EP1203886B1 - Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats befindlichen Mediums - Google Patents

Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats befindlichen Mediums Download PDF

Info

Publication number
EP1203886B1
EP1203886B1 EP01123547A EP01123547A EP1203886B1 EP 1203886 B1 EP1203886 B1 EP 1203886B1 EP 01123547 A EP01123547 A EP 01123547A EP 01123547 A EP01123547 A EP 01123547A EP 1203886 B1 EP1203886 B1 EP 1203886B1
Authority
EP
European Patent Office
Prior art keywords
heating element
medium
temperature
heating
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01123547A
Other languages
English (en)
French (fr)
Other versions
EP1203886A2 (de
EP1203886A3 (de
Inventor
Tina Romedahl Brown
Ole Hart Lev Pedersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos AS
Original Assignee
Grundfos AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos AS filed Critical Grundfos AS
Publication of EP1203886A2 publication Critical patent/EP1203886A2/de
Publication of EP1203886A3 publication Critical patent/EP1203886A3/de
Application granted granted Critical
Publication of EP1203886B1 publication Critical patent/EP1203886B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid

Definitions

  • the invention relates to a method for determining at least one property of a medium in the conveying path of a pump unit or for determining the medium itself and a pump unit with a device for carrying out this method.
  • the drive motor In centrifugal pump units, the drive motor is often designed as a wet-running motor.
  • the shaft carrying the rotor and the impeller is then guided in bearings, which are usually lubricated by the fluid itself.
  • the cooling of engine and engine electronics via the pumped medium Particularly in modern, frequency converter controlled pump units, which run at high speed, constant cooling and lubrication by the pumped medium is of decisive importance, since during dry running an increased bearing wear occurs and eventually other components can be damaged by overheating or even destroyed. Such dry running can occur if the liquid pumped medium fails, d. H. in the conveying path to the pump is air or if the fluid is overheated and there is gas.
  • the consistency of the pumped medium itself may be important for the cooling and lubricating properties.
  • the present invention seeks to provide a method that detects the medium or the medium currently located in the pump unit with little structural effort.
  • a corresponding pump unit to be created, in which with little structural Expenditure and extensive use of existing components / assemblies such a method can be realized.
  • the basic idea of the present invention is to provide an electrically heatable heating element in the conveying path of the pump unit, in particular in the pump unit itself, and to heat it periodically, the desired material property of the medium or the medium itself being determined on the basis of the temperature profile of the heating element.
  • the invention proceeds in its simplest form of substantially constant temperatures of the pumped medium, wherein flow velocities of the pumped medium are also neglected to detect, for example, whether in the conveying path of the pump unit conveying fluid, eg. As water is located or air.
  • the heating element Since the heating element is subject to a much more intense heat exchange in the environment of liquid than in the vicinity of gas, it can be determined on the basis of the temperature profile of the heating element, either in the heating or in the cooling phase, whether the medium is a liquid or a gas acts. This simplest form of evaluation can be refined depending on the requirements of the application, so that even with changing environmental conditions (temperature, speed) with sufficient reliability, the desired material property of the medium or the medium itself can be determined.
  • the inventive method is primarily used to prevent dry running of a pump unit, but it can also be used to determine other material properties, such as the concentration of antifreeze in Water or the like, serve. It goes without saying that the process parameters for this purpose are to be adapted in accordance with the substance property or the media to be distinguished.
  • the device-like structure for carrying out the method according to the invention is comparatively low, since in addition to the required heating element, which is preferably provided in the form of a PTC resistor, essentially only evaluation electronics is needed, which are not made available due to the present day aggregate digital engine electronics available must, but only by implementing appropriate software can be realized.
  • the temperature at the beginning and at the end of the heating phase or at the beginning and at the end of the cooling phase is determined and determines the temperature difference, for example, to determine whether the heating element is in water or in air. If the values are stored over time, temperature changes of the pumped medium can also be recorded in this simple evaluation. It is expedient to always heat the heating element with a predetermined constant power for a predetermined time and then to allow it to cool down again for a predetermined time. By introducing a constant power and intermediate values can be evaluated before reaching the predetermined time to detect trends early on.
  • the heating element is first heated and then detects the temperature profile of the heating element during a predetermined time after the heating phase and the property of the medium or the medium itself is determined.
  • the temperature values determined during the heating and / or cooling phase can be used to computationally determine in a model calculation, based on the possible different substance properties or media to be determined, how the temperature behavior on the heating element would be without heat supply.
  • a different temperature profile over time is determined.
  • the medium to be determined is then determined by the curve which has the smoothest course. This method is based on the finding that only the medium or only the medium with the existing property will have an almost constant temperature, whereas in the case of deviating media, temperature changes will be calculated that can not be used for thermodynamic reasons.
  • the invention preferably provides a four-stage process, wherein within the first stage, the heating element is heated by a predetermined temperature difference. Thereafter, the heating element is heated for a predetermined time with constant but lower power than in the first stage. In the third stage, the heating element is not heated for a predetermined time, i. H.
  • the heating element is heated so that a temperature profile as in step 2 is formed, but with a constant temperature difference.
  • the power supplied to the heating element in the fourth stage is determined and used as comparison value for determining the medium or the substance property of the medium to be determined.
  • the stage 2 serves exclusively to detect a possibly changing temperature of the pumped medium in order to ensure a reliable determination of the material properties of the medium or of the medium even without temperature measurement of the medium, even if the temperature changes during the measuring process. If the temperature influence is expected to be low, the corresponding process steps can also be omitted, d. H.
  • the power for heating the heating element by a predetermined temperature difference can be used as a measure of the evaluation.
  • the pump unit designed to carry out this method will preferably have a PTC resistor as a heating element, which resistor can serve both for heating and for temperature measurement, by determining the voltage / current profile at this resistor during heating and this resistance in the cooling phase as a measuring element, ie without noticeable heat input, is switched. It can also be briefly interrupted during the heating phase for the purpose of measuring the heating phase, if this is metrologically or device technology cheaper. Alternatively, however, in addition to the heating element, a separate sensor for detecting the temperature profile may be provided preferably in the region of the surface of the heating element.
  • the arrangement of the heating element or sensor is expediently carried out where the dry run occurs first, so for example when the shaft is stationary in the region of the upper bearing, but can also be provided at any other suitable location, where appropriate.
  • the heating element can also be mounted on remote from the pump unit body, for example, if the absence of fluid to be determined before the pump unit has run dry.
  • the heating element is expediently designed in the manner of a cartridge or a module and connected to the pump unit via a hermetically sealed line connection.
  • the evaluation electronics can be provided either in the terminal box of the pump unit or as a separate module for attachment to the pump unit.
  • an analog temperature measuring device whose signal output is fed via an analog-to-digital converter to a microprocessor which controls a power pulse generator for heating the resistor and the associated control electronics.
  • the microprocessor controls the motor of the pump so that the necessary circuitry measures in the case of dry running can be made on the pump side.
  • Fig. 1 two curves are shown, wherein the upper curve 1 represents the temperature profile of a heating element in a pump unit in air and the lower curve 2 represents the temperature profile of such a heating element first in water, then in air and then back into water.
  • the heating element is heated periodically and then cooled by the surrounding medium.
  • electrical heating of the heating element at constant power takes place for four seconds, followed by a phase of four seconds, in which no heating takes place, that is, only cooling by the surrounding medium.
  • the heating element requires approximately six heating cycles in the presence of air until a stationary state occurs, ie at the beginning and at the end of each interval a constant temperature is established - a constant ambient temperature of the surrounding medium provided. Before that occurs, at least for the surrounding medium air, a certain thermal inertia effect that this gradual increase in the Temperatures at the end of each heating period and at the end of each cooling phase compared to the corresponding previous value.
  • the two curves 1 and 2 illustrate that the differences in the curves in the environment of the heating element of air on the one hand and water on the other hand already during the first heating period (first cycle) are so large that the ambient medium can be determined based on the temperature profile.
  • a medium change from water to air is shown in a medium time range, namely the region marked in the diagram in FIG. 3, as occurs, for example, during the sudden dry running of a pump.
  • the curve 2 has the same course there as the curve 1 in the periods 1 to 5, whereas the curve 2 immediately after the area 3 very quickly again the typical for ambient medium water Course takes. It thus becomes clear that the pump running dry can be detected sufficiently quickly, especially by continuous signal analysis, by signal evaluation, whereby a temperature change of the medium can be automatically taken into account even within limits.
  • Fig. 2 shows the temperature profile of a periodically heated heating element, which is heated for 4 sec. At a constant power, after which a 4-second cooling takes place.
  • the determined temperature profile is in two different Model calculations entered, which determine the temperature of the heating element for the state in which no heating takes place, that is, the heating element should behave in temperature terms as the surrounding medium. While the curve 5 of the upper diagram represents the actual temperature curve at the heating element, the lower curve shows the calculated temperature curve, in curve 6 for water and in curve 7 for air. It is clear that the curve 6 is completely smooth, whereas the curve 7 represents the curve 5 approximately out of phase. Since the model calculation should detect the determination of the temperature profile without heating the heating element, therefore, the curve 6 represents the medium in which the heating element is located, namely water.
  • Fig. 3 is analogous to in the upper diagram Fig. 2 a curve 8 is shown, which represents the temperature profile of a periodically heated heating element in air.
  • curves 9 and 10 are shown in the lower diagram, wherein the curve 9 is outflow of the calculation model for ambient air and the curve 10 outflow of the computing model for ambient water.
  • the smoother curve is the curve 9 and thus air is determined as the surrounding medium.
  • Fig. 4 Based on Fig. 4 is a four-stage process is shown, in the upper diagram with unchanged medium temperature and in the lower diagram with increasing medium temperature. The steps are marked with I to IV.
  • the first stage begins with a heating phase at a predetermined temperature difference of 3.5 ° C. relative to the starting temperature (at the beginning of stage I). After completion of stage I, heating of the heating element with constant power takes place in stage II, the power being selected is that it is smaller than the one at the end of stage I, so that a uniform temperature course of the second stage arises.
  • the heating element is not heated.
  • the temperature difference is determined at the end of the first stage, and then in the fourth stage to heat the heating element so that a constant temperature difference to the temperature profile of stage II arises.
  • the heating power is determined, which represents a characteristic value for whether the ambient medium is air or water. If the surrounding medium is water, a significantly higher heat output is required than, for example, with air.
  • This refined method according to Fig. 4 compensates temperature changes of the medium itself, which do not go back to the heating of the heating element. Such a case is in the lower diagram in Fig. 4 represented there, the medium temperature rises during the measurement method according to stages I to IV by about 3 ° C.
  • this method can be used to compensate for a changing temperature of the medium without influencing the reliability of the method for determining the medium itself or a substance property.
  • Fig. 5 schematically illustrated pump assembly 11 has a motor housing 12 in which a wet-running motor is arranged, the shaft of which carries a centrifugal gear 13 which is located within an inline pump housing 14 with a suction-side port 15a and a pressure-side port 15b.
  • a dry running sensor 16 is provided, which is constructed according to the method described above operates and is formed by a heating element 17 in the form of a PTC resistor, which is arranged in a thin-walled stainless steel cylinder 18 which is formed like a cartridge and projects into the flow path of the suction port 15 a.
  • a thermal paste is provided between the serving as a heating element and sensor PTC resistor 17 and the thin-walled housing 18.
  • the housing 18 is soldered end, the electrical connections are led out to a line 19, which opens in the terminal box 20, which is mounted on the motor housing 12 and next to the motor controlling the frequency converter and the connection wiring and the control and evaluation electronics for the PTC resistor 17 includes.
  • this electronics is integrated into the terminal box 20, but it can also be provided as a separate module or as a plug-on module, so that the pump unit can be optionally equipped with dry-running sensor or without.
  • the dry running sensor 16 is on the input side, so that during normal flow operation, a dry run of the pump can be detected before the liquid in the can is escaped and the pump runs dry with increased bearing wear.
  • the electronic evaluation system can therefore switch off the engine in good time or switch it on again as soon as the pumping medium is present on the suction side.
  • the arrangement of the actual sensor 16 can also take place at another suitable location, since this can be formed like a cartridge and can be arranged after attachment of a housing bore at virtually any point. It is understood that depending on the arrangement and design of the pump unit, the sensor 16 may also be provided directly in the can or at another suitable location.
  • evaluation electronics consists of an analog temperature measuring device, as it is known per se for connecting a PTC resistor.
  • the signal of this device is fed to an analog-to-digital converter, the digital output of which is then supplied to a microprocessor which controls a power pulse generator for the resistor 17.
  • the microprocessor is part of the frequency converter electronics, which controls the electric motor.
  • the operation / programming of the microprocessor which contains and monitors the central control of the entire pump set, takes place via a digital interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats befindlichen Mediums oder zur Ermittlung des Mediums selbst sowie ein Pumpenaggregat mit einer Einrichtung zur Ausführung dieses Verfahrens.
  • Bei Kreiselpumpenaggregaten ist der Antriebsmotor häufig als Nasslaufmotor ausgebildet. Die den Rotor und das Kreiselrad tragende Welle ist dann in Lagern geführt, welche in der Regel durch das Fördermedium selbst geschmiert werden. Darüber hinaus erfolgt bei einigen Konstruktionen auch die Kühlung von Motor und Motorelektronik über das Fördermedium. Insbesondere bei modernen, frequenzumrichtergesteuerten Pumpenaggregaten, die hochtourig laufen, ist eine ständige Kühlung und Schmierung durch das Fördermedium von ausschlaggebender Bedeutung, da beim Trockenlauf ein erhöhter Lagerverschleiß auftritt und schließlich auch andere Bauteile durch Überhitzung geschädigt oder gar zerstört werden können. Ein solcher Trockenlauf kann auftreten, wenn das flüssige Fördermedium ausbleibt, d. h. in dem Förderweg zur Pumpe Luft befindlich ist oder wenn das Fördermedium überhitzt ist und dort Gas befindlich ist. Darüber hinaus kann auch die Konsistenz des Fördermediums selbst für die Kühl- und Schmiereigenschaften von Bedeutung sein.
  • Die Druckschrift EP 0 210 509 A wird als nächstliegender Stand der Technik angesehen.
  • Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zu schaffen, das mit geringem baulichen Aufwand das Fördermedium bzw. das im Pumpenaggregat gerade befindliche Medium erfasst. Darüber hinaus soll ein entsprechendes Pumpenaggregat geschaffen werden, bei dem mit geringem baulichen Aufwand und unter weitgehender Ausnutzung vorhandener Bauteile/Baugruppen ein solches Verfahren realisierbar ist.
  • Der verfahrensmäßige Teil dieser Aufgabe wird durch die in Anspruch 1 angegebenen Merkmale gelöst. Ein entsprechend ausgebildetes Pumpenaggregat ist durch die in Anspruch 8 angegebenen Merkmale gekennzeichnet. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in den Unteransprüchen 2 bis 7 und des Pumpenaggregats in den Unteransprüchen 9 bis 13 sowie der nachfolgenden Beschreibung angegeben.
  • Grundgedanke der vorliegenden Erfindung ist es, in dem Förderweg des Pumpenaggregats, insbesondere im Pumpenaggregat selbst, ein elektrisch beheizbares Heizelement vorzusehen und dieses periodisch zu beheizen, wobei anhand des Temperaturverlaufs des Heizelements die gewünschte Stoffeigenschaft des Mediums oder das Medium selbst ermittelt wird. Dabei geht die Erfindung in ihrer einfachsten Form von weitgehend konstanten Temperaturen des Fördermediums aus, wobei Strömungsgeschwindigkeiten des Fördermediums ebenfalls vernachlässigt werden, um beispielsweise zu erfassen, ob im Förderweg des Pumpenaggregats Förderflüssigkeit, z. B. Wasser, befindlich ist oder aber Luft. Da das Heizelement in Umgebung von Flüssigkeit einem wesentlich intensiveren Wärmeaustausch unterliegt als in Umgebung von Gas, kann anhand des Temperaturverlaufs des Heizelements, sei es in der Heiz- oder auch in der Abkühlphase, ermittelt werden, ob es sich bei dem Medium um eine Flüssigkeit oder ein Gas handelt. Diese einfachste Form der Auswertung kann je nach Anforderung an das Einsatzgebiet verfeinert werden, so dass auch bei sich ändernden Umgebungsbedingungen (Temperatur, Geschwindigkeit) mit ausreichender Zuverlässigkeit die gewünschte Stoffeigenschaft des Mediums bzw. das Medium selbst bestimmt werden kann.
  • Das erfindungsgemäße Verfahren dient primär zur Verhinderung von Trockenlauf eines Pumpenaggregats, es kann jedoch auch zur Ermittlung anderer Stoffeigenschaften, wie beispielsweise den Konzentrationsgehalt von Frostschutzmitteln in Wasser oder dergleichen, dienen. Es versteht sich, dass die Verfahrensparameter hierzu entsprechend der zu unterscheidenden Stoffeigenschaft oder der zu unterscheidenden Medien anzupassen sind.
  • Der vorrichtungsmäßige Aufbau zur Durchführung des erfindungsgemäßen Verfahrens ist vergleichsweise gering, da neben dem erforderlichen Heizelement, das vorzugsweise in Form eines PTC-Widerstands vorgesehen wird, im Wesentlichen nur Auswertelektronik benötigt wird, die aufgrund der heutzutage aggregatseitig vorhandenen digitalen Motorelektronik nicht zusätzlich zur Verfügung gestellt werden muss, sondern lediglich durch Implementierung entsprechender Software realisiert werden kann.
  • Um die gewünschte Stoffeigenschaft zu ermitteln bzw. das jeweilige Medium zu erfassen, ist es erforderlich, zuvor entsprechende Werte zu ermitteln, sei es rechnerisch oder experimentell, die dann mit den gemessenen Werten verglichen werden, wonach als Ergebnis die zu ermittelnde Stoffeigenschaft oder das Medium bestimmt werden.
  • Grundsätzlich ist in einfachster Form lediglich die Erfassung mindestens einer Temperatur des Heizelements zu einem bestimmten Zeitpunkt während oder nach dem Heizvorgang zu erfassen, um dann durch Vergleich die Stoffeigenschaft bzw. das Medium zu bestimmen. In der Praxis würde es jedoch vorteilhafter sein, mehrere Temperaturwerte in zeitlichen Abständen zu erfassen, wenn nicht sogar den zeitlichen Temperaturverlauf zu erfassen.
  • Um mit genügender Sicherheit den Trockenlauf auszuschließen, ist es zweckmäßig, das erfindungsgemäße Verfahren in geeigneten Abständen zu wiederholen, also periodisch auszuführen. Dabei sind die Abstände zweckmäßigerweise so zu wählen, dass die Betriebssicherheit des Gerätes vor Trockenlauf hinreichend sichergestellt ist.
  • In einfachster Ausführung des erfindungsgemäßen Verfahrens wird die Temperatur zu Beginn und am Ende der Heizphase bzw. zu Beginn und am Ende der Abkühlphase ermittelt und die Temperaturdifferenz bestimmt, um beispielsweise festzustellen, ob das Heizelement in Wasser oder in Luft liegt. Wenn die Werte über die Zeit gespeichert werden, können auch Temperaturänderungen des Fördermediums bei dieser einfachen Auswertung mit erfasst werden. Dabei ist es zweckmäßig, das Heizelement stets mit einer vorbestimmten konstanten Leistung über eine vorbestimmte Zeit aufzuheizen und dann über eine vorbestimmte Zeit wieder abkühlen zu lassen. Durch das Einbringen einer konstanten Leistung können auch Zwischenwerte vor Erreichen der vorbestimmten Zeit ausgewertet werden, um Tendenzen frühzeitig zu erkennen.
  • Eine noch zuverlässigere und exaktere Auswertung erlaubt eine Weiterbildung des erfindungsgemäßen Verfahrens, bei der das Heizelement zunächst aufgeheizt wird und dann der Temperaturverlauf des Heizelements während einer vorbestimmten Zeit nach der Aufheizphase erfasst und die Eigenschaft des Mediums oder das Medium selbst ermittelt wird. Dabei können nach einer Weiterbildung des Verfahrens die während der Heiz- und/oder Abkühlphase ermittelten Temperaturwerte herangezogen werden, um in einer Modellrechnung unter Zugrundelegung der möglichen verschiedenen zu ermittelnden Stoffeigenschaften oder Medien rechnerisch zu ermitteln, wie das Temperaturverhalten am Heizelement ohne Wärmezufuhr wäre. Für jede der möglichen Stoffeigenschaften oder der möglichen Medien wird hierbei ein unterschiedlicher Temperaturverlauf über die Zeit ermittelt werden. Dabei ist das zu ermittelnde Medium dann durch die Kurve bestimmt, welche den glattesten Verlauf hat. Dieser Methode liegt die Erkenntnis zugrunde, dass nur das Medium bzw. nur das Medium mit der vorhandenen Eigenschaft eine nahezu konstante Temperatur aufweisen wird, wohingegen bei abweichenden Medien rechnerisch Temperaturänderungen ermittelt werden, die aus thermodynamischen Gründen nicht zutreffen können.
  • Grundsätzlich können bei dem erfindungsgemäßen Verfahren Temperaturänderungen des Fördermediums oder Änderungen der Strömungsgeschwindigkeit vernachlässigt werden, wenn diese so sind, dass sie das Messergebnis nicht merklich beeinflussen. Wenn dies nicht mehr der Fall ist, kann entweder die Temperatur des Fördermediums gesondert erfasst werden, ebenso wie die Strömungsgeschwindigkeit, oder aber, was bevorzugt ist, ein verfeinertes Ermittlungsverfahren eingesetzt werden. Hierzu sieht die Erfindung bevorzugt ein vierstufiges Verfahren vor, wobei innerhalb der ersten Stufe das Heizelement um eine vorbestimmte Temperaturdifferenz aufgeheizt wird. Danach wird das Heizelement für eine vorbestimmte Zeit mit konstanter, aber geringerer Leistung als in der ersten Stufe beheizt. In der dritten Stufe wird das Heizelement für eine vorbestimmte Zeit nicht beheizt, d. h. nur durch das umgebende Medium abgekühlt, und in einer vierten Stufe wird das Heizelement so beheizt, dass ein Temperaturverlauf wie in Stufe 2 entsteht, jedoch mit dazu konstanter Temperaturdifferenz. Die in der vierten Stufe dem Heizelement zugeführte Leistung wird ermittelt und als Vergleichswert zur Ermittlung des Mediums bzw. der zu bestimmenden Stoffeigenschaft des Mediums herangezogen. Dabei dient die Stufe 2 ausschließlich dazu, eine sich möglicherweise ändernde Temperatur des Fördermediums zu erfassen, um damit ohne Temperaturmessung des Mediums eine zuverlässige Bestimmung der Stoffeigenschaft des Mediums oder des Mediums auch dann sicherzustellen, wenn sich die Temperatur während des Messvorgangs ändert. Sollte der Temperatureinfluss erwartungsgemäß gering sein, so können die entsprechenden Verfahrensschritte auch ausgelassen werden, d. h. es kann die Leistung zur Erhitzung des Heizelements um eine vorbestimmte Temperaturdifferenz als Maß für die Auswertung herangezogen werden.
  • Das zur Durchführung dieses Verfahrens ausgebildete Pumpenaggregat wird vorzugsweise als Heizelement einen PTC-Widerstand aufweisen, wobei dieser Widerstand sowohl zum Heizen als auch zur Temperaturmessung dienen kann, indem der Spannungs-/Stromverlauf an diesem Widerstand während des Heizens ermittelt wird und dieser Widerstand in der Abkühlphase als Messelement, also ohne spürbare Wärmeeinbringung, geschaltet wird. Es kann auch während der Heizphase zum Zwecke der Messung die Heizphase kurzzeitig unterbrochen werden, wenn dies messtechnisch oder gerätetechnisch günstiger ist. Alternativ kann jedoch neben dem Heizelement ein gesonderter Sensor zur Erfassung des Temperaturverlaufs vorzugsweise im Bereich der Oberfläche des Heizelements vorgesehen sein.
  • Die Anordnung des Heizelements bzw. Sensors erfolgt zweckmäßigerweise dort, wo der Trockenlauf zuerst auftritt, also beispielsweise bei stehender Welle im Bereich des oberen Lagers, kann jedoch auch an jeder anderen geeigneten Stelle vorgesehen sein, wo dies zweckmäßig ist. Das Heizelement kann auch an vom Pumpenaggregat entfernter Stelle montiert sein, wenn beispielsweise das Ausbleiben von Fördermedium schon ermittelt werden soll, bevor das Pumpenaggregat trockengelaufen ist. In einem solchen Fall wird das Heizelement zweckmäßigerweise patronenartig oder modulartig ausgebildet und über eine hermetisch dichte Leitungsverbindung mit dem Pumpenaggregat verbunden sein. Dabei kann die Auswertelektronik entweder im Klemmenkasten des Pumpenaggregats oder als gesondertes Modul zur Anbringung am Pumpenaggregat vorgesehen sein. Zur Auswertung und Steuerung ist dem elektrischen Widerstand zweckmäßigerweise eine analoge Temperaturmesseinrichtung zugeordnet, deren Signalausgang über ein Analog-Digital-Wandler einem Mikroprozessor zugeführt ist, der einen Leistungspulsgenerator zur Beheizung des Widerstandes steuert und dem eine Bedienelektronik zugeordnet ist. Der Mikroprozessor steuert gleichzeitig den Motor der Pumpe, so dass darüber die im Falle von Trockenlauf erforderlichen schaltungstechnischen Maßnahmen pumpenseitig vorgenommen werden können.
  • Die Erfindung ist nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen erläutert. Es zeigen:
  • Fig. 1
    zeitliche Temperaturverläufe eines Heizelements eines Pumpen- aggregats bei unterschiedlichen Umgebungsmedien,
    Fig. 2
    den zeitlichen Temperaturverlauf eines Heizelements und die rech- nerisch bei zwei unterschiedlichen Medien ermittelten Kurven ohne Beheizung,
    Fig. 3
    den Temperaturverlauf gemäß Fig. 2 bei einem anderen Medium und die rechnerisch bei zwei unterschiedlichen Medien ermittelten Kurven ohne Beheizung,
    Fig. 4
    zwei Temperaturverläufe des Heizelements bei einem vierstufigen Verfahren und
    Fig. 5
    in schematischer Darstellung einen Längsschnitt durch ein Pumpen- aggregat mit Heizelement und Auswertelektronik im Klemmenkas- ten.
  • In Fig. 1 sind zwei Kurvenverläufe dargestellt, wobei die obere Kurve 1 den Temperaturverlauf eines Heizelements in einem Pumpenaggregat in Luft darstellt und die untere Kurve 2 den Temperaturverlauf eines solchen Heizelements zunächst in Wasser, dann in Luft und danach wieder in Wasser darstellt. In beiden Fällen wird das Heizelement periodisch beheizt und anschließend durch das umgebende Medium abgekühlt. Es erfolgt jeweils über vier Sekunden zunächst eine elektrische Beheizung des Heizelements mit einer konstanten Leistung, wonach sich eine Phase von vier Sekunden anschließt, in der keine Beheizung erfolgt, also ausschließlich die Abkühlung durch das umgebende Medium. Wie sich anhand des Temperaturverlaufs der Kurve 1 zeigt, benötigt das Heizelement bei Umgebung von Luft ca. sechs Heizzyklen, bis sich ein stationärer Zustand einstellt, d. h. dass am Anfang und am Ende jedes Intervalls sich eine konstante Temperatur einstellt - eine konstante Umgebungstemperatur des umgebenden Mediums vorausgesetzt. Davor tritt zumindest für das Umgebungsmedium Luft ein gewisser thermischer Trägheitseffekt ein, der diesen stufenweisen Anstieg der Temperaturen am Ende jeder Heizperiode sowie am Ende jeder Abkühlphase verglichen mit dem entsprechenden vorherigen Wert ausmacht.
  • Ist das Umgebungsmedium Wasser wie am Anfang und am Ende von Kurve 2, so kann dieser thermische Trägheitseffekt praktisch vernachlässigt werden, wie anhand der ersten fünf Zyklen der unteren Kurve 2 sichtbar ist. Die beiden Kurvenverläufe 1 und 2 verdeutlichen, dass die Unterschiede in den Kurvenverläufen bei der Umgebung des Heizelements von Luft einerseits und Wasser andererseits auch schon bei der ersten Heizperiode (erster Zyklus) so groß sind, dass anhand des Temperaturverlaufs das umgebende Medium ermittelbar ist.
  • In der unteren Kurve 2 ist darüber hinaus in einem mittleren Zeitbereich, nämlich dem im Diagramm mit 3 gekennzeichneten Bereich, ein Medienwechsel von Wasser zu Luft dargestellt, wie er beispielsweise beim plötzlichen Trockenlauf einer Pumpe auftritt. Wie die sechste bis zehnte Periode der Kurve 2 im Bereich 3 verdeutlichen, hat die Kurve 2 dort den gleichen Verlauf wie die Kurve 1 in den Perioden 1 bis 5, wohingegen die Kurve 2 unmittelbar nach dem Bereich 3 sehr schnell wieder den für Umgebungsmedium Wasser typischen Verlauf annimmt. Es wird also deutlich, dass insbesondere bei kontinuierlicher Betrachtung der Trockenlauf der Pumpe genügend schnell allein durch Signalauswertung detektierbar ist, wobei auch in Grenzen eine Temperaturänderung des Mediums selbsttätig berücksichtigt werden kann.
  • In einfachster Auswertung genügt es also, die Anfangstemperatur 4a und die Endtemperatur 4b (wie dies anhand von Kurve 4 anhand der dritten Heizperiode beispielhaft beziffert ist) zu messen, um zuverlässig feststellen zu können, ob sich das Heizelement in Luft oder in Wasser befindet.
  • Fig. 2 zeigt den Temperaturverlauf eines periodisch beheizten Heizelements, das jeweils 4 sec. mit einer konstanten Leistung beheizt wird, wonach eine 4-sekündige Abkühlphase erfolgt. Der dabei ermittelte Temperaturverlauf wird in zwei unterschiedliche Modellrechnungen eingegeben, welche die Temperatur des Heizelements für den Zustand ermitteln, in dem keine Beheizung erfolgt, d. h. das Heizelement sich temperaturmäßig etwa wie das Umgebungsmedium verhalten müsste. Während die Kurve 5 des oberen Diagramms den tatsächlichen Temperaturverlauf am Heizelement darstellt, zeigt die untere Kurve den errechneten Temperaturverlauf, und zwar in Kurve 6 für Wasser und in Kurve 7 für Luft. Dabei wird deutlich, dass die Kurve 6 völlig glatt ist, wohingegen die Kurve 7 etwa phasenverschoben die Kurve 5 repräsentiert. Da die Modellrechnung die Ermittlung des Temperaturverlaufs ohne Beheizung des Heizelements erfassen soll, repräsentiert folglich die Kurve 6 das Medium, in dem sich das Heizelement befindet, nämlich Wasser.
  • In Fig. 3 ist im oberen Diagramm analog zu Fig. 2 eine Kurve 8 dargestellt, welche den Temperaturverlauf eines periodisch beheizten Heizelements in Luft darstellt. In dem unteren Diagramm sind entsprechende rechnerisch ermittelte Kurven 9 und 10 dargestellt, wobei die Kurve 9 Ausfluss des Rechenmodells für Umgebung Luft und die Kurve 10 Ausfluss des Rechenmodells für Umgebung Wasser ist. Hier ist die glattere Kurve also die Kurve 9 und somit Luft als Umgebungsmedium ermittelt.
  • Anhand von Fig. 4 ist ein vierstufiges Verfahren dargestellt, und zwar im oberen Diagramm bei sich nicht verändernder Mediumtemperatur und im unteren Diagramm bei steigender Mediumtemperatur. Die Stufen sind mit I bis IV gekennzeichnet. Die erste Stufe beginnt mit einer Aufheizphase auf einer gegenüber der Ausgangstemperatur (zu Beginn der Stufe I) vorbestimmten Temperaturdifferenz von 3,5° C. Nach Abschluss der Stufe I erfolgt in Stufe II eine Beheizung des Heizelements mit konstanter Leistung, wobei die Leistung so gewählt ist, dass sie kleiner ist als die am Ende der Stufe I, damit ein möglichst gleichmäßiger Temperaturverlauf der zweiten Stufe entsteht.
  • In der dritten Stufe wird das Heizelement nicht beheizt. Am Ende der dritten Stufe wird die Temperaturdifferenz zum Ende der ersten Stufe ermittelt, um dann in der vierten Stufe das Heizelement so zu beheizen, dass eine konstante Temperaturdifferenz zu dem Temperaturverlauf der Stufe II entsteht. Dabei wird die Heizleistung ermittelt, die einen charakteristischen Wert dafür darstellt, ob das Umgebungsmedium Luft oder Wasser ist. Wenn das umgebende Medium Wasser ist, ist eine signifikant höhere Heizleistung erforderlich als beispielsweise bei Luft. Dieses verfeinerte Verfahren gemäß Fig. 4 kompensiert Temperaturänderungen des Mediums selbst, die nicht auf die Beheizung des Heizelements zurückgehen. Ein solcher Fall ist im unteren Diagramm in Fig. 4 dargestellt, dort steigt die Medientemperatur während des Messverfahrens gemäß den Stufen I bis IV um etwa 3° C an. Wie ein Vergleich der Kurvenverläufe im Bereich der Stufen II und IV zwischen dem oberen und unteren Diagramm zeigt, ist unabhängig von der Medientemperatur die Temperaturdifferenz und damit die einzubringende Heizleistung stets gleich, wenn gleiches Umgebungsmedium vorhanden ist. Es kann also mit diesem Verfahren eine sich ändernde Medientemperatur kompensiert werden, ohne die Zuverlässigkeit des Verfahrens zur Ermittlung des Mediums selbst oder einer Stoffeigenschaft zu beeinflussen.
  • Die vorstehend beispielhaft beschriebenen Verfahren stellen nur einen Ausschnitt zahlreicher möglicher nach dem erfindungsgemäßen Prinzip arbeitender Verfahren dar. Sie sind vorstehend beschrieben zur Ermittlung, ob das Heizelement in Luft oder in Wasser befindlich ist, d. h. zur Ermittlung des Mediums selbst. Dieses Verfahren kann durch in der Regel wenige empirische Versuche auch zur Ermittlung anderer Medien oder Stoffeigenschaften eingesetzt werden, was jedoch hier nicht im Einzelnen beschrieben werden soll.
  • Das anhand von Fig. 5 schematisch dargestellte Pumpenaggregat 11 weist ein Motorgehäuse 12 auf, in dem ein Nasslaufmotor angeordnet ist, dessen Welle ein Kreiselrad 13 trägt, das innerhalb eines Inline-Pumpengehäuses 14 mit einem saugseitigen Anschluss 15a und einem druckseitigem Anschluss 15b liegt. In Strömungsrichtung gesehen unmittelbar hinter dem saugseitigen Anschluss 15a ist ein Trockenlaufsensor 16 vorgesehen, der nach dem vorbeschriebenen Verfahren arbeitet und durch ein Heizelement 17 in Form eines PTC-Widerstands gebildet ist, der in einem dünnwandigen Edelstahlzylinder 18 angeordnet ist, der patronenartig ausgebildet ist und in den Strömungsweg des Sauganschlusses 15a ragt. Zwischen dem als Heizelement und Sensor dienenden PTC-Widerstand 17 und dem dünnwandigen Gehäuse 18 ist eine Wärmeleitpaste vorgesehen, um eine möglichst gute Wärmeleitung zwischen dem Widerstand und der Außenseite des Gehäuses 18 sicherzustellen. Das Gehäuse 18 ist endseitig verlötet, die elektrischen Anschlüsse sind zu einer Leitung 19 herausgeführt, die im Klemmenkasten 20 mündet, der am Motorgehäuse 12 angebracht ist und neben dem den Motor steuernden Frequenzumrichter sowie die Anschlussverdrahtung auch die Steuer- und Auswertelektronik für den PTC-Widerstand 17 beinhaltet. Im vorliegenden Ausführungsbeispiel ist diese Elektronik in den Klemmenkasten 20 integriert, sie kann jedoch auch als gesondertes Modul oder als Aufsteckmodul vorgesehen sein, so dass das Pumpenaggregat wahlweise mit Trockenlaufsensorik oder ohne ausgestattet werden kann.
  • Im dargestellten Ausführungsbeispiel liegt der Trockenlaufsensor 16 eingangsseitig, so dass beim üblichen Strömungsbetrieb ein Trockenlauf der Pumpe detektiert werden kann, bevor die im Spaltrohr befindliche Flüssigkeit entwichen ist und die Pumpe mit erhöhtem Lagerverschleiß trockenläuft. Die Auswertelektronik kann den Motor also rechtzeitig vorher abschalten bzw. wieder anschalten, sobald saugseitig Fördermedium ansteht.
  • Mit dem dargestellten Trockenlaufsensor 16 kann nicht nur das diesen umgebende Medium detektiert werden, sondern darüber hinaus auch die Temperatur des Fördermediums. Die Anordnung des eigentlichen Sensors 16 kann auch an anderer geeigneter Stelle erfolgen, da dieser patronenartig ausgebildet und nach Anbringen einer Gehäusebohrung an praktisch beliebiger Stelle angeordnet werden kann. Es versteht sich, dass je nach Anordnung und Ausbildung des Pumpenaggregats der Sensor 16 auch unmittelbar im Spaltrohr oder an anderer geeigneter Stelle vorgesehen sein kann.
  • Die innerhalb des Klemmenkastens 20 vorgesehene Auswertelektronik besteht aus einer analogen Temperaturmesseinrichtung, wie sie an sich zur Beschaltung eines PTC-Widerstands bekannt ist. Das Signal dieser Einrichtung ist einem Analog-Digitalwandler zugeführt, dessen dann digitales Ausgangssignal einem Mikroprozessor zugeführt ist, der einen Leistungspulsgenerator für den Widerstand 17 steuert. Der Mikroprozessor ist Teil der Frequenzumrichterelektronik, welche den Elektromotor ansteuert. Über eine digitale Schnittstelle erfolgt die Bedienung / Programmierung des Mikroprozessors, der die zentrale Steuerung des gesamten Pumpenaggregats beinhaltet und überwacht.

Claims (13)

  1. Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats (11) befindlichen Mediums oder des Mediums, bei dem ein im Medium befindliches Heizelement (17) mit einer vorbestimmten Leistung über eine vorbestimmte Zeit aufgeheizt wird und der Temperaturverlauf des Heizelementes (17) während oder nach dem Heizvorgang durch Vergleich mit vorermittelten Werten zur Ermittlung einer Stoffeigenschaft des Mediums oder des Mediums ausgewertet wird, dadurch gekennzeichnet, dass anhand des ermittelten Temperaturverlaufs des Heizelements (17) der Temperaturverlauf von Medien unterschiedlicher Eigenschaften oder unterschiedlicher Medien ohne Wärmezufuhr des Heizelements (17) errechnet wird und dass die zu bestimmende Eigenschaft des Mediums oder das zu bestimmende Medium durch den errechneten Temperaturverlauf des Mediums bestimmt ist, welches die am glattesten verlaufende Kurve (6, 9) aufweist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Heizelement (17) mit einer konstanten Leistung aufgeheizt wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Temperaturverlauf während der Heizphase ermittelt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgende Schritte:
    a) Aufheizen des Heizelements
    b) Erfassung des Temperaturverlaufs des Heizelements während einer vorbestimmten Zeit nach der Aufheizphase und Ermittlung der Eigenschaft des Mediums oder des Mediums
  5. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass anhand des ermittelten Temperaturverlaufs des Heizelements der Temperaturverlauf von Medien unterschiedlicher Eigenschaften oder unterschiedlicher Medien ohne Wärmezufuhr des Heizelements errechnet wird und dass die zu bestimmende Eigenschaft des Mediums oder das zu bestimmende Medium durch den errechneten Temperaturverlauf des Mediums bestimmt ist, welcher die am glattesten verlaufende Kurve aufweist.
  6. Verfahren nach Anspruch 1, gekennzeichnet durch folgende Schritte:
    a) Aufheizen des Heizelements um eine vorbestimmte Temperaturdifferenz
    b) Erfassen des Temperaturverlaufs des Heizelements während einer vorbestimmten Zeit nach der Heizphase
    c) Heizen des Heizelements über eine vorbestimmte Zeit so, dass sich eine konstante Temperaturdifferenz zwischen dem erreichten Wert unmittelbar nach Abschluss der Heizphase a ergibt.
    d) Ermittlung der Eigenschaft des Mediums oder des Mediums anhand der zugeführten Leistung im Schritt c
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass nach dem Aufheizen des Heizelements gemäß Schritt a das Heizelement über eine vorbestimmte Zeit mit einer konstanten Leistung beheizt wird (Konstantheizphase), wobei die konstante Leistung kleiner ist als die der Aufheizphase gemäß Schritt a ist, und dass der Temperaturverlauf des Heizelements während dieser Konstantheizphase ermittelt wird und eine Abweichung von einem konstanten Wert als Ausdruck für eine Änderung der Medientemperatur zugrundegelegt wird und dass eine sich dabei gegebenenfalls ergebende Änderung der Mediumstemperatur bei der Auswertung gemäß Schritt d berücksichtigt wird, so dass Einflüsse einer Änderung der Mediumstemperatur während des Verfahrens ausgeschlossen werden.
  8. Pumpenaggregat mit einer Einrichtung zur Ermittlung mindestens einer Eigenschaft des Fördermediums oder des Fördermediums, dadurch gekennzeichnet, dass ein Heizelement und Mittel zur Erfassung der Temperatur des Heizelementes vorgesehen sind, dass das Heizelement zeitweise beheizbar ist und dass eine Auswertelektronik vorgesehen ist, welche anhand der in das Heizelement eingebrachten elektrischen Leistung und des Temperaturverlaufs des Heizelements mindestens eine Eigenschaft des Fördermediums oder das Fördermedium bestimmt.
  9. Pumpenaggregat nach Anspruch 8, dadurch gekennzeichnet, dass das Heizelement ein elektrischer Widerstand, vorzugsweise ein PTC-Widerstand ist und dass die Temperaturerfassung des Heizelements durch Auswertung der elektrischen Größen am Heizelement erfolgt.
  10. Pumpenaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich zum Heizelement ein Sensor zur Erfassung des Temperaturverlaufs am Heizelement vorgesehen ist.
  11. Pumpenaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Sensor zur Erfassung der Temperatur des Fördermediums vorgesehen ist.
  12. Pumpenaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem elektrischen Widerstand eine analoge Temperaturmesseinrichtung zugeordnet ist, deren Signalausgang über einen Analog-/Digitalwandler einem Mikroprozessor zugeführt ist, der einen Leistungspulsgenerator für den Widerstand steuert, wobei dem Mikroprozessor eine Bedieneinheit zugeordnet ist.
  13. Pumpenaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuer- und Auswertelektronik für den elektrischen Widerstand im Klemmenkasten oder als gesondertes Modul am Pumpenaggregat vorgesehen ist.
EP01123547A 2000-11-01 2001-10-01 Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats befindlichen Mediums Expired - Lifetime EP1203886B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10054091A DE10054091A1 (de) 2000-11-01 2000-11-01 Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats befindlichen Mediums
DE10054091 2000-11-01

Publications (3)

Publication Number Publication Date
EP1203886A2 EP1203886A2 (de) 2002-05-08
EP1203886A3 EP1203886A3 (de) 2007-01-03
EP1203886B1 true EP1203886B1 (de) 2010-12-15

Family

ID=7661760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01123547A Expired - Lifetime EP1203886B1 (de) 2000-11-01 2001-10-01 Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats befindlichen Mediums

Country Status (3)

Country Link
EP (1) EP1203886B1 (de)
AT (1) ATE491888T1 (de)
DE (2) DE10054091A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060418A1 (de) * 2004-12-14 2006-07-06 Metabowerke Gmbh Pumpe mit Frostschutzeinrichtung
EP2412981B1 (de) 2010-07-30 2016-05-04 Grundfos Management A/S Pumpensystem
PL2453557T3 (pl) * 2010-11-11 2023-04-11 Grundfos Management A/S Mokry silnik elektryczny i agregat pompowy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131887A (en) * 1981-02-07 1982-08-14 Hitachi Ltd Electric well pump
DE3233329A1 (de) * 1982-09-08 1984-03-08 Tecova AG, 5610 Wohlen Verfahren zum messen der stroemungsgeschwindigkeit eines fluids und einrichtung zur durchfuehrung des verfahrens
DE3527868A1 (de) * 1985-08-02 1987-02-12 Schmidt Feintechnik Gmbh Verfahren und messsonde zum sondieren des fuellstandes des massenstromes, der fluidart, der fluidzusammensetzung oder dgl. in einem eine oder mehrere fluids enthaltenden behaelter, leitungen oder dgl.
DE3637497A1 (de) * 1985-11-05 1987-07-16 Walter Buerkle Verfahren und einrichtung zum fuehlen von stroemungsgeschwindigkeiten und/oder durchfluessen
DE3841637C1 (de) * 1988-12-10 1990-05-10 Gebr. Schmidt Fabrik Fuer Feinmechanik, 7742 St Georgen, De
FR2645212A1 (fr) * 1989-03-31 1990-10-05 Guinard Pompes Groupe motopompe a detecteur de temperature sur la tuyauterie de refoulement

Also Published As

Publication number Publication date
DE10054091A1 (de) 2002-05-16
DE50115741D1 (de) 2011-01-27
EP1203886A2 (de) 2002-05-08
EP1203886A3 (de) 2007-01-03
ATE491888T1 (de) 2011-01-15

Similar Documents

Publication Publication Date Title
EP1564411B1 (de) Verfahren zur Ermittlung von Fehlern beim Betrieb eines Pumpenaggregates
EP2039939B1 (de) Verfahren zur Überwachung einer Energieumwandlungseinrichtung
EP2145112B1 (de) Einrichtung und verfahren zur störungsüberwachung
EP3449132B1 (de) Verfahren zur detektion eines abnormalen betriebszustands eines pumpenaggregats
DE102014008716B4 (de) Verfahren zur Erkennung eines Trockenlaufs
DE102009022107A1 (de) Verfahren und Vorrichtung zur Betriebspunktbestimmung einer Arbeitsmaschine
EP1377752B1 (de) Turbomolekularpumpe
AT511971A2 (de) Verfahren zur überwachung einer kühl- oder heizeinrichtung und überwachungseinrichtung hierzu
WO2020025754A1 (de) Vakuumpumpe
EP1203886B1 (de) Verfahren zur Ermittlung mindestens einer Eigenschaft eines im Förderweg eines Pumpenaggregats befindlichen Mediums
EP3242035B1 (de) Verfahren zum betreiben mindestens eines pumpenaggregates von einer vielzahl von pumpenaggregaten
WO2022078758A1 (de) Verfahren zur feststellung von leckagen einer verdrängerpumpe
DE10055420A1 (de) Vorrichtung zum Messen der Viskosität von Maschinen- und Motorenöl
WO2016173896A1 (de) Pumpeneinrichtung sowie verfahren zum betrieb einer pumpe für flüssigkeiten
DD252793A5 (de) Verfahren und vorrichtung zur ueberwachung von schneckenextrudern
DE10101099B4 (de) Verfahren zum Überwachen des Trockenlaufs einer Förderpumpe und nach dem Verfahren arbeitende Förderpumpe
WO2016166114A1 (de) Pumpe sowie verfahren zum betrieb einer pumpe für flüssigkeiten
EP3543537B1 (de) Pumpenaggregat sowie verfahren zum überwachen der flüssigkeitsvorlage in einer dichtungsanordnung in einem pumpenaggregat
WO2011039006A1 (de) Verfahren zum schutz eines kraftfahrzeuggenerators vor einer überhitzung
EP3259463B1 (de) Verfahren zur regelung einer kraftstoffförderpumpe
DE102007051045B4 (de) Anordnung mit Vakuumpumpe und Verfahren
DE10161867B4 (de) Verfahren zur Überwachung eines Flüssigkeits-Kühlkreislaufs einer Brennkraftmaschine
DE102018101179B3 (de) Verfahren und Vorrichtung zur Überwachung einer Temperatur an wenigstens einem Lager
DE102020128059A1 (de) Verfahren und Vorrichtung zum Überwachen einer Luftkühlvorrichtung
DE102018108471A1 (de) Verfahren, mit dem ein Schmiermitteldurchfluss an einer Zentrifuge überwacht wird

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20070507

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20071108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50115741

Country of ref document: DE

Date of ref document: 20110127

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110326

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

26N No opposition filed

Effective date: 20110916

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50115741

Country of ref document: DE

Effective date: 20110916

BERE Be: lapsed

Owner name: GRUNDFOS A/S

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 491888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201022

Year of fee payment: 20

Ref country code: FR

Payment date: 20201020

Year of fee payment: 20

Ref country code: IT

Payment date: 20201030

Year of fee payment: 20

Ref country code: DE

Payment date: 20201026

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50115741

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210930