EP1206585B1 - Hochdichtes, bei niedrigen temperaturen gesintertes material aus wolfram - Google Patents

Hochdichtes, bei niedrigen temperaturen gesintertes material aus wolfram Download PDF

Info

Publication number
EP1206585B1
EP1206585B1 EP00953219A EP00953219A EP1206585B1 EP 1206585 B1 EP1206585 B1 EP 1206585B1 EP 00953219 A EP00953219 A EP 00953219A EP 00953219 A EP00953219 A EP 00953219A EP 1206585 B1 EP1206585 B1 EP 1206585B1
Authority
EP
European Patent Office
Prior art keywords
tungsten
sintering
less
powder
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00953219A
Other languages
English (en)
French (fr)
Other versions
EP1206585A1 (de
Inventor
Guy Nicolas
Pascal Mahot
Marc Voltz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cime Bocuze SA
Original Assignee
Cime Bocuze SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cime Bocuze SA filed Critical Cime Bocuze SA
Publication of EP1206585A1 publication Critical patent/EP1206585A1/de
Application granted granted Critical
Publication of EP1206585B1 publication Critical patent/EP1206585B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles

Definitions

  • the technical sector of the present invention is that of sintered materials based on tungsten, intended especially in the manufacture of refractory products high purity, greater than 99%, high relative density, greater than 93%, and of more or less complex forms, generally with thin wall as by example the melting furnace crucibles.
  • This treatment at very high temperature or sintering is carried out between 2000 and 2800 ° C during times of isothermal maintenance of the order of 3 to 15 hours.
  • he leads to relatively grain sintered products coarse (20 to 80 ⁇ m average size measured by counting on micrograph) with a density varying from 17.4 to 18.5, i.e. a relative density ranging from 90 to 96% of the theoretical density of 19.3 and this with structures all the more heterogeneous as the products sintered are bulky.
  • This heterogeneity is reflected not only by a great dispersion of the sizes of tungsten grains, but also by a great dispersion pore sizes of the residual porosity around the average values which can vary from 3 to 10 ⁇ m.
  • isostatic compression processes are also used, combining for example cold isostatic compression with hot isostatic compression and then heat treatment at medium temperature.
  • cold isostatic compression with hot isostatic compression and then heat treatment at medium temperature.
  • tungsten can be activated by adding elements such as nickel, cobalt, palladium, even iron and platinum. These activating elements are generally mixed in the form of metallic powder with tungsten powder, but can also be introduced in the form of oxides or salts decomposable at low temperature in tungsten powder or tungsten oxide WO 3 before co-reduction under hydrogen.
  • the object of the invention is to define a material tungsten-based sinter capable of satisfying a set of severe physico-chemical characteristics and thereby exhibiting a fine-grained structure and very low porosities evenly distributed, essential for making in particular sintered parts in tungsten of more or less complex or weak form thickness.
  • Another object of the invention is a method direct production of said sintered material with properties and shape required in the best economic conditions of production, in particular avoiding additional wrought operations and machining in most cases if you don't search an accuracy of more or less 0.5 mm, but also in implementing sintering conditions at sufficiently low temperature (T ⁇ 1600 ° C) to allow the use of industrial resources conventionally used for example for manufacturing tungsten alloys with liquid sintering (heavy metal, pseudo alloy).
  • the percentage by mass of cobalt is less than 0.08% and the percentage by mass of nickel equal to zero, and the size of the tungsten grains of equiaxed form is between 2 and 6 ⁇ m, with porosities uniformly distributed and with an elementary volume of less than 4 ⁇ m 3 for more than 95% of the grain population.
  • the percentage by mass of nickel is less than 0.08% and the percentage by mass of cobalt equal to zero, and the size of the tungsten grains of equiaxed form is less than 28 ⁇ m, with uniformly distributed porosities and of volume elementary less than 4 ⁇ m 3 for more than 95% of the grain population.
  • the sintering is carried out in the absence activator by direct illumination of the material at a bearing temperature between 1,500 and 1,600 ° C, with a holding time between 30 minutes and 3 hours.
  • the sintering is carried out in presence of activator by direct lighting at a bearing temperature between 1,150 and 1,500 ° C, with a holding time between 10 and 90 minutes.
  • the sintering is carried out in presence of activator by indirect lighting at a bearing temperature between 1,500 and 1,600 ° C, with a holding time between 15 to 30 minutes.
  • a particular application of the sintered material to tungsten base according to the invention resides in the manufacture of complex or wall-shaped products thin.
  • Another special application of sintered material based on tungsten obtained according to one of the invention resides in the manufacture of components such as crucibles refractory.
  • the great compressibility of the powders submicrones allows almost direct shaping of complex or thin products it can also be sintered at temperatures not exceeding not 1600 ° C instead of 2000 ° C, even 2400 ° C of art previous, given a significant activation of the submicron powder linked to its very specific surface high.
  • sintering activators such as Ni and / or Co in very small quantities (800 ppm maximum) in submicron tungsten powder allows to further significantly and unexpectedly lower the sintering temperature between 1,150 and 1,450 ° C, with holding time between 10 and 30 minutes.
  • the process differs from the prior art which considers that the contribution of activator, in this case the nickel, must be at least 0.15% by mass in submicron tungsten powder to be effective, this which corresponds substantially to a nickel monolayer whose diffusion at the joints of the tungsten grains is very fast during sintering.
  • tungsten crucibles varying from 1 to 15 mm for heights between 40 and 200 mm and diameters between 20 and 80 mm.
  • table 1 the main physicochemical characteristics of four examples of tungsten powder with different particle sizes: 4 to 5 ⁇ m powder A; 2 to 3 ⁇ m powder B; 0.5 to 0.8 ⁇ m powder C and 0.1 to 0.4 ⁇ m powder D.
  • powders A and B are powders conventionally used in the technical sector, while powders C and D are powders selected as part of the invention.
  • the powders fine submicron C or ultrafine D are distinguished from powders A and B generally used in the art anterior by a lower particle size spread non-friable agglomerates (measured by diffraction laser), by greater compressibility according to law of Heckel and above all by greater sinterability measured by the relative withdrawal percentage after 1 hour isothermal maintenance under dry hydrogen.
  • Example 1 dispersoid 0% Sintering temperature 2400 ° C (level) Sintering time 10 hours Density 18.4 Relative density 95.4% Grain diameter 44-62 ⁇ m Porosity 3-10 ⁇ m 3 Hardness HV 30 325 HBW 5/250 285
  • Example 2 dispersoid 0.8% Sintering temperature 2,200 ° C (level) Sintering time 4 hours Density 17.6 Relative density 93% Grain diameter 8-15 ⁇ m Porosity 1-3 ⁇ m 3 Hardness HV 30 280 HBW 5/250 206
  • Example 3 dispersoid 1.6% Sintering temperature 2,200 ° C (level) Sintering time 4 hours Density 17.8 Relative density 94% Grain diameter 6-9 ⁇ m Porosity 1-3 ⁇ m 3 Hardness HV 30 280 HBW 5/250 200
  • Figures 1 and 2 representing micrographs (respectively Gx500 and Gx200) sintered material without dispersoid or binder according to example 1, they appear for a tungsten powder chosen according to the prior art a majority of porosities in this case, with an average diameter of 3 ⁇ m with heterogeneous distribution for 90% of the population (Figure 1), and a high proportion of grains of tungsten with an average size of around 50 ⁇ m after attack ( Figure 2).
  • a high purity submicron tungsten powder C or D (W> 99.9%) will be chosen which is then compressed as such in a shaping tool (punches). and cylindrical or frustoconical dies for the production of crucibles for example) at pressures preferably between 10 8 and 8.10 8 Pa.
  • the tungsten powder can be according to the invention added by successive dilutions of an activator of very low sintering ( ⁇ 800 ppm) such as iron, palladium, but preferably nickel and / or cobalt.
  • an activator of very low sintering ⁇ 800 ppm
  • iron, palladium, but preferably nickel and / or cobalt ⁇ 800 ppm
  • This sintering activator is generally in the form of a metal powder whose Fisher diameter does not exceed 3 to 4 ⁇ m.
  • the supply of activator can also be carried out by mixing the tungsten powder or tungsten oxide WO 3 with the activator itself in the form of powdery oxide (NiO, CoO) or in the form of a salt in an aqueous medium (Ni (NO 3 ) 2 , Co (NO 3 ) 2 , NiCl 2 , CoCl 2 ) and, after drying, the mixture is reduced under hydrogen at approximately 800 ° C.
  • the amount of binder must remain low and not exceed 0.4% by mass so as not to create over-porosity during its decomposition and thereby alter the characteristics of the material, in particular its density and hardness.
  • the material is sintered under relatively dry hydrogen at speeds of average temperature rise which can vary from 1 to 15 ° C / minute up to and including the desired temperature level between 1,150 and 1,600 ° C, for holding times between 10 minutes and 3 hours.
  • heating by direct illumination of the material to be sintered can be done in preference to bearing temperatures between 1,500 and 1,600 ° C for holding times varying from 30 minutes to 3 hours. These bearing temperatures and these times of support can be further significantly lowered (between 1,500 and 1,150 ° C for holding times between 10 and 90 minutes) with activated tungsten powders.
  • Example 4 shows that a first series of 8 crucibles sintered at 1500 ° C for 3 hours has exactly the same structure as a second series of 8 crucibles sintered at 1550 ° C for 30 minutes with a low density dispersion in both cases, a homogeneous distribution of porosities of the order of 1 ⁇ m (volume ⁇ 4 ⁇ m 3 ).
  • the third and fourth series of crucibles according to Example 5 made from the same powder tungsten, but in the presence of 0.15% by mass of binder then sintered respectively at 1500 ° C for 3 hours and at 1550 ° C for 30 minutes, also show structural characteristics very similar to those from previous series.
  • the grain sizes of tungsten does not exceed 6 ⁇ m.
  • the Gx500 micrograph of the sintered material at 1500 ° C. without attack, according to example 4, represented in FIG. 5 shows a low dispersion of the density and a homogeneous distribution of the porosities of size of the order of 1 ⁇ m (volume ⁇ 4 ⁇ m 3 ) for 99% of the population. Note an absence of porosities from 5 to 20 ⁇ m.
  • the desired structural characteristics are obtained with porosities of the order of 1 ⁇ m ( ⁇ 4 ⁇ m 3 ).
  • the micrograph represented in FIG. 9 shows the structure of this tungsten material obtained according to Example 6, without attack, having a distribution of the porosity of uniform size and an absence of porosities from 5 to 20 ⁇ m.
  • Figure 10 (Gx200 micrograph) shows grain sizes varying from 20 to 30 ⁇ m after attack.
  • Figure 11 (Gx500 micrograph without attack) shows a distribution of the porosity with a homogeneous size distribution of the order of 1 ⁇ m ( ⁇ 4 ⁇ m 3 ) representing 90% of the population and the presence of some residual porosities from 5 to 20 ⁇ m representing approximately 10% of the pore population.
  • Figure 12 (Gx200 micrograph after attack) shows a grain size of 20 to 30 ⁇ m.
  • the sintering with indirect lighting (screening by a protective layer of alumina) of the crucibles produced from powder activated by 660 ppm of Ni and in the absence of a binder according to Example 8, requires increasing the temperatures at 1500 ° C-1550 ° C, or even 1600 ° C, for holding times of 15 to 30 minutes if we want to achieve the desired structural characteristics, in particular in density (> 98%) and hardness (> 400 HV0 , 3) with a homogeneous distribution of the porosities, 95% of which consist of pores of the order of 1 ⁇ m ( ⁇ 4 ⁇ m 3 ) as shown in FIG. 13 (micrograph at Gx500 without attack). Note however a significant increase in the sizes of the tungsten grains centered on 40 ⁇ m according to FIG. 14 (micrograph Gx200 after attack).
  • the high purity tungsten material according to the invention provides an excellent compromise between the characteristics of density, hardness, toughness, and as a result to be freed from complementary operations costly wrought and machined. Furthermore, his process of preparation by almost final shaping direct and sintering at temperatures not exceeding 1600 ° C and therefore allowing the use of means industrialists, also contributes to lowering significantly its development cost.
  • This tungsten material finds its best application in the manufacture of refractory products complex in shape or thin walled (0.4 to 15 mm) such as refractory crucibles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Claims (10)

  1. Gesinterter Werkstoff aus Wolfram von durchschnittlicher relativer Dichte in Bezug auf jene von Wolfram von größer als 93 % und einer Härte HV0,3≥400, dadurch gekennzeichnet, dass er umfasst:
    Wolfram mit einer Reinheit von größer als 99,9%,
    ein Additiv, das aus Nickel- und/oder Kobaltpulver gemäß einem Massenprozentsatz von kleiner oder gleich 0,08% besteht, wobei der Rest durch unvermeidliche Verunreinigungen gebildet wird,
    und dass die durchschnittliche Größe der Wolframkörner in gleichachsiger Form, die zwischen 2 und 40 µm liegt, für eine gegebene durchschnittliche Größe gleichmäßig verteilt ist,
    und die Restporen gleichmäßig mit wenigsten 85% der Grundgesamtheit dieser Poren mit einem Einheitsvolumen von kleiner als 4 µm3 verteilt sind.
  2. Gesinterter Werkstoff aus Wolfram nach Anspruch 1, dadurch gekennzeichnet, dass der Massenanteil in Prozent von Kobalt kleiner als 0,08% und der Massenanteil in Prozent von Nickel gleich Null ist und dass die Größe der Wolframkörner in gleichachsiger Form zwischen 2 und 6 µm liegt, mit gleichmäßig verteilten Poren und Elementarvolumen kleiner als 4 µm3 für mehr als 95% der Grundgesamtheit der Körner.
  3. Gesinterter Werkstoff aus Wolfram nach Anspruch 1, dadurch gekennzeichnet, dass der Massenanteil in Prozent von Nickel kleiner als 0,08% und der Massenanteil in Prozent von Kobalt gleich Null ist und dass die durchschnittliche Größe der Wolframkörner in gleichachsiger Form kleiner als 28 µm ist, mit gleichmäßig verteilten Poren und Elementarvolumen kleiner als 4 µm3 für mehr als 95% der Grundgesamtheit der Körner.
  4. Gesinterter Werkstoff aus Wolfram nach Anspruch 3, dadurch gekennzeichnet, dass es 660 ppm Nickel umfasst und dass es eine durchschnittliche Dichte nahe von 18,9, eine relative Dichte nahe von 98,1%, eine durchschnittliche Korngröße von 28 µm, mit gleichmäßig verteilten Poren und Elementarvolumen kleiner als 4 µm3 für 99% der Grundgesamtheit der Körner aufweist.
  5. Verfahren zur Herstellung eines gesinterten Werkstoffes aus Wolfram nach Anspruch 1, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
    a) Auswahl eines Wolframpulvers mit einer Reinheit von größer als 99,9% und einem durchschnittlichen Fisher-Durchmesser, der zwischen 0,1 und 0,8 µm liegt,
    b) Mischung dieses Pulvers mit einem organischen Bindemittel zur Verdichtung, das in einem gewichteten Verhältnis von kleiner oder gleich 0,4% zugefügt wird,
    c) Zugabe eines Sinterbeschleunigers, der aus der von Nickel, Kobalt, Nickeloxid oder einer Mischung aus diesen gebildeten Gruppe ausgewählt wird, im gewichteten Verhältnis des Metallanteils von gleich oder kleiner als 0,08% der Masse von Wolfram zur Mischung und Herstellung des feinpulvrigen Materials,
    d) Aufbereiten des Materials durch Verdichtung zwischen 108 und 8.108 Pa,
    e) Sintern des Materials unter relativ trockenem Wasserstoff bei einer Taupunkt ≤ 15°C, mit einer durchschnittlichen Anstiegsgeschwindigkeit der Temperatur zwischen 1 und 15°C/Minute bis zu einer Temperaturstufe, die zwischen 1150 und 1600°C liegt, mit einer Haltezeit von zwischen 10 Minuten und 3 Stunden.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Sintern beim Nichtvorhandensein des Beschleunigers durch direkte Bestrahlung des Materials auf eine Stufentemperatur erfolgt, die zwischen 1500 und 1600 °C liegt, mit einer Haltezeit von zwischen 30 Minuten und 3 Stunden.
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Sintern beim Vorhandensein des Beschleunigers durch direkte Bestrahlung auf eine Stufentemperatur erfolgt, die zwischen 1150 und 1500°C liegt, mit einer Haltezeit von zwischen 10 und 90 Minuten.
  8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Sintern beim Vorhandensein des Beschleunigers durch indirekte Bestrahlung auf eine Stufentemperatur erfolgt, die zwischen 1500 und 1600°C liegt, mit einer Haltezeit von 15 bis 30 Minuten.
  9. Anwendung des gesinterten Werkstoffes aus Wolfram nach irgendeinem der vorgenannten Ansprüche 1 bis 3 für die Herstellung von Erzeugnissen von komplexer Form oder geringer Wandstärke.
  10. Anwendung des gesinterten Werkstoffes aus Wolfram nach irgendeinem der vorgenannten Ansprüche 4 bis 7 für die Herstellung von Komponenten, wie hitzebeständigen Schmelztiegeln.
EP00953219A 1999-06-25 2000-06-15 Hochdichtes, bei niedrigen temperaturen gesintertes material aus wolfram Expired - Lifetime EP1206585B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9908186A FR2795430B1 (fr) 1999-06-25 1999-06-25 Materiau tungstene a haute densite fritte a basse temperature
FR9908186 1999-06-25
PCT/FR2000/001656 WO2001000892A1 (fr) 1999-06-25 2000-06-15 Materiau tungstene a haute densite fritte a basse temperature

Publications (2)

Publication Number Publication Date
EP1206585A1 EP1206585A1 (de) 2002-05-22
EP1206585B1 true EP1206585B1 (de) 2003-05-02

Family

ID=9547335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00953219A Expired - Lifetime EP1206585B1 (de) 1999-06-25 2000-06-15 Hochdichtes, bei niedrigen temperaturen gesintertes material aus wolfram

Country Status (8)

Country Link
EP (1) EP1206585B1 (de)
AT (1) ATE239100T1 (de)
AU (1) AU6574800A (de)
CA (1) CA2377773A1 (de)
DE (1) DE60002476T2 (de)
FR (1) FR2795430B1 (de)
IL (1) IL147192A0 (de)
WO (1) WO2001000892A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9330406B2 (en) 2009-05-19 2016-05-03 Cobra Golf Incorporated Method and system for sales of golf equipment
US8007373B2 (en) 2009-05-19 2011-08-30 Cobra Golf, Inc. Method of making golf clubs
CN103657354B (zh) * 2012-08-31 2016-09-07 安泰天龙钨钼科技有限公司 用于钨合金烧结炉的气体净化回收循环再利用系统和工艺
CN113953512B (zh) * 2021-09-27 2022-11-29 中南大学 一种大长径比深孔薄壁钨合金壳体及其热等静压制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206088A (en) * 1981-06-12 1982-12-17 Ngk Spark Plug Co Ceramic metallized ink
DE3821474C1 (de) * 1988-06-25 1998-08-27 Nwm De Kruithoorn Bv Unterkalibriges, drallstabilisiertes Mehrzweckgeschoß
RU2007273C1 (ru) * 1991-06-13 1994-02-15 Институт физики высоких давлений им.Л.Ф.Верещагина РАН Способ изготовления спеченных изделий на основе вольфрама с добавками никеля
JPH07216478A (ja) * 1994-02-04 1995-08-15 Nippon Yakin Kogyo Co Ltd タングステン合金の製造方法

Also Published As

Publication number Publication date
DE60002476T2 (de) 2004-09-09
IL147192A0 (en) 2002-08-14
CA2377773A1 (fr) 2001-01-04
FR2795430B1 (fr) 2002-03-22
EP1206585A1 (de) 2002-05-22
AU6574800A (en) 2001-01-31
ATE239100T1 (de) 2003-05-15
WO2001000892A1 (fr) 2001-01-04
FR2795430A1 (fr) 2000-12-29
DE60002476D1 (de) 2003-06-05

Similar Documents

Publication Publication Date Title
CA2583140C (fr) Alliage a base de nickel
Gao et al. Electron beam melted TiC/high Nb–TiAl nanocomposite: Microstructure and mechanical property
JP4461080B2 (ja) 中性子吸収用アルミニウム粉末合金複合材及びその製造方法並びにそれで製造されたバスケット
CA2917038A1 (fr) Procede de fabrication additive de pieces par fusion ou frittage de particules de poudre(s) au moyen d'un faisceau de haute energie avec des poudres adaptees au couple procede/materiau vise
CA2315346A1 (fr) Poudres metalliques microniques a base de tungstene et/ou de molybdene et de metaux de transition 3d
FR3085967A1 (fr) Superalliages a base de nickel
EP3747573A1 (de) Verfahren zur additiven fertigung eines werkstücks aus einer cca-nitrid-legierung
WO2021156583A2 (fr) Procédé de fabrication d'une pièce en alliage d'aluminium
JP2013529136A (ja) 分散液、その製造法及びその使用
Sokolov et al. The influence of temperature on interaction of Sn–Cu–Co–W binders with diamond in sintering the diamond-containing composite materials
JP2001503105A (ja) 被覆粉末及びその製造方法
EP1206585B1 (de) Hochdichtes, bei niedrigen temperaturen gesintertes material aus wolfram
FR2830022A1 (fr) Alliage base tungstene fritte a haute puissance
EP0591305B1 (de) Cermets auf Uebergangsmetallboridbasis, ihre Herstellung und Anwendung
Yolton et al. Powder metallurgy processing of gamma titanium aluminide
Shevtsova et al. Structure and properties of an Ni3Al intermetallic compound formed as a result of spark plasma sintering of the powder mixtures prepared by various methods
CN112695238A (zh) 一种钒钛复合粘结相硬质合金及其制备方法
FR3096990A1 (fr) Alliage CCA nitruré à durcissement structural
EP0438338B1 (de) Verfahren zur Herstellung eines Gegenstands aus vorlegierten Pulvern und nach diesem Verfahren hergestellter Gegenstand
FR3096988A1 (fr) Procédé de fabrication par frittage d’une pièce en un alliage CCA nitruré
CH536672A (fr) Procédé de fabrication d'un produit métallique et produit obtenu par ce procédé
WO2023181329A1 (ja) 積層造形用銅合金粉末とその製造方法および評価方法、銅合金積層造形体の製造方法および銅合金積層造形体
FR3132912A1 (fr) Poudre d’alliage, procédé de fabrication d’une pièce à base de cet alliage et pièce ainsi obtenue.
Pan et al. In-situ synthesis and oxidation behaviors of Ti-xAl coatings by high-frequency induction heated combustion
EP0148821A1 (de) Verfahren zur herstellung und verwendung eines titandiborid enthaltenden körpers.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011206

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NICOLAS, GUY

Inventor name: VOLTZ, MARC

Inventor name: MAHOT, PASCAL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030502

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030502

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030502

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60002476

Country of ref document: DE

Date of ref document: 20030605

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CIME BOCUZE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030615

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: CIME BOCUZE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030802

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030802

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030804

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4C

Free format text: NORTIFICATION HAS NOW BEEN RECEIVED FROM THE EUROPEAN PATENT OFFICE THAT THE NAME OF THE APPLICANT SHOULD HAVE BEEN RECORDED AS: CIME BOCUZE SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030813

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031215

Year of fee payment: 5

BERE Be: lapsed

Owner name: *CIME BOCUZE

Effective date: 20030630

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1206585E

Country of ref document: IE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 710B

Free format text: EXTENSION APPLICATION: APPLICATION FOR EXTENSION OF THE PERIOD(S) PRESCRIBED BY RULE(S) SCHEDULE 4 PARA 2 FILED ON 20040109.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040630

REG Reference to a national code

Ref country code: GB

Ref legal event code: 9110

Free format text: EXTENSION ALLOWED: PERIOD(S) PRESCRIBED BY RULE(S) SCHEDULE 4 PARA 2 EXTENDED UNDER RULE 110(6) IN ACCORDANCE WITH THE DECISION OF THE COMPTROLLER DATED 20040616. THE PATENT/APPLICATION IS REINSTATED SUBJECT TO SPECIAL TERMS FOR THIRD PARTY INTERESTS.

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100610

Year of fee payment: 11

Ref country code: GB

Payment date: 20100527

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60002476

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110615