemens Wiehl beschrieben. Das Magnetronverfahren basiert auf der Ionisation von Restgasmolekülen nach dem Kaltkathodenmessprinzip (auch Penningprinzip genannt): beim Anlegen einer DC-Hochspannung von einigen kV werden die im Vakuumbehälter vor allem aufgrund von Feldemissionen und kosmischer Höhenstrahlung stets vorhandenen Elektronen zur Anode hin beschleunigt, wo sie durch Stoßprozesse weitere Restgasmoleküle ionisieren. Da die mittlere freie Weglänge eines im Hochvakuum befindlichen Elektrons einige Meter beträgt, wird die Stoßwahrscheinlichkeit durch Zuschalten eines Gleichstrommagnetfelds, das die Elektroden auf Spiralbahnen zwingt, entsprechend erhöht. Bei den für Vakuumschaltröhren typischen Drücken (10-7 - 10-4 mbar) ist der so erzeugte lonenstrom dem Restgasdruck angenähert proportional.
Für ein einwandfreies Schaltverhalten der Vakuumschaltröhren ist die Vorraussetzung ein möglichst reines Kontaktmaterial. In der Praxis hat sich zur Reinigung der Kontaktoberflächen von Vakuumschaltröhren als am erfolgreichsten die sogenannte Bogenformierung erwiesen, d.h. eine Reinigung der Elektroden durch die Vakuumlichtbögen. Bei dieser auch als Stromkonditionierung bezeichneten Methode werden die obersten Schichten der Kontakte durch ein intensives lonenbombardement aufgeheizt und abgetragen. Zum Stand der Technik wird beispielsweise auf den Aufsatz von B. Jüttner, P. Pech, K. H. Ibsch, E. Freund "Formierung von Kontakten in Vakuumlöschkammern mit Gleichstrombögen", publiziert in Wiss.-Techn. Mitteilungen des IPH, Heft 19/1978, Seite 9 - 14, verwiesen.
Für die vorliegende Erfindung wird bei der Stromkonditionierung gezielt die Eigenschaft der Vakuumlichtbögen vom Typ A genutzt, dass die Kathodenfußpunkte stochastisch mit hoher Geschwindigkeit auf der gesamten Kontaktoberfläche wandern; aufgrund der hohen Stromdichte bei sehr geringer Fußpunktfläche kommt es dabei auf der Kathodenoberfläche zu mikroskopisch kleinen Aufschmelzungen und Verdampfungen. Lässt man in der Vakuumschaltröhre einen DC-Lichtbogen über eine definierte Zeit brennen, erzielt man auf diese Weise eine gleichmäßigere Verteilung des Kontaktgefüges, weiterhin eine Reinigung der unmittelbaren Kontaktoberfläche und des oberflächennahen Bereiches von etwaigen Verunreinigungen, zum anderen werden bearbeitungsbedingte Inhomogenitäten wie z.B. Drehriefen geglättet. Durch Wiederholung des Konditionierungsvorgangs nach Umpolen werden beide Kontakte gleichmäßig belastet. Trotz einer sehr sorgfältigen Vorbehandlung aller Bauteile einer Vakuumschaltröhre verfügen diese nicht gleichmäßig und stets über eine definierte, erwünschte Spannungsfestigkeit. Zur Erhöhung der Spannungsfestigkeit und Ausgleich von Inhomogenitäten wird die Spannungskonditionierung angewandt. Zur Literatur wird hierzu verwiesen auf die Dissertation "Untersuchungen zum Emissionsstrom-, Konditionierungs- und Schweißverhalten von Vakuum-Schaltstrecken mit CuCr-Kontaktstücken" von Dr. Ing. Jörg Ballat vom 07. Dezember 1992, Darmstädter Dissertation D 17, beispielsweise Seiten 22 bis 28.
Beim Spannungskonditionieren wird ausgenutzt, dass sich Hochspannungsentladungen vorzugsweise an punktuellen Oberflächeninhomogenitäten ausbilden, wo es zu Erhöhungen der elektrischen Feldstärke kommt. Bei der Spannungskonditionierung werden diese Mikroinhomogenitäten bei geeignet gewählter Entladungsstromstärke effizient abgetragen, so dass die Isolationsfestigkeit der Vakuumstrecke dann gegenüber dem unkonditionierten Fall deutlich gestiegen ist. Um eine möglichst gleichmäßige Glättung beider Kontaktoberflächen in möglichst kurzer Zeit zu erzielen, konditioniert man zweckmäßigerweise mit AC-Durchschlägen, wobei die Hochspannung gezielt in Abhängigkeit vom Konditionierungsfortschritt (Anzahl der Überschläge pro Zeitintervall, bezogen auf den jeweiligen Hochspannungs(scheitel)wert) gesteigert wird.
Die verschiedenen Prüfverfahren und Konditionierungsverfahren bei der Herstellung und Qualitätssicherung von Vakuumschaltröhren oder Vakuumschaltkammern wurden bisher mit für die jeweils einzelnen Verfahren ausgebildeten Vorrichtungen durchgeführt. Eine solche Vorrichtung für die Innendruckmessung ist beispielsweise in der DE 3347176 A1 (nächstliegender Stand der Technik) oder der US 3575656 beschrieben.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, das Durchführen der Messverfahren und Konditionierungsverfahren zur Qualitätssicherung von Vakuumschaltröhren und Vakuumschaltkammern wirtschaftlicher zu gestalten und kostengünstiger zu gestalten.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung gelöst, die als Kombinationsanlage aufgebaut ist und mit der sowohl eine Innendruckmessung als auch eine Stromkonditionierung und Spannungskonditionierung von Vakuumschaltröhren (Vakuumschaltkammern) durchgeführt werden kann.
Die Erfindung zeichnet sich durch eine Vorrichtung zur Innendruckmessung, Spannungskonditionierung und Stromkonditionierung von Vakuumschaltröhren aus, umfassend eine Spule zur Magnetfelderzeugung für die Innendruckmessung, einen Hochstromtransformator, der den Spulenstrom zum Aufbau des Magnetfeldes sowie den DC-Strom für die Stromkonditionierung liefert, einen Hochspannungsgenerator, der einerseits die für die Innendruckmessung benötigte DC-Hochspannung und andererseits eine variierbare AC-Hochspannung für die Spannungskonditionierung liefert, eine Halterungsvorrichtung für die Vakuum-Schaltröhre, die auf einer Seite eine Arretierungsvorrichtung für den Kontaktfußpunkt der Vakuumschaltröhre und auf der gegenüberliegenden Seite eine Einspann- und Fixiervorrichtung für die Vakuumschaltröhre aufweist, wobei die Einspann- und Fixiervorrichtung mit einer Linearantriebsvorrichtung zum Verfahren der Vakuumschaltröhre in Positionen zum Herstellen definierter Abstände zwischen den Kontakten der Vakuumschaltröhre für die Spannungskonditionierung, Stromkonditionierung bzw. Innendruckmessung und in eine Entnahmeposition verbunden ist, und wobei die Arretierungsvorrichtung mit einem pneumatischen Antrieb zum schnellen Auseinanderfahren der Kontakte aus der Schließposition auf einen definierten Abstand zum Zünden eines Gleichstromlichtbogens für die Stromkonditionierung ausgestattet ist. Bei der erfindungsgemäßen Anlage handelt es sich um eine Kombinationsvorrichtung, bei der die einzelnen Gerätekomponenten für mehrere Verfahren verwendet werden. Die Realisierung der Spannungskonditionierung, der Innendruckmessung und der Stromkonditionierung in einer Vorrichtung ermöglicht darüber hinaus in erfindungsgemäßer Weiterbildung einen automatisierten Ablauf sämtlicher Prozessschritte, angefangen von der individuellen Bauteilerkennung, über die Prozesssteuerung bis zur Auswertung und Protokollierung der Messergebnisse zu den einzelnen Prüflingen.
Vorteilhafte Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Vorrichtung sind den Unteransprüchen zu entnehmen.
Die erfindungsgemäße Ausgestaltung der Verfahren ist den Verfahrensansprüchen zu entnehmen.
Die Erfindung zeichnet sich insbesondere durch die Vereinigung alle drei Funktionen in einer einzigen Apparatur aus: ein einziger Hochstromtrafo liefert zum einen den Spulenstrom für das Magnetfeld der Innendruckprüfung, zum anderen den DC-Strom für die Stromkonditionierung; ein spezieller Hochspannungsgenerator liefert erstens die DC-Hochspannung für die Innendruckprüfung, zweitens eine variierbare AC-Hochspannung für die (Durchschlags-) Konditionierung sowie für die abschließende Spannungsfestigkeitsprüfung der Vakuumschaltröhren.
Nachfolgend werden die einzelnen Geräte und Komponenten der erfindungsgemäßen Vorrichtung näher erläutert. Mit dem Hochspannungsgenerator kann eine Wechselspannung von 0 - 30 kV und eine Gleichspannung von 0 - 20 kV erzeugt werden. Er kann sowohl für die Spannungskonditionierung als auch für die Innendruckmessung eingesetzt werden. Der Hochspannungsgenerator besteht im wesentlichen aus einer Steuer- und Überwachungseinheit, einem elektronisch geregelten Hochspannungsnetzgerät, mit dem die Gleichspannung einstellbar ist, und einer einstellbaren Wechselspannungsquelle. Die Gleichspannung leitet bei anliegendem Magnetfeld an der Spule die Innendruckmessung ein. Die Wechselspannung hingegen ist über einen Hochspannungstransformator mit vorgeschaltetem Motor betriebenen Stelltransformator einstellbar und dient der Spannungskonditionierung. Darüber hinaus kann der Hochspannungsgenerator mit einer mikroprozessor-gesteuerten Bedien- und Anzeigeeinheit ausgerüstet sein, die die Prüfparameter in einem Display darstellt. Alle Funktionen des Hochspannungsgenerators sind außerdem über ein isoliertes optisches Interface - optische Schnittstelle - steuerbar. Befehle und Meldungen werden über Lichtleiter zwischen Hochspannungsgenerator und Rechner (PC) Steuereinheit übertragen, der den Hochspannungsgenerator steuert.
Der in der erfindungsgemäßen Vorrichtung verwendete Hochstromtransformator hat zwei Aufgaben. Die erste besteht darin, die Spule zum Erzeugen des Magnetfeldes für die Innendruckmessung mit Gleichstrom zu versorgen, um so innerhalb der Vakuumröhre ein homogenes Magnetfeld zu erzeugen. Die zweite Aufgabe ist die Bereitstellung von Gleichstrom für die Stromkonditionierung .
Als Hochstromtransformator wird ein Transformator in Form eines Dreiphasen-Thyristor-gesteuerten Gleichrichters eingesetzt. Mittels einer sechspulsigen Gleichrichtung und einer Glättungsdrossel wird ein Gleichstrom geringer Restwelligkeit erhalten. Der Hochstromtransformator sollte in der Lage sein, einen einstellbaren Gleichstrom im Bereich von bis zu 600 A zu erzeugen. Zusätzlich kann noch ein Glättungskondensator parallel zur Spule geschaltet werden, um so auch noch die verbliebene Welligkeit des Gleichstromes zu glätten. Um die Spule vor zu großer Erwärmung zu schützen, kann sie mit einer Einrichtung zur Kühlung, beispielsweise einer Wasserkühlung ausgestattet sein. Für die erfindungsgemäße Vorrichtung einsetzbare Spulen sind in der Lage, kurzzeitig ein Magnetfeld von bis zu 0,5 Tesla zu erzeugen. Für die automatische Durchführung der Prozesse mit der erfindungsgemäßen Vorrichtung ist der Hochstromtransformator zusätzlich mit einer Schnittstelle zur speicherprogrammierbaren Steuerung (SPS) ausgestattet. Über die Schnittstelle kann der Hochstromtransformator extern gesteuert werden und seine Meldungen in der SPS verarbeitet werden. Die Schnittstelle weist hierbei für die Steuerung Signale für Ein und Aus des Gleichstromkreises, Signale Vakuumbogen brennt oder brennt nicht, Signale für den Sollwert des Gleichstroms, Signale für den Ist-Wert des Gleichstroms, Signale für vorhandenen Kurzschluss, wenn die Kontakte der Vakuumschaltröhre bei eingeschaltetem Gleichstrom geschlossen sind, auf.
Das zur Innendruckmessung benötigte Magnetfeld wird mittels einer Hochstromspule erzeugt, die mit einem Kühlsystem ausgestattet ist. Bevorzugt wird die Spule mittels Wasser gekühlt, das durch den Hohlleiter der Spule fließt und mittels einer Hochdruckkühlmittelpumpe mit einem ausreichenden Druck bereitgestellt wird. Der infolge des Druckes erreichte Durchfluss, beispielsweise bei einem Druck von 50 bar, ist erforderlich, da das zur Innendruckmessung benötigte Magnetfeld nur durch große Stromstärken von mehreren 100 A erzielt werden kann, die wiederum eine starke Erwärmung der Spule nach sich ziehen. Das Kühlsystem der Magnetspule wird auch überwacht., beispielsweise mittels eines Durchflussmessers und eines Temperaturfühlers. Auch diese Messdaten werden der speicherprogrammierbaren Steuerung zugeführt und in dieser verarbeitet und für die Steuerung des Durchflusses insbesondere über die Kühlmittelpumpe verwendet.
Für die Realisierung der Spannungskonditionierung mit der erfindungsgemäßen Vorrichtung ist ein Hochspannungsgenerator vorgesehen, mit dem die Erzeugung einer ausreichend hohen Spannung von bis zu 30 kV (AC) möglich ist. Der für die Vorrichtung eingesetzte Hochspannungsgenerator ist in der Lage, sowohl Gleich- als auch Wechselspannung zu erzeugen Für die Spannungskonditionierung wird die Wechselspannung verwendet, um eine gleichmäßige Konditionierung beider Kontaktoberflächen der Vakuumschaltröhre zu erreichen.
Da sich nicht in Schaltgeräte eingebaute Vakuumschaltröhren immer im geschlossenen Zustand befinden, das heißt die Kontakte liegen aufeinander, ist eine Vorrichtung erforderlich, mit der ein definierter Abstand zwischen den Kontakten möglichst genau eingestellt werden kann. Erfindungsgemäß wird in der Vorrichtung ein Linearantrieb vorgesehen. Um die Vakuumschaltröhre mit dem Linearantrieb bewegen zu können, muss sie in eine eigens hierfür angefertigte Haltevorrichtung eingespannt werden. Diese Haltevorrichtung kann dann mit dem Linearantrieb verbunden werden und ermöglicht so Öffnungsund Schließbewegungen der Vakuumschaltkontakte. Damit die Kontakte in der Vakuumschaltröhre auseinandergezogen werden bzw. zusammengefahren werden, ist es erforderlich, die Vakuumschaltröhre an beiden Seiten einzuspannen und zusätzlich in der Haltevorrichtung an einer Seite zu arretieren. Diese Arretierung erfolgt beispielsweise mittels einer pneumatischen Vorrichtung. Wird der Linearantrieb für die Vakuumschaltröhre nun in Bewegung gesetzt, so werden die beiden Schaltkontakte relativ zueinander bewegt. Der Linearantrieb ermöglicht, einen definierten Abstand zwischen den Kontaktstücken, der in die Vorrichtung eingespannten Vakuumschaltröhre herzustellen. Hierbei ist es erforderlich, für jede als Prüfling in die Vorrichtung eingespannte Vakuumschaltröhre zuerst mittels des Linearantriebes den Kontaktöffnungspunkt der Kontakte aufzufinden. Für die verschiedenen Funktionsprüfungen sind verschiedene Abstände der Kontakte erforderlich und in Abhängigkeit von dem aufgefundenen Kontaktöffnungspunkt einzustellen mit Hilfe des Linearantriebes. Mittels des Linearantriebs wird die eingespannte Vakuumschaltröhre zwischen der Prüfposition und der Entnahmeposition verfahren. Hierbei wird der Linearantrieb in einem automatischen Betrieb mittels der speicherprogrammierbaren Steuerung (SPS) oder im manuellen Betrieb über ein Handrad oder entsprechende Funktionstasten eines Bedienterminals gesteuert. Der Linearantrieb entwickelt nur eine relativ geringe Bewegungsgeschwindigkeit, auf der anderen Seite ermöglicht er eine Genauigkeit des Antriebes auf 1/100 mm. Der Antrieb selbst umfasst einen Gleichstrommotor, einen Servoverstärker, einen Lageregler und eine Positionssteuerung. Die Steuerung des Gleichstrommotors erfolgt im Automatikbetrieb durch die SPS. Die Drehbewegung des Motors des Antriebes wird mit Hilfe einer Linearachse in eine lineare Bewegung umgesetzt, wodurch es möglich ist, die Position des Prüflings - Vakuumschaltröhre - zu verändern. Bevorzugt besteht die Linearachse aus zwei Spindeln, die durch eine Abdeckplatte miteinander verbunden sind, wodurch ein Gleichlauf dieser Teile und eine hohe Kraftübertragung gewährleistet ist. Der Spindeltrieb und der Antriebsmotor sind beispielsweise über einen Zahnriemen miteinander verbunden, der einen schlupffreien Betrieb zur genauen Positionsregelung gestattet. Der Linearantrieb weist einen oberen und unteren mechanischen Anschlag auf, wobei ein Anschlag als Referenzpunkt für den Antrieb dient. Dazwischen sind die Entnahmeposition für den Röhrenwechsel und die Prüfpositionen, wobei die definierten Kontaktabstände - Kontakthübe - über die SPS angesteuert werden.
Wesentlich für die Durchführung der Verfahren mit der erfindungsgemäßen Vorrichtung ist die Ausbildung der Halterung für die Vakuumschaltröhre als Prüfling, um nicht nur das Einfahren der Vakuumschaltröhre in eine Prüfposition zu ermöglichen, sondern darüber hinaus die für die verschiedenen Verfahren benötigten unterschiedlichen Zustände der Schaltkontakte bzw. deren Abstand zueinander herzustellen. Hierbei wird die Vakuumschaltröhre auf einer Seite mit einer Einspann- und Fixiervorrichtung festgelegt, die einen pneumatisch arbeitenden Zylinder zum Einspannen der Vakuumschaltröhre aufweist, der über die SPS angesteuert wird.
Des weiteren ist eine Arretierungsvorrichtung für den Röhrenfußpunkt - d.h. den Kontaktfußpunkt - der Vakuumschaltröhre vorgesehen, die bevorzugt als Drehhubzylinder ausgebildet ist und einerseits der Arretierung der Vakuumschaltröhre dient und zum anderen einen schnellen Kontakthub zum Zünden eines Vakuumbogens durch Trennen der Kontakte ermöglicht. Der Drehhubzylinder kann also sowohl eine lineare Bewegung parallel zur Bewegungsachse der Kontakte der Vakuumschaltröhre als auch eine Drehbewegung ausführen. Hierfür ist der Drehhubzylinder mit einem am Kolben angebrachten und senkrecht zur linearen Bewegungsachse verlaufenden Knebel oder dergleichen ausgerüstet, der die am Kontaktfußpunkt der Vakuumschaltröhre angebrachte Mechanik arretiert.
Zusätzlich ist ein pneumatischer Zylinder als Ausgleichszylinder vorgesehen, der die Aufgabe hat, das Gewicht der am Kontaktfußpunkt der Vakuumschaltröhre eingespannten Mechanik zu kompensieren, wobei die von ihm ausgehende und in Richtung der Bewegungsachse der Kontakte verlaufenden Kraft aber geringer ist als die von dem Linearantrieb ausgehende Kraft, wodurch eine spielfreie Linearbewegung von ausreichendem mechanischen Antriebsdruck ermöglich ist. Auf diese Weise kann erfindungsgemäß eine besonders genaue Abstandregelung der Kontakte und Einstellung derselben erreicht werden mit Hilfe des Linearantriebes.
Zur Trennung des Hochspannungskreises von dem Hochstromkreis ist ein pneumatisch betätigter Trenner vorgesehen, der bei der Spannungskonditionierung und der Innendruckmessung geöffnet ist, damit die Hochspannung nicht auf den Hochstromkreis überschlägt. Der Trenner ist dagegen während der Stromkonditionierung geschlossen, um den hohen Konditionierstrom sicher zum Kontakt der Vakuumschaltröhre zu leiten. Für die Innendruckmessung ist die Erfassung und Aufbereitung der Messwerte für den durch die Vakuumschaltröhre fließenden lonenstrom und die anliegende Hochspannung vorgesehen mittels eines Messwerteerfassungs- und Auswertesystems. Die Erfassung und Aufbereitung der Messdaten erfolgt mit Hilfe von Messverstärkern, die von den Messverstärkem bevorzugt in Gestalt von Lichtsignalen abgegebenen Signalen werden in einem Transientenrecorder in digitale Spannungssignale umgewandelt, um dann im PC - Steuereinheit - verarbeitet zu werden. Der PC kann zudem mit einer Software zur Archivierung der Daten ausgestattet sein, so dass alle Messdaten jedes Prüflings, d.h. jede Vakuumschaltröhre nicht nur erfasst sondern auch gespeichert werden können. Sofern die Prüflinge mit einem Erkennungscode zur individuellen Bauteilerkennung ausgestattet sind, können die Daten des bei der Innendruckmessung aufgetretenen Strom- und Spannungsverlauf auch zu einem späteren Zeitpunkt wieder betrachtet und ausgewertet werden.
Kurze Beschreibung der Zeichnungen
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus dem folgenden, anhand von Figuren erläuterten Ausführungsbeispiel. Es zeigen
Figur 1:
den Aufbau einer erfindungsgemäßen Vorrichtung in schematischer Darstellung;
Figur 2:
eine tabellarische Darstellung der wesentlichen Schaltzustände und damit auch der Prinzipschaltbilder zur Realisierung der drei Grundfunktionen Innendruckmessung, Spannungskonditionierung und Stromkonditionierung.
Bester Weg zur Ausführung der Erfindung
Der Prüfling, eine Vakuumschaltröhre 1, ist in dem Hohlraum der Hochstromspule 4 angeordnet und in einer Halterung H befestigt. Die Arretierungseinrichtung für den Kontaktfußpunkt der Vakuumschaltröhre 1 wird von einem Drehhubzylinder 5, 5A gebildet, dessen Pneumatikzylinder 5 in Pfeilrichtung P1, P2 verfahrbar sind. Am Kolben sind Knebel 5A angebracht, die durch eine Drehbewegung des Drehhubzylinders eine Arretierung des Kontaktfußpunktes der Vakuumschaltröhre in der Haltevorrichtung bewirken. Erfolgt nach absolvierter Prüfung die Anweisung, die Vakuumschaltröhre in die Entnahmeposition zu fahren, so bewegen sich die Drehhubzylinder nach oben und die Knebel 5A drehen sich von der Vakuumschaltröhre weg, so dass die Ausfahrstrecke für die Vakuumschaltröhre freigegeben ist. Auf der anderen Seite ist eine Einspann- und Fixiervorrichtung für die in die Prüfposition eingelegte Vakuumschaltröhre 1 vorgesehen, die in Gestalt eines Pneumatikzylinders 7 ausgeführt ist. Die Einspann- und Fixiervorrichtung 7 ist mit dem Linearantrieb 2,3 verbunden, wobei 2 die Linearachse, und 3 das Antriebsmodul mit dem Gleichstrommotor umfasst. Die Spule 4 wird von dem Hochstromtransformator 13 gespeist und ist des weiteren an eine Kühlmittelpumpe 12 für Kühlwasser angeschlossen. Der Hochspannungsgenerator ist mit 11 bezeichnet. Der Umschalter S3 dient dem Zuschalten des Spulenstromes bei der Innendruckmessung. Der Messverstärker 9 dient zur Aufnahme der bei der Innendruckmessung anliegenden Spannung. Der Messverstärker 8 zur Aufnahme des Innendruck-Stromsignals wird über den Schalter S1 zugeschaltet. Der Schalter S2 dient zum Zuschalten des Konditionsstromes bei der Stromkonditionierung und Spannungskonditionierung.
Des weiteren ist schematisch die Kühleinrichtung für die Vakuumschaltröhre bei der Stromkonditionierung in Gestalt von Druckluftdüsen 10 schematisch angedeutet. Des weiteren ist der Trenner T, der mittels eines Pneumatikzylinders 6 betätigbar ist zur Trennung des Hochstrom- von dem Hochspannungskreis sowie ein Sicherheitserdungsschalter S4 vorgesehen. Die Messverstärker sind an eine Messdatenerfassung- und Auswertevorrichtung 14 mit PC Steuereinheit verbunden, die auch die Spannung von dem Hochspannungsgenerator 11 erfasst.
Die Innendruckmessung, Spannungskonditionierung und Stromkonditionierung einer Vakuumschaltröhre mit Hilfe der erfindungsgemäßen Vorrichtung gemäß dessen in Figur 1 dargestellten prinzipiellen Aufbaus erfolgt in Teilprozessen nacheinander. Der Ablauf dieser Teilprozesse in bezug auf die Schaltzustände der Schalter S1, S2, S3, S4 und des Trenners T gemäß Prinzipschaltbild nach Figur 1 sind in der beigefügten Tabelle Figur 2 aufgeführt.
Mit Hilfe des Linearantriebs wird die eingespannte Vakuumschaltröhre zwischen den Prüfpositionen und der Entnahmeposition, in Pfeilrichtung P, verfahren. Die Bewegung zum Trennen der Kontakte für die Prüfung - Stromkonditionierung - erfolgt hingegen mittels der pneumatischen Vorrichtung 5, 5A.
Für die Spannungskonditionierung ist es erforderlich, den Abstand zwischen den Kontakten der Vakuumschaltröhre möglichst genau einzustellen. Hierfür wird der Linearantrieb verwendet. Das Auseinanderziehen der Kontakte kann jedoch nur erfolgen, wenn die Vakuumschaltröhre an einer Seite arretiert wird. Wird der Linearantrieb in Bewegung gesetzt, so zieht er in Abhängigkeit von der Einbaulage der Vakuumschaltröhre ein Kontaktstück mit sich. Zum Durchführen der Spannungskonditionierung wird zuerst der Kontaktabstand mit dem Linearantrieb eingestellt. Danach wird die Hochspannung, die mit der oberen Halterung der Schaltröhre verbunden ist, zugeschaltet. Im einzelnen wird durch Verfahren des Linearantriebs der Kontaktöffnungspunkt gefunden und danach der Linearantrieb auf den der Spannungskonditionierung zugeordneten Kontakthub II verfahren, d.h. der gewünschte definierte Kontaktabstand wird erreicht, danach wird der pneumatische Trenner T geöffnet, Kontaktfußpunkt der Vakuumschaltröhre und der Trenner geerdet, danach die Anweisung über den PC "Spannung EIN zur Spannungskonditionierung" gegeben und nach Beendigung die Hochspannungsfreigabe zurückgenommen, die Erdung des Trenners und des Kontaktfußpunktes der Vakuumschaltröhre aufgehoben und der Linearantrieb in eine Warteposition verfahren für die Durchführung eines weiteren Teilprozesses.
Die Realisierung der Innendruckmessung erfolgt mit der erfindungsgemäßen Vorrichtung nach dem Penning- bzw. Magnetronverfahren. Grundvoraussetzung hierfür ist eine Gleichspannungsquelle zur Erzeugung eines elektrischen Hochspannungsfeldes sowie eines Magnetfeldes. Die Gleichspannung wird durch den Hochspannungsgenerator 11 zur Verfügung gestellt, der mit dem oberen Teil der Halterung H von der Vakuumschaltröhre verbunden ist. Das Magnetfeld wird durch die wassergekühlte von einem Gleichstrom durchflossene Spule 4 erzeugt. Die Zündung eines Entladungsstromes innerhalb der Vakuumschaltröhre 1 erfordert, das die Kontakte wieder auf Abstand durch den definierten Kontakthub I gebracht werden müssen, so dass die elektrischen und magnetischen Feldlinien zwischen dem oberen Kontakt und dem Metalldampfschirm der Vakuumschaltröhre zum Teil senkrecht zueinander stehen. Die Abstandseinstellung erfolgt mit dem Linearantrieb wie vorangehend erläutert. Die Innendruckmessung der Vakuumschaltröhre erfolgt, in dem zuerst der gewünschte Kontaktabstand, beispielsweise 2 mm, eingestellt wird. Daraufhin wird das Magnetfeld und als letztes die Hochspannung zugeschaltet. Der dabei gezündete Ladungsstrom wird gemessen. Somit werden die folgenden Behandlungsschritte für die Innendruckmessung durchgeführt. Der Linearantrieb wird zum Erreichen und Auffinden des Kontaktöffnungspunktes verfahren und anschließend der Linearantrieb auf den gewünschten eingestellten Kontakthub I verfahren und nach erreichter Position zurückgesetzt, wodurch die beiden Kontakte der Vakuumschaltröhre auf eine definierte Strecke geöffnet sind. Danach wird der Trenner T geöffnet, und aus Sicherheitsgründen geerdet, ebenso der fixierte Kontaktfußpunkt der Vakuumschaltröhre, damit bei der Spannungsvorkonditionierung die gesamte Spannung über den geöffneten Kontakten abfällt. Danach wir die Hochspannung freigegeben und der PC angewiesen, die Spannungsvorkonditionierung durchzuführen. Die Spannungsvorkonditionierung verhindert, dass es beim schlagartigen Einschalten der DC-Hochspannung zu Durchschlägen kommt, die das Innendruck-Messsignal beeinträchtigen. Nach deren Beendigung wird die Freigabe der Hochspannung und die Erdung des Kontaktfußpunkte und des Trenners zurückgenommen und nun der Messverstärker zur Aufnahme des Innendruckstromsignals zugeschaltet. Zugleich wird die Kühlmittelpumpe 12 eingeschaltet, wodurch die Hochstromspule 4 mit Kühlwasser durchströmt wird. Danach wird die galvanische Verbindung zwischen Spule 4 und dem Hochstromtransformator 13 hergestellt und die Netzversorgung eingeschaltet und dann der Trafostrom eingeschaltet. Nach erfolgter Innendruckmessung wird anschließend der Stromfluss des Trafos 13 unterbrochen und die Freigabe der Hochspannung sowie die Erdung des Trenners aufgehoben, ebenso die Ansteuerung des Netzschützes des Trafos und danach die galvanische Verbindung zwischen Spule und Trafo getrennt, anschließend der Messverstärker weggeschaltet, die Kühlmittelpumpe abgeschaltet. Zum Abschluss hin wird der Linearantrieb wiederum in Bewegung gesetzt und die Vakuumschaltröhre in eine Warteposition oder Entnahmeposition verbracht. Für den Teilprozess der Stromkonditionierung ist es erforderlich, einen Vakuumbogen zu zünden, der die Kontaktoberflächen konditioniert. Dieser Gleichstrombogen lässt sich zünden, indem bei geschlossenen Kontakten der Vakuumschaltröhre ein Strom zugeschaltet wird. Durch Trennen der Kontakte auf einen gewünschten definierten Abstand -Kontakthub III - entsteht dann der Gleichstrombogen, der sich je nach Stromstärke auch in mehrere Teillichtbögen aufspalten kann.
Beim Trennen der Kontaktstrecke spielt die Geschwindigkeit, mit der die Kontakte auseinandergezogen werden, eine wesentliche Rolle. Werden die Kontakte zu langsam voneinander getrennt, kann es aufgrund der sehr starken Erwärmung der Kontaktoberflächen zu einer Verschweißung kommen. Um dies zu vermeiden, muss ein ausreichend schneller Antrieb zum Auseinanderziehen der Kontakte auf einen: definierten Abstand von z.B. 2,5 mm zur Verfügung stehen. Der elektromotorische Linearantrieb ist für diese Aufgabe nicht geeignet. Seine Bewegungsgeschwindigkeit ist zu langsam. Zum Trennen der Kontakte wird deshalb eine pneumatische Vorrichtung eingesetzt, mit der der vorher festgelegte Kontaktabstand - Kontakthub III - eingestellt werden kann in Gestalt vorzugsweise des Drehhubzylinders 5, 5A. Bevor die pneumatische Vorrichtung 5, 5A zur Anwendung kommt, muss die Vakuumschaltröhre, wie vorangehend beschrieben, arretiert werden. Beim Betätigen der pneumatischen Arretierungsvorrichtung 5, 5A wird der eine Kontakt ruckartig auf den mittels des Linearantriebes eingestellten Kontaktabstand gezogen und der Gleichstrombogen kann so gezündet werden. Die Öffnung der Kontakte zum Zwecke des Zündens des Gleichstrombogens erfolgt bei arretiertem Kontaktfußpunkt der Vakuumschaltröhre. Diese werden, wie bereits beschrieben, mittels der Knebel 5A des Drehhubzylinders arretiert. Danach wird der Drehhubzylinder 5 achsparallel zur Bewegungsachse der Kontakte nach oben gefahren, wodurch sich die Kontakte schließen. Danach wird der Bogenzündstrom eingeschaltet und die Drehhubzylinder schlagartig wieder nach unten gefahren, woraufhin ein Vakuumbogen entsteht und die definierte Kontaktöffnungsstrecke - Kontaktabstand - wieder hergestellt wird. Die Endlagen des Drehhubzylinders können beispielsweise mittels Magnetschaltem überwacht werden. Durch diesen Vorgang erfolgt die Stromkonditionierung nur jeweils eines der beiden Kontakte. Die Konditionierung des anderen Kontaktes erfolgt anschließend in gleicher Weise nach Umpolung der Stromzufuhr.
Die einzelnen Schritte, Schalthandlungen zum Durchführen der Teilprozesse der Spannungskonditionierung, Innendruckmessung bzw. Stromkonditionierung können mittels einer speicherprogrammierbaren Steuerung SPS automatisch ablaufen, entsprechend werden die einzelnen Geräte und Schalter angesteuert. Beim Auftreten einer Störung, sowie bei einem Abbruch durch den Bediener werden die Geräteteile in ihren Grundzustand zurückversetzt, gegebenenfalls wird auch die Vakuumschaltröhre in eine entsprechende Ausgangsposition mittels des Linearantriebes verbracht.
Für die Innendruckmessung nach dem Penning-Verfahren ist es gegebenenfalls zweckmäßig, einen hier nicht dargestellten Aktor zur Erzeugung und Übertragung eines mechanischen Stoßimpulses auf die zu prüfende Vakuumschaltröhre zur Zündung des Entladungsstromes vorzusehen, da die Penning-Entladung bei Innendrücken im Bereich • 10-7 mbar nicht immer prompt zündet, sie lässt sich aber durch Stoßimpuls - initiierte Desorption lose gebundener Restgasmoleküle auslösen. Die Stoßübertragung kann dabei rein mechanisch, z. B. über eine Klinken-/Nockenscheibe- vorzugsweise aber elektromechanisch über Schaltanker, Schutzantrieb oder Piezostapelaktor erzeugen. Dieser mechanische Impulsgeber einschließlich einer Ansteuerung kann ebenfalls in die speicherprogrammierbare Steuerung der Vorrichtung für die Durchführung der drei Funktionsprüfungen integriert werden.

Claims (20)

  1. Vorrichtung zur Innendruckmessung, Spannungskonditionierung und Stromkonditionierung von Vakuumschaltröhren, umfassend eine Spule (4) zur Magnetfelderzeugung für die Innendruckmessung, einen Hochstromtransformator (13), der den Spulenstrom zum Aufbau des Magnetfeldes sowie den DC-Strom für die Stromkonditionierung liefert, einen Hochspannungsgenerator (11), der einerseits die für die Innendruckmessung benötigte DC-Hochspannung und andererseits eine variierbare AC-Hochspannung für die Spannungskonditionierung liefert, eine Halterungsvorrichtung für die Vakuumschaltröhre (1), die auf einer Seite eine Arretierungsvorrichtung (5, 5A) für den Kontaktfußpunkt der Vakuumschaltröhre und auf der gegenüberliegenden Seite eine Einspann- und Fixiervorrichtung (7) für die Vakuumschaltröhre aufweist, wobei die Einspann- und Fixiervorrichtung (7) mit einer Linearantriebsvorrichtung (2, 3) zum Verfahren der Vakuumschaltröhre in Positionen zum Herstellen definierter Abstände zwischen den Kontakten der Vakuumschaltröhre für die Spannungskonditionierung, Stromkonditionierung und Innendruckmessung und in eine Entnahmeposition verbunden ist, und wobei die Arretierungsvorrichtung mit einem pneumatischen Antrieb zum schnellen Auseinanderfahren der Kontakte aus der Schließposition auf einen definierten Abstand zum Zünden eines Gleichstromvakuumbogens für die Stromkonditionierung ausgestattet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine speicherprogrammierbare Steuerung (SPS) zum nacheinander Durchführen der einzelnen Schalthandlungen für die Spannungskonditionierung, Innendruckmessung und Stromkonditionierung vorgesehen ist.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass ein Hochstromtransformator (13) mit Dreiphasen-Thyristor-gesteuerter Gleichrichter vorgesehen ist, dem ein Wandler und eine Schnittstelle zur speicherprogrammierbaren Steuerung (SPS) zugeordnet ist, um die Messsignale an die SPS zu übermitteln und den Gleichrichter extern zu steuern.
  4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Hochstromgenerator (11) mit einer mikroprozessorgesteuerten Bedien- und Anzeigeeinheit ausgestattet ist und über ein isoliertes optisches Interface fernsteuerbar ist.
  5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als Spule (4) eine mit einer Wasserkühlung mit Kühlmittelpumpe ausgestattete Hochstromspule vorgesehen ist.
  6. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Linearantriebsvorrichtung eine Linearachse (2) mit mindestens einer Spindel und einem Antriebsmodul mit Gleichstrommotor (3) zur Positionierung der Vakuumschaltröhre bzw. der Kontakte der Vakuumschaltröhre zueinander umfasst, wobei die Steuerung des Antriebsmoduls durch die SPS über eine Schnittstelle erfolgt.
  7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zur Trennung des Hochstromkreises von dem Hochspannungskreis ein pneumatisch betätigter Trenner (T) vorgesehen ist.
  8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zum Einspannen und Fixieren der Vakuumschaltröhre bzw. zum Arretieren des Kontaktfußpunktes der Vakuumschaltröhre jeweils Pneumatikzylinder (7, 5, 5A) vorgesehen sind.
  9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als Arretierungsvorrichtung ein Dreh-Hubzylinder (5, 5A) vorgesehen ist, der eine schnelle lineare Bewegung längs einer Zylinder-Kolbenachse zwecks Schließung und Auseinanderfahren der Kontakte zum Erreichen eines definierten Abstandes ausführt und eine Drehbewegung zwecks Arretierung mittels senkrecht zur linearen Zylinder-Kolbenachse am Kolben angebrachter Knebel ausführt.
  10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine Kühleinrichtung (10) zur Kühlung der Vakuumschaltröhre vorgesehen ist, die gegebenenfalls mittels einer SPS während der Stromkonditionierung zuschaltbar ist.
  11. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zur Messung des Innendruckes ein Messverstärker (8) zur Aufnahme des Innendruckstromsignals während der Innendruckmessung und ein Messverstärker (9) zur Aufnahme der bei der Innendruckmessung anliegenden Spannung vorgesehen ist, die an eine Messdatenerfassung- und Auswertevorrichtung (PC) angeschlossen sind.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass ein Schalter (S1) zum Zuschalten des Messverstärkers (8) für das Innendruck-Stromsignal bei der Innendruckmessung zwischen Messverstärker (8) und Kontaktfußpunkt der Vakuumschaltröhre vorgesehen ist.
  13. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein Schalter (S2) zum Zuschalten des Stromes des Hochstromtransformators bei der Spannungskonditionierung bzw. Stromkonditionierung zwischen dem Kontaktfußpunkt der Vakuumschaltröhre und dem Hochstromtransformator angeordnet ist.
  14. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein Schalter (S3) zum Zuschalten des Stromes des Hochstromtransformators zur Spule (4) für die Innendruckmessung zwischen Hochstromtransformator und Spule vorgesehen ist.
  15. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass ein Sicherheitserdungsschalter (S4) dem Trenner (T) zugeordnet ist.
  16. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein Aktor zur Erzeugung und Übertragung eines mechanischen Stoßimpulses bei der Innendruckmessung auf die zu prüfende Vakuumschaltröhre vorgesehen ist.
  17. Verfahren zur Innendruckmessung für Vakuumschaltröhren mit einer Vorrichtung gemäß Anspruch 1, bei dem eine Spannungsvorkonditionierung mit anschließender Innendruckmessung mit automatisch ablaufenden Schalthandlungen durchgeführt wird, wobei die zu prüfende Vakuumschaltröhre mittels der Linearantriebsvorrichtung (2, 3) in eine Position des Kontaktöffnungspunktes verfahren wird und danach mittels der Linearantriebsvorrichtung (2, 3) ein definierter Abstand in Form des Kontakthubes I in Bezug auf den aufgefundenen Kontaktöffnungspunkt unter Öffnung der Kontakte durchgeführt wird, der Hochstromkreis von dem Hochspannungskreis durch Öffnen eines Trenners (T) getrennt wird, ein dem Trenner (T) zugeordneter Sicherheitserdungsschalter (S4) geöffnet wird, ebenso ein Schalter (S2), der zum Zuschalten des Stromes des Hochstromtransformators bei der Spannungskonditionierung bzw. Stromkonditionierung zwischen dem Kontaktfußpunkt der Vakuumschaltröhre und dem Hochstromtransformator angeordnet ist, und nach Hochspannungsfreigabe zur Spannungsvorkonditionierung und Zuschalten eines Messverstärkers (8), der zur Aufnahme des Innendruckstromsignals während der Innendruckmessung vorgesehen ist, durch Schließen eines Schalters (S1), der zum Zuschalten des Messverstärkers (8) für das Innendruck-Stromsignal bei der Innendruckmessung zwischen Messverstärker (8) und Kontaktfußpunkt der Vakuumschaltröhre vorgesehen ist, anschließend unter Beaufschlagung mit Hochspannung die Innendruckmessung bei einem geschlossene Schalter (S3), der zum Zuschalten des Stromes des Hochstromtransformators zur Spule (4) für die Innendruckmessung zwischen Hochstromtransformator und Spule vorgesehen ist, durchgeführt wird.
  18. Verfahren zur Spannungskonditionierung einer Vakuumschaltröhre nach Anspruch 17, das mit automatisch ablaufenden Schalthandlungen durchgeführt wird, wobei die zu prüfende Vakuumschaltröhre mittels der Linearantriebsvorrichtung (2, 3) in eine Position des Kontaktöffnungspunktes verfahren wird und danach mittels der Linearantriebsvorrichtung (2, 3) der Abstand mittels des Kontakthubes II in Bezug auf den aufgefundenen Kontaktöffnungspunkt unter Öffnung der Kontakte durchgeführt wird, der Hochstromkreis von dem Hochspannungskreis durch Öffnen des Trenners (T) getrennt wird und der Sicherheitserdungsschalter (S4) geöffnet wird, sowie die Schalter (S1) und (S2) geöffnet sind, und danach die Hochspannungsfreigabe für die Spannungskonditionierung der Vakuumschaltröhre bei geschlossenem Schalter (S2) durchgeführt wird.
  19. Verfahren zur Stromkonditionierung einer Vakuumschaltröhre nach Anspruch 17, das mit automatisch ablaufenden Schalthandlungen durchgeführt wird, wobei die zu prüfende Vakuumschaltröhre mittels der Linearantriebsvorrichtung (2, 3) in eine Position des Kontaktöffnungspunktes verfahren wird und danach mittels der Linearantriebsvorrichtung (2, 3) der Abstand in Form des Kontakthubes III in Bezug auf den aufgefundenen Kontaktöffnungspunkt und der Öffnung der Kontakte durchgeführt wird, der Hochstromkreis und der Hochspannungskreis durch Schließen des Trenners (T) verbunden sind, die Schalter (S1, S3, S4) geöffnet sind und die Vakuumschaltröhre mit Strom zur Konditionierung durch Schließen des Schalters (S2) beaufschlagt wird.
  20. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Teilprozesse der Innendruckmessung, Spannungskonditionierung und Stromkonditionierung aufeinanderfolgend an einer Vakuumschaltröhre durchgeführt werden, wobei die Teilprozesse jederzeit abbrechbar sind und die angesteuerten Geräte einschließlich der zu prüfenden Vakuumschaltröhre in ihren Grundzustand zurückversetzt werden.
EP00964008A 1999-09-09 2000-08-10 Vorrichtung zur innendruckmessung, spannungskonditionierung und stromkonditionierung von vakuumschaltröhren und verfahren hierfür Expired - Lifetime EP1212768B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19942971A DE19942971A1 (de) 1999-09-09 1999-09-09 Vorrichtung zur Innendruckmessung, Spannungskonditionierung und Stromkonditionierung von Vakuumschaltröhren und Verfahren hierfür
DE19942971 1999-09-09
PCT/EP2000/007764 WO2001018834A1 (de) 1999-09-09 2000-08-10 Vorrichtung zur innendruckmessung, spannungskonditionierung und stromkonditionierung von vakuumschaltröhren und verfahren hierfür

Publications (2)

Publication Number Publication Date
EP1212768A1 EP1212768A1 (de) 2002-06-12
EP1212768B1 true EP1212768B1 (de) 2003-10-22

Family

ID=7921268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00964008A Expired - Lifetime EP1212768B1 (de) 1999-09-09 2000-08-10 Vorrichtung zur innendruckmessung, spannungskonditionierung und stromkonditionierung von vakuumschaltröhren und verfahren hierfür

Country Status (3)

Country Link
EP (1) EP1212768B1 (de)
DE (2) DE19942971A1 (de)
WO (1) WO2001018834A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016108245A1 (de) 2016-05-03 2017-11-09 Eaton Electrical Ip Gmbh & Co. Kg Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen
DE102020204312B3 (de) * 2020-04-02 2021-09-30 Siemens Aktiengesellschaft Verfahren zum zweistufigen Formieren von Kontakten einer Vakuumschaltvorrichtung und Vakuumschaltvorrichtung, konfiguriert das Verfahren auszuführen
CN114089145B (zh) * 2021-11-19 2023-06-09 西安西电电力系统有限公司 一种可移式多路晶闸管长期耐压试验设备及试验方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575656A (en) * 1968-08-30 1971-04-20 Ite Imperial Corp Method and apparatus for measuring pressure in vacuum interrupters
DE3347176A1 (de) * 1983-12-27 1985-07-04 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zum messen des innendrucks eines betriebsmaessig eingebauten vakuumschalters
DE3539748A1 (de) * 1985-11-09 1987-05-21 Sachsenwerk Ag Pruefeinrichtung fuer vakuumschaltkammern
DE4203757C2 (de) * 1992-02-10 2002-08-01 Abb Patent Gmbh Verfahren zum Prüfen des Vakuums einer elektrischen Vakuumschaltkammer sowie Einrichtung zur Durchführung des Verfahrens
DE19714655C2 (de) * 1997-04-09 2002-10-17 Abb Patent Gmbh Verfahren und Vorrichtung zum Konditionieren einer Vakuumschaltkammer

Also Published As

Publication number Publication date
WO2001018834A1 (de) 2001-03-15
EP1212768A1 (de) 2002-06-12
DE50004191D1 (de) 2003-11-27
DE19942971A1 (de) 2001-03-15

Similar Documents

Publication Publication Date Title
DE915534C (de) Verfahren und Vorrichtung zur Richtungssteuerung eines stroemenden ionisierten Mediums
DE3218513C2 (de)
EP1573761B1 (de) Verfahren und vorrichtung zur bestimmung der restlebensdauer eines schaltgerätes
DE102004002173A1 (de) Verfahren zur Untersuchung eines Leistungsschalters
EP1212768B1 (de) Vorrichtung zur innendruckmessung, spannungskonditionierung und stromkonditionierung von vakuumschaltröhren und verfahren hierfür
WO2017121711A1 (de) Verfahren zur relativen positionsbestimmung eines werkstücks und eines werkzeugs in einer maschine mittels uv-licht
DE4432573C2 (de) Verfahren zum Steuern der Kraft auf eine Widerstandsschweißklemme oder dergleichen; von diesem Verfahren Gebrauch machende Widerstandsschweißmaschine
EP0150389A1 (de) Vorrichtung zum Messen des Innendrucks eines betriebsmässig eingebauten Vakuumschalters
DE10144256B4 (de) Kurzzeit-Lichtbogenschweißsystem und -verfahren
EP0472938B1 (de) Anordnung zum Testen und Reparieren einer integrierten Schaltung
DE102012205317B4 (de) Verfahren zur Einstellung einer Position eines Trägerelements in einem Teilchenstrahlgerät, Computerprogrammprodukt sowie Teilchenstrahlgerät
DE2627862A1 (de) Elektronenstrahler
EP3213852B1 (de) Widerstandsschweissvorrichtung
DE102017211725B4 (de) Verfahren zur Herstellung einer Schweißverbindung
DE2434830B2 (de) Elektronenstrahlanlage zur thermischen Bearbeitung von Metallwerkstttcken
DE102015114957A1 (de) Elektrisches Schweißverfahren
DE2532126C2 (de) Verfahren zum Prüfen des Einschaltvermögens von Schaltgeräten
DE2323350C2 (de) Druckgasschalter mit geschlossenem Löschkammersystem
DE102022115454B4 (de) Vorrichtung und Verfahren zur Texturierung und/oder Beschichtung einer Oberfläche eines Bauteils
EP3561846A1 (de) Vakuum-leistungsschalter
DE102021208400B4 (de) Vakuumschaltanordnung und Verfahren zum Trennen verschweißter Kontakte einer Vakuumschaltanordnung
DE4203757C2 (de) Verfahren zum Prüfen des Vakuums einer elektrischen Vakuumschaltkammer sowie Einrichtung zur Durchführung des Verfahrens
DE10018239C1 (de) Schweißachse für einen Bolzenschweißkopf mit einer steuerbaren Antriebseinrichtung für einen Ladestift
DE1903498B1 (de) Verfahren und Anordnung zur Justierung des Elektronenstrahlbuendels in einem Elektronenmikroskop
DE19859020A1 (de) Vorrichtung zum Widerstandsschweißen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031022

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50004191

Country of ref document: DE

Date of ref document: 20031127

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040122

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

26N No opposition filed

Effective date: 20040723

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050812

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080822

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302