EP1802919B1 - Ventilation device - Google Patents

Ventilation device Download PDF

Info

Publication number
EP1802919B1
EP1802919B1 EP05810199A EP05810199A EP1802919B1 EP 1802919 B1 EP1802919 B1 EP 1802919B1 EP 05810199 A EP05810199 A EP 05810199A EP 05810199 A EP05810199 A EP 05810199A EP 1802919 B1 EP1802919 B1 EP 1802919B1
Authority
EP
European Patent Office
Prior art keywords
ventilation
laser beam
receiver
ventilation device
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05810199A
Other languages
German (de)
French (fr)
Other versions
EP1802919A1 (en
Inventor
Henry Fluhrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Priority to PL05810199T priority Critical patent/PL1802919T3/en
Publication of EP1802919A1 publication Critical patent/EP1802919A1/en
Application granted granted Critical
Publication of EP1802919B1 publication Critical patent/EP1802919B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGESĀ ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2021Arrangement or mounting of control or safety systems

Definitions

  • the invention relates to a ventilation device, in particular an extractor hood, according to the preamble of claim 1.
  • Hoods which have a transmitter and a receiver, the transmitter emitting radiation that is registered by the receiver.
  • the radiation received by the receiver is used to control a fan of the hood that the difference between the emitted radiation and the received radiation component is interpreted as a measure of the amount of exhaust gases in the exhaust air stream.
  • the power supply to the fan is controlled.
  • the EP 0 443 141 B1 describes an extractor hood with a UItraschallsender and an ultrasonic sensor, in which the signal recorded by the ultrasonic sensors signal fluctuations for the control of a fan level are based.
  • a disadvantage here is considered that the ultrasonic sensor is expensive and therefore the appli cation only in extractor hoods of the upper price segment comes into question.
  • the US 6170480 A1 describes an extractor hood with a light path, which is formed by a laser beam. This can be detected, for example, in the IR range, smoke and activated depending on the hood or be set more. Furthermore, temperature sensors or the like may be provided.
  • the US 3723746 A1 describes a device for detecting fire by means of a double light path.
  • a laser is advantageously used. It can be detected how a laser beam is diffracted by increasing the temperature in the air it traverses more or less. A corresponding deviation can then be used as an indication of too high a temperature.
  • the invention has for its object to provide a ventilation device of the type mentioned, with the disadvantages of the prior art can be avoided and in particular a low-cost and reliable way to detect a cooking process and the associated air pollution such as cooking hobs or Air movements over a cooktop is possible.
  • the transmitting device is designed to emit a laser beam.
  • the use of a laser beam has proven to be advantageous both economically and technically.
  • a clearly defined intensity relative to the cross-sectional area of the laser beam can be achieved. This makes it possible to realize even longer measurement distances within the fan, without a reasonable evaluation is difficult due to a too wide expansion of the light cone.
  • the good recognizability of air streaks and air movements in the ventilation device according to the invention is particularly advantageous because it compared with a particle detection operation of the ventilation device can be initiated earlier or adjusted. If the occurrence of particles triggers the operation, there is a high risk that air pollution or cooking spills have already developed and escaped, so that they are no longer detected by the ventilation unit.
  • a laser beam offers particular advantages, since the frequency of the laser beam is largely uniform, so that receiving devices can be used that are particularly adapted to the specific laser frequency or a narrow frequency range. It is thereby achieved that ambient light, which usually occurs in a wide frequency spectrum, does not lead to misinterpretations by a control device or a control circuit.
  • the use of a laser beam also allows long and multiple redirected measuring sections, which allows a particularly fine-meshed detection of air pollution. From an economic point of view, the use of a laser beam is very advantageous. Laser modules today are mass products and therefore very reliable and are also available at low cost.
  • the signal generated by the receiving device with respect to electrical characteristics depends on the power or intensity of the received radiation.
  • Corresponding sensors and receiving modules which generate corresponding electrical signals as a function of light irradiation are known today.
  • a control device with a microcontroller
  • a receiving device can be used, whose output signal with respect to the voltage depends on the incident light.
  • This signal is connected to an A / D converter input of the microcontroller and is thus processed by him. It may also be expedient to use a sensor whose frequency depends on the power of the received radiation, since no A / D converter is required for such a frequency measurement.
  • the signal generated by the receiving device depends only on the incident radiation in a frequency range which largely corresponds to the frequency range of the laser beam.
  • a frequency range which largely corresponds to the frequency range of the laser beam.
  • interference by ambient light or, for example, a built-in an extractor hood lighting are avoided.
  • Technically feasible is the restriction to such a frequency range, for example by means of a filter which is arranged in front of a sensor in the receiving device or by means of special sensors, which are designed for an exclusive reception of light in the corresponding frequency range.
  • the receiving device has a photoelectric sensor, which preferably has a photosensor or a photodiode.
  • a photoelectric sensor which preferably has a photosensor or a photodiode.
  • the receiving device is equipped with filter means which limit the angular range in which incident light is registered by the receiving device.
  • filter means which limit the angular range in which incident light is registered by the receiving device.
  • the drive can be activated and deactivated by the control circuit or the control unit and can be controlled with respect to its power, preferably continuously.
  • the control unit can be designed so that it fully automatically activates the drive for generating the air flow, if a corresponding need has been registered, and also adapts the required power accordingly.
  • a stepless control of the power allows a particularly needs-based operation.
  • it is advantageous in controlling the power at various discrete stages that such control is simpler and less expensive.
  • the control circuit or the control unit for evaluating the signal generated by the receiving device with respect to air streaks or air movements with different density gradients in the measuring section is formed.
  • the control unit is designed in such a way that it interprets lower attenuation in such a way that air streaks are detected on the measuring section. To what extent the damping is due to streaks of air, can be concluded from other parameters such as the oscillation frequency.
  • One for the evaluation of the signal with regard to air streaks or Heilbegung trained control unit activates a ventilation device in principle even at lower attenuation and thus allows in particular in a period of time at the beginning or even before the Heilverunrei ments a very convenient ventilation control.
  • the ventilation device is adjustable with regard to its behavior in order to be operated in the right situation and to the correct extent depending on varying environmental situations, for example use above hotplates or gas flames.
  • the control circuit or the control device for controlling the drive is designed as a function of the intensity or registered power registered by the receiving device.
  • the power is compared for this purpose with the output by the transmitter power or intensity or egg ner set target power or target intensity, with a reduction as an indication of absorption, refraction and / or diffraction due to cooking turf or air streaks or Air movement is interpreted.
  • the controller can be designed so that a reduced registered power is interpreted as an increased degree of contamination of the air, for example by cooking turf, and as a result the power of the drive is increased.
  • the control circuit or the control device for controlling the drive is formed as a function of the intensity or power registered by the receiving device over time.
  • the use of the first derivative of power over time is superior to pure ventilation control based on registered power. Rapid changes in performance are due to turbulence in general or boiling in the area of the measuring section and are indicative of a high concentration of air contaminants such as cooking torrents or air movements.
  • a control of the drive depending on the change the registered intensity or the registered power can also be combined with an evaluation of the intensity or the performance itself.
  • both frequency and amplitude of the power curve over time are used to analyze the impurities on the measuring section.
  • the inclusion of the change in power over time leads to a particularly well-demand-oriented control of the drive.
  • Such a control based on the frequency of the power fluctuations can be realized, for example, by counting the number of intensity maxima or minima in a time segment of defined length and controlling the ventilation on the basis of the value determined thereby.
  • a strong oscillation can be interpreted as a normal cooking operation or gradual termination of the cooking operation, depending on the degree of damping, so that the fan is expediently placed in a main use stage or in a residual suction stage.
  • the transmitting device for emitting a laser beam is formed, the Leuchtpun kt in the receiving device has areas of very different intensity, preferably in the form of an interference pattern.
  • maxima and minima can alternate, in particular generated by interference.
  • Such a luminous spot can be registered by the receiving device not only with regard to whether the luminous spot strikes the receiving device or the sensor.
  • a shift of the luminous spot on the photodiode leads to a characteristic of air streaks and particles in the measuring section result, without that the luminous point would have to be deflected so far that he leaves the photodiode.
  • the particularly advantageous evaluation Interference patterns can be achieved by using a laser with a comparatively wide frequency spectrum. Although it may be desirable for other aspects of the invention to use a laser with a particularly narrow frequency spectrum, it may therefore also be advantageous, depending on the requirements, to use, for example, a multimode laser diode with a broad frequency spectrum.
  • the transmitting device and the receiving device are designed such that the receiving device always lies within the luminous point during operation.
  • the receiving device not the luminous spot descending from the receiving device or the photodiode is intended to influence the output signal of the receiving device, but the movement of the luminous spot via the receiving device.
  • the maxima and the minima of the interference image of the luminous point move across the sensor.
  • the size of the sensor should be chosen so that it is smaller than the extension of the maxima and minima, which can also be influenced by optical aids such as lenses.
  • the registration of the movement of the luminous spot via the receiving device can take place, for example, by evaluating a moving interference pattern with maxima and minima.
  • This can advantageously be used for control of the extractor hood with a corresponding control method which carries out an evaluation of the output values of the sensor in the event of an interference pattern moving over it.
  • the transmitting device and receiving device are designed such that the diameter of the luminous point a few mm wider than the receiving device, preferably at least 5 to 8 mm wider.
  • the transmitting and receiving device are designed such that the diameter of the luminous point a few mm wider than the receiving device, preferably at least 5 to 8 mm wider.
  • a particularly low susceptibility is achieved.
  • In the field of ventilation devices often find large manufacturing tolerances application. Due to the fact that the mode of operation of the transmitting and receiving device according to this development does not depend on the transmitting and receiving devices being at their desired position to the nearest millimeter, more favorable production methods can be used and no additional measures are required to obtain the correct one and to ensure highly accurate alignment of these facilities.
  • the control circuit or the control unit evaluate the output signal with regard to signal frequency and signal attenuation. This is particularly useful when using a laser beam that is so pronounced that it always rests on the receiving element in normal operation, and has a luminous point with areas of greatly varying intensity.
  • the registered intensity or the determined attenuation of the laser beam can be regarded as an indicator of the presence of steam and the frequency as an indicator of the presence of heat.
  • these parameters are well suited to assess the nature of the cooking process taking place under the ventilation device and to generate a correspondingly adapted airflow.
  • a strong damping can be seen as a sign of intensive cooking operation and a high signal frequency as a sign of intensive frying operation.
  • the transmitting device and the receiving device are arranged opposite each other on both sides of the air flow in the ventilation unit and the transmitting device radiates in the direction of the receiving device.
  • the transmitting device and the receiving device are preferably on opposite sides Arranged sides of the air flow, in particular centrally above the cooktop, so that the measuring section thwarts the air flow.
  • Such an arrangement with direct alignment of transmitting and receiving device to each other is simple and less prone to interference.
  • the transmitting device and the receiving device are arranged so that a laser beam emitted by the transmitting device passes from the at least one reflecting device to the receiving device.
  • a reflection device allows the arrangement of transmitting and receiving device in the immediate vicinity of each other by sending and receiving device are arranged on one side of the fan. On the opposite side of the reflection device is arranged. In this way, it is also possible to form the transmitting and receiving device as a module, whereby the assembly and adjustment effort compared to the use of two separate modules is significantly reduced.
  • At least two reflection devices are provided which are arranged and aligned such that a laser beam emanating from the transmission device passes at least twice reflected by at least one reflection device to the reception device.
  • the two reflection devices face each other and are arranged parallel to one another. It is thus possible to allow the laser beam to be reflected several times by both reflection devices.
  • the reflection means may e.g. be arranged on the front and rear or on the left and right inside of the ventilation unit or the hood. By appropriately arranged and aligned transmitting and receiving devices, it is possible to allow the laser beam reflect so many times from one side to the other and thus to lay almost the entire cross-section of the ventilation device for subsequent evaluation by the control unit or the control circuit.
  • the transmitting device has a laser diode for emitting the laser beam, in particular a multi-mode laser diode.
  • Multimode laser diodes emit light of different frequencies and, for technical reasons, are well suited for the proposed ventilation devices.
  • the beam emitted by them has increased divergence and increased diffraction tendency due to increased wavelength dispersion compared to singlemode laser diodes.
  • due to their frequency spectrum they generate an interference pattern in the luminous spot, which, as described above, enables a particularly good evaluation with maxima and minima with low susceptibility to interference.
  • the increased divergence and the interference pattern are particularly advantageous in the detection of air streaks.
  • Particularly suitable for a good readability is a dot diameter of 5 mm to 15 mm, in particular 10 mm.
  • Sharp focusing of the laser beam can be disadvantageous for air streak detection.
  • the transmitting device has a collimator lens.
  • This collimator lens allows the adaptation of the position of their focal point a convenient optimization of the transmitting device.
  • the widening of the laser beam in the region of the receiving device can be varied by means of the position of the collimator lens and / or the focal point of the collimator lens.
  • the laser beam can also be made slightly divergent. An increased expansion increases the sensitivity of the receiving device, in particular with regard to air movements, so that the control unit is supplied with a signal that can be interpreted more easily.
  • the controller accordingly controls the fan very needs, especially even before steam.
  • an expansion of the laser beam also leads to a lower light output received by the receiving device.
  • the divergence of the laser beam from the control unit or the control circuit is adjustable. Since the attenuation of laser beams of lesser divergence by air streaks is less than the attenuation of laser beams of high divergence, can be achieved by adjustability of the divergence that can be differentiated particularly reliably between attenuations due to vapors or particles on the one hand and air streaks or air movements.
  • the control unit of such a ventilation device can therefore measure, for example, alternately the damping at high and low divergence and set in the case of a low attenuation, which is due only to air streaks, the fan in operation.
  • the adjustability is preferably achieved via an adjustable lens.
  • At least two transmitting devices are provided for emitting laser beams of different divergence.
  • two transmitting devices can be achieved with different divergence setting that the cause of attenuation on the measuring section is reliably detected.
  • the adjustability and the resulting increased complexity of the transmitting device can thereby be avoided.
  • both transmitting devices are directed to only one receiving device, which measures the incoming power of the laser beams either simultaneously or alternately.
  • FIGS. 1 and 2 show in each case partially cut manner, a first embodiment of a ventilation device according to the invention in the form of an extractor hood 10.
  • the hood 10 is arranged above a cooktop 12 with four cooking zones 14.
  • the hood 10 extends almost over the full width of the hob 12 and covers about three quarters of its depth.
  • the extractor hood 10 itself consists of a box-shaped, open at the bottom of the base 16 and an upper part 18, wherein the lower part 16 and the upper part 18 are connected to each other, the cooking hobs emanating from the hob 12 as steam and cooking fume in the lower part 16 of the hood 10 arrive and be forwarded from there to the upper part 18.
  • a filter mat 19 and a fan 20 are arranged, which sucks the kitchen vapors through the filter mat 19 in the upper part 18.
  • a transmitting device 22 with laser and a receiving device 24 are arranged on the right and left inside. The transmitting device 22 is aligned in such a way that a laser beam 25 emanating from it is directed directly onto the receiving device 24.
  • cooking hobs rise from the cooking zones 14 of the cooking hob 12, they reach the lower part 16 of the extractor hood 10.
  • the laser beam 25, which is permanently or periodically activated, is partially absorbed by these cooking hobs and partially diffracted and broken. This results in a reduced input power at the receiving device 24 compared to the output power.
  • a signal generated by the receiving device 24 is fed to a control unit, which on the basis of the power difference between the output power of the transmitting device 22 and input power of the receiving device 24 and based on the time change of this power difference conclusions about the degree of air movement and the presence and the amount allows cooking hobs.
  • the power supplied to the fan 20 wherein the power is increased when the air movement is intense or the amount of cooking turf is high. If the input power at the receiving device 24 has returned to the output power of the transmitting device 22 in the course of adjusting the air and is no longer subject to large fluctuations, the fan 20 can again be throttled or completely deactivated by the control unit.
  • the FIG. 3 shows the receiving device in the Figures 1 and 2 shown extractor hood in an enlarged view.
  • the receiving device has a tubular portion 29a whose major axis coincides with the axis of incidence of the laser beam 25.
  • a photoelectric sensor 26 At the bottom of this tubular portion 29a is disposed a photoelectric sensor 26 which generates a corresponding signal depending on the incident power.
  • a filter 29b At the opposite end of the tubular portion 29a, a filter 29b is arranged, which serves the filtering of the incident light and only in a certain, matched to the laser beam 25 frequency range incident light passes. When light of another frequency range is incident, it is absorbed by the filter 29b and therefore does not reach the photoelectric sensor.
  • the tubular portion 29a and the filter 29b it is achieved that the signal emitted by the photoelectric sensor 26 is determined exclusively or almost exclusively by the incident power of the laser beam and not by the ambient light.
  • FIG. 4 shows a second embodiment of an extractor hood according to the invention.
  • the transmitting and receiving device are housed in a common functional module 29, which is arranged on an inner side of the lower part 16 of the extractor hood 10.
  • a reflection device 30 is arranged on the opposite inner side of the lower part 16.
  • This reflection device can be, for example, a mirror or even a cat's eye.
  • the laser beam 31, which is emitted by the functional module 29, is aligned in the direction of the reflection device 30. From this it is reflected in such a way that it deviates only slightly from its course before the reflection back to the Function module 29 passes.
  • this functional module 29 receiving device registers the returned power and are in the same manner as in the first embodiment, a dependent signal to an unillustrated control unit from.
  • Advantage of this embodiment is that only one module must be connected to the controller. This saves wiring costs and bypasses design difficulties.
  • the measuring path is opposite to the embodiment shown in FIGS Figures 1 and 2 approximately twice as long, which leads to more reliable results.
  • FIG. 5 shows a third embodiment of an extractor hood according to the invention.
  • this embodiment differs in that the transmitting device 32 and the receiving device 34 are arranged as separate modules, but on the same inside of the lower part 16 of the hood 10.
  • a reflection device 36 is provided on the opposite inner side, wherein it is arranged and aligned such that a laser beam 38 emanating from the transmitting device 32 strikes the receiving device 34 after the reflection.
  • the illustrated embodiment has the disadvantage that transmitting and receiving device must be connected separately from each other with a control unit, not shown.
  • the fact that the laser beam 38 does not run nearly parallel before and after the reflection by the reflection device 36 is advantageous. This enlarges the area through which the laser beam passes. As a result, it is more likely to reliably detect cooking turf from all hotplates and to make the control of the fan 20 well adjusted accordingly.
  • FIG. 6 shows a fourth embodiment of an extractor hood according to the invention.
  • This has a transmitting device 40 and a receiving device 42, which in turn are arranged on the same inner side of the upper part 16 of the extractor hood 10.
  • this embodiment differs in that both on the inside of the transmitting and receiving means 40, 42 and on the opposite side in each case a reflection means 44, 46 is arranged.
  • the two reflection devices are aligned parallel to one another.
  • the transmitting device 40 is oriented so that a laser beam 48 emanating from it is reflected several times by the reflecting devices 44, 46 before it reaches the receiving device 42. This leads to a relatively long measuring path, which allows particularly precise conclusions about the presence of cooking turf and the like.
  • the FIG. 7 shows a control unit of an extractor hood according to the invention and components connected thereto.
  • the control unit has a control circuit 50 which has various connections.
  • a transmitting device 52 is connected to a PWM output 54 (pulse width modulation output) of the control circuit 50.
  • PWM output 54 pulse width modulation output
  • the control circuit to specifically control the power of the transmitting device 52 and in particular of the laser integrated in the transmitting device 52. This allows a basic adjustment, in which the laser is adjusted so that a desired input power is registered at the receiving device, for example, the input power, the total irradiation of the entire surface of the sensor of the receiving device occurs.
  • a receiving device 58 Connected to an A / D converter input 56 is a receiving device 58 which has at least one photoelectric sensor which varies the voltage supplied to the control circuit 50 as a function of the amount of incident light. On the basis of the measured values of the receiving device 58 received in this way, it is detected in the control circuit 50 by means of a circuit or program provided for this purpose whether cooking torrents are present on the measuring path between the transmitting device 52 and the receiving device 58 and what density or degree of turbulence they have. Depending on the result of this analysis, a fan motor 60 is actuated, the power of which can be influenced by the control circuit 50. When the amount of cooking torrents is high, the fan motor 60 is driven so that it sucks cooking power at high power.
  • FIGS. 8a and 8b show the beam path of a laser beam 62 of a ventilation device according to the invention in the range of a measuring section between a transmitting device 64 and a receiving device 66.
  • the transmitting device 64 has a laser module 68 and a collimator lens 70, which expands the laser beam 62 emanating from the laser module 68 somewhat.
  • the laser beam 62 passes through the measuring path and hits the photoelectric sensor 72 in the receiving device.
  • the photoelectric sensor 72 is formed with respect to its surface, and the laser beam 62 is adjusted so that the laser beam 62 is fully unbroken and undeflected from the photoelectric sensor 72 is detected and its surface is largely completely irradiated.
  • the photoelectric sensor 72 generates an output signal for a control unit of the ventilation unit as a function of the registered power.
  • This signal can in various ways pass on the information about the registered power, for example by a correspondingly adapted voltage, by an adapted frequency or by other electrical characteristics.
  • FIG. 8a shows the unbroken and undeflected state of the laser beam 62.
  • the maximum power is registered by the photoelectric sensor 72 and passed a corresponding signal to the control unit, not shown. If such a signal is constantly transmitted to the control unit, this is interpreted by the control unit as meaning that there are no cooking sparks and water vapors on the measuring section and that no activation of a fan of the ventilation unit is required.
  • FIG. 8b shows a second state of the same measuring section.
  • water vapor 74 is on the measuring section.
  • the laser beam 62 emanating from the transmitting device 64 is refracted by the various water vapor concentrations and therefore deflects, and thus only partially, onto the photoelectric sensor 72.
  • a portion 62a does not strike the photoelectric sensor 72, so that the power registered by the photoelectric sensor 72 is only one of the photoelectric sensor 72 remaining portion is 62b.
  • An electrical parameter which gives information about the size of this component is forwarded to the control unit in the form of a corresponding signal. This can then cause by means of an activation or a power control of the fan, the suction of water vapor.
  • the reference numeral 74 could also be used to designate air streaks, which are also partially visible to the naked eye.
  • the fan control can be such that this proportion is used directly as a criterion for the registration of air movements or air contaminants such as cooking turf and a direct relationship between registered power and air movements or air pollution is assumed.
  • the control of the fan can be done additionally or exclusively based on the dynamic change of the registered service.
  • the control unit evaluates, for example, with which frequency and / or amplitude the registered power changes.
  • the frequency of the power is particularly high with a large amount of cooking turf, so that a control of the fan as a function of the frequency leads to very good results.
  • FIGS. 8a and 8b The evaluation system shown alternative methods show the Figures 9 with the schematic structure and the FIGS. 11 and 12 ,
  • Fig. 9 indicates by analogy FIG. 1 or 4 and FIG. 7 a transmitter 122 with a laser diode or a laser module.
  • a collimator lens 123 from which the correspondingly expanded and parallel laser beam 125 exits. It is reflected at the reflector 130, which may also be a so-called cat's eye. Under certain circumstances, this can also be done several times, as previously stated.
  • the reflected laser beam 15 passes through a Fresnel lens 127 to the receiver 124 and its sensor 92.
  • the detected by the sensor 92 electrical signal is applied to the A / D converter input and thus to the control circuit 150.
  • This control circuit 150 may be a microcontroller and, in addition to the control of the transmitter 122, control the motor or the power electronics 160 via the PWM output 154.
  • the intelligence sits in the control circuit in order to control the extractor hood on the basis of the above-described and above all described processes. This should be done automatically, in particular depending on the state of the cooktop 12 and both get along without intervention of an operator and perform the trigger function as efficiently and well.
  • the diameter of the laser light spots 90, the through the interference image and the Fresnel lens according to FIG. 9 are generated in front of the receiver, much larger than the photoelectric sensor 92.
  • the FIGS. 11 and 12 show only a small portion of the luminous point 90. This is generated by a laser diode with a comparatively wide frequency spectrum, resulting in an interference pattern with maxima 94 and minima 96.
  • This interference pattern is shown here as relatively irregular, which is usually the case in practice because of not optimal formation of the Fresnel lens and the other optical path. Irrespective of the actual size of the maxima 94, it is important to have the concrete distance from one another, ie the size of the minima 96.
  • the speed of the luminous point 90 and thus of the maxima 94 is relatively large and these cover the sensor essentially completely or not at all when moving, the peaks are easy to distinguish or to recognize. Since each maximum 94 has space around it or the minima 96 are in between, it is also ensured that after every passing of a maximum 94 via the sensor 92, no light is registered in the minimum. So a good distinction is achieved. It is therefore important in general that the maxima 94 are approximately as large in terms of their area like the sensor 92, advantageously two to four times as large. This ratio can be influenced by the maxima 94 or the sensor. The luminous point 90 in turn is many times larger. He should always cover the sensor 92.
  • FIG. 10 is shown over time, as the individual peaks as individual rashes in the overall course represent a kind of noise. However, it is still easy to recognize or optically evaluate via the sensor 92 and electronically via the controller. It should be noted that in FIG. 10 the attenuation a is shown over the time t or over the time course of the cooking process. The actual intensity of the measured maxima 94 on the sensor 92 is, so to speak, the reciprocal of the attenuation. The change in the frequency of oscillating or moving the maxima is difficult to recognize, only in connection with FIG. 13 ,
  • FIG. 13 the signal behavior is shown at different states, which correspond to the different processes during the cooking process.
  • field I and at the beginning of the cooking process at FIG. 10 Damping A and Oscillation f are low, because not much is happening in the range of the extractor hood or over a hotplate 14 according to FIG. 2 .
  • field II the damping is low but the oscillation still medium, so that there is still a lot of heat here with little steam. This indicates the end of a cooking process.
  • field III the attenuation is moderate, but the oscillation is low. This suggests in the conclusion rather on the beginning of a cooking process.
  • box IV damping and oscillation are medium in size, so that a normal cooking process can be concluded. In particular, only one hotplate is operated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Ventilation (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

Anwendungsgebiet und Stand der TechnikField of application and state of the art

Die Erfindung betrifft ein LĆ¼ftungsgerƤt, insbesondere eine Dunstabzugshaube, gemƤƟ dem Oberbegriff des Anspruchs 1.The invention relates to a ventilation device, in particular an extractor hood, according to the preamble of claim 1.

Aus der DE 195 09 612 C1 sind Dunstabzugshauben bekannt, die Ć¼ber einen Sender und einen EmpfƤnger verfĆ¼gen, wobei der Sender Strahlung abgibt, die vom EmpfƤnger registriert wird. Dabei wird die vom EmpfƤnger aufgenommene Strahlung dahingehend zur Steuerung eines LĆ¼fters der Dunstabzugshaube genutzt, dass die Differenz zwischen der abgegebenen Strahlung und dem empfangenen Strahlungsanteil als MaƟ fĆ¼r die Menge von Abgasen im Abluftstrom interpretiert wird. In AbhƤngigkeit davon wird die Leistungszufuhr zum LĆ¼fter gesteuert.From the DE 195 09 612 C1 Hoods are known which have a transmitter and a receiver, the transmitter emitting radiation that is registered by the receiver. In this case, the radiation received by the receiver is used to control a fan of the hood that the difference between the emitted radiation and the received radiation component is interpreted as a measure of the amount of exhaust gases in the exhaust air stream. Depending on this, the power supply to the fan is controlled.

Die EP 0 443 141 B1 beschreibt eine Dunstabzugshaube mit einem UItraschallsender und einer Ultraschallsensorik, bei der die von der Ultraschallsensorik aufgenommenen Signalschwankungen fĆ¼r die Steuerung einer LĆ¼fterstufe zugrundegelegt werden. Als nachteilig wird hierbei angesehen, dass die Ultraschallsensorik teuer ist und daher die Anwen-dung nur bei Dunstabzugshauben des gehobenen Preissegmentes in Frage kommt.The EP 0 443 141 B1 describes an extractor hood with a UItraschallsender and an ultrasonic sensor, in which the signal recorded by the ultrasonic sensors signal fluctuations for the control of a fan level are based. A disadvantage here is considered that the ultrasonic sensor is expensive and therefore the appli cation only in extractor hoods of the upper price segment comes into question.

Die US 6170480 A1 beschreibt eine Dunstabzugshaube mit einer Lichtstrecke, die durch einen Laserstrahl gebildet wird. Damit kann, beispielsweise auch im IR-Bereich, Rauch erkannt werden und in AbhƤngigkeit davon die Dunstabzugshaube aktiviert oder stƤrker eingestellt werden. Des Weiteren kƶnnen noch Temperatursensoren oder dergleichen vorgesehen sein.The US 6170480 A1 describes an extractor hood with a light path, which is formed by a laser beam. This can be detected, for example, in the IR range, smoke and activated depending on the hood or be set more. Furthermore, temperature sensors or the like may be provided.

Die US 3723746 A1 beschreibt eine Einrichtung zur Erkennung von Feuer mittels einer doppelten Lichtstrecke. Hier wird vorteilhaft ein Laser verwendet. Dabei kann erfasst werden, wie ein Laserstrahl durch Temperaturerhƶhung in der von ihm durchquerten Luft mehr oder weniger stark gebeugt wird. Eine entsprechende Abweichung kann dann als Anzeige fĆ¼r eine zu hohe Temperatur verwendet werden.The US 3723746 A1 describes a device for detecting fire by means of a double light path. Here, a laser is advantageously used. It can be detected how a laser beam is diffracted by increasing the temperature in the air it traverses more or less. A corresponding deviation can then be used as an indication of too high a temperature.

Aufgabe und LƶsungTask and solution

Der Erfindung liegt die Aufgabe zugrunde, ein LĆ¼ftungsgerƤt der eingangs genannten Art zur VerfĆ¼gung zu stellen, mit dem die Nachteile des Standes der Technik vermieden werden kƶnnen und insbesondere eine preisgĆ¼nstige und zuverlƤssige Mƶglichkeit zur Erfassung eines Kochvorgangs und der damit einhergehender Luftverunreinigungen wie beispielsweise von Kochwrasen oder Luftbewegungen Ć¼ber einer Kochmulde mƶglich ist.The invention has for its object to provide a ventilation device of the type mentioned, with the disadvantages of the prior art can be avoided and in particular a low-cost and reliable way to detect a cooking process and the associated air pollution such as cooking hobs or Air movements over a cooktop is possible.

Gelƶst wird diese Aufgabe durch ein LĆ¼ftungsgerƤt mit den Merkmalen des Anspruchs 1. Vorteilhafte sowie bevorzugte Ausgestaltung der Erfindung sind in den weiteren AnsprĆ¼chen angegeben und werden im Folgenden nƤher erlƤutert. Der Wortlaut der AnsprĆ¼che wird durch ausdrĆ¼ckliche Bezugnahme zum Inhalt der Beschreibung gemacht. ErfingdungsgemƤƟ ist die Sendeeinrichtung zur Abgabe eines Laserstrahls ausgebildet. Die Verwendung eines Laserstrahls hat sich sowohl wirtschaftlich als auch technisch als vorteilhaft herausgestellt. Durch die Abgabe von nahezu parallelem Laserlicht durch einen Laserlichtsender kann eine bezogen auf die QuerschnittsflƤche des Laserstrahls klar definierte IntensitƤt erreicht werden. Dadurch ist es mƶglich, auch lƤngere Messstrecken innerhalb des LĆ¼fters zu realisieren, ohne dass eine vernĆ¼nftige Auswertung aufgrund einer zu weiten Aufweitung des Lichtkegels erschwert wird. Wenn der von der Sendeeinrichtung abgegebene Laserstrahl auf Luftverunreinigungen wie Kochwrasen oder auf schwankende Luftdichtegradienten trifft, wird er gebrochen, gebeugt, abgelenkt und/oder gestreut. Dies fĆ¼hrt dazu, dass die von der Empfangseinrichtung registrierte Leistung sich gegenĆ¼ber der Ausgangsleistung der Sendeeinrichtung verƤndert. Diese VerƤnderungen der Leistung sowie die Frequenz der Leistungsschwankungen sind von der Menge an Luftverunreinigungen und/oder dem MaƟ an Luftbewegung auf der Messstrecke abhƤng ig, im Falle von Dunstabzugshauben von der Menge an Kochwrasen wie Kochdunst und Wasserdampf sowie sogenannten Luftschlieren in Folge der Hitzeentwicklung auf der Kochmulde. Luftschlieren zeichnen sich durch Luftbewegung und Luftbereiche verschiedener Dichte aus. Die gute Erkennbarkeit von Luftschlieren und Luftbewegungen beim erfindungsgemƤƟen LĆ¼ftungsgerƤt ist insbesondere deshalb von Vorteil, da dadurch gegenĆ¼ber einer Partikelerkennung ein Betrieb des LĆ¼ftungsgerƤtes frĆ¼her eingeleitet oder angepasst werden kann. Wenn erst das Auftreten von Partikeln den Betrieb auslƶst, ist die Gefahr groƟ, dass Luftverunreinigungen bzw. Kochwrasen schon entstanden und entwichen sind, so dass sie vom LĆ¼ftungsgerƤt nicht mehr erfasst werden.This object is achieved by a ventilation device having the features of claim 1. Advantageous and preferred embodiment of the invention are specified in the further claims and are explained in more detail below. The wording of the claims is incorporated herein by express reference. According to the invention, the transmitting device is designed to emit a laser beam. The use of a laser beam has proven to be advantageous both economically and technically. By emitting nearly parallel laser light through a laser light transmitter, a clearly defined intensity relative to the cross-sectional area of the laser beam can be achieved. This makes it possible to realize even longer measurement distances within the fan, without a reasonable evaluation is difficult due to a too wide expansion of the light cone. When the laser beam emitted by the transmitter encounters airborne contaminants such as cooking sparks or fluctuating airtightness gradients, it is refracted, diffracted, deflected and / or scattered. As a result, the power registered by the receiving device is opposite to the output power of the transmitting device changed. These changes in power and the frequency of power fluctuations are dependent on the amount of air contaminants and / or the amount of air movement along the measuring path, in the case of cooker hoods on the amount of cooking heat such as cooking fume and water vapor and so-called air streaks as a result of heat on the cooktop. Air streaks are characterized by air movement and air areas of different densities. The good recognizability of air streaks and air movements in the ventilation device according to the invention is particularly advantageous because it compared with a particle detection operation of the ventilation device can be initiated earlier or adjusted. If the occurrence of particles triggers the operation, there is a high risk that air pollution or cooking spills have already developed and escaped, so that they are no longer detected by the ventilation unit.

Die Verwendung eines Laserstrahls bietet besondere Vorteile, da beim Laserstrahl die Frequenz weitgehend einheitlich ist, so dass Empfangseinrichtungen eingesetzt werden kƶnnen, die insbesondere auf die spezifische Laserfrequenz oder einen engen Frequenzbereich eingerichtet sind. Dadurch wird erreicht, dass Umgebungslicht, welches Ć¼blicherweise in einem breiten Frequenzspektrum auftritt, nicht zu Fehlinterpretationen durch ein SteuergerƤt oder eine Steuerschaltung fĆ¼hrt. DarĆ¼ber hinaus erlaubt die Verwendung eines Laserstrahls auch lange und mehrfach umgelenkte Messstrecken, die eine besonders feinmaschige Erkennung von Luftverunreinigungen zulƤsst. Auch unter wirtschaftlichen Gesichtspunkten ist die Verwendung eines Laserstrahls sehr vorteilhaft. Lasermodule sind heutzutage Massenprodukte und daher sehr zuverlƤssig und sind auch preisgĆ¼nstig erhƤltlich.The use of a laser beam offers particular advantages, since the frequency of the laser beam is largely uniform, so that receiving devices can be used that are particularly adapted to the specific laser frequency or a narrow frequency range. It is thereby achieved that ambient light, which usually occurs in a wide frequency spectrum, does not lead to misinterpretations by a control device or a control circuit. In addition, the use of a laser beam also allows long and multiple redirected measuring sections, which allows a particularly fine-meshed detection of air pollution. From an economic point of view, the use of a laser beam is very advantageous. Laser modules today are mass products and therefore very reliable and are also available at low cost.

In einer Weiterbildung der Erfindung hƤngt das von der Empfangseinrichtung erzeugte Signal bezĆ¼glich elektrischer Kennwerte wie seiner Frequenz, seiner Spannung oder seiner StromstƤrke von der Leistung oder IntensitƤt der empfangenen Strahlung ab. Entsprechende Sensoren und Empfangsmodule, die in AbhƤngigkeit von Lichteinstrahlung entsprechende elektrische Signale erzeugen sind heutzutage bekannt. Bei der Verwendung eines SteuergerƤtes mit einem Mikrokontroller kann z.B. eine Empfangseinrichtung genutzt werden, deren abgegebenes Signal bezĆ¼glich der Spannung vom einfallenden Licht abhƤngt. Dieses Signal wird an einen A/D-Wandlereingang des Mikrokontrollers angeschlossen und ist so von ihm zu verarbeiten. ZweckmƤƟig kann auch ein Sensor sein, dessen Frequenz von der Leistung der empfangenen Strahlung abhƤngt, da fĆ¼r eine solche Frequenzmessung kein A/D-Wandler erforderlich ist.In a further development of the invention, the signal generated by the receiving device with respect to electrical characteristics such as its frequency, its voltage or its current depends on the power or intensity of the received radiation. Corresponding sensors and receiving modules which generate corresponding electrical signals as a function of light irradiation are known today. When using a control device with a microcontroller, for example, a receiving device can be used, whose output signal with respect to the voltage depends on the incident light. This signal is connected to an A / D converter input of the microcontroller and is thus processed by him. It may also be expedient to use a sensor whose frequency depends on the power of the received radiation, since no A / D converter is required for such a frequency measurement.

In einer Weiterbildung der Erfindung hƤngt das von der Empfangseinrichtung erzeugte Signal lediglich von der einfallenden Strahlung in einem Frequenzbereich ab, der dem Frequenzbereich des Laserstrahls weitgehend entspricht. Dadurch werden StƶreinflĆ¼sse durch Umgebungslicht oder beispielsweise eine in eine Dunstabzugshaube integrierte Beleuchtung vermieden. Technisch realisierbar ist die EinschrƤnkung auf einen solchen Frequenzbereich beispielsweise mittels eines Filters der vor einem Sensor in der Empfangseinrichtung angeordnet ist oder mittels spezieller Sensoren, die fĆ¼r einen ausschlieƟlichen Empfang von Licht im entsprechenden Frequenzbereich ausgebildet sind.In one embodiment of the invention, the signal generated by the receiving device depends only on the incident radiation in a frequency range which largely corresponds to the frequency range of the laser beam. As a result, interference by ambient light or, for example, a built-in an extractor hood lighting are avoided. Technically feasible is the restriction to such a frequency range, for example by means of a filter which is arranged in front of a sensor in the receiving device or by means of special sensors, which are designed for an exclusive reception of light in the corresponding frequency range.

In einer Weiterbildung der Erfindung weist die Empfangseinrichtung einen photoelektrischen Sensor auf, der vorzugsweise Ć¼ber einen Photosensor oder eine Photodiode verfĆ¼gt. Solche Sensoren sind Stand der Technik und wirtschaftlich gĆ¼nstig.In a development of the invention, the receiving device has a photoelectric sensor, which preferably has a photosensor or a photodiode. Such sensors are state of the art and economically favorable.

In einer Weiterbildung der Erfindung ist die Empfangseinrichtung mit Filtermitteln ausgestattet, die den Winkelbereich einschrƤnken, in dem einfallendes Licht durch die Empfangseinrichtung registriert wird. Neben der Verwendung von entsprechenden flƤchigen Filtern ist es insbesondere auch zweckmƤƟig, die Empfangseinrichtung mit einer Winkelverengungsvorrichtung zu versehen, die einen Lichteinfall nur in einem engen Winkelbereich zulƤsst, beispielsweise mit einem in Richtung des Laserstrahls ausgerichteten Hohlkanal. Ƅhnliches wird erreicht, indem die Empfangseinrichtung am Grund einer dafĆ¼r vorgesehenen Bohrung angeordnet wird.In a development of the invention, the receiving device is equipped with filter means which limit the angular range in which incident light is registered by the receiving device. In addition to the use of corresponding planar filters, it is in particular also expedient to provide the receiving device with an angle narrowing device, which allows a light incidence only in a narrow angular range, for example, with a aligned in the direction of the laser beam hollow channel. The same is achieved by arranging the receiving device at the base of a bore provided for this purpose.

In einer Weiterbildung der Erfindung ist der Antrieb von der Steuerschaltung bzw. dem SteuergerƤt aktivierbar und deaktivierbar sowie bezĆ¼glich seiner Leistung steuerbar, vorzugsweise stufenlos. Dabei sind vielerlei Kombinationen denkbar und zweckmƤƟig. Beispielsweise kann das SteuergerƤt so ausgebildet sein, dass es vollkommen selbststƤndig den Antrieb zur Erzeugung des Luftstroms aktiviert, sofern ein entsprechender Bedarf registriert wurde, und auch die erforderliche Leistung entsprechend anpasst. Mƶglich ist jedoch auch, dass lediglich die Leistung des Antriebs automatisch gesteuert wird, die Aktivierung und Deaktivierung der LĆ¼ftung jedoch von einem Bediener manuell getƤtigt wird. Eine stufenlose Steuerung der Leistung ermƶglicht einen besonders bedarfsgerechten Betrieb. Dagegen ist es bei einer Steuerung der Leistung mit verschiedenen diskreten Stufen von Vorteil, dass eine solche Steuerung einfacher und preisgĆ¼nstiger ist.In a development of the invention, the drive can be activated and deactivated by the control circuit or the control unit and can be controlled with respect to its power, preferably continuously. Many combinations are conceivable and appropriate. For example, the control unit can be designed so that it fully automatically activates the drive for generating the air flow, if a corresponding need has been registered, and also adapts the required power accordingly. However, it is also possible that only the power of the drive is automatically controlled, but the activation and deactivation of the ventilation is done manually by an operator. A stepless control of the power allows a particularly needs-based operation. On the other hand, it is advantageous in controlling the power at various discrete stages that such control is simpler and less expensive.

Bei der Erfindung ist die Steuerschaltung bzw. das SteuergerƤt zur Auswertung des von der Empfangseinrichtung erzeugten Signals in Hinblick auf Luftschlieren oder Luftbewegungen mit unterschiedlichen Dichtegradienten in der Messstrecke ausgebildet. Das SteuergerƤt ist hierbei so ausgefĆ¼hrt, dass es geringere DƤmpfungen dahingehend interpretiert, dass Luftschlieren auf der Messstrecke erkannt werden. Inwieweit die DƤmpfung auf Luftschlieren zurĆ¼ckzufĆ¼hren ist, kann aus weiteren Parametern wie der Oszillationsfrequenz geschlossen werden. Ein zur Auswertung des Signals in Hinblick auf Luftschlieren oder Luftbegung ausgebildetes SteuergerƤt aktiviert ein LĆ¼ftungsgerƤt grundsƤtzlich schon bei geringeren DƤmpfungen und gestattet so insbesondere in einem Zeitraum zu Beginn oder sogar vor der Luftverunrei nigungen eine sehr zweckmƤƟige LĆ¼ftungssteuerung. Vorzugsweise ist das LĆ¼ftungsgerƤt bzgl. seines Verhaltens einstellbar, um abhƤngig von variierenden Umgebungssituationen, beispielsweise der Verwendung oberhalb von Kochplatten oder Gasflammen, in der richtigen Situation und in richtigem MaƟe betrieben zu werden.In the invention, the control circuit or the control unit for evaluating the signal generated by the receiving device with respect to air streaks or air movements with different density gradients in the measuring section is formed. The control unit is designed in such a way that it interprets lower attenuation in such a way that air streaks are detected on the measuring section. To what extent the damping is due to streaks of air, can be concluded from other parameters such as the oscillation frequency. One for the evaluation of the signal with regard to air streaks or Luftbegung trained control unit activates a ventilation device in principle even at lower attenuation and thus allows in particular in a period of time at the beginning or even before the Luftverunrei ments a very convenient ventilation control. Preferably, the ventilation device is adjustable with regard to its behavior in order to be operated in the right situation and to the correct extent depending on varying environmental situations, for example use above hotplates or gas flames.

In einer Weiterbildung der Erfindung ist die Steuerschaltung bzw. das SteuergerƤt zur Steuerung des Antriebs in AbhƤngigkeit der von der Empfangseinrichtung registrierten IntensitƤt bzw. registrierten Leistung ausgebildet. Die Leistung wird zu diesem Zweck mit der von der Sendeeinrichtung abgegebenen Leistung bzw. IntensitƤt oder ei ner festgelegten Soll-Leistung oder Soll-IntensitƤt verglichen, wobei eine Verringerung als Hinweis auf Absorption, Brechung und/oder Beugung in Folge von Kochwrasen oder Luftschlieren bzw. Luftbewegung interpretiert wird. Die Steuerung kann dabei so ausgebildet sein, dass eine verringerte registrierte Leistung als erhƶhter Grad an Verunreinigung der Luft, beispielsweise durch Kochwrasen, interpretiert wird und in der Folge die Leistung des Antriebs erhƶht wird.In one development of the invention, the control circuit or the control device for controlling the drive is designed as a function of the intensity or registered power registered by the receiving device. The power is compared for this purpose with the output by the transmitter power or intensity or egg ner set target power or target intensity, with a reduction as an indication of absorption, refraction and / or diffraction due to cooking turf or air streaks or Air movement is interpreted. The controller can be designed so that a reduced registered power is interpreted as an increased degree of contamination of the air, for example by cooking turf, and as a result the power of the drive is increased.

In einer vorteilhaften Weiterbildung der Erfindung ist die Steuerschaltung bzw. das SteuergerƤt zur Steuerung des Antriebs in AbhƤngigkeit der von der Empfangseinrichtung registrierten IntensitƤt bzw. Leistung Ć¼ber der Zeit ausgebildet. Insbesondere die Verwendung der ersten Ableitung der Leistung nach der Zeit ist einer reinen Steuerung der LĆ¼ftung anhand der registrierten Leistung Ć¼berlegen. Schnelle Ƅnderungen der Leistung sind auf Turbulenzen allgemein oder des Kochwrasens im Bereich der Messstrecke zurĆ¼ckzufĆ¼hren und sind ein Zeichen fĆ¼r eine hohe Konzentration von Luftverunreinigungen wie Kochwrasen oder Luftbewegungen. Eine Steuerung des Antriebs in AbhƤngigkeit der VerƤnderung der registrierten IntensitƤt bzw. der registrierten Leistung kann auch mit einer Auswertung der IntensitƤt oder der Leistung selbst kombiniert werden. So werden sowohl Frequenz als auch Amplitude des Leistungsverlaufes Ć¼ber der Zeit zur Analyse der Verunreinigungen auf der Messstrecke herangezogen. Die Einbeziehung der VerƤnderung der Leistung Ć¼ber der Zeit fĆ¼hrt zu einer besonders gut am Bedarf orientierten Steuerung des Antriebs. Eine derartige Steuerung anhand der Frequenz der Leistungsschwankungen kann beispielsweise dadurch realisiert werden, dass die Anzahl der IntensitƤtsmaxima oder -minima in einem Zeitabschnitt definierter LƤnge gezƤhlt wird und die Steuerung der LĆ¼ftung anhand des dabei ermittelten Wertes erfolgt. Im Zusammenhang mit Dunstabzugshauben fĆ¼r den KĆ¼chenbereich hat es sich als besonders zweckmƤƟig herausgestellt, eine hohe SignaldƤmpfung bei schwachem Oszillieren des Signals als Indiz fĆ¼r eine groƟe Menge an DƤmpfen oder starke Luftbewegung zu interpretieren, die eine hohe LĆ¼ftungsleistung erfordert. Eine starke Oszillation kann abhƤngig vom Grad der DƤmpfung als Normalkochbetrieb oder allmƤhliche Beendigung des Kochbetriebs interpretiert werden, so dass der LĆ¼fter zweckmƤƟigerweise in eine Hauptgebrauchsstufe bzw. in eine Restabsaugstufe versetzt wird.In an advantageous development of the invention, the control circuit or the control device for controlling the drive is formed as a function of the intensity or power registered by the receiving device over time. In particular, the use of the first derivative of power over time is superior to pure ventilation control based on registered power. Rapid changes in performance are due to turbulence in general or boiling in the area of the measuring section and are indicative of a high concentration of air contaminants such as cooking torrents or air movements. A control of the drive depending on the change the registered intensity or the registered power can also be combined with an evaluation of the intensity or the performance itself. Thus, both frequency and amplitude of the power curve over time are used to analyze the impurities on the measuring section. The inclusion of the change in power over time leads to a particularly well-demand-oriented control of the drive. Such a control based on the frequency of the power fluctuations can be realized, for example, by counting the number of intensity maxima or minima in a time segment of defined length and controlling the ventilation on the basis of the value determined thereby. In the context of cooker hoods for the kitchen sector, it has been found to be particularly expedient to interpret a high signal attenuation with slight oscillation of the signal as an indication of a large amount of vapors or strong air movement, which requires a high ventilation performance. A strong oscillation can be interpreted as a normal cooking operation or gradual termination of the cooking operation, depending on the degree of damping, so that the fan is expediently placed in a main use stage or in a residual suction stage.

In einer Weiterbildung der Erfindung ist die Sendeeinrichtung zur Aussendung eines Laserstrahls ausgebildet, dessen Leuchtpun kt im Bereich der Empfangseinrichtung Bereiche stark unterschiedlicher IntensitƤt aufweist, vorzugsweise in Form eines Interferenzmusters. Hier kƶnnen sich Maxima und Minima abwechseln, insbesondere erzeugt durch Interferenz. Ein solcher Leuchtpunkt kann von der Empfangseinrichtung nicht nur in Hinblick darauf registriert werden, ob der Leuchtpunkt auf die Empfangseinrichtung bzw. den Sensor trifft. DarĆ¼ber hinaus fĆ¼hrt auch eine Verschiebung des Leuchtpunktes auf der Photodiode zu einem fĆ¼r Luftschlieren und Partikel in der Messstrecke charakteristischem Ergebnis, ohne dass der Leuchtpunkt hierfĆ¼r soweit abgelenkt werden mĆ¼sste, dass er die Photodiode verlƤsst. Die besonders vorteilhafte Auswertung von Interferenzmustern kann durch die Verwendung eines Lasers mit einem vergleichsweise breiten Frequenzspektrum erzielt werden. Obwohl es fĆ¼r andere Aspekte der Erfindung wĆ¼nschvorteilhaft sein kann, einen Laser mit besonders engem Frequenzspektrum zu verwenden, kann es je nach Anforderungen daher auch vorteilhaft sein, beispielsweise eine Multimode-Laserdiode mit breitem Frequenzspektrum zu verwenden.In one embodiment of the invention, the transmitting device for emitting a laser beam is formed, the Leuchtpun kt in the receiving device has areas of very different intensity, preferably in the form of an interference pattern. Here maxima and minima can alternate, in particular generated by interference. Such a luminous spot can be registered by the receiving device not only with regard to whether the luminous spot strikes the receiving device or the sensor. In addition, a shift of the luminous spot on the photodiode leads to a characteristic of air streaks and particles in the measuring section result, without that the luminous point would have to be deflected so far that he leaves the photodiode. The particularly advantageous evaluation Interference patterns can be achieved by using a laser with a comparatively wide frequency spectrum. Although it may be desirable for other aspects of the invention to use a laser with a particularly narrow frequency spectrum, it may therefore also be advantageous, depending on the requirements, to use, for example, a multimode laser diode with a broad frequency spectrum.

In einer Weiterbildung der Erfindung sind die Sendeeinrichtung und die Empfangseinrichtung so ausgebildet, dass die Empfangseinrichtung im Betrieb stets innerhalb des Leuchtpunkts liegt. Bei einer solchen Ausgestaltung ist vorgesehen, dass nicht der von der Empfangseinrichtung bzw. der Photodiode herunterwandernde Leuchtpunkt bestimmungsgemƤƟ das Ausgangssignal der Empfangseinrichtung beeinflusst, sondern die Bewegung des Leuchtpunktes Ć¼ber die Empfangseinrichtung. Insbesondere bewegen sich hierbei die Maxima und die Minima des Interferenzbildes des Leuchtpunktes Ć¼ber den Sensor hinweg. Dabei sollte die GrĆ¶ĆŸe des Sensors so gewƤhlt werden, dass er kleiner ist als die Ausdehnung der Maxima und Minima, wobei diese auch Ć¼ber optische Hilfsmittel wie Linsen beeinflusst werden kƶnnen. Der Vorteil liegt insbesondere darin, dass eine genaue Kalibrierung von Empfangseinrichtung und Sendeeinrichtung entfallen kann und die StƶranfƤlligkeit eines solchen LĆ¼ftungsgerƤts sehr gering ist. Die Registrierung der Bewegung des Leuchtpunktes Ć¼ber die Empfangseinrichtung kann beispielsweise unter Auswertung eines sich bewegenden Interferenzmusters mit Maxima und Minima erfolgen. Dies kann mit einem entsprechenden Steuerverfahren, das eine Auswertung der Ausgangswerte des Sensors im Falle eines sich darĆ¼ber bewegenden Interferenzmusters vornimmt, vorteilhaft fĆ¼r die Steuerung der Dunstabzugshaube verwendet werden.In one development of the invention, the transmitting device and the receiving device are designed such that the receiving device always lies within the luminous point during operation. In such an embodiment, it is provided that not the luminous spot descending from the receiving device or the photodiode is intended to influence the output signal of the receiving device, but the movement of the luminous spot via the receiving device. In particular, in this case, the maxima and the minima of the interference image of the luminous point move across the sensor. The size of the sensor should be chosen so that it is smaller than the extension of the maxima and minima, which can also be influenced by optical aids such as lenses. The advantage lies in the fact that an accurate calibration of receiving device and transmitting device can be omitted and the susceptibility of such a ventilation device is very low. The registration of the movement of the luminous spot via the receiving device can take place, for example, by evaluating a moving interference pattern with maxima and minima. This can advantageously be used for control of the extractor hood with a corresponding control method which carries out an evaluation of the output values of the sensor in the event of an interference pattern moving over it.

In einer Weiterbildung der Erfindung sind Sendeeinrichtung und Empfangseinrichtung so ausgebildet, dass der Durchmesser des Leuchtpunkts einige mm breiter ist als die Empfangseinrichtung, vorzugsweise mindestens 5 bis 8 mm breiter. Hierdurch wird eine besonders geringe StƶranfƤlligkeit erzielt. Im Bereich der LĆ¼ftungsgerƤte finden hƤufig groƟe Fertigungstoleranzen Anwendung. Dadurch, dass die Funktionsweise von Sende- und Empfangseinrichtung gemƤƟ dieser Weiterbildung nicht davon abhƤngt, dass die Sende- und die Empfangseinrichtung auf den Millimeter genau an ihrer Soll-Position sind, kƶnnen gĆ¼nstigere Fertigungsverfahren genutzt werden und es bedarf keiner zusƤtzlichen MaƟnahmen, um die korrekte und hochgenaue Ausrichtung dieser Einrichtungen zu gewƤhrleisten.In a development of the invention, the transmitting device and receiving device are designed such that the diameter of the luminous point a few mm wider than the receiving device, preferably at least 5 to 8 mm wider. As a result, a particularly low susceptibility is achieved. In the field of ventilation devices often find large manufacturing tolerances application. Due to the fact that the mode of operation of the transmitting and receiving device according to this development does not depend on the transmitting and receiving devices being at their desired position to the nearest millimeter, more favorable production methods can be used and no additional measures are required to obtain the correct one and to ensure highly accurate alignment of these facilities.

In einer Weiterbildung der Erfindung werten die Steuerschaltung bzw. das SteuergerƤt das Ausgangssignal bezĆ¼glich Signalfrequenz und SignaldƤmpfung aus. Dies ist besonders bei der Verwendung eines Laserstrahls zweckmƤƟig, der so ausgeprƤgt ist, dass er im normalen Betrieb stets auf dem Empfangselement ruht, und der einen Leuchtpunkt mit Bereichen stark unterschiedlicher IntensitƤt aufweist. Bei einer solchen Konstellation kann ist die registrierte IntensitƤt bzw. die ermittelte DƤmpfung des Laserstrahls als Indikator fĆ¼r das Vorliegen von Dampf und die Frequenz als Indikator fĆ¼r das Vorliegen von Hitze gewertet werden. Gemeinsam sind diese Parameter gut geeignet, um die Art des unter dem LĆ¼ftungsgerƤt stattfindenden Garvorgangs einzuschƤtzen und einen entsprechend angepassten Luftstrom zu erzeugen. Eine starke DƤmpfung kann als Zeichen fĆ¼r intensiven Kochbetrieb und eine hohe Signalfrequenz als Zeichen fĆ¼r intensiven Bratbetrieb gewertet werden.In a development of the invention, the control circuit or the control unit evaluate the output signal with regard to signal frequency and signal attenuation. This is particularly useful when using a laser beam that is so pronounced that it always rests on the receiving element in normal operation, and has a luminous point with areas of greatly varying intensity. In such a constellation, the registered intensity or the determined attenuation of the laser beam can be regarded as an indicator of the presence of steam and the frequency as an indicator of the presence of heat. Together, these parameters are well suited to assess the nature of the cooking process taking place under the ventilation device and to generate a correspondingly adapted airflow. A strong damping can be seen as a sign of intensive cooking operation and a high signal frequency as a sign of intensive frying operation.

In einer Weiterbildung der Erfindung sind die Sendeeinrichtung und die Empfangseinrichtung sich gegenĆ¼berliegend beidseitig des Luftstroms im LĆ¼ftungsgerƤt angeordnet und die Sendeeinrichtung strahlt in Richtung der Empfangseinrichtung. Dies stellt den einfachsten Aufbau von Sendeeinrichtung und Empfangseinrichtung dar. Die Sendeeinrichtung und die Empfangseinrichtung sind dabei vorzugsweise auf gegenĆ¼berliegenden Seiten des Luftstroms angeordnet, insbesondere mittig Ć¼ber der Kochmulde, so dass die Messstrecke den Luftstrom durchkreuzt. Eine solche Anordnung mit unmittelbarer Ausrichtung von Sende- und Empfangseinrichtung zueinander ist einfach und wenig stƶranfƤllig.In one embodiment of the invention, the transmitting device and the receiving device are arranged opposite each other on both sides of the air flow in the ventilation unit and the transmitting device radiates in the direction of the receiving device. This represents the simplest construction of transmitting device and receiving device. The transmitting device and the receiving device are preferably on opposite sides Arranged sides of the air flow, in particular centrally above the cooktop, so that the measuring section thwarts the air flow. Such an arrangement with direct alignment of transmitting and receiving device to each other is simple and less prone to interference.

In einer Weiterbildung der Erfindung sind die Sendeeinrichtung und die Empfangseinrichtung so angeordnet, dass ein von der Sendeeinrichtung ausgehender Laserstrahl von mindestens einer Reflektionseinrichtung reflektiert zur Empfangseinrichtung gelangt. Die Verwendung einer solchen Reflektionseinrichtung ist zweckmƤƟig, da sie zum einen die Messstrecke verlƤngert und dadurch eine genauere Messung zulƤsst. Zum anderen gestattet sie, einen grĆ¶ĆŸeren Bereich d es LĆ¼fters in die Messung mit einzubeziehen. DarĆ¼ber hinaus erlaubt eine Reflektionseinrichtung die Anordnung von Sende- und Empfangseinrichtung in unmittelbarer NƤhe zueinander, indem Sende- und Empfangseinrichtung an einer Seite des LĆ¼fters angeordnet werden. Auf der gegenĆ¼berliegenden Seite wird die Reflektionseinrichtung angeordnet. Auf diese Art und Weise ist es auch mƶglich, Sende- und Empfangseinrichtung als ein Modul auszubilden, wodurch der Montage- und Justageaufwand gegenĆ¼ber der Verwendung von zwei separaten Modulen deutlich verringert wird.In a development of the invention, the transmitting device and the receiving device are arranged so that a laser beam emitted by the transmitting device passes from the at least one reflecting device to the receiving device. The use of such a reflection device is expedient, since on the one hand it extends the measuring path and thereby permits a more accurate measurement. On the other hand, it allows a larger area of the fan to be included in the measurement. In addition, a reflection device allows the arrangement of transmitting and receiving device in the immediate vicinity of each other by sending and receiving device are arranged on one side of the fan. On the opposite side of the reflection device is arranged. In this way, it is also possible to form the transmitting and receiving device as a module, whereby the assembly and adjustment effort compared to the use of two separate modules is significantly reduced.

In einer Weiterbildung der Erfindung sind mindestens zwei Reflektionseinrichtungen vorgesehen, die so angeordnet und ausgerichtet sind, dass ein von der Sendeeinrichtung ausgehender Laserstrahl von mindestens einer Reflektionseinrichtung mindestens zweimal reflektiert zur Empfangseinrichtung gelangt. Auf diese Art und Weise ist es mƶglich, mit einer geringen Zahl von Reflektionseinrichtun gen, vorzugsweise mit zwei Reflektionseinrichtungen, eine lange Messstrecke zu realisieren, die einen verlƤsslichen RĆ¼ckschluss auf Verunreinigungen in der Luft wie Kochwrasen sowie Bewegungen der Luft zulƤsst.In a further development of the invention, at least two reflection devices are provided which are arranged and aligned such that a laser beam emanating from the transmission device passes at least twice reflected by at least one reflection device to the reception device. In this way, it is possible, with a small number of Reflektseinrichtun gene, preferably with two reflection devices to realize a long measurement path, which allows a reliable conclusion on impurities in the air such as cooking turf and movements of the air.

In einer darauf aufbauenden Weiterbildung der Erfindung sind die beiden Reflektionseinrichtungen einander zugewandt und parallel zueinander angeordnet. So ist es mƶglich, den Laserstrahl von beiden Reflektionseinrichtungen jeweils mehrfach reflektieren zu lassen. Die Reflektionseinrichtungen kƶnnen z.B. an der vorderen und hinteren bzw. an der linken und rechten Innenseite des LĆ¼ftungsgerƤts bzw. der Dunstabzugshaube angeordnet sein. Durch entsprechend angeordnete und ausgerichtete Sende- und Empfangseinrichtungen ist es mƶglich, den Laserstrahl so mehrfach von einer Seite zur anderen reflektieren zu lassen und damit nahezu den gesamten Querschnitt des LĆ¼ftungsgerƤts einer anschlieƟenden Auswertung durch das SteuergerƤt oder die Steuerschaltung zugrunde zu legen.In a further development of the invention, the two reflection devices face each other and are arranged parallel to one another. It is thus possible to allow the laser beam to be reflected several times by both reflection devices. The reflection means may e.g. be arranged on the front and rear or on the left and right inside of the ventilation unit or the hood. By appropriately arranged and aligned transmitting and receiving devices, it is possible to allow the laser beam reflect so many times from one side to the other and thus to lay almost the entire cross-section of the ventilation device for subsequent evaluation by the control unit or the control circuit.

In einer Weiterbildung der Erfindung weist die Sendeeinrichtung eine Laserdiode zur Abgabe des Laserstrahls auf, insbesondere eine Multi-mode-Laserdiode. Multimode-Laserdioden geben Licht unterschiedlicher Frequenz ab und sind aus technischen ErwƤgungen fĆ¼r die vorgeschlagenen LĆ¼ftungsgerƤte gut geeignet. Das von ihnen abgegebene StrahlenbĆ¼ndel weist eine verglichen mit Singlemode-Laserdioden erhƶhte Divergenz und erhƶhte Beugungsneigung aufgrund erhƶhter WellenlƤngenstreuung auf. DarĆ¼ber hinaus erzeugen sie aufgrund ihres Frequenzspektrums ein Interferenzmuster im Leuchtpunkt, welches wie oben beschrieben eine besonders gute Auswertung mit Maxima und Minima bei geringer StƶranfƤlligkeit ermƶglicht. Die erhƶhte Divergenz und das Interferenzmuster sind insbesondere bei der Erkennung von Luftschlieren von Vorteil. Besonders geeignet fĆ¼r eine gute Auswertbarkeit ist ein Leuchtpunktdurchmesser von 5 mm bis 15 mm, insbesondere 10 mm. Eine zu scharfe BĆ¼ndelung des Laserstrahls kann fĆ¼r eine Luftschlierenerkennung von Nachteil sein. Zur Verbesserung der Luftschlieren- und Luftbewegungserkennung kann es zweckmƤƟig sein, Mittel vorzusehen, um die Divergenz der Multimode-Laserdiode weiter zu erhƶhen.In a development of the invention, the transmitting device has a laser diode for emitting the laser beam, in particular a multi-mode laser diode. Multimode laser diodes emit light of different frequencies and, for technical reasons, are well suited for the proposed ventilation devices. The beam emitted by them has increased divergence and increased diffraction tendency due to increased wavelength dispersion compared to singlemode laser diodes. In addition, due to their frequency spectrum, they generate an interference pattern in the luminous spot, which, as described above, enables a particularly good evaluation with maxima and minima with low susceptibility to interference. The increased divergence and the interference pattern are particularly advantageous in the detection of air streaks. Particularly suitable for a good readability is a dot diameter of 5 mm to 15 mm, in particular 10 mm. Sharp focusing of the laser beam can be disadvantageous for air streak detection. To improve the air schlieren and air movement detection, it may be appropriate to provide means to further increase the divergence of the multimode laser diode.

In einer Weiterbildung weist die Sendeeinrichtung eine Kollimatorlinse auf. Diese Kollimatorlinse erlaubt Ć¼ber die Anpassung der Lage ihres Brennpunktes eine zweckmƤƟige Optimierung der Sendeeinrichtung. Ɯber die Lage der Kollimatorlinse und/oder des Brennpunktes der Kollimatorlinse kann die Aufweitung des Laserstrahls im Bereich der Empfangseinrichtung variiert werden. Der Laserstrahl kann auch etwas divergent gemacht werden. Eine vergrĆ¶ĆŸerte Aufweitung erhƶht die Empfindlichkeit der Empfangseinrichtung insbesondere in Hinblick auf Luftbewegungen, so dass dem SteuergerƤt ein besser interpretierbares Signal geliefert wird. Das SteuergerƤt steuert dementsprechend den LĆ¼fter sehr bedarfsgerecht, insbesondere auch schon vor Dampfentstehen. Allerdings fĆ¼hrt eine Aufweitung des Laserstrahls auch zu einer geringeren, von der Empfangseinrichtung empfangenen Lichtleistung. Durch die Anpassung der Kollimatorlinse bzgl. Lage und Art kann eine bzgl. Lichtleistung sowie Luftschlieren- und Kochwrasenerkennung optimale Divergenz des Laserstrahls hergestellt werden. Bei Verwendung einer separaten Linse kann auf ein fertiges Lasermodul verzichtet werden und ein kostengĆ¼nstiger Aufbau aus Laserdiode und Linse vorgesehen sein.In a development, the transmitting device has a collimator lens. This collimator lens allows the adaptation of the position of their focal point a convenient optimization of the transmitting device. The widening of the laser beam in the region of the receiving device can be varied by means of the position of the collimator lens and / or the focal point of the collimator lens. The laser beam can also be made slightly divergent. An increased expansion increases the sensitivity of the receiving device, in particular with regard to air movements, so that the control unit is supplied with a signal that can be interpreted more easily. The controller accordingly controls the fan very needs, especially even before steam. However, an expansion of the laser beam also leads to a lower light output received by the receiving device. By adapting the collimator lens with regard to position and type, it is possible to produce an optimum divergence of the laser beam with regard to light output as well as air streak and cooking wheel detection. When using a separate lens can be dispensed with a finished laser module and a cost-effective design of laser diode and lens can be provided.

In einer Weiterbildung der Erfindung ist die Divergenz des Laserstrahls vom SteuergerƤt oder der Steuerschaltung einstellbar. Da die DƤmpfung von Laserstrahlen geringerer Divergenz durch Luftschlieren geringer ist als die DƤmpfung von Laserstrahlen hoher Divergenz, kann durch eine Einstellbarkeit der Divergenz erreicht werden, dass besonders sicher zwischen DƤmpfungen aufgrund von DƤmpfen bzw. Partikeln einerseits und Luftschlieren bzw. Luftbewegungen andererseits unterschieden werden kann. Das SteuergerƤt eines derartigen LĆ¼ftungsgerƤts kann daher beispielsweise wechselnd die DƤmpfung bei hoher und niedriger Divergenz messen und im Falle einer geringen DƤmpfung, die lediglich auf Luftschlieren zurĆ¼ckzufĆ¼hren ist, den LĆ¼fter in Betrieb setzen. Die Einstellbarkeit wird vorzugsweise Ć¼ber eine verstellbare Linse erreicht.In a further development of the invention, the divergence of the laser beam from the control unit or the control circuit is adjustable. Since the attenuation of laser beams of lesser divergence by air streaks is less than the attenuation of laser beams of high divergence, can be achieved by adjustability of the divergence that can be differentiated particularly reliably between attenuations due to vapors or particles on the one hand and air streaks or air movements. The control unit of such a ventilation device can therefore measure, for example, alternately the damping at high and low divergence and set in the case of a low attenuation, which is due only to air streaks, the fan in operation. The adjustability is preferably achieved via an adjustable lens.

In einer Weiterbildung sind mindestens zwei Sendeeinrichtungen zur Abgabe von Laserstrahlen unterschiedlicher Divergenz vorgesehen. Auch durch zwei Sendeeinrichtungen kann bei unterschiedlicher Divergenzeinstellung erreicht werden, dass die Ursache fĆ¼r eine DƤmpfung auf der Messstrecke sicher erkannt wird. GegenĆ¼ber einer AusfĆ¼hrungsform mit einem bezĆ¼glich seiner Divergenz einstellbaren Laserstrahl kann dadurch die Einstellbarkeit und die daraus resultierenden erhƶhte KomplexitƤt der Sendeeinrichtung vermieden werden. Vorzugsweise sind beide Sendeeinrichtungen auf nur eine Empfangseinrichtung gerichtet, die die eintreffende Leistung der Laserstrahlen entweder zeitgleich oder alternierend misst. ZweckmƤƟig kann es aber auch sein, jeder Sendeeinrichtung eine eigene Empfangseinrichtung zuzuordnen.In a further development, at least two transmitting devices are provided for emitting laser beams of different divergence. By two transmitting devices can be achieved with different divergence setting that the cause of attenuation on the measuring section is reliably detected. Compared to an embodiment with a laser beam which can be adjusted with respect to its divergence, the adjustability and the resulting increased complexity of the transmitting device can thereby be avoided. Preferably, both transmitting devices are directed to only one receiving device, which measures the incoming power of the laser beams either simultaneously or alternately. However, it may also be expedient to assign each transmitting device its own receiving device.

Diese und weitere Merkmale von bevorzugten Weiterbildungen der Erfindung gegen auƟer aus den AnsprĆ¼chen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils fĆ¼r sich allein oder zu mehreren in Form von Unterkombinationen bei einer AusfĆ¼hrungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie fĆ¼r sich schutzfƤhige AusfĆ¼hrungen darstellen kƶnnen, fĆ¼r die hier Schutz beansprucht wird. Die Unterteilung der Anmeldung in einzelne Abschnitte und Zwischen-Ɯberschriften beschrƤnken die unter diesen gemachten Aussagen nicht in ihrer AllgemeingĆ¼ltigkeit.These and other features of preferred embodiments of the invention against its own accord from the claims and from the description and drawings, wherein the individual features are realized individually or in each case in the form of sub-combinations in one embodiment of the invention and in other fields and can represent advantageous and protectable versions for which protection is claimed here. The subdivision of the application into individual sections and intermediate headings does not limit the statements made thereunder in their generality.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

AusfĆ¼hrungsbeispiele der Erfindung sind in den Zeichnungen schematisch dargestellt und werden im Folgenden nƤher erlƤutert. In den Zeichnungen zeigt:

Figur 1 und 2
teilweise geschnittene Ansichten einer ersten AusfĆ¼hrungsform der erfindungsgemƤƟen Dunstabzugshaube, bei welcher Sende- und Empfangseinrichtung an gegenĆ¼berliegenden Innenseiten der Dunstabzugshaube angeordnet sind und bei der ein Laserstrahl unmittelbar in Richtung der Empfangseinrichtung abgestrahlt wird,
Figur 3
eine Detailansicht der Empfangseinrichtung der in den Figuren 1 und 2 dargestellten Dunstabzugshaube,
Figur 4
eine teilweise geschnittene Ansicht einer zweiten AusfĆ¼hrungsform einer erfindungsgemƤƟen Dunstabzugshaube, bei der die Sende- und Empfangseinrichtungen als einheitliches Modul an einer Innenseite der Dunstabzugshaube angeordnet sind und bei der auf der gegenĆ¼berliegenden Seite der Dunstabzugshaube eine Reflektionseinrichtung vorgesehen ist,
Figur 5
eine teilweise geschnittene Ansicht einer dritten AusfĆ¼hrungsform einer erfindungsgemƤƟen Dunstabzugshaube, bei der die Sendeeinrichtung und die Empfangseinrichtung ebenfalls an der gleichen Innenseite der Dunstabzugshaube angeordnet sind, wobei es sich um getrennte und voneinander beabstandete Module handelt,
Figur 6
eine teilweise geschnittene Ansicht einer vierten AusfĆ¼hrungsform einer erfindungsgemƤƟen Dunstabzugshaube, bei der zwei parallele Reflektionseinrichtungen an gegenĆ¼berliegenden Innenseiten der Dunstabzugshaube vorgesehen sind,
Figur 7
eine schematische Darstellung eines SteuergerƤts fĆ¼r ein erfindungsgemƤƟes LĆ¼ftungsgerƤt und mit diesem SteuergerƤt verbundener Komponenten,
Figur 8a und 8b
den Strahlengang eines Laserstrahls im Bereich einer Messstrecke,
Figur 9
eine Darstellung der Funktionseinheiten der Steuerung und Auswertung,
Figur 10
ein Diagramm von Messwerten des zeitlichen Verhaltens der IntensitƤt des Empfangssignals,
Figur 11 und 12
schematische Darstellungen des Bewegens einzelner Lichtpunkte aus dem Interferenzbild des Lasers Ć¼ber die Empfangseinrichtung und
Figur 13
eine Aufteilung zwischen DƤmpfung und Frequenz des Oszillierens des Signals an der Empfangseinrichtung entsprechend Figur 10.
Embodiments of the invention are shown schematically in the drawings and are explained in more detail below. In the drawings shows:
FIGS. 1 and 2
partly sectional views of a first embodiment of the extractor hood according to the invention, in which transmitting and receiving device are arranged on opposite inner sides of the extractor hood and in which a laser beam is emitted directly in the direction of the receiving device,
FIG. 3
a detailed view of the receiving device in the Figures 1 and 2 illustrated extractor hood,
FIG. 4
a partially sectioned view of a second embodiment of an extractor hood according to the invention, in which the transmitting and receiving devices are arranged as a unitary module on an inner side of the hood and in which on the opposite side of the hood a reflection device is provided
FIG. 5
a partially sectioned view of a third embodiment of an extractor hood according to the invention, in which the transmitting device and the receiving device are also arranged on the same inside of the hood, which are separate and spaced-apart modules,
FIG. 6
a partially sectioned view of a fourth embodiment of an extractor hood according to the invention, in which two parallel reflection means are provided on opposite inner sides of the hood,
FIG. 7
a schematic representation of a control device for an inventive ventilation device and connected to this controller components,
FIGS. 8a and 8b
the beam path of a laser beam in the region of a measuring path,
FIG. 9
a representation of the functional units of the control and evaluation,
FIG. 10
a diagram of measured values of the temporal behavior of the intensity of the received signal,
FIGS. 11 and 12
schematic representations of moving individual points of light from the interference pattern of the laser via the receiving device and
FIG. 13
a division between attenuation and frequency of the oscillation of the signal at the receiving device accordingly FIG. 10 ,

Detaillierte Beschreibung der AusfĆ¼hrungsbeispieleDetailed description of the embodiments

Die Figuren 1 und 2 zeigen in jeweils teilweise geschnittener Weise eine erste AusfĆ¼hrungsform eines erfindungsgemƤƟen LĆ¼ftungsgerƤts in Form einer Dunstabzugshaube 10. Die Dunstabzugshaube 10 ist oberhalb einer Kochmulde 12 mit vier Kochstellen 14 angeordnet. Die Dunstabzugshaube 10 erstreckt sich nahezu Ć¼ber die vollstƤndige Breite der Kochmulde 12 und Ć¼berdeckt ca. drei Viertel von deren Tiefe. Die Dunstabzugshaube 10 selbst besteht aus einem kastenfƶrmigen, an der Unterseite offenen Unterteil 16 und einem Oberteil 18, wobei das Unterteil 16 und das Oberteil 18 derart miteinander verbunden sind, das von der Kochmulde 12 ausgehende Kochwrasen wie Wasserdampf und Kochdunst in das Unterteil 16 der Dunstabzugshaube 10 gelangen und von dort in das Oberteil 18 weitergeleitet werden. Im Ɯbergangsbereich zwischen dem Unterteil 16 und dem Oberteil 18 sind eine Filtermatte 19 und ein Ventilator 20 angeordnet, der die KĆ¼chendƤmpfe durch die Filtermatte 19 in das Oberteil 18 saugt. Im Unterteil 16 sind eine Sendeeinrichtung 22 mit Laser und eine Empfangseinrichtung 24 an der rechten bzw. linken Innenseite angeordnet. Die Sendeeinrichtung 22 ist dabei derart ausgerichtet, dass ein von ihr ausgehender Laserstrahl 25 direkt auf die Empfangseinrichtung 24 gerichtet ist.The Figures 1 and 2 show in each case partially cut manner, a first embodiment of a ventilation device according to the invention in the form of an extractor hood 10. The hood 10 is arranged above a cooktop 12 with four cooking zones 14. The hood 10 extends almost over the full width of the hob 12 and covers about three quarters of its depth. The extractor hood 10 itself consists of a box-shaped, open at the bottom of the base 16 and an upper part 18, wherein the lower part 16 and the upper part 18 are connected to each other, the cooking hobs emanating from the hob 12 as steam and cooking fume in the lower part 16 of the hood 10 arrive and be forwarded from there to the upper part 18. In the transition region between the lower part 16 and the upper part 18, a filter mat 19 and a fan 20 are arranged, which sucks the kitchen vapors through the filter mat 19 in the upper part 18. In the lower part 16, a transmitting device 22 with laser and a receiving device 24 are arranged on the right and left inside. The transmitting device 22 is aligned in such a way that a laser beam 25 emanating from it is directed directly onto the receiving device 24.

Wenn im Kochbetrieb Kochwrasen von den Kochstellen 14 der Kochmulde 12 aufsteigen, gelangen diese in das Unterteil 16 der Dunstabzugshaube 10. Der permanent oder in periodischen AbstƤnden aktivierte Laserstrahl 25 wird durch diese Kochwrasen teilweise absorbiert sowie teilweise gebeugt und gebrochen. Dadurch kommt es zu einer gegenĆ¼ber der Ausgangsleistung verminderten Eingangsleistung an der Empfangseinrichtung 24.If, in the cooking mode, cooking hobs rise from the cooking zones 14 of the cooking hob 12, they reach the lower part 16 of the extractor hood 10. The laser beam 25, which is permanently or periodically activated, is partially absorbed by these cooking hobs and partially diffracted and broken. This results in a reduced input power at the receiving device 24 compared to the output power.

Aber auch schon bevor Kochwrasen entstanden oder in den Bereich der Messstrecke zwischen Sendeeinrichtung 22 und Empfangseinrichtung 24 gelangt sind, kommt es aufgrund der von der Kochstelle 14 ausgehenden Hitze zu Luftbewegungen im Bereich der Messtrecke, die eine Beugung des Laserstrahls zur Folge haben. Auch dies vermindert die Eingangsleistung an der Empfangseinrichtung 24.However, even before cooking sparks are produced or have reached the area of the measuring section between the transmitting device 22 and the receiving device 24, due to the heat emanating from the cooking point 14, air movements occur in the region of the measuring section, which results in a diffraction of the laser beam. This also reduces the input power at the receiving device 24.

In einer in den Figuren 1 und 2 nicht dargestellten Art und Weise wird ein von der Empfangseinrichtung 24 erzeugtes Signal einem SteuergerƤt zugefĆ¼hrt, welches anhand der Leistungsdifferenz zwischen Ausgangsleistung der Sendeeinrichtung 22 und Eingangsleistung der Empfangseinrichtung 24 sowie anhand der zeitlichen VerƤnderung dieser Leistungsdifferenz RĆ¼ckschlĆ¼sse auf den Grad der Luftbewegungen und das Vorliegen und die Menge an Kochwrasen ermƶglicht. In AbhƤngigkeit der so ermittelten Menge an Luftschlieren und/oder Kochwrasen steuert dieses SteuergerƤt die dem Ventilator 20 zugefĆ¼hrte Leistung, wobei die Leistung erhƶht wird, wenn die Luftbewegung intensiv oder die Menge an Kochwrasen hoch ist. Wenn die Eingangsleistung an der Empfangseinrichtung 24 sich im Zuge der Bereinigung der Luft wieder an die Ausgangsleistung der Sendeeinrichtung 22 angenƤhert hat und keinen groƟen Schwankungen mehr unterliegt, kann der Ventilator 20 vom SteuergerƤt wieder gedrosselt oder vollstƤndig deaktiviert werden. Die Figur 3 zeigt die Empfangseinrichtung der in den Figuren 1 und 2 dargestellten Dunstabzugshaube in einer vergrĆ¶ĆŸerten Darstellung. Die Empfangseinrichtung verfĆ¼gt Ć¼ber einen rƶhrenfƶrmigen Abschnitt 29a, dessen Hauptachse mit der Einfallsachse des Laserstrahls 25 Ć¼bereinstimmt. Am Grund dieses rƶhrenfƶrmigen Abschnitts 29a ist ein photoelektrischer Sensor 26 angeordnet, der in AbhƤngigkeit der einfallenden Leistung ein korrespondierendes Signal erzeugt. Am gegenĆ¼berliegenden Ende des rƶhrenfƶrmigen Abschnitts 29a ist ein Filter 29b angeordnet, der der Filterung des einfallenden Lichts dient und nur in einem bestimmten, auf den Laserstrahl 25 abgestimmten Frequenzbereich einfallendes Licht passieren lƤsst. Wenn Licht eines anderen Frequenzbereichs einfƤllt, wird es vom Filter 29b absorbiert und erreicht daher den photoelektrischen Sensor nicht. Gleiches gilt fĆ¼r Licht jeglicher Frequenz, welches aus einer deutlich von der Laserausbreitungsrichtungsrichtung abweichenden Richtung 28 auf die Empfangseinrichtung 24 trifft. Durch diese beiden MaƟnahmen, den rƶhrenfƶrmigen Abschnitt 29a und den Filter 29b, wird erreicht, dass das vom photoelektrischen Sensor 26 abgegebene Signal ausschlieƟlich oder nahezu ausschlieƟlich von der einfallenden Leistung des Laserstrahls und nicht vom Umgebungslicht bestimmt wird.In one in the Figures 1 and 2 not shown, a signal generated by the receiving device 24 is fed to a control unit, which on the basis of the power difference between the output power of the transmitting device 22 and input power of the receiving device 24 and based on the time change of this power difference conclusions about the degree of air movement and the presence and the amount allows cooking hobs. Depending on the thus determined amount of air streaks and / or cooking turf controls this controller, the power supplied to the fan 20, wherein the power is increased when the air movement is intense or the amount of cooking turf is high. If the input power at the receiving device 24 has returned to the output power of the transmitting device 22 in the course of adjusting the air and is no longer subject to large fluctuations, the fan 20 can again be throttled or completely deactivated by the control unit. The FIG. 3 shows the receiving device in the Figures 1 and 2 shown extractor hood in an enlarged view. The receiving device has a tubular portion 29a whose major axis coincides with the axis of incidence of the laser beam 25. At the bottom of this tubular portion 29a is disposed a photoelectric sensor 26 which generates a corresponding signal depending on the incident power. At the opposite end of the tubular portion 29a, a filter 29b is arranged, which serves the filtering of the incident light and only in a certain, matched to the laser beam 25 frequency range incident light passes. When light of another frequency range is incident, it is absorbed by the filter 29b and therefore does not reach the photoelectric sensor. The same applies to light of any frequency which strikes the receiving device 24 from a direction 28 which deviates significantly from the direction of the laser propagation direction. By these two measures, the tubular portion 29a and the filter 29b, it is achieved that the signal emitted by the photoelectric sensor 26 is determined exclusively or almost exclusively by the incident power of the laser beam and not by the ambient light.

Die Figur 4 zeigt eine zweite AusfĆ¼hrungsform einer erfindungsgemƤƟen Dunstabzugshaube. Im Unterschied zur ersten AusfĆ¼hrungsform sind bei dieser die Sende- und die Empfangseinrichtung in einem gemeinsamen Funktionsmodul 29 untergebracht, welches an einer Innenseite des Unterteils 16 der Dunstabzugshaube 10 angeordnet ist. Auf der gegenĆ¼berliegenden Innenseite des Unterteils 16 ist eine Reflektionseinrichtung 30 angeordnet. Diese Reflektionseinrichtung kann beispielsweise ein Spiegel oder auch ein Katzenauge sein. Der Laserstrahl 31, der von dem Funktionsmodul 29 abgestrahlt wird, ist in Richtung der Reflektionseinrichtung 30 ausgerichtet. Von dieser wird er derart reflektiert, dass er nur leicht von seinem Verlauf vor der Reflektion abweichend zurĆ¼ck zum Funktionsmodul 29 gelangt. Die in diesem Funktionsmodul 29 integrierte Empfangseinrichtung registriert die zurĆ¼ckgelangte Leistung und gibt in gleicher Art wie beim ersten AusfĆ¼hrungsbeispiel ein davon abhƤngiges Signal an ein nicht dargestelltes SteuergerƤt ab. Vorteil dieser AusfĆ¼hrungsform ist, dass nur ein Modul mit dem SteuergerƤt verbunden werden muss. Dadurch werden Kosten fĆ¼r Verkabelung gespart und konstruktive Schwierigkeiten umgangen. DarĆ¼ber hinaus ist bei der dargestellten zweiten AusfĆ¼hrungsform die Messstrecke gegenĆ¼ber der AusfĆ¼hrungsform, die in den Figuren 1 und 2 dargestellt ist, in etwa doppelt so lang, was zu verlƤsslicheren Ergebnissen fĆ¼hrt.The FIG. 4 shows a second embodiment of an extractor hood according to the invention. In contrast to the first embodiment, in this the transmitting and receiving device are housed in a common functional module 29, which is arranged on an inner side of the lower part 16 of the extractor hood 10. On the opposite inner side of the lower part 16, a reflection device 30 is arranged. This reflection device can be, for example, a mirror or even a cat's eye. The laser beam 31, which is emitted by the functional module 29, is aligned in the direction of the reflection device 30. From this it is reflected in such a way that it deviates only slightly from its course before the reflection back to the Function module 29 passes. The integrated in this functional module 29 receiving device registers the returned power and are in the same manner as in the first embodiment, a dependent signal to an unillustrated control unit from. Advantage of this embodiment is that only one module must be connected to the controller. This saves wiring costs and bypasses design difficulties. Moreover, in the illustrated second embodiment, the measuring path is opposite to the embodiment shown in FIGS Figures 1 and 2 approximately twice as long, which leads to more reliable results.

Die Figur 5 zeigt eine dritte AusfĆ¼hrungsform einer erfindungsgemƤƟen Dunstabzugshaube. GegenĆ¼ber der zweiten AusfĆ¼hrungsform, die in Figur 4 dargestellt ist, unterscheidet sich diese AusfĆ¼hrungsform dadurch, dass die Sendeeinrichtung 32 und die Empfangseinrichtung 34 als separate Module, jedoch auf der gleichen Innenseite des Unterteils 16 der Dunstabzugshaube 10 angeordnet sind. Wiederum ist auf der gegenĆ¼berliegenden Innenseite eine Reflektionseinrichtung 36 vorgesehen, wobei diese so angeordnet und ausgerichtet ist, dass ein von der Sendeeinrichtung 32 ausgehender Laserstrahl 38 nach der Reflektion auf die Empfangseinrichtung 34 trifft. Die dargestellte AusfĆ¼hrungsform weist zwar den Nachteil auf, dass Sende- und Empfangseinrichtung getrennt voneinander mit einem nicht dargestellten SteuergerƤt verbunden sein mĆ¼ssen. Vorteilhaft ist jedoch die Tatsache, dass der Laserstrahl 38 vor und nach der Reflektion durch die Reflektionseinrichtung 36 nicht nahezu parallel verlƤuft. Dadurch ist der Bereich vergrĆ¶ĆŸert, den der Laserstrahl durchlƤuft. Infolgedessen ist es eher mƶglich, Kochwrasen von allen Kochplatten zuverlƤssig wahrzunehmen und die Steuerung des Ventilators 20 entsprechend gut angepasst vorzunehmen.The FIG. 5 shows a third embodiment of an extractor hood according to the invention. Compared to the second embodiment, which in FIG. 4 is illustrated, this embodiment differs in that the transmitting device 32 and the receiving device 34 are arranged as separate modules, but on the same inside of the lower part 16 of the hood 10. In turn, a reflection device 36 is provided on the opposite inner side, wherein it is arranged and aligned such that a laser beam 38 emanating from the transmitting device 32 strikes the receiving device 34 after the reflection. Although the illustrated embodiment has the disadvantage that transmitting and receiving device must be connected separately from each other with a control unit, not shown. However, the fact that the laser beam 38 does not run nearly parallel before and after the reflection by the reflection device 36 is advantageous. This enlarges the area through which the laser beam passes. As a result, it is more likely to reliably detect cooking turf from all hotplates and to make the control of the fan 20 well adjusted accordingly.

Die Figur 6 zeigt eine vierte AusfĆ¼hrungsform einer erfindungsgemƤƟen Dunstabzugshaube. Diese verfĆ¼gt Ć¼ber eine Sendeeinrichtung 40 und eine Empfangseinrichtung 42, welche wiederum an der gleichen Innenseite des Oberteils 16 der Dunstabzugshaube 10 angeordnet sind. Von den AusfĆ¼hrungsformen, die in den Figuren 4 und 5 dargestellt sind, unterscheidet sich diese AusfĆ¼hrungsform dadurch, dass sowohl auf der Innenseite der Sende- und Empfangseinrichtungen 40, 42 als auch auf der gegenĆ¼berliegenden Seite jeweils eine Reflektionseinrichtung 44, 46 angeordnet ist. Die beiden Reflektionseinrichtungen sind parallel zueinander ausgerichtet. Die Sendeeinrichtung 40 ist so ausgerichtet, dass ein von ihr ausgehender Laserstrahl 48 mehrfach von den Reflektionseinrichtungen 44, 46 reflektiert wird, bevor er die Empfangseinrichtung 42 erreicht. Dies fĆ¼hrt zu einer verhƤltnismƤƟig langen Messstrecke, welche besonders prƤzise RĆ¼ckschlĆ¼sse auf das Vorhandensein von Kochwrasen und Ƥhnlichem erlaubt. DarĆ¼ber hinaus ist es mit einem solchen oder einem Ƥhnlichen Aufbau mƶglich, den Bereich Ć¼ber den Kochplatten 14 weitgehend flƤchendeckend abzudecken, so dass auch ein ƶrtliches begrenztes Auftreten von Kochwrasen schnell und zuverlƤssig registriert werden kann. Gerade bei einem solchen Aufbau ist die Verwendung eines Lasers ideal. Durch die geringe Aufweitung des Laserstrahls 48 sind selbst lange Messstrecken unproblematisch realisierbar.The FIG. 6 shows a fourth embodiment of an extractor hood according to the invention. This has a transmitting device 40 and a receiving device 42, which in turn are arranged on the same inner side of the upper part 16 of the extractor hood 10. Of the embodiments that are in the FIGS. 4 and 5 are illustrated, this embodiment differs in that both on the inside of the transmitting and receiving means 40, 42 and on the opposite side in each case a reflection means 44, 46 is arranged. The two reflection devices are aligned parallel to one another. The transmitting device 40 is oriented so that a laser beam 48 emanating from it is reflected several times by the reflecting devices 44, 46 before it reaches the receiving device 42. This leads to a relatively long measuring path, which allows particularly precise conclusions about the presence of cooking turf and the like. Moreover, it is possible with such or a similar structure to cover the area over the cooking plates 14 largely nationwide, so that even a local limited occurrence of cooking turfs can be registered quickly and reliably. Especially with such a structure, the use of a laser is ideal. Due to the small expansion of the laser beam 48 even long measuring distances can be realized without problems.

Die Figur 7 zeigt ein SteuergerƤt einer erfindungsgemƤƟen Dunstabzugshaube sowie daran angeschlossene Komponenten. Das SteuergerƤt weist einen Steuerschaltkreis 50 auf, der Ć¼ber verschiedene AnschlĆ¼sse verfĆ¼gt. Eine Sendeeinrichtung 52 ist an einem PWM-Ausgang 54 (Pulsweitenmodulations-Ausgang) des Steuerschaltkreises 50 angeschlossen. Auf diese Art und Weise ist es dem Steuerschaltkreis mƶglich, die Leistung der Sendeeinrichtung 52 sowie insbesondere des in die Sendeeinrichtung 52 integrierten Lasers, gezielt zu steuern. Dies erlaubt eine Grundjustierung, bei der der Laser so eingestellt wird, dass eine gewĆ¼nschte Eingangsleistung an der Empfangseinrichtung registriert wird, beispielsweise die Eingangsleistung, die bei vollstƤndiger Bestrahlung der gesamten FlƤche des Sensors der Empfangseinrichtung auftritt. An einem A/D-Wandlereingang 56 ist eine Empfangseinrichtung 58 angeschlossen, die Ć¼ber mindestens einen photoelektrischen Sensor verfĆ¼gt, der in AbhƤngigkeit der einfallenden Lichtmenge die dem Steuerschaltkreis 50 zugefĆ¼hrte Spannung variiert. Anhand der so empfangenen Messwerte der Empfangseinrichtung 58 wird mittels einer dafĆ¼r vorgesehenen Schaltung oder eines dafĆ¼r vorgesehenen Programms im Steuerschaltkreis 50 erkannt, ob Kochwrasen auf der Messstrecke zwischen der Sendeeinrichtung 52 und der Empfangseinrichtung 58 vorliegen und welche Dichte bzw. welches MaƟ an Turbulenzen sie aufweisen. AbhƤngig von dem Ergebnis dieser Analyse wird ein Ventilatormotor 60 angesteuert, dessen Leistung vom Steuerschaltkreis 50 beeinflusst werden kann. Wenn die Menge an Kochwrasen hoch ist, wird der Ventilatormotor 60 derart angesteuert, dass dieser Kochwrasen mit hoher Leistung absaugt.The FIG. 7 shows a control unit of an extractor hood according to the invention and components connected thereto. The control unit has a control circuit 50 which has various connections. A transmitting device 52 is connected to a PWM output 54 (pulse width modulation output) of the control circuit 50. In this way it is possible for the control circuit to specifically control the power of the transmitting device 52 and in particular of the laser integrated in the transmitting device 52. This allows a basic adjustment, in which the laser is adjusted so that a desired input power is registered at the receiving device, for example, the input power, the total irradiation of the entire surface of the sensor of the receiving device occurs. Connected to an A / D converter input 56 is a receiving device 58 which has at least one photoelectric sensor which varies the voltage supplied to the control circuit 50 as a function of the amount of incident light. On the basis of the measured values of the receiving device 58 received in this way, it is detected in the control circuit 50 by means of a circuit or program provided for this purpose whether cooking torrents are present on the measuring path between the transmitting device 52 and the receiving device 58 and what density or degree of turbulence they have. Depending on the result of this analysis, a fan motor 60 is actuated, the power of which can be influenced by the control circuit 50. When the amount of cooking torrents is high, the fan motor 60 is driven so that it sucks cooking power at high power.

Die Figuren 8a und 8b zeigen den Strahlengang eines Laserstrahls 62 eines erfindungsgemƤƟen LĆ¼ftungsgerƤts im Bereich einer Messstrecke zwischen einer Sendeeinrichtung 64 und einer Empfangseinrichtung 66. Die Sendeeinrichtung 64 verfĆ¼gt Ć¼ber ein Lasermodul 68 und eine Kollimatorlinse 70, die den vom Lasermodul 68 ausgehenden Laserstrahl 62 etwas aufweitet. Der Laserstrahl 62 durchlƤuft die Messstrecke und trifft in der Empfangseinrichtung auf die den photoelektrischen Sensor 72. Der photoelektrische Sensor 72 ist bezĆ¼glich seiner FlƤche so ausgebildet und der Laserstrahl 62 so eingestellt, dass der Laserstrahl 62 in einem ungebrochenen und nicht abgelenkten Zustand vollstƤndig vom photoelektrischen Sensor 72 erfasst wird und dessen FlƤche weitgehend vollstƤndig bestrahlt. Der photoelektrische Sensor 72 erzeugt in AbhƤngigkeit der registrierten Leistung ein Ausgangssignal fĆ¼r ein SteuergerƤt des LĆ¼ftungsgerƤts. Dieses Signal kann auf verschiedene Art und Weise die Information Ć¼ber die registrierte Leistung weitergeben, beispielsweise durch eine entsprechend angepasste Spannung, durch eine angepasste Frequenz oder mittels anderweitiger elektrischer KenngrĆ¶ĆŸen.The FIGS. 8a and 8b show the beam path of a laser beam 62 of a ventilation device according to the invention in the range of a measuring section between a transmitting device 64 and a receiving device 66. The transmitting device 64 has a laser module 68 and a collimator lens 70, which expands the laser beam 62 emanating from the laser module 68 somewhat. The laser beam 62 passes through the measuring path and hits the photoelectric sensor 72 in the receiving device. The photoelectric sensor 72 is formed with respect to its surface, and the laser beam 62 is adjusted so that the laser beam 62 is fully unbroken and undeflected from the photoelectric sensor 72 is detected and its surface is largely completely irradiated. The photoelectric sensor 72 generates an output signal for a control unit of the ventilation unit as a function of the registered power. This signal can in various ways pass on the information about the registered power, for example by a correspondingly adapted voltage, by an adapted frequency or by other electrical characteristics.

Figur 8a zeigt den ungebrochenen und nicht abgelenkten Zustand des Laserstrahls 62. In diesem Zustand wird die maximale Leistung vom photoelektrischen Sensor 72 registriert und ein entsprechendes Signal an das nicht dargestellte SteuergerƤt weitergegeben. Wenn ein solch es Signal gleichbleibend an das SteuergerƤt weitergegeben wird, wird dieses vom SteuergerƤt dahingehend interpretiert, dass keine Kochwrasen und WasserdƤmpfe auf der Messstrecke vorhanden sind und dass keine Aktivierung eines Ventilators des LĆ¼ftungsgerƤts erforderlich ist. FIG. 8a shows the unbroken and undeflected state of the laser beam 62. In this state, the maximum power is registered by the photoelectric sensor 72 and passed a corresponding signal to the control unit, not shown. If such a signal is constantly transmitted to the control unit, this is interpreted by the control unit as meaning that there are no cooking sparks and water vapors on the measuring section and that no activation of a fan of the ventilation unit is required.

Figur 8b zeigt einen zweiten Zustand derselben Messstrecke. In diesem zweiten Zustand befindet sich Wasserdampf 74 auf der Messstrecke. Der von der Sendeeinrichtung 64 ausgehende Laserstrahl 62 wird durch die verschiedenen Wasserdampfkonzentrationen gebrochen und trifft daher abgelenkt und somit nur teilweise auf den photoelektrischen Sensor 72. Ein Anteil 62a trifft den photoelektrischen Sensor 72 nicht, so dass die vom photoelektrischen Sensor 72 registrierte Leistung nur die eines verbleibenden Anteils 62b ist. Eine elektrische KenngrĆ¶ĆŸe, die Auskunft Ć¼ber die GrĆ¶ĆŸe dieses Anteils gibt, wird an das SteuergerƤt in Form eines entsprechenden Signals weitergegeben. Dieses kann dann dementsprechend mittels einer Aktivierung bzw. einer Leistungssteuerung des Ventilators das Absaugen des Wasserdampfs hervorrufen. Ebenso kƶnnten mit dem Bezugszeichen 74 auch Luftschlieren bezeichnet sein, die teilweise auch mit bloƟem Auge sichtbar sind. FIG. 8b shows a second state of the same measuring section. In this second state, water vapor 74 is on the measuring section. The laser beam 62 emanating from the transmitting device 64 is refracted by the various water vapor concentrations and therefore deflects, and thus only partially, onto the photoelectric sensor 72. A portion 62a does not strike the photoelectric sensor 72, so that the power registered by the photoelectric sensor 72 is only one of the photoelectric sensor 72 remaining portion is 62b. An electrical parameter which gives information about the size of this component is forwarded to the control unit in the form of a corresponding signal. This can then cause by means of an activation or a power control of the fan, the suction of water vapor. Likewise, the reference numeral 74 could also be used to designate air streaks, which are also partially visible to the naked eye.

Aus den Figuren 8a und 8b ist die reine Ablenkung des Laserstrahls 62 und die daraus folgende VerƤnderung der registrierten Leistung ersichtlich. Die Ventilatorsteuerung kann derart erfolgen, dass dieser Anteil unmittelbar als Kriterium zur Registrierung von Luftbewegungen oder Luftverunreinigungen wie Kochwrasen herangezogen wird und ein unmittelbares VerhƤltnis zwischen registrierter Leistung und Luftbewegungen bzw. Luftverunreinigungen angenommen wird. Die Steuerung des Ventilators kann aber zusƤtzlich oder ausschlieƟlich auch anhand der dynamischen VerƤnderung der registrierten Leistung erfolgen. Bei einer derartigen Steuerung wird vom SteuergerƤt beispielsweise ausgewertet, mit welcher Frequenz und/oder welcher Amplitude sich die registrierte Leistung verƤndert. Die Frequenz der Leistung ist bei einer groƟen Menge an Kochwrasen besonders hoch, so dass eine Steuerung des Ventilators in AbhƤngigkeit der Frequenz zu sehr guten Ergebnissen fĆ¼hrt.From the FIGS. 8a and 8b is the pure deflection of the laser beam 62 and the consequent change in registered power apparent. The fan control can be such that this proportion is used directly as a criterion for the registration of air movements or air contaminants such as cooking turf and a direct relationship between registered power and air movements or air pollution is assumed. The control of the fan However, it can be done additionally or exclusively based on the dynamic change of the registered service. In such a controller, the control unit evaluates, for example, with which frequency and / or amplitude the registered power changes. The frequency of the power is particularly high with a large amount of cooking turf, so that a control of the fan as a function of the frequency leads to very good results.

Ein zu dem in den Figuren 8a und 8b dargestellten Auswertungssystem alternatives Verfahren zeigen die Figuren 9 mit dem schematischen Aufbau sowie die Figuren 11 und 12.One to the in the FIGS. 8a and 8b The evaluation system shown alternative methods show the Figures 9 with the schematic structure and the FIGS. 11 and 12 ,

Fig. 9 zeigt in Anlehnung an Figur 1 bzw. 4 und Figur 7 einen Sender 122 mit einer Laserdiode bzw. ein Lasermodul. Davor sitzt eine Kollimatorlinse 123, aus der der entsprechend aufgeweitete und parallele Laserstrahl 125 austritt. Er wird an dem Reflektor 130, der auch ein sogenanntes Katzenauge sein kann, reflektiert. Dies kann unter UmstƤnden auch mehrfach erfolgen, wie zuvor ausgefĆ¼hrt worden ist. Der reflektiertte Laserstrahl 15 lƤuft durch eine Fresnellinse 127 auf den EmpfƤnger 124 bzw. dessen Sensor 92. Das von dem Sensor 92 erfasste elektrische Signal wird an den A/D-Wandlereingang und damit an den Steuerschaltkreis 150 gegeben. Dieser Steuerschaltkreis 150 kann ein M icrocontroller sein und neben der Steuerung des Senders 122 Ć¼ber den PWM-Ausgang 154 den Motor bzw. die Leistungselektronik 160 steuern. Fig. 9 indicates by analogy FIG. 1 or 4 and FIG. 7 a transmitter 122 with a laser diode or a laser module. In front of it sits a collimator lens 123 from which the correspondingly expanded and parallel laser beam 125 exits. It is reflected at the reflector 130, which may also be a so-called cat's eye. Under certain circumstances, this can also be done several times, as previously stated. The reflected laser beam 15 passes through a Fresnel lens 127 to the receiver 124 and its sensor 92. The detected by the sensor 92 electrical signal is applied to the A / D converter input and thus to the control circuit 150. This control circuit 150 may be a microcontroller and, in addition to the control of the transmitter 122, control the motor or the power electronics 160 via the PWM output 154.

In dem Steuerschaltkreis sitzt dabei die Intelligenz, um anhand der vorbeschrieben und vor allem nachfolgend beschriebenen VorgƤnge die Dunstabzugshaube zu steuern. Dies soll insbesondere in AbhƤngigkeit von dem Zustand an der Kochmulde 12 automatisch erfolgen und sowohl ohne Eingreifen einer Bedienperson auskommen als auch die Abzugsfunktion mƶglichst effizient und gut durchzufĆ¼hren.In this case, the intelligence sits in the control circuit in order to control the extractor hood on the basis of the above-described and above all described processes. This should be done automatically, in particular depending on the state of the cooktop 12 and both get along without intervention of an operator and perform the trigger function as efficiently and well.

Bei diesem Verfahren zur Ermittlung von LĆ¼ftungsbedarf ist der Durchmesser der Laser-Leuchtpunkte 90, die durch das Interferenzbild sowie auch die Fresnel-Linse gemƤƟ Figur 9 vor dem EmpfƤnger erzeugt werden, wesentlich grĆ¶ĆŸer als der photoelektrische Sensor 92. Die Figuren 11 und 12 zeigen nur einen kleinen Ausschnitt des Leuchtpunktes 90. Dieser ist durch eine Laserdiode mit vergleichsweise breitem Frequenzspektrum erzeugt, was zu einem Interferenzmuster mit Maxima 94 und Minima 96 fĆ¼hrt. Dieses Interferenzmuster ist hier als relativ unregelmƤƟig dargestellt, was es in der Praxis meistens ist wegen nicht optimaler Ausbildung der Fresnellinse sowie des sonstigen optischen Weges. Wichtig ist unabhƤngig von der konkreten GrĆ¶ĆŸe der Maxima 94 der konkrete Abstand zueinander, also die GrĆ¶ĆŸe der Minima 96.In this method for determining ventilation requirements, the diameter of the laser light spots 90, the through the interference image and the Fresnel lens according to FIG. 9 are generated in front of the receiver, much larger than the photoelectric sensor 92. The FIGS. 11 and 12 show only a small portion of the luminous point 90. This is generated by a laser diode with a comparatively wide frequency spectrum, resulting in an interference pattern with maxima 94 and minima 96. This interference pattern is shown here as relatively irregular, which is usually the case in practice because of not optimal formation of the Fresnel lens and the other optical path. Irrespective of the actual size of the maxima 94, it is important to have the concrete distance from one another, ie the size of the minima 96.

Wenn es zu einer Ablenkung des Laserstrahls 125 durch Luftbewegungen oder auch Partikel wie Dampf auf der Messstrecke kommt, so reichen schon sehr geringe Verschiebungen de Leuchtpunktes 90 bzw. somit der Maxima 94 und Minima 96 relativ zum photoelektrischen Sensor 92 aus, um die durch den Sensor gemessene IntensitƤt deutlich zu verƤndern. Da die Maxima 94 sozusagen Ć¼ber den Sensor 92 tanzen, also ihr Bewegungsweg weitaus grĆ¶ĆŸer ist als ihr Durchmesser und der des Sensors sowieso, wird an dem Sensor 92 weniger eine zeitlich gemittelte DurchschnittsintensitƤt erfasst. Vielmehr erfasst der Sensor 92 das vielfache bzw. hƤufige DarĆ¼berbewegen der verschiedenen Maxima als kurze Peaks. Da die Geschwindigkeit des Leuchtpunktes 90 und somit der Maxima 94 relativ groƟ ist und diese beim Bewegen den Sensor im wesentlichen ganz oder gar nicht bedecken, sind die Peaks gut zu unterscheiden bzw. zu erkennen. Da jedes Maximum 94 um sich herum Platz zu den benachbarten hat bzw. die Minima 96 dazwischen liegen, ist auch sichergestellt, dass nach jedem Passieren eines Maximums 94 Ć¼ber den Sensor 92 dieser kein Licht registriert im Minimum. So wird eine gute Unterscheidung erreicht. Wichtig ist hierbei also allgemein, dass die Maxima 94 bezĆ¼glich ihrer FlƤche in etwa so groƟ sind wie der Sensor 92, vorteilhaft zwei- bis viermal so groƟ. Dieses VerhƤltnis kann Ć¼ber die Maxima 94 oder den Sensor beeinflusst werden. Der Leuchtpunkt 90 wiederum ist vielfach grĆ¶ĆŸer. Er soll den Sensor 92 immer bedecken.If there is a deflection of the laser beam 125 by air movements or even particles such as steam on the measuring path, so very small shifts of the light spot 90 or thus the maxima 94 and minima 96 relative to the photoelectric sensor 92 sufficient to those by the sensor to significantly change the measured intensity. Since the maxima 94, so to speak, dance over the sensor 92, that is to say their movement path is much larger than their diameter and that of the sensor anyway, the sensor 92 detects less a time-averaged average intensity. Rather, the sensor 92 detects the multiple or frequent moving over of the various maxima as short peaks. Since the speed of the luminous point 90 and thus of the maxima 94 is relatively large and these cover the sensor essentially completely or not at all when moving, the peaks are easy to distinguish or to recognize. Since each maximum 94 has space around it or the minima 96 are in between, it is also ensured that after every passing of a maximum 94 via the sensor 92, no light is registered in the minimum. So a good distinction is achieved. It is therefore important in general that the maxima 94 are approximately as large in terms of their area like the sensor 92, advantageously two to four times as large. This ratio can be influenced by the maxima 94 or the sensor. The luminous point 90 in turn is many times larger. He should always cover the sensor 92.

Dies ist anhand des Unterschiedes zwischen den Figuren 11 und 12 ersichtlich. WƤhrend der Sensor im Zustand der Figur 11 im Bereich eines Minimums 96 liegt, so dass das Ausgangssignal 0 ist, liegt er nach einer Verschiebung des Maximums 94 im Vergleich zu der punktiert dargestellten frĆ¼heren Position um eine sehr geringe Distanz 98, in der Praxis unter 1 mm, schon groƟteils im Bereich dieses Maximums. Dies hat ein hohes Ausgangssignal zur Folge und es entsteht ein Peak. Die HƤufigkeit dieses Wechsels ergibt das Oszillieren bzw. dessen Frequenz. Die Differenz zwischen 0 und dem Maximum des Peaks ergibt die IntensitƤt und daraus wiederum kann die DƤmpfung abgeleitet werden.This is based on the difference between the FIGS. 11 and 12 seen. While the sensor is in the state of FIG. 11 is in the range of a minimum 96, so that the output signal is 0, it is after a shift of the maximum 94 compared to the dotted earlier position by a very small distance 98, in practice less than 1 mm, already largely in the range of this maximum , This results in a high output and produces a peak. The frequency of this change results in the oscillation or its frequency. The difference between 0 and the maximum of the peak gives the intensity and, in turn, the attenuation can be derived.

In Figur 10 ist im zeitlichen Verlauf dargestellt, wie die einzelnen Peaks als einzelne AusschlƤge im Gesamtverlauf zwar eine Art Rauschen darstellen. Es ist aber immer noch gut zu erkennen bzw. optisch Ć¼ber den Sensor 92 und elektronisch Ć¼ber die Steuerung auszuwerten. Dabei ist zu beachten, dass in Figur 10 die DƤmpfung a Ć¼ber der Zeit t bzw. Ć¼ber den zeitlichen Verlauf des Kochvorgangs dargestellt ist. Die eigentliche IntensitƤt der gemessenen Maxima 94 am Sensor 92 ist sozusagen der Kehrwert der DƤmpfung. Die Ƅnderung der Frequenz des Oszillierens bzw. Bewegens der Maxima ist daraus schwer zu erkennen, erst im Zusammenhang mit Figur 13.In FIG. 10 is shown over time, as the individual peaks as individual rashes in the overall course represent a kind of noise. However, it is still easy to recognize or optically evaluate via the sensor 92 and electronically via the controller. It should be noted that in FIG. 10 the attenuation a is shown over the time t or over the time course of the cooking process. The actual intensity of the measured maxima 94 on the sensor 92 is, so to speak, the reciprocal of the attenuation. The change in the frequency of oscillating or moving the maxima is difficult to recognize, only in connection with FIG. 13 ,

Im Zusammenhang mit Figur 13 wird dies nachfolgend erklƤrt. In Figur 13 ist das Signalverhalten dargestellt bei verschiedenen ZustƤnden, die den verschiedenen AblƤufen beim Kochvorgang entsprechen. Im Feld I sowie zu Beginn des Kochvorgangs bei Figur 10 sind DƤmpfung A und Oszillieren f gering, da sich noch nicht viel tut im Bereich der Dunstabzugshaube bzw. Ć¼ber einer Kochstelle 14 gemƤƟ Figur 2. Im Feld II ist die DƤmpfung gering aber das Oszillieren noch mittel, so dass hier bei wenig Dampfentwicklung noch einiges an Hitze vorhanden ist. Dies deutet auf das Ende eines Kochvorganges. Im Feld III ist die DƤmpfung mittel, aber das Oszillieren gering. Dies deutet im SchluƟ eher auf den Beginn eines Kochvorganges. Im Feld IV sind DƤmpfung und Oszillieren mittelgroƟ, so dass auf einen normalen Kochvorgang geschlossen werden kann. Insbesondere wird hier auch nur eine Kochstelle betrieben.In connection with FIG. 13 this will be explained below. In FIG. 13 the signal behavior is shown at different states, which correspond to the different processes during the cooking process. In field I and at the beginning of the cooking process at FIG. 10 Damping A and Oscillation f are low, because not much is happening in the range of the extractor hood or over a hotplate 14 according to FIG. 2 , In field II the damping is low but the oscillation still medium, so that there is still a lot of heat here with little steam. This indicates the end of a cooking process. In field III, the attenuation is moderate, but the oscillation is low. This suggests in the conclusion rather on the beginning of a cooking process. In box IV, damping and oscillation are medium in size, so that a normal cooking process can be concluded. In particular, only one hotplate is operated here.

Im Feld V ist die DƤmpfung a mittelgroƟ, wƤhrend das Oszillieren f deutlich zunimmt. Dies deutet auf mittelgroƟe Dampfentwicklung hin bei sehr groƟer Hitze, also eher auf einen starken Bratbetrieb. Im Feld VI wiederum bleibt das Oszillieren mittelgroƟ, wƤhrend die DƤmpfung deutlich zunimmt. Dies deutet auf einen sehr starken Kochbetrieb mit viel Dampfentwicklung bei nicht Ć¼bermƤƟiger Hitze. Im Feld VII schlieƟlich sind DƤmpfung und Oszillieren stark, was auf starken Koch- und Bratbetrieb hindeutet, beispielsweise bei Nutzung mehrerer Kochstellen, manche fĆ¼r Braten und manche fĆ¼r Kochen. Entsprechend kann man aus dem Verlauf in Figur 10 den Ablauf eines Kochvorgangs mit Beginn des ErwƤrmens bzw. Kochens, innerhalb des strichlierten Bereichs normalem Kochen und danach rechts des strichlierten Bereichs abschlieƟendem Ausklingen des Kochvorgangs mit RestwƤrme erkennen. Dies kann auch die Steuerung in dem Steuerungsverfahren fĆ¼r die Dunstabzugshaube entsprechend erkennen, damit deren Leistung sozusagen automatisch angepasst wird.In field V, the attenuation a is medium, while the oscillation f increases significantly. This points to medium-sized steam development at very high heat, so rather to a strong frying operation. In the field VI, in turn, the oscillation remains medium, while the attenuation increases significantly. This indicates a very strong cooking operation with a lot of steam and not excessive heat. Finally, in field VII, damping and oscillation are strong, indicating strong cooking and frying, for example when using several cooking zones, some for roasting and some for cooking. Accordingly one can from the course in FIG. 10 Recognizing the course of a cooking process with the beginning of heating or cooking, within the dashed area normal cooking and then right of the dashed area final conclusion of the cooking process with residual heat. This can also detect the control in the control method for the hood accordingly, so that their performance is adjusted automatically, so to speak.

Neben einem automatischen und angepassten Betrieb der Dunstabzugshaube kann so die Verunreinigung des Filters erfasst werden und ein Austauschen zw. Reinigen rechtzeitig angezeigt werden.In addition to an automatic and adapted operation of the extractor fan so the contamination of the filter can be detected and a replacement exchange between cleaning promptly displayed.

Claims (21)

  1. Ventilation device, particularly exhaust hood (10), having a drive unit (20) for producing an air flow, a control device (50) or a control circuit for controlling the drive unit (20) and a measurement section in the ventilation device in the vicinity of the air flow with a transmitter device (22; 29; 32; 40; 52; 64) and a receiver device (24; 29; 34; 42; 58; 66), in which the control device (50) or control circuit is constructed for controlling the drive unit (20) as a function of a signal generated by the receiver device (24; 29; 34; 42; 58; 66), in which the transmitter device (22; 29; 32; 40; 52; 64) is constructed for emitting a laser beam (25; 31; 38; 48, 62), characterized in that the control circuit or the control device (50) is constructed for evaluating the signal generated by receiver device (24; 29; 34; 42; 58; 66) with respect to air streaks in the measurement section.
  2. Ventilation device according to claim 1, characterized in that with regard to electric characteristic values such as its frequency, voltage or current strength, the signal generated by the receiver device (24; 29; 34; 42; 58; 66) is dependent on the intensity or power of the radiation received by said receiver device.
  3. Ventilation device according to claim 2, characterized in that the signal generated by the receiver device (24; 29; 34; 42; 58; 66) is only dependent on the radiation in a frequency range largely corresponding to the frequency range of the laser beam (25; 31; 38; 48).
  4. Ventilation device according to any of the preceding claims, characterized in that the receiver device (24; 29; 34; 42; 58; 66) has a photoelectric sensor (26; 72), which preferably has a photodiode or a photosensor.
  5. Ventilation device according to any of the preceding claims, characterized in that the receiver device (24) is equipped with filter means (29a), preferably a hollow duct (29a), said filter means (29a) restricting the angular range in which incident light (25; 28) is recorded by the receiver device.
  6. Ventilation device according to any of the preceding claims, characterized in that the drive unit (20) can be activated and deactivated by the control circuit or control device (50) on the basis of the signal received from the receiver device (24; 29; 34; 42; 58; 66) and can be controlled, preferably in stepless manner with respect to its power.
  7. Ventilation device according to any of the preceding claims, characterized in that the control circuit or control device (50) is constructed for controlling the drive unit (20) as a function of the intensity or power recorded by the receiver device (24; 29; 34; 42; 58; 66).
  8. Ventilation device according to any of the preceding claims, characterized in that the control circuit or control device (50) is constructed for controlling the drive unit (20) as a function of the intensity or power over time recorded by the receiver device (24; 29; 34; 42; 58; 66).
  9. Ventilation device according to any of the preceding claims, characterized in that the transmitter device (122) is a laser diode, preferably a multi-mode laser diode.
  10. Ventilation device according to any of the preceding claims, characterized in that the transmitter device (122) is constructed for emitting a laser beam (125), whose light spot (90) in the vicinity of receiver device (124) has areas of widely varying intensity, preferably in the form of an interference pattern (94, 96).
  11. Ventilation device according to claim 10, characterized in that the transmitter device (122) and the receiver device (124) are constructed in such a way that in operation the receiver device is always within the light spot (90).
  12. Ventilation device according to claim 10 or 11, characterized in that the transmitter device (122) and the receiver device (124) are constructed in such a way that the diameter of light spot (90) is at least 5 mm wider than the receiver device or its sensor (92), preferably at least 8 mm wider.
  13. Ventilation device according to any of the preceding claims, characterized in that the control circuit (150) or control device evaluate the output signal with respect to signal frequency and signal attenuation.
  14. Ventilation device according to any of the preceding claims, characterized in that the transmitter device (22; 64) and the receiver device (24; 66) are positioned facing one another on either side of the air flow in ventilation device (10) and the transmitter device (22; 64) emits in the direction of the receiver device (24; 66).
  15. Ventilation device according to any of the claims 1 to 13, characterized in that the transmitter device (29; 32; 40; 122) and the receiver device (29; 34; 42; 124) are so positioned that a laser beam (31; 38; 48; 125) emitted by the transmitter device reaches the receiver device reflected by at least one reflection device (30; 36; 44; 46; 130).
  16. Ventilation device according to claim 15, characterized in that there are at least two reflection devices (44; 46), which are so positioned and oriented that a laser beam (48) emanating from the transmitter device (40) is reflected at least twice by at least one reflection device (44; 46) on its way to the receiver device (42).
  17. Ventilation device according to claim 16, characterized in that the two reflection devices (44; 46) are facing and are parallel to one another.
  18. Ventilation device according to any of the preceding claims, characterized in that the transmitter device (122) has a laser diode for emitting the laser beam (25; 48; 125), particularly a multimode laser diode.
  19. Ventilation device according to any of the preceding claims, characterized in that the transmitter device (64, 122) has an optical device, preferably a collimator lens (70; 123), in the propagation path of the laser beam (48; 125).
  20. Ventilation device according to any of the preceding claims, characterized in that the divergence of the laser beam (25; 48) can be adjusted by the control device (50) or the control circuit.
  21. Ventilation device according to any of the preceding claims, characterized by at least two transmitter devices for emitting laser beams (25; 48) with a different divergence.
EP05810199A 2004-10-20 2005-10-20 Ventilation device Not-in-force EP1802919B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05810199T PL1802919T3 (en) 2004-10-20 2005-10-20 Ventilation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004052201 2004-10-20
DE102005015754A DE102005015754A1 (en) 2004-10-20 2005-03-30 Ventilation unit
PCT/EP2005/011296 WO2006042758A1 (en) 2004-10-20 2005-10-20 Ventilation device

Publications (2)

Publication Number Publication Date
EP1802919A1 EP1802919A1 (en) 2007-07-04
EP1802919B1 true EP1802919B1 (en) 2013-03-20

Family

ID=35637121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05810199A Not-in-force EP1802919B1 (en) 2004-10-20 2005-10-20 Ventilation device

Country Status (6)

Country Link
US (1) US7442119B2 (en)
EP (1) EP1802919B1 (en)
DE (1) DE102005015754A1 (en)
ES (1) ES2408255T3 (en)
PL (1) PL1802919T3 (en)
WO (1) WO2006042758A1 (en)

Families Citing this family (20)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US20110005507A9 (en) 2001-01-23 2011-01-13 Rick Bagwell Real-time control of exhaust flow
WO2006012628A2 (en) 2004-07-23 2006-02-02 Halton Company Improvements for control of exhaust systems
US20080274683A1 (en) * 2007-05-04 2008-11-06 Current Energy Controls, Lp Autonomous Ventilation System
US20090048714A1 (en) * 2007-08-17 2009-02-19 Maxitrol Company Control system and method for controlling an air handling fan for a vent hood
US20090061752A1 (en) 2007-08-28 2009-03-05 Current Energy Controls, Lp Autonomous Ventilation System
EP2787286A1 (en) 2008-04-18 2014-10-08 OY Halton Group, Ltd. Exhaust apparatus, system, and method for enhanced capture and containment
MX2011005770A (en) 2008-12-03 2011-08-15 Halton Group Ltd Oy Exhaust flow control system and method.
KR101623975B1 (en) * 2009-05-11 2016-05-24 ģ—˜ģ§€ģ „ģž ģ£¼ģ‹ķšŒģ‚¬ Cooking appliance
CN102374563B (en) * 2010-08-17 2015-11-25 博č„æ华ē”µå™Øļ¼ˆę±Ÿč‹ļ¼‰ęœ‰é™å…¬åø There is range hood and the control method thereof of automatic flue gas detection device
CN102374562B (en) * 2010-08-17 2015-11-25 博č„æ华ē”µå™Øļ¼ˆę±Ÿč‹ļ¼‰ęœ‰é™å…¬åø There is the range hood of automatic flue gas detection device
DE102012024975A1 (en) 2012-12-20 2014-06-26 Diehl Ako Stiftung & Co. Kg Extractor hood and method for controlling the operation of an extractor hood
US9441810B2 (en) 2013-03-08 2016-09-13 Kason Industries, Inc. Cooking hood LED light
DE102013022023B4 (en) 2013-12-20 2020-10-08 Diehl Ako Stiftung & Co. Kg Cooker hood and method of controlling the operation of a cooker hood
CN105318380A (en) * 2014-08-01 2016-02-10 é’å²›ęµ·å°”ę™ŗčƒ½ęŠ€ęœÆē ”å‘ęœ‰é™å…¬åø Range hood and lampblack detection method and wind speed regulating method of range hood
CN107478576B (en) * 2016-06-07 2024-02-20 å®ę³¢ę–¹å¤ŖåŽØå…·ęœ‰é™å…¬åø Protective structure of oil smoke sensor
CN107478609B (en) * 2016-06-07 2023-10-20 å®ę³¢ę–¹å¤ŖåŽØå…·ęœ‰é™å…¬åø Photoelectric type oil smoke sensor
CN107478610B (en) * 2016-06-07 2023-09-15 å®ę³¢ę–¹å¤ŖåŽØå…·ęœ‰é™å…¬åø Photoelectric type oil smoke sensor
CN109556155B (en) 2017-09-27 2020-10-02 čæŖ尔é˜æę‰£åŸŗ金äø¤åˆå…¬åø Oil smoke detection device for range hood and range hood
US11137331B2 (en) * 2018-08-21 2021-10-05 Viavi Solutions Inc. Multispectral sensor based alert condition detector
US11125446B2 (en) * 2019-11-25 2021-09-21 Bsh Home Appliances Corporation Ultrasonic filtration device for extractor hood

Family Cites Families (27)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3723746A (en) 1970-01-07 1973-03-27 Nat Res Dev Fire detecting apparatus sensitive to refraction
US3743430A (en) * 1971-11-12 1973-07-03 Shell Oil Co Light transmission monitor
US3809480A (en) * 1972-07-24 1974-05-07 Gen Dynamics Corp Method and apparatus for surveying the velocities of a flow field
US3932137A (en) * 1973-11-08 1976-01-13 Aero-Dyne Manufacturing, Inc. Burner with automatic high-low operation
US4781460A (en) * 1986-01-08 1988-11-01 Coulter Electronics Of New England, Inc. System for measuring the size distribution of particles dispersed in a fluid
AT390325B (en) * 1988-03-11 1990-04-25 Tabarelli Werner INTERFEROMETRIC DEVICE FOR MEASURING CHANGES IN POSITION OF A MOVING COMPONENT
US4903685A (en) * 1989-01-24 1990-02-27 Melink Stephen K Variable exhaust controller for commercial kitchens
US4980571A (en) * 1989-09-22 1990-12-25 Philip Morris Incorporated Methods and apparatus for measuring sidestream smoke
DE4005363A1 (en) * 1990-02-21 1991-08-22 Diehl Gmbh & Co CIRCUIT FOR CONTROLLING A FAN
GB9011086D0 (en) * 1990-05-17 1990-07-04 Jackson Roger G Tomographic monitoring of fluid flows
DE4243938A1 (en) * 1992-12-23 1994-06-30 Bosch Siemens Hausgeraete Extractor hood
JPH06281219A (en) * 1993-03-30 1994-10-07 Mitsubishi Electric Corp Air ventilation and air blowing device
DE4418409C1 (en) 1994-05-26 1995-08-17 Metallgesellschaft Ag Computer controlled air extractor for compost rotting building
DE19509612C1 (en) * 1995-03-16 1996-03-21 Rentschler Reven Lueftungssyst Steam evacuation hood for cooking positions
FR2732475B1 (en) * 1995-04-03 1997-04-30 Commissariat Energie Atomique METHOD AND DEVICE FOR CONTINUOUS MONITORING OF DUST ACTIVITY
US5764142A (en) 1995-09-01 1998-06-09 Pittway Corporation Fire alarm system with smoke particle discrimination
GB9606423D0 (en) * 1996-03-27 1996-06-05 Univ Hertfordshire An instrument for the real-time classification of particle shape within clouds and aerosols
FR2754347B1 (en) * 1996-10-09 1998-11-27 Seb Sa SMOKE DETECTION DEVICE FOR COOKING APPARATUS
US5882254A (en) * 1997-06-09 1999-03-16 Siemens Building Technologies, Inc. Laboratory fume hood controller utilizing object detection
JPH1123460A (en) * 1997-06-30 1999-01-29 Hochiki Corp Smoke sensor
US6170480B1 (en) 1999-01-22 2001-01-09 Melink Corporation Commercial kitchen exhaust system
DE20021349U1 (en) 2000-12-16 2001-04-26 Pfeiffer Georg Monitoring and / or control device
US20110005507A9 (en) * 2001-01-23 2011-01-13 Rick Bagwell Real-time control of exhaust flow
EP1241443A1 (en) * 2001-03-13 2002-09-18 Leica Geosystems AG Method and device for determining the influence of dispersion on a measurement
DE20121682U1 (en) 2001-05-23 2003-03-13 Preussag Ag Minimax Self-aspirating fire detection system, for monitoring plant and buildings at risk of fire or explosions, has device for controlled aspiration of surrounding air from a monitoring area and an optical measuring system
US6822216B2 (en) * 2002-01-08 2004-11-23 Honeywell International, Inc. Obscuration detector
US6583726B1 (en) * 2002-01-14 2003-06-24 Vent-Defense, Llc Apparatus for detecting and preventing chemical or biological contamination of buildings

Also Published As

Publication number Publication date
US7442119B2 (en) 2008-10-28
US20070184771A1 (en) 2007-08-09
DE102005015754A1 (en) 2006-04-27
PL1802919T3 (en) 2013-08-30
ES2408255T3 (en) 2013-06-19
WO2006042758A1 (en) 2006-04-27
EP1802919A1 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
EP1802919B1 (en) Ventilation device
EP3610199B1 (en) Determining a degree of contamination in a cooking chamber
EP2667218A2 (en) Energy efficient 3D sensor
WO2015118003A1 (en) Illumination device having a laser light source and a light wave conversion element
WO2002095446A1 (en) Device for optically measuring distances
EP1729108B1 (en) Particle concentration measuring device and measuring method
EP2210124A1 (en) Device for optical distance measurement
DE102018119902B4 (en) Laser processing device that detects contamination of an optical system before laser processing
DE10160623B4 (en) Apparatus and method for monitoring a laser processing operation, in particular a laser welding operation
DE2413482B2 (en) Device for monitoring a single burner flame in a combustion chamber having a plurality of burner flames
EP3762704A1 (en) Laser-induced incandescent particle sensor comprising a confocal arrangement of a laser spot and of a thermal radiation spot
DE2607417A1 (en) CIRCUIT ARRANGEMENT FOR SCANING A SURFACE
EP0383352A1 (en) Sensor for an automatically steered vehicle
EP0852330A1 (en) Method and device for operational temperature measurement in at least one area of a glass or glass ceramic body subjected to high operational temperature changes
EP1903352A1 (en) Opto-electronic sensor unit and method for operating an opto-electronic sensor unit
DE102013022023B4 (en) Cooker hood and method of controlling the operation of a cooker hood
DE10305876A1 (en) Regulation method for a laser cutting process generates a desired cutting geometry by evaluation of at least one sensor-measured parameter of the illumination process in order to evaluate and regulate laser focus and movement
DE102010060821A1 (en) Cooking appliance has measuring device having sensors arranged in pressure chamber for determining absorption of propagating electromagnetic radiation in certain spectral range by atmosphere in inner space
WO2011151214A1 (en) Welding device and method for welding
DE102006013960B4 (en) Method and apparatus for laser welding a first workpiece to a second workpiece
EP3835752A1 (en) Method for monitoring the media flow of media of a droplet jet
DE19828592B4 (en) Method and device for measuring a spray jet emerging from a spray nozzle
WO2006092300A2 (en) Sensor assembly for optically detecting the edges of a product and width-measurement method
DE10055832C2 (en) Control device for setting a fuel-combustion air mixture for a burner operated with oil or gas
DE102008002263A1 (en) Laser device for welding has coupling unit located between optical processing device and jet guide device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120322

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 602316

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013574

Country of ref document: DE

Effective date: 20130516

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WAGNER PATENT AG, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2408255

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130621

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131022

Year of fee payment: 9

Ref country code: AT

Payment date: 20131021

Year of fee payment: 9

Ref country code: CH

Payment date: 20131023

Year of fee payment: 9

Ref country code: SE

Payment date: 20131022

Year of fee payment: 9

26N No opposition filed

Effective date: 20140102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20131021

Year of fee payment: 9

Ref country code: NL

Payment date: 20131021

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BAECHERSTRASSE 9, 8832 WOLLERAU (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013574

Country of ref document: DE

Effective date: 20140102

BERE Be: lapsed

Owner name: E.G.O. ELEKTRO-GERATEBAU G.M.B.H.

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20141024

Year of fee payment: 10

Ref country code: FR

Payment date: 20141021

Year of fee payment: 10

Ref country code: TR

Payment date: 20141013

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 602316

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141020

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131020

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051020

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141021

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141020

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141020

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161026

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161025

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013574

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171020