EP1207346A2 - Flame monitoring device for an oil or gas burner - Google Patents

Flame monitoring device for an oil or gas burner Download PDF

Info

Publication number
EP1207346A2
EP1207346A2 EP01126119A EP01126119A EP1207346A2 EP 1207346 A2 EP1207346 A2 EP 1207346A2 EP 01126119 A EP01126119 A EP 01126119A EP 01126119 A EP01126119 A EP 01126119A EP 1207346 A2 EP1207346 A2 EP 1207346A2
Authority
EP
European Patent Office
Prior art keywords
flame
signal
evaluation circuit
radiation
detector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01126119A
Other languages
German (de)
French (fr)
Other versions
EP1207346B1 (en
EP1207346A3 (en
Inventor
Kurt-Henry Dr. Mindermann
Mirko Loncaric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BFI Automation Mindermann GmbH
Original Assignee
BFI Automation Mindermann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BFI Automation Mindermann GmbH filed Critical BFI Automation Mindermann GmbH
Publication of EP1207346A2 publication Critical patent/EP1207346A2/en
Publication of EP1207346A3 publication Critical patent/EP1207346A3/en
Application granted granted Critical
Publication of EP1207346B1 publication Critical patent/EP1207346B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means

Definitions

  • the invention relates to a flame detector for an oil or gas operated burner according to the preamble of claim 1.
  • From DE 198 09 653 C1 is a flame monitor for bluish burning Flames of an oil or gas burner known to the flame radiation sensing photo sensor, one that rises sharply from ultraviolet to infrared Has sensitivity, and includes a downstream evaluation circuit, the the fuel supply switches off when the radiation is in the range from 200 to 500 nm fails or the increase in the detected radiation intensity above 500 nm Migration from the blue area shows.
  • the signal of the Two-channel photo sensor on the one hand, for ultraviolet radiation up to 500 nm and on the other hand, regarding visible and infrared radiation.
  • a special photo sensor with a special evaluation is required.
  • the object of the invention is a flame detector according to the preamble of claim 1 which provides detection of whether the burner is burning, i.e. a Flame is present in a very simple way.
  • Fig. 1 shows a diagram relating to different sizes, plotted compared to the lambda value.
  • FIG. 2 schematically shows a circuit diagram for a control device.
  • Fig. 3 shows diagrammatically the formation of measured values for the Flickering frequency of the flame radiation.
  • a flame from an oil or gas burner burns optimally when a little stoichiometric excess of air is present, i.e. the lambda value is slightly larger than one. If the lambda value continues to increase, the Intensity of the flame radiation too, which also happens when the lambda value falls below one. With a lambda value greater than one shift at Increasing the proportion of combustion air increases the optical frequencies of the Flame radiation to larger values, with a lambda value less than one the optical shifts when the proportion of combustion air is reduced Frequencies of flame radiation at smaller values. In the latter case it increases however, the soot development then also strongly increases (cf. diagram of FIG.
  • the photo sensor When using a photo sensor that detects the flame radiation, the has a sensitivity that rises sharply from ultraviolet to infrared, and a downstream evaluation circuit that generates a signal that the over a predetermined time integrated signal of the photosensor with respect to the radiation in the range of longer wavelengths, approximately> 500 nm, one can do that Apply generated signal to Lambda. You then get one burner-specific curve B according to the diagram of FIG. 1.
  • the evaluation circuit can the signal from the photo sensor with regard to flicker frequency and / or amplitude of the flame radiation detected evaluate and when determining the emigration of the flame radiation at one Flicker frequency below a predetermined value, a signal to increase of the combustion air portion of the fuel-combustion air mixture and at If the predetermined second value is exceeded, a signal for lowering the Generate combustion air portion of the fuel-combustion air mixture.
  • the diagram of FIG. 1 also contains a curve C, the "zero crossings", referred to here as pulsation (Hz) of the signal amplified by an amplifier 1 of the photodetector 2 which detects the flame radiation is plotted opposite Lambda affects. These zero crossings per unit of time essentially correspond the flicker frequency of the flame radiation. These zero crossings are from the Evaluation circuit generated by the DC component of the signal of the Cut off the photo sensor and lay the zero line for the AC component the noise component of the signal is suppressed, i.e. that the dominant Amplitudes remain. The resulting AC signal becomes such amplified, amplifier 3 that as a result of cutting off the upper and lower Sections result in essentially rectangular pulses with varying pulse widths.
  • Hz pulsation
  • a comparator 4 is expediently used either downstream counter, a shift register and evaluation or one Microprocessor 5 uses the functions of these components and the Generates a shutdown signal in the event of a missing flame.
  • Low frequencies of approximately ⁇ 30 Hz can be made in advance by means of a high-pass filter 6 be cut off so that they are not included in the evaluation.
  • the limit for a shutdown is relatively small and periods can occur within the predetermined time in which there is no zero crossing is determined
  • This type of flame monitoring is extremely simple also no problem with sensitivity adjustment, so that it is extremely is easy to use. Overriding is irrelevant because of this the rectangular pulses are not significantly affected.
  • the flame guard can be used with any type of control device for the fuel-combustion air mixture deploy.
  • an optical filter in front of the photosensor use that is essentially absorbing in a wavelength range, which corresponds to the radiation from glowing furnace walls (greater than about 900 nm), thus a flickering that can be generated in the absence of flame by the fact that Air is swirled by a fan in the oven, not with the actual one Flickering of a flame is mistaken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The photocell (2) is sensitive to electromagnetic radiation in the optical or visible band. It is connected to a first amplifier (1) which in turn is connected to a band-pass filter (5). The signal may be divided up into several time bands, with the circuit tuned to the flicker frequency of the observed flames. The band-pass filter is connected to a second amplifier (3), which is in turn connected to a comparator (4) which receives a reference signal (U ref). The output of the comparator is fed to a microprocessor.

Description

Die Erfindung betrifft einen Flammenwächter für einen mit Öl oder Gas betriebenen Brenner nach dem Oberbegriff des Anspruchs 1.The invention relates to a flame detector for an oil or gas operated burner according to the preamble of claim 1.

Aus DE 197 46 786 C2 ist ein Flammenwächter für bläulich brennenden Flammen eines Öl- oder Gasbrenners bekannt, bei dem ein Halbleiterdetektor mit einer spektralen Empfindlichkeit im nahen Ultraviolett mit einer nachgeschalteten Auswerteschaltung verwendet wird, die einen Regler für das Brennstoff-Verbrennungsluft-Verhältnis entsprechend der spektralen Verteilung der Flammenstrahlung beeinflußt. Dies kann aber beim Auswandern der Flammenstrahlung zu größeren Wellenlängen, dem "Gelbbereich" hin zu Problemen derart führen, daß trotz Erhöhung des Verbrennungsluftanteils das Auswandern zunimmt und daraufhin die Brennstoffzufuhr abgeschaltet wird. Ein Auswertung der vom Fotosensor empfangenen Strahlung hinsichtlich dessen, ob der Brenner brennt oder im Falle, daß er nicht brennt, die Brennstoffzufuhr möglichst umgehend abzuschalten ist, ist hier nicht vorgesehen. From DE 197 46 786 C2 is a flame monitor for bluish burning Flames of an oil or gas burner known in which a semiconductor detector a spectral sensitivity in the near ultraviolet with a downstream one Evaluation circuit is used, which is a controller for the fuel-combustion air ratio according to the spectral distribution of the Flame radiation affected. But this can happen when emigrating Flame radiation to longer wavelengths, the "yellow area" to problems lead in such a way that emigration despite increasing the proportion of combustion air increases and then the fuel supply is switched off. An evaluation of the Radiation received by the photosensor as to whether the burner is burning or in the event that it does not burn, the fuel supply as soon as possible is not to be switched off here.

Aus DE 198 09 653 C1 ist ein Flammenwächter für bläulich brennende Flammen eines Öl- oder Gasbrenners bekannt, der einen die Flammenstrahlung erfassenden Fotosensor, der eine von Ultraviolett zu Infrarot stark ansteigende Empfindlichkeit aufweist, und eine nachgeschaltete Auswerteschaltung umfaßt, die die Brennstoffzufuhr abschaltet, wenn die Strahlung im Bereich von 200 bis 500 nm ausfällt oder die Zunahme der erfaßten Strahlungsintensität oberhalb 500 nm ein Abwandern aus dem blauen Bereich erkennen läßt. Hierbei wird das Signal des Fotosensor zweikanalig, zum einen betreffend Ultraviolettstrahlung bis 500 nm und zum anderen betreffend sichtbare und infrarote Strahlung, ausgewertet. Hierbei wird ein spezieller Fotosensor mit einer speziellen Auswertung benötigt.From DE 198 09 653 C1 is a flame monitor for bluish burning Flames of an oil or gas burner known to the flame radiation sensing photo sensor, one that rises sharply from ultraviolet to infrared Has sensitivity, and includes a downstream evaluation circuit, the the fuel supply switches off when the radiation is in the range from 200 to 500 nm fails or the increase in the detected radiation intensity above 500 nm Migration from the blue area shows. Here the signal of the Two-channel photo sensor, on the one hand, for ultraviolet radiation up to 500 nm and on the other hand, regarding visible and infrared radiation. Here will a special photo sensor with a special evaluation is required.

Aufgabe der Erfindung ist es, einen Flammenwächter nach dem Oberbegriff des Anspruchs 1 zu schaffen, die eine Erkennung, ob der Brenner brennt, d.h. eine Flamme vorhanden ist, in sehr einfacher Weise ermöglicht.The object of the invention is a flame detector according to the preamble of claim 1 which provides detection of whether the burner is burning, i.e. a Flame is present in a very simple way.

Diese Aufgabe wird entsprechend dem kennzeichnenden Teil des Anspruchs 1 gelöst.This task is according to the characterizing part of the claim 1 solved.

Weitere Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung und den Unteransprüchen zu entnehmen.Further refinements of the invention are as follows Description and the dependent claims.

Die Erfindung wird nachstehend anhand von beigefügten Abbildungen näher erläutert.The invention will now be described with reference to the attached figures explained.

Fig. 1 zeigt ein Diagramm betreffend verschiedener Größen, aufgetragen gegenüber dem Lambda-Wert.Fig. 1 shows a diagram relating to different sizes, plotted compared to the lambda value.

Fig. 2 zeigt schematisch ein Schaltkreisdiagramm für eine Regeleinrichtung.2 schematically shows a circuit diagram for a control device.

Fig. 3 zeigt diagrammartig die Bildung von Meßwerten für die Flackerfrequenz der Flammenstrahlung.Fig. 3 shows diagrammatically the formation of measured values for the Flickering frequency of the flame radiation.

Eine Flamme eines Öl- oder Gasbrenners brennt dann optimal, wenn ein geringer stöchiometrischer Luftüberschuß vorhanden, d.h. der Lambda-Wert geringfügig größer als eins ist. Steigt der Lambda-Wert weiter an, so nimmt die Intensität der Flammenstrahlung zu, was aber auch geschieht, wenn der Lambda-Wert unter eins abfällt. Bei einem Lambda-Wert größer eins verschieben sich bei Erhöhung des Verbrennungsluftanteils die optischen Frequenzen der Flammenstrahlung zu größeren Werten, bei einem Lambda-Wert kleiner eins verschieben sich bei Erniedrigung des Verbrennungsluftanteils die optischen Frequenzen der Flammenstrahlung zu kleineren Werten. In letzterem Fall steigt allerdings dann auch die Rußentwicklung stark an (vgl. Diagramm von Fig. 1, in dem Kurve A Meßwerte bezüglich der Rußentwicklung, in Bacharach angegeben, gegenüber dem Lambda-Wert aufgetragen zeigt), weshalb in diesem Fall dann, wenn über die Regelung die Rückführung des Brennstoff-Verbrennungsluftgemisches in den optimalen Bereich nicht in vorbestimmter Zeit erreicht wird, die Brennstoffzufuhr zweckmäßigerweise zu unterbrechen ist.A flame from an oil or gas burner burns optimally when a little stoichiometric excess of air is present, i.e. the lambda value is slightly larger than one. If the lambda value continues to increase, the Intensity of the flame radiation too, which also happens when the lambda value falls below one. With a lambda value greater than one shift at Increasing the proportion of combustion air increases the optical frequencies of the Flame radiation to larger values, with a lambda value less than one the optical shifts when the proportion of combustion air is reduced Frequencies of flame radiation at smaller values. In the latter case it increases however, the soot development then also strongly increases (cf. diagram of FIG. 1, in curve A, measured values relating to soot development, given in Bacharach, versus the lambda value), which is why in this case if the regulation of the return of the fuel-combustion air mixture in the optimal range not in a predetermined time is reached, the fuel supply is advantageously to be interrupted.

Bei Verwendung eines die Flammenstrahlung erfassenden Fotosensors, der eine vom Ultraviolett zu Infrarot stark ansteigende Empfindlichkeit aufweist, und einer nachgeschalteten Auswerteschaltung, die ein Signal erzeugt, das dem über eine vorbestimmte Zeit integrierten Signal des Fotosensors bezüglich der Strahlung im Bereich größerer Wellenlängen, etwa >500 nm, entspricht, kann man das so erzeugte Signal gegenüber Lambda auftragen. Man erhält dann eine brennerspezifische Kurve B gemäß dem Diagramm von Fig. 1.When using a photo sensor that detects the flame radiation, the has a sensitivity that rises sharply from ultraviolet to infrared, and a downstream evaluation circuit that generates a signal that the over a predetermined time integrated signal of the photosensor with respect to the radiation in the range of longer wavelengths, approximately> 500 nm, one can do that Apply generated signal to Lambda. You then get one burner-specific curve B according to the diagram of FIG. 1.

Aus Kurve B ist ersichtlich, daß bei einem Lambda-Wert von etwa 1 ein Minimum liegt und die Kurve B von dort sowohl zu höheren wie zu niedrigeren Lambda-Werten hin ansteigt.It can be seen from curve B that at a lambda value of approximately 1 Minimum lies and the curve B from there to both higher and lower Lambda values increases.

Dementsprechend kann die Auswerteschaltung das Signal des Fotosensors bezüglich Flackerfrequenz und/oder Amplitude der erfaßten Flammenstrahlung auswerten und beim Feststellen des Auswanderns der Flammenstrahlung bei einer Flackerfrequenz unterhalb eines vorbestimmten Wertes ein Signal zum Erhöhen des Verbrennungsluftanteils des Brennstoff-Verbrennungsluft-Gemisches und beim Überschreiten des vorbestimmten zweiten Wertes ein Signal zum Erniedrigen des Verbrennungsluftanteils des Brennstoff-Verbrennungsluft-Gemisches erzeugen.Accordingly, the evaluation circuit can the signal from the photo sensor with regard to flicker frequency and / or amplitude of the flame radiation detected evaluate and when determining the emigration of the flame radiation at one Flicker frequency below a predetermined value, a signal to increase of the combustion air portion of the fuel-combustion air mixture and at If the predetermined second value is exceeded, a signal for lowering the Generate combustion air portion of the fuel-combustion air mixture.

Das Diagramm von Fig. 1 enthält ferner eine Kurve C, die "Nulldurchgänge", hier als Pulsation (Hz) bezeichnet, des von einem Verstärker 1 verstärkten Signals des die Flammenstrahlung erfassenden Fotodetektors 2 aufgetragen gegenüber Lambda betrifft. Diese Nulldurchgänge pro Zeiteinheit entsprechen im wesentlichen der Flackerfrequenz der Flammenstrahlung. Diese Nulldurchgänge werden von der Auswerteschaltung erzeugt, indem der Gleichstromanteil des Signals des Fotosensors abgeschnitten und die Nullinie für den Wechselstromanteil so gelegt wird, daß der Rauschanteil des Signals unterdrückt wird, d.h. daß die dominanten Amplituden übrig bleiben. Das sich ergebende Wechselspannungssignal wird derart verstärkt, Verstärker 3, daß sich infolge Abschneidens der oberen und unteren Abschnitte im wesentlichen Rechteckimpulse mit variierenden Pulsbreiten ergeben. Man zählt dann entsprechend auf- und/oder absteigende Flanken dieser Rechteckimpulse und damit Nulldurchgänge. Dies geschieht pro Zeiteinheit, beispielsweise pro Sekunde. Wenn die Zahl der Nulldurchgänge pro Zeiteinheit größer als ein vorbestimmter Grenzwert, beispielsweise 25, ist, geht man davon aus, daß eine Flamme vorhanden ist. Ist die Zahl der Nulldurchgänge gleich dem vorbestimmten Grenzwert oder darunter, geht man davon aus, daß keine Flamme vorhanden ist, und ein Signal zur Unterbrechung der Brennstoffzufuhr kann dementsprechend erzeugt. - Bei Auswertung der Nulldurchgänge läßt sich auf einen speziellen Fotodetektor und die zweikanalige Auswertung seines Signals nach DE 198 09 653 C1 verzichten.The diagram of FIG. 1 also contains a curve C, the "zero crossings", referred to here as pulsation (Hz) of the signal amplified by an amplifier 1 of the photodetector 2 which detects the flame radiation is plotted opposite Lambda affects. These zero crossings per unit of time essentially correspond the flicker frequency of the flame radiation. These zero crossings are from the Evaluation circuit generated by the DC component of the signal of the Cut off the photo sensor and lay the zero line for the AC component the noise component of the signal is suppressed, i.e. that the dominant Amplitudes remain. The resulting AC signal becomes such amplified, amplifier 3 that as a result of cutting off the upper and lower Sections result in essentially rectangular pulses with varying pulse widths. One then counts ascending and / or descending flanks accordingly Rectangular pulses and thus zero crossings. This happens per unit of time, for example per second. If the number of zero crossings per unit of time is greater than a predetermined limit, for example 25, one assumes that there is a flame. Is the number of zero crossings equal to that predetermined limit or below, it is assumed that there is no flame is present and a signal to interrupt the fuel supply can generated accordingly. - When evaluating the zero crossings, one can special photo detector and the two-channel evaluation of its signal according to DE Do not use 198 09 653 C1.

Zur Auswertung wird zweckmäßigerweise ein Komparator 4 entweder mit nachgeschaltetem Zähler, einem Schieberegister und Auswertung oder ein Mikroprozessor 5 verwendet, der die Funktionen dieser Komponenten und die Erzeugung eines Abschaltsignals für den Fall fehlender Flamme wahrnimmt. Niedrige Frequenzen etwa < 30 Hz können vorab mittels eines Hochpaßfilters 6 abgeschnitten werden, so daß sie nicht in die Auswertung eingehen.For evaluation, a comparator 4 is expediently used either downstream counter, a shift register and evaluation or one Microprocessor 5 uses the functions of these components and the Generates a shutdown signal in the event of a missing flame. Low frequencies of approximately <30 Hz can be made in advance by means of a high-pass filter 6 be cut off so that they are not included in the evaluation.

Da der Grenzwert für eine Abschaltung relativ klein ist und Perioden innerhalb der vorbestimmten Zeit auftreten können, in denen kein Nulldurchgang festgestellt wird, ist es zweckmäßig, die vorbestimmte Zeit in eine Vielzahl, beispielsweise sechs bis zehn Abschnitte zu unterteilen, in denen separat die Nulldurchgänge gezählt werden, die dann jeweils nach Ablauf eines Abschnittes für eine vorbestimmte Zeit addiert werden, um entsprechende Werte jeweils nach Ablauf eines derartiges Abschnitt für eine vorbestimmte Zeit mit dem Grenzwert vergleichen zu können. Dies ist in Fig. 3 schematisch dargestellt. Hierdurch lassen sich die bei Gas- und Ölbrennern geforderten Abschaltzeiten, bei einem Gasbrenner beispielsweise 1 sec, ohne weiteres einhalten. Bei der Erzeugung des jeweiligen Wertes für die Zahl der Nulldurchgänge fällt jeweils die Anzahl des zeitlich ersten Abschnittes weg und die Anzahl des zeitlich letzten Abschnittes kommt dazu, so daß der Wert nach jedem Abschnitt aktualisiert ist und mit dem Grenzwert verglichen werden kann. Hierzu benötigt man die oben erwähnte Schieberegisterfunktion.Because the limit for a shutdown is relatively small and periods can occur within the predetermined time in which there is no zero crossing is determined, it is expedient to divide the predetermined time into a plurality, to divide six to ten sections, for example, in which the Zero crossings are counted, which are then after each section for a predetermined time can be added to corresponding values after each Expiration of such a section for a predetermined time with the limit value to be able to compare. This is shown schematically in FIG. 3. Let her through the switch-off times required for gas and oil burners, at one For example, keep the gas burner for 1 sec. When generating the value for the number of zero crossings, the number of the first section in time and the number of the last section in time is added so that the value is updated after each section and with the Limit can be compared. For this you need the one mentioned above Shift register function.

Bei dieser Art der Flammenüberwachung, die äußerst einfach ist, besteht auch keine Problem hinsichtlich Empfindlichkeitseinstellung, so daß er auch äußerst einfach handhabbar ist. Eine Übersteuerung spielt hierbei keine Rolle, da hierdurch die Rechteckimpulse nicht wesentlich beeinträchtigt werden. Der Flammenwächter läßt sich zusammen mit jeder Art von Regeleinrichtungen für das Brennstoff-Verbrennungsluft-Gemisch einsetzen.This type of flame monitoring is extremely simple also no problem with sensitivity adjustment, so that it is extremely is easy to use. Overriding is irrelevant because of this the rectangular pulses are not significantly affected. The flame guard can be used with any type of control device for the fuel-combustion air mixture deploy.

Ferner ist es zweckmäßig, vor dem Fotosensor ein optisches Filter zu verwenden, das im wesentlichen in einem Wellenlängenbereich absorbierend wirkt, der der Strahlung von glühenden Ofenwänden entspricht (größer etwa 900 nm), damit ein Flackern, das bei fehlender Flamme dadurch erzeugt werden kann, daß durch einen Ventilator im Ofen Luft verwirbelt wird, nicht mit dem tatsächlichen Flackern einer Flamme verwechselt wird.It is also advisable to add an optical filter in front of the photosensor use that is essentially absorbing in a wavelength range, which corresponds to the radiation from glowing furnace walls (greater than about 900 nm), thus a flickering that can be generated in the absence of flame by the fact that Air is swirled by a fan in the oven, not with the actual one Flickering of a flame is mistaken.

Claims (6)

Flammenwächter für einen mit Öl oder Gas betriebenen Brenner, mit einem die optische Flammenstrahlung und deren Pulsation erfassenden Fotosensor und einer diesem nachgeschalteten Auswerteschaltung, die feststellt, ob die vom Fotosensor empfangene Strahlung der einer brennenden Flamme entspricht und bei negativem Ergebnis ein Abschaltsignal für die Brennstoffzufuhr erzeugt, dadurch gekennzeichnet, daß die Auswerteschaltung die Zahl der Nulldurchgänge des bearbeiteten Signals des Fotosensors innerhalb einer vorbestimmten Zeiteinheit bestimmt und mit einem vorbestimmten Grenzwert vergleicht, bei dessen Unterschreiten ein Abschaltsignal für die Brennstoffzufuhr erzeugt wird, wobei das Signal des Fotosensors vom Gleichspannungsanteil und Rauschen befreit durch entsprechendes Verstärken zu Rechteckimpulsen verarbeitet ist.Flame monitor for a burner operated with oil or gas, with a photo sensor that detects the optical flame radiation and its pulsation and a downstream evaluation circuit that determines whether the radiation received by the photo sensor corresponds to that of a burning flame and, if the result is negative, generates a shutdown signal for the fuel supply , characterized in that the evaluation circuit determines the number of zero crossings of the processed signal of the photosensor within a predetermined time unit and compares it with a predetermined limit value, below which a switch-off signal for the fuel supply is generated, the signal of the photosensor being freed from the DC voltage component and noise by appropriate amplification is processed into rectangular pulses. Flammenwächter nach Anspruch 1, dadurch gekennzeichnet, daß die auf- oder absteigenden Flanken des Signals von der Auswerteschaltung zählbar sind.Flame detector according to claim 1, characterized in that the rising or falling edges of the signal can be counted by the evaluation circuit. Flammenwächter nach Anspruch 2, dadurch gekennzeichnet, daß die Auswerteschaltung einen Komparator mit nachgeschaltetem Zähler aufweist.Flame monitor according to claim 2, characterized in that the evaluation circuit has a comparator with a downstream counter. Flammenwächter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die vorbestimmte Zeiteinheit von der Auswerteschaltung in eine Vielzahl von Abschnitten unterteilt ist, wobei die Zahl der Nulldurchgänge am Ende jedes Abschnitts bestimmt wird.Flame detector according to one of Claims 1 to 3, characterized in that the predetermined unit of time is divided into a plurality of sections by the evaluation circuit, the number of zero crossings being determined at the end of each section. Flammenwächter nach Anspruch 4, dadurch gekennzeichnet, daß die Abschnitte einen Bruchteil der geforderten Brennerabschaltzeit beim Feststellen fehlender Flamme bilden.Flame detector according to claim 4, characterized in that the sections form a fraction of the required burner shutdown time when a missing flame is detected. Flammenwächter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß dem Fotosensor ein optisches Filter vorgeschaltet ist, das im wesentlichen Strahlung entsprechend derjenigen von glühenden Ofenwänden absorbiert.Flame detector according to one of claims 1 to 5, characterized in that the photosensor is preceded by an optical filter which essentially absorbs radiation corresponding to that of glowing furnace walls.
EP01126119A 2000-11-11 2001-11-03 Flame monitoring device for an oil or gas burner Expired - Lifetime EP1207346B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10055831 2000-11-11
DE10055831A DE10055831C2 (en) 2000-11-11 2000-11-11 Flame detector for an oil or gas burner

Publications (3)

Publication Number Publication Date
EP1207346A2 true EP1207346A2 (en) 2002-05-22
EP1207346A3 EP1207346A3 (en) 2004-05-06
EP1207346B1 EP1207346B1 (en) 2007-08-15

Family

ID=7662877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01126119A Expired - Lifetime EP1207346B1 (en) 2000-11-11 2001-11-03 Flame monitoring device for an oil or gas burner

Country Status (4)

Country Link
US (1) US6700495B2 (en)
EP (1) EP1207346B1 (en)
AT (1) ATE370372T1 (en)
DE (2) DE10055831C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051083B3 (en) * 2004-10-19 2006-01-05 Bfi Automation Dipl.-Ing. Kurt-Henry Mindermann Gmbh Flame monitor for burner operated by fossil fuel self monitoring unit with modulatable light source by which flame monitoring unit signals flame out state if it establishes modulated light longer than threshold value

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1665931A3 (en) 2001-11-01 2006-06-14 Integrated Biosystems, Inc. System and methods for freezing and storing biopharmaceutical material
DK2105669T3 (en) 2008-03-26 2016-04-11 Bfi Automation Mindermann Gmbh Flame monitoring and assessment device
ES2381512B1 (en) * 2009-06-04 2013-05-07 Coprecitec, S.L DOMESTIC GAS DEVICE WITH FLAME CONTROL
US8523560B2 (en) 2010-04-09 2013-09-03 Honeywell International Inc. Spark detection in a fuel fired appliance
US9388984B2 (en) 2010-04-09 2016-07-12 Honeywell International Inc. Flame detection in a fuel fired appliance
US8177544B2 (en) 2010-04-09 2012-05-15 Honeywell International Inc. Selective lockout in a fuel-fired appliance
ES2446317T3 (en) * 2010-10-08 2014-03-07 Bfi Automation Dipl.-Ing. Kurt-Henry Mindermann Gmbh Device to detect the presence of a flame
US9863813B2 (en) 2012-04-13 2018-01-09 General Electric Company Flame sensor
US10208954B2 (en) 2013-01-11 2019-02-19 Ademco Inc. Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system
US9494320B2 (en) 2013-01-11 2016-11-15 Honeywell International Inc. Method and system for starting an intermittent flame-powered pilot combustion system
US11619384B2 (en) * 2017-04-24 2023-04-04 General Electric Technology Gmbh System and method for operating a combustion chamber
US11236930B2 (en) 2018-05-01 2022-02-01 Ademco Inc. Method and system for controlling an intermittent pilot water heater system
US11656000B2 (en) 2019-08-14 2023-05-23 Ademco Inc. Burner control system
US11739982B2 (en) 2019-08-14 2023-08-29 Ademco Inc. Control system for an intermittent pilot water heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746786A1 (en) 1997-10-23 1999-04-29 Giersch Gmbh Oel Und Gasbrenne Optical flame monitor for oil or gas burner
DE19809653C1 (en) 1998-03-06 1999-09-16 Giersch Gmbh Flame monitor for blue flame for e.g. safe operation of burner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2823410A1 (en) * 1978-04-25 1979-11-08 Cerberus Ag FLAME DETECTOR
US4280184A (en) * 1979-06-26 1981-07-21 Electronic Corporation Of America Burner flame detection
DD261199A1 (en) * 1985-12-23 1988-10-19 Geraete & Regler Werke Veb ALTERNATING RADIATION FLAME WEAPON WITH NOISE SIGNAL SUPPRESSION
US5126721A (en) * 1990-10-23 1992-06-30 The United States Of America As Represented By The United States Department Of Energy Flame quality monitor system for fixed firing rate oil burners
US5424554A (en) * 1994-03-22 1995-06-13 Energy Kenitics, Inc. Oil-burner, flame-intensity, monitoring system and method of operation with an out of range signal discriminator
DE19650972C2 (en) * 1996-12-09 2001-02-01 Elbau Elektronik Bauelemente G Method and arrangement for monitoring and regulating combustion processes
US6261086B1 (en) * 2000-05-05 2001-07-17 Forney Corporation Flame detector based on real-time high-order statistics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746786A1 (en) 1997-10-23 1999-04-29 Giersch Gmbh Oel Und Gasbrenne Optical flame monitor for oil or gas burner
DE19809653C1 (en) 1998-03-06 1999-09-16 Giersch Gmbh Flame monitor for blue flame for e.g. safe operation of burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051083B3 (en) * 2004-10-19 2006-01-05 Bfi Automation Dipl.-Ing. Kurt-Henry Mindermann Gmbh Flame monitor for burner operated by fossil fuel self monitoring unit with modulatable light source by which flame monitoring unit signals flame out state if it establishes modulated light longer than threshold value

Also Published As

Publication number Publication date
US20020081545A1 (en) 2002-06-27
ATE370372T1 (en) 2007-09-15
US6700495B2 (en) 2004-03-02
EP1207346B1 (en) 2007-08-15
DE10055831C2 (en) 2002-11-21
DE10055831A1 (en) 2002-05-29
EP1207346A3 (en) 2004-05-06
DE50112856D1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
DE10055831C2 (en) Flame detector for an oil or gas burner
EP0953805B1 (en) Flame monitor
DE4433425C2 (en) Control device for setting a gas-combustion air mixture in a gas burner
DE19502901C1 (en) Regulating device for gas burner
EP1802919B1 (en) Ventilation device
DE2210354C3 (en) Flame detector
EP0806610A2 (en) Method and device for operating a gas burner
DE3728308C2 (en)
DE19841475C1 (en) Flame monitoring system for gas-, oil- or coal-fired burner
EP0770824A2 (en) Method and circuit for controlling a gas burner
DE10023273A1 (en) Measuring device for a flame
EP1256763A2 (en) Method and device for long-term safe flame monitoring
DE2611763C2 (en) Flame supervision circuit
DE19650972C2 (en) Method and arrangement for monitoring and regulating combustion processes
DE10055832C2 (en) Control device for setting a fuel-combustion air mixture for a burner operated with oil or gas
DE19746786C2 (en) Optical flame detector
DE19809653C1 (en) Flame monitor for blue flame for e.g. safe operation of burner
DE2413482A1 (en) DEVICE FOR MONITORING THE FLAMES FROM BURNERS
DE19632983C2 (en) Control device for a gas burner
DE60014980T2 (en) Flame monitoring in a burner
EP2154430B1 (en) Control device for a gas burner, and use of the control device
DE2326067A1 (en) METHOD AND DEVICE FOR FLAME MONITORING
DE19726169C2 (en) Control device for a gas burner
DE4331048A1 (en) Method and device for operating an over-stoichiometric premixing gas burner
DE2424524C2 (en) Flame monitors for combustion systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040909

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50112856

Country of ref document: DE

Date of ref document: 20070927

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071126

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070815

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080115

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

BERE Be: lapsed

Owner name: BFI AUTOMATION DIPL.-ING. KURT-HENRY MINDERMANN G

Effective date: 20071130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071115

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

26N No opposition filed

Effective date: 20080516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50112856

Country of ref document: DE

Representative=s name: SPARING - ROEHL - HENSELER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50112856

Country of ref document: DE

Owner name: BFI AUTOMATION MINDERMANN GMBH, DE

Free format text: FORMER OWNER: BFI AUTOMATION DIPL.-ING. KURT-HENRY MINDERMANN GMBH, 40883 RATINGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50112856

Country of ref document: DE

Representative=s name: SPARING - ROEHL - HENSELER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50112856

Country of ref document: DE

Owner name: BFI AUTOMATION MINDERMANN GMBH, DE

Free format text: FORMER OWNER: BFI AUTOMATION MINDERMANN GMBH, 40883 RATINGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: BFI AUTOMATION MINDERMANN GMBH

Effective date: 20151130

REG Reference to a national code

Ref country code: FR

Ref legal event code: RM

Effective date: 20160527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201120

Year of fee payment: 20

Ref country code: IT

Payment date: 20201124

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210128

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50112856

Country of ref document: DE