EP1203886B1 - Méthode déterminant au moins une caractéristique d'un liquide pompé - Google Patents

Méthode déterminant au moins une caractéristique d'un liquide pompé Download PDF

Info

Publication number
EP1203886B1
EP1203886B1 EP01123547A EP01123547A EP1203886B1 EP 1203886 B1 EP1203886 B1 EP 1203886B1 EP 01123547 A EP01123547 A EP 01123547A EP 01123547 A EP01123547 A EP 01123547A EP 1203886 B1 EP1203886 B1 EP 1203886B1
Authority
EP
European Patent Office
Prior art keywords
heating element
medium
temperature
heating
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01123547A
Other languages
German (de)
English (en)
Other versions
EP1203886A2 (fr
EP1203886A3 (fr
Inventor
Tina Romedahl Brown
Ole Hart Lev Pedersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos AS
Original Assignee
Grundfos AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos AS filed Critical Grundfos AS
Publication of EP1203886A2 publication Critical patent/EP1203886A2/fr
Publication of EP1203886A3 publication Critical patent/EP1203886A3/fr
Application granted granted Critical
Publication of EP1203886B1 publication Critical patent/EP1203886B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid

Definitions

  • the invention relates to a method for determining at least one property of a medium in the conveying path of a pump unit or for determining the medium itself and a pump unit with a device for carrying out this method.
  • the drive motor In centrifugal pump units, the drive motor is often designed as a wet-running motor.
  • the shaft carrying the rotor and the impeller is then guided in bearings, which are usually lubricated by the fluid itself.
  • the cooling of engine and engine electronics via the pumped medium Particularly in modern, frequency converter controlled pump units, which run at high speed, constant cooling and lubrication by the pumped medium is of decisive importance, since during dry running an increased bearing wear occurs and eventually other components can be damaged by overheating or even destroyed. Such dry running can occur if the liquid pumped medium fails, d. H. in the conveying path to the pump is air or if the fluid is overheated and there is gas.
  • the consistency of the pumped medium itself may be important for the cooling and lubricating properties.
  • the present invention seeks to provide a method that detects the medium or the medium currently located in the pump unit with little structural effort.
  • a corresponding pump unit to be created, in which with little structural Expenditure and extensive use of existing components / assemblies such a method can be realized.
  • the basic idea of the present invention is to provide an electrically heatable heating element in the conveying path of the pump unit, in particular in the pump unit itself, and to heat it periodically, the desired material property of the medium or the medium itself being determined on the basis of the temperature profile of the heating element.
  • the invention proceeds in its simplest form of substantially constant temperatures of the pumped medium, wherein flow velocities of the pumped medium are also neglected to detect, for example, whether in the conveying path of the pump unit conveying fluid, eg. As water is located or air.
  • the heating element Since the heating element is subject to a much more intense heat exchange in the environment of liquid than in the vicinity of gas, it can be determined on the basis of the temperature profile of the heating element, either in the heating or in the cooling phase, whether the medium is a liquid or a gas acts. This simplest form of evaluation can be refined depending on the requirements of the application, so that even with changing environmental conditions (temperature, speed) with sufficient reliability, the desired material property of the medium or the medium itself can be determined.
  • the inventive method is primarily used to prevent dry running of a pump unit, but it can also be used to determine other material properties, such as the concentration of antifreeze in Water or the like, serve. It goes without saying that the process parameters for this purpose are to be adapted in accordance with the substance property or the media to be distinguished.
  • the device-like structure for carrying out the method according to the invention is comparatively low, since in addition to the required heating element, which is preferably provided in the form of a PTC resistor, essentially only evaluation electronics is needed, which are not made available due to the present day aggregate digital engine electronics available must, but only by implementing appropriate software can be realized.
  • the temperature at the beginning and at the end of the heating phase or at the beginning and at the end of the cooling phase is determined and determines the temperature difference, for example, to determine whether the heating element is in water or in air. If the values are stored over time, temperature changes of the pumped medium can also be recorded in this simple evaluation. It is expedient to always heat the heating element with a predetermined constant power for a predetermined time and then to allow it to cool down again for a predetermined time. By introducing a constant power and intermediate values can be evaluated before reaching the predetermined time to detect trends early on.
  • the heating element is first heated and then detects the temperature profile of the heating element during a predetermined time after the heating phase and the property of the medium or the medium itself is determined.
  • the temperature values determined during the heating and / or cooling phase can be used to computationally determine in a model calculation, based on the possible different substance properties or media to be determined, how the temperature behavior on the heating element would be without heat supply.
  • a different temperature profile over time is determined.
  • the medium to be determined is then determined by the curve which has the smoothest course. This method is based on the finding that only the medium or only the medium with the existing property will have an almost constant temperature, whereas in the case of deviating media, temperature changes will be calculated that can not be used for thermodynamic reasons.
  • the invention preferably provides a four-stage process, wherein within the first stage, the heating element is heated by a predetermined temperature difference. Thereafter, the heating element is heated for a predetermined time with constant but lower power than in the first stage. In the third stage, the heating element is not heated for a predetermined time, i. H.
  • the heating element is heated so that a temperature profile as in step 2 is formed, but with a constant temperature difference.
  • the power supplied to the heating element in the fourth stage is determined and used as comparison value for determining the medium or the substance property of the medium to be determined.
  • the stage 2 serves exclusively to detect a possibly changing temperature of the pumped medium in order to ensure a reliable determination of the material properties of the medium or of the medium even without temperature measurement of the medium, even if the temperature changes during the measuring process. If the temperature influence is expected to be low, the corresponding process steps can also be omitted, d. H.
  • the power for heating the heating element by a predetermined temperature difference can be used as a measure of the evaluation.
  • the pump unit designed to carry out this method will preferably have a PTC resistor as a heating element, which resistor can serve both for heating and for temperature measurement, by determining the voltage / current profile at this resistor during heating and this resistance in the cooling phase as a measuring element, ie without noticeable heat input, is switched. It can also be briefly interrupted during the heating phase for the purpose of measuring the heating phase, if this is metrologically or device technology cheaper. Alternatively, however, in addition to the heating element, a separate sensor for detecting the temperature profile may be provided preferably in the region of the surface of the heating element.
  • the arrangement of the heating element or sensor is expediently carried out where the dry run occurs first, so for example when the shaft is stationary in the region of the upper bearing, but can also be provided at any other suitable location, where appropriate.
  • the heating element can also be mounted on remote from the pump unit body, for example, if the absence of fluid to be determined before the pump unit has run dry.
  • the heating element is expediently designed in the manner of a cartridge or a module and connected to the pump unit via a hermetically sealed line connection.
  • the evaluation electronics can be provided either in the terminal box of the pump unit or as a separate module for attachment to the pump unit.
  • an analog temperature measuring device whose signal output is fed via an analog-to-digital converter to a microprocessor which controls a power pulse generator for heating the resistor and the associated control electronics.
  • the microprocessor controls the motor of the pump so that the necessary circuitry measures in the case of dry running can be made on the pump side.
  • Fig. 1 two curves are shown, wherein the upper curve 1 represents the temperature profile of a heating element in a pump unit in air and the lower curve 2 represents the temperature profile of such a heating element first in water, then in air and then back into water.
  • the heating element is heated periodically and then cooled by the surrounding medium.
  • electrical heating of the heating element at constant power takes place for four seconds, followed by a phase of four seconds, in which no heating takes place, that is, only cooling by the surrounding medium.
  • the heating element requires approximately six heating cycles in the presence of air until a stationary state occurs, ie at the beginning and at the end of each interval a constant temperature is established - a constant ambient temperature of the surrounding medium provided. Before that occurs, at least for the surrounding medium air, a certain thermal inertia effect that this gradual increase in the Temperatures at the end of each heating period and at the end of each cooling phase compared to the corresponding previous value.
  • the two curves 1 and 2 illustrate that the differences in the curves in the environment of the heating element of air on the one hand and water on the other hand already during the first heating period (first cycle) are so large that the ambient medium can be determined based on the temperature profile.
  • a medium change from water to air is shown in a medium time range, namely the region marked in the diagram in FIG. 3, as occurs, for example, during the sudden dry running of a pump.
  • the curve 2 has the same course there as the curve 1 in the periods 1 to 5, whereas the curve 2 immediately after the area 3 very quickly again the typical for ambient medium water Course takes. It thus becomes clear that the pump running dry can be detected sufficiently quickly, especially by continuous signal analysis, by signal evaluation, whereby a temperature change of the medium can be automatically taken into account even within limits.
  • Fig. 2 shows the temperature profile of a periodically heated heating element, which is heated for 4 sec. At a constant power, after which a 4-second cooling takes place.
  • the determined temperature profile is in two different Model calculations entered, which determine the temperature of the heating element for the state in which no heating takes place, that is, the heating element should behave in temperature terms as the surrounding medium. While the curve 5 of the upper diagram represents the actual temperature curve at the heating element, the lower curve shows the calculated temperature curve, in curve 6 for water and in curve 7 for air. It is clear that the curve 6 is completely smooth, whereas the curve 7 represents the curve 5 approximately out of phase. Since the model calculation should detect the determination of the temperature profile without heating the heating element, therefore, the curve 6 represents the medium in which the heating element is located, namely water.
  • Fig. 3 is analogous to in the upper diagram Fig. 2 a curve 8 is shown, which represents the temperature profile of a periodically heated heating element in air.
  • curves 9 and 10 are shown in the lower diagram, wherein the curve 9 is outflow of the calculation model for ambient air and the curve 10 outflow of the computing model for ambient water.
  • the smoother curve is the curve 9 and thus air is determined as the surrounding medium.
  • Fig. 4 Based on Fig. 4 is a four-stage process is shown, in the upper diagram with unchanged medium temperature and in the lower diagram with increasing medium temperature. The steps are marked with I to IV.
  • the first stage begins with a heating phase at a predetermined temperature difference of 3.5 ° C. relative to the starting temperature (at the beginning of stage I). After completion of stage I, heating of the heating element with constant power takes place in stage II, the power being selected is that it is smaller than the one at the end of stage I, so that a uniform temperature course of the second stage arises.
  • the heating element is not heated.
  • the temperature difference is determined at the end of the first stage, and then in the fourth stage to heat the heating element so that a constant temperature difference to the temperature profile of stage II arises.
  • the heating power is determined, which represents a characteristic value for whether the ambient medium is air or water. If the surrounding medium is water, a significantly higher heat output is required than, for example, with air.
  • This refined method according to Fig. 4 compensates temperature changes of the medium itself, which do not go back to the heating of the heating element. Such a case is in the lower diagram in Fig. 4 represented there, the medium temperature rises during the measurement method according to stages I to IV by about 3 ° C.
  • this method can be used to compensate for a changing temperature of the medium without influencing the reliability of the method for determining the medium itself or a substance property.
  • Fig. 5 schematically illustrated pump assembly 11 has a motor housing 12 in which a wet-running motor is arranged, the shaft of which carries a centrifugal gear 13 which is located within an inline pump housing 14 with a suction-side port 15a and a pressure-side port 15b.
  • a dry running sensor 16 is provided, which is constructed according to the method described above operates and is formed by a heating element 17 in the form of a PTC resistor, which is arranged in a thin-walled stainless steel cylinder 18 which is formed like a cartridge and projects into the flow path of the suction port 15 a.
  • a thermal paste is provided between the serving as a heating element and sensor PTC resistor 17 and the thin-walled housing 18.
  • the housing 18 is soldered end, the electrical connections are led out to a line 19, which opens in the terminal box 20, which is mounted on the motor housing 12 and next to the motor controlling the frequency converter and the connection wiring and the control and evaluation electronics for the PTC resistor 17 includes.
  • this electronics is integrated into the terminal box 20, but it can also be provided as a separate module or as a plug-on module, so that the pump unit can be optionally equipped with dry-running sensor or without.
  • the dry running sensor 16 is on the input side, so that during normal flow operation, a dry run of the pump can be detected before the liquid in the can is escaped and the pump runs dry with increased bearing wear.
  • the electronic evaluation system can therefore switch off the engine in good time or switch it on again as soon as the pumping medium is present on the suction side.
  • the arrangement of the actual sensor 16 can also take place at another suitable location, since this can be formed like a cartridge and can be arranged after attachment of a housing bore at virtually any point. It is understood that depending on the arrangement and design of the pump unit, the sensor 16 may also be provided directly in the can or at another suitable location.
  • evaluation electronics consists of an analog temperature measuring device, as it is known per se for connecting a PTC resistor.
  • the signal of this device is fed to an analog-to-digital converter, the digital output of which is then supplied to a microprocessor which controls a power pulse generator for the resistor 17.
  • the microprocessor is part of the frequency converter electronics, which controls the electric motor.
  • the operation / programming of the microprocessor which contains and monitors the central control of the entire pump set, takes place via a digital interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (13)

  1. Procédé pour déterminer au moins une caractéristique d'un fluide se trouvant dans le parcours d'un groupe motopompe (11) ou pour déterminer le fluide lui-même, dans lequel un élément chauffant (17) présent dans le fluide est chauffé à une puissance prédéterminée pendant un temps prédéterminé et le profil de température de l'élément chauffant (17) est évalué pendant ou après l'opération de chauffage par comparaison avec des valeurs prédéterminées pour déterminer une caractéristique de matière du fluide ou le fluide lui-même, caractérisé en ce qu'à l'aide du profil de température déterminé de l'élément chauffant (17), le profil de température de fluides de différentes caractéristiques ou de différents fluides est calculé sans apport de chaleur de l'élément chauffant (17), et en ce que la caractéristique du fluide à déterminer ou le fluide à déterminer est déterminé(e) par le profil de température calculé du fluide qui présente la courbe (6, 9) ayant le tracé le plus lisse.
  2. Procédé selon la revendication 1, caractérisé en ce que l'élément chauffant (17) est chauffé à une puissance constante.
  3. Procédé selon l'une des revendications précédentes, caractérisé en ce que le profil de température est déterminé pendant la phase de chauffage.
  4. Procédé selon l'une des revendications précédentes, caractérisé par les étapes suivantes :
    a) chauffage de l'élément chauffant ;
    b) détection du profil de température de l'élément chauffant pendant un temps prédéterminé après la phase de chauffage et détermination de la caractéristique du fluide ou du fluide lui-même.
  5. Procédé selon la revendication 2 ou 3, caractérisé en ce qu'à l'aide du profil de température déterminé de l'élément chauffant, le profil de température de fluides de différentes caractéristiques ou de différents fluides est calculé sans apport de chaleur de l'élément chauffant, et en ce que la caractéristique du fluide à déterminer ou le fluide à déterminer est déterminé(e) par le profil de température calculé du fluide qui présente la courbe ayant le tracé le plus lisse.
  6. Procédé selon la revendication 1, caractérisé par les étapes suivantes :
    a) chauffage de l'élément chauffant de la valeur d'une différence de température prédéterminée ;
    b) détection du profil de température de l'élément chauffant pendant un temps prédéterminé après la phase de chauffage ;
    c) chauffage de l'élément chauffant pendant un temps prédéterminé de façon à obtenir une différence de température constante par rapport à la valeur atteinte, immédiatement après la fin de la phase de chauffage a ;
    d) détermination de la caractéristique du fluide ou du fluide lui-même à l'aide de la puissance fournie à l'étape c.
  7. Procédé selon la revendication 6, caractérisé en ce qu'après le chauffage de l'élément chauffant selon l'étape a, l'élément chauffant est chauffé à puissance constante pendant un temps prédéterminé (phase de chauffage constante), la puissance constante étant inférieure à celle de la phase de chauffage selon l'étape a, et en ce que le profil de température de l'élément chauffant est déterminé pendant cette phase de chauffage constante et un écart par rapport à une valeur constante est pris comme base en tant qu'expression d'une modification de la température du fluide, et en ce qu'une modification de la température du fluide qui en résulte éventuellement est prise en compte lors de l'évaluation selon l'étape d, de sorte que des influences d'une modification de la température du fluide pendant le procédé sont exclues.
  8. Groupe motopompe doté d'un dispositif permettant de déterminer au moins une caractéristique du fluide véhiculé ou le fluide véhiculé lui-même, caractérisé en ce que sont prévus un élément chauffant et des moyens de détection de la température de l'élément chauffant, en ce que l'élément chauffant peut être chauffé temporairement et en ce qu'est prévu un dispositif électronique d'évaluation qui détermine, à l'aide de la puissance électrique introduite dans l'élément chauffant et du profil de température de l'élément chauffant, au moins une caractéristique du fluide véhiculé ou le fluide véhiculé.
  9. Groupe motopompe selon la revendication 8, caractérisé en ce que l'élément chauffant est une résistance électrique, de préférence une résistance PTC, et en ce que la détection de température de l'élément chauffant est réalisée par évaluation des grandeurs électriques au niveau de l'élément chauffant.
  10. Groupe motopompe selon l'une des revendications précédentes, caractérisé en ce qu'est prévu, outre l'élément chauffant, un capteur pour la détection du profil de température sur l'élément chauffant.
  11. Groupe motopompe selon l'une des revendications précédentes, caractérisé en ce qu'est prévu un capteur de détection de la température du fluide véhiculé.
  12. Groupe motopompe selon l'une des revendications précédentes, caractérisé en ce qu'est associé à la résistance électrique un dispositif de mesure de température analogique dont la sortie de signaux est transmise, via un convertisseur analogique/numérique, à un microprocesseur qui commande un circuit générateur d'impulsions de puissance pour la résistance, une unité de commande étant associée au microprocesseur.
  13. Groupe motopompe selon l'une des revendications précédentes, caractérisé en ce que le dispositif électronique de commande et d'évaluation pour la résistance électrique est prévu dans la boîte à bornes ou en tant que module séparé au niveau du groupe motopompe.
EP01123547A 2000-11-01 2001-10-01 Méthode déterminant au moins une caractéristique d'un liquide pompé Expired - Lifetime EP1203886B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10054091A DE10054091A1 (de) 2000-11-01 2000-11-01 Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats befindlichen Mediums
DE10054091 2000-11-01

Publications (3)

Publication Number Publication Date
EP1203886A2 EP1203886A2 (fr) 2002-05-08
EP1203886A3 EP1203886A3 (fr) 2007-01-03
EP1203886B1 true EP1203886B1 (fr) 2010-12-15

Family

ID=7661760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01123547A Expired - Lifetime EP1203886B1 (fr) 2000-11-01 2001-10-01 Méthode déterminant au moins une caractéristique d'un liquide pompé

Country Status (3)

Country Link
EP (1) EP1203886B1 (fr)
AT (1) ATE491888T1 (fr)
DE (2) DE10054091A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060418A1 (de) * 2004-12-14 2006-07-06 Metabowerke Gmbh Pumpe mit Frostschutzeinrichtung
EP2412981B1 (fr) 2010-07-30 2016-05-04 Grundfos Management A/S Système de pompe
PL2453557T3 (pl) * 2010-11-11 2023-04-11 Grundfos Management A/S Mokry silnik elektryczny i agregat pompowy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131887A (en) * 1981-02-07 1982-08-14 Hitachi Ltd Electric well pump
DE3233329A1 (de) * 1982-09-08 1984-03-08 Tecova AG, 5610 Wohlen Verfahren zum messen der stroemungsgeschwindigkeit eines fluids und einrichtung zur durchfuehrung des verfahrens
DE3527868A1 (de) * 1985-08-02 1987-02-12 Schmidt Feintechnik Gmbh Verfahren und messsonde zum sondieren des fuellstandes des massenstromes, der fluidart, der fluidzusammensetzung oder dgl. in einem eine oder mehrere fluids enthaltenden behaelter, leitungen oder dgl.
DE3637497A1 (de) * 1985-11-05 1987-07-16 Walter Buerkle Verfahren und einrichtung zum fuehlen von stroemungsgeschwindigkeiten und/oder durchfluessen
DE3841637C1 (fr) * 1988-12-10 1990-05-10 Gebr. Schmidt Fabrik Fuer Feinmechanik, 7742 St Georgen, De
FR2645212A1 (fr) * 1989-03-31 1990-10-05 Guinard Pompes Groupe motopompe a detecteur de temperature sur la tuyauterie de refoulement

Also Published As

Publication number Publication date
DE10054091A1 (de) 2002-05-16
DE50115741D1 (de) 2011-01-27
EP1203886A2 (fr) 2002-05-08
EP1203886A3 (fr) 2007-01-03
ATE491888T1 (de) 2011-01-15

Similar Documents

Publication Publication Date Title
EP1564411B1 (fr) Procédé de détection des erreurs de fonctionnement d'une unité de pompage
EP2039939B1 (fr) Procédé de surveillance d'un dispositif de transformation d'énergie
EP2145112B1 (fr) Dispositif et procédé de surveillance de dysfonctionnements
EP3449132B1 (fr) Procédé de détection d'un état de fonctionnement anormal d'un groupe de pompage
DE102014008716B4 (de) Verfahren zur Erkennung eines Trockenlaufs
DE102009022107A1 (de) Verfahren und Vorrichtung zur Betriebspunktbestimmung einer Arbeitsmaschine
EP1377752B1 (fr) Pompe turbomoleculaire
AT511971A2 (de) Verfahren zur überwachung einer kühl- oder heizeinrichtung und überwachungseinrichtung hierzu
WO2020025754A1 (fr) Pompe à vide
EP1203886B1 (fr) Méthode déterminant au moins une caractéristique d'un liquide pompé
EP3242035B1 (fr) Procédé de fonctionnement d'au moins un groupe motopompe parmi une pluralité de groupes motopompe
WO2022078758A1 (fr) Procédé pour identifier des fuites sur une pompe volumétrique
DE10055420A1 (de) Vorrichtung zum Messen der Viskosität von Maschinen- und Motorenöl
WO2016173896A1 (fr) Dispositif de pompe et procédé pour actionner une pompe pour liquides
DD252793A5 (de) Verfahren und vorrichtung zur ueberwachung von schneckenextrudern
DE10101099B4 (de) Verfahren zum Überwachen des Trockenlaufs einer Förderpumpe und nach dem Verfahren arbeitende Förderpumpe
WO2016166114A1 (fr) Pompe et procédé pour faire fonctionner une pompe pour liquides
EP3543537B1 (fr) Groupe pompe ainsi que procédé de surveillance d'alimentation en liquide dans un dispositif d'étanchéité dans un groupe pompe
WO2011039006A1 (fr) Procédé de protection d'un générateur de véhicule automobile contre une surchauffe
EP3259463B1 (fr) Procédé de règulation d'une pompe d'essence
DE102007051045B4 (de) Anordnung mit Vakuumpumpe und Verfahren
DE10161867B4 (de) Verfahren zur Überwachung eines Flüssigkeits-Kühlkreislaufs einer Brennkraftmaschine
DE102018101179B3 (de) Verfahren und Vorrichtung zur Überwachung einer Temperatur an wenigstens einem Lager
DE102020128059A1 (de) Verfahren und Vorrichtung zum Überwachen einer Luftkühlvorrichtung
DE102018108471A1 (de) Verfahren, mit dem ein Schmiermitteldurchfluss an einer Zentrifuge überwacht wird

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20070507

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20071108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50115741

Country of ref document: DE

Date of ref document: 20110127

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110326

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

26N No opposition filed

Effective date: 20110916

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50115741

Country of ref document: DE

Effective date: 20110916

BERE Be: lapsed

Owner name: GRUNDFOS A/S

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 491888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201022

Year of fee payment: 20

Ref country code: FR

Payment date: 20201020

Year of fee payment: 20

Ref country code: IT

Payment date: 20201030

Year of fee payment: 20

Ref country code: DE

Payment date: 20201026

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50115741

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210930