EP1200744B1 - Dispositif et procede permettant de reguler un flux d'air de refroidissement d'une turbine a gaz et turbine a gaz a circulation d'air de refroidissement - Google Patents

Dispositif et procede permettant de reguler un flux d'air de refroidissement d'une turbine a gaz et turbine a gaz a circulation d'air de refroidissement Download PDF

Info

Publication number
EP1200744B1
EP1200744B1 EP00953106A EP00953106A EP1200744B1 EP 1200744 B1 EP1200744 B1 EP 1200744B1 EP 00953106 A EP00953106 A EP 00953106A EP 00953106 A EP00953106 A EP 00953106A EP 1200744 B1 EP1200744 B1 EP 1200744B1
Authority
EP
European Patent Office
Prior art keywords
flow
cooling air
air flow
control
control fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00953106A
Other languages
German (de)
English (en)
Other versions
EP1200744A1 (fr
Inventor
Arnd Reichert
Dirk Lieser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP00953106A priority Critical patent/EP1200744B1/fr
Publication of EP1200744A1 publication Critical patent/EP1200744A1/fr
Application granted granted Critical
Publication of EP1200744B1 publication Critical patent/EP1200744B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • F15C1/16Vortex devices, i.e. devices in which use is made of the pressure drop associated with vortex motion in a fluid

Definitions

  • EP 0 768 448 A1 discloses an air-cooled gas turbine blade device known.
  • the blades are rotatable Carrier discs used.
  • the gas turbine supplied hot air are also temperature sensitive Areas of the gas turbine heated by this Can be damaged.
  • rotatable carrier discs are used blades cooled by supplied from the carrier disk cooling air.
  • the stationary vanes are used for cooling from radially flows outside supplied cooling air. This serves u.a. to Cooling between the blades and the vanes lying Colournclose spaces.
  • EP 0 192 185 discloses in a high-pressure compressor air extraction line a gas turbine an intermediate Pressure relief valve, which when exceeding a predetermined differential pressure between the extraction air pressure and the cell pressure opens.
  • control valves are used. These are generally commercially available valve types and are radially outward on the vane or further forward in the supply path of the cooling air, in the cooling air supply channel.
  • the valve is on the one hand easily accessible, for example to make any repairs or adjustments,
  • it is therefore only a simultaneous one Adjustment of the pressure of the cooling air for the carrier disk side space and the pressure of the cooling air possible through the Film cooling holes on the blade nose flows.
  • a very low pressure of the cooling air can do this easily cause the cooling air film on the blade nose tears off and thus no sufficient cooling of the vane surface more is given.
  • at a heavily adjusted pressure of the cooling air to produce a sufficient cooling film a strong inflow of cooling air into the Hot air evolved, resulting in a reduction in performance the gas turbine and a higher energy consumption leads.
  • Object of the present invention is therefore an on-demand Control of a cooling air flow by means of a Control flow, where the amount of adjusting Total current almost independent of the amount introduced of the control current.
  • a Control flow where the amount of adjusting Total current almost independent of the amount introduced of the control current.
  • a device for Control cooling air flow of a gas turbine is given, the a flow channel with a nozzle and a downstream Diffuser flows through, with one in the area of the flow channel between the nozzle and the diffuser into the cooling air flow with a flow component transverse to the flow direction the cooling air flow introduced through the flow channel Control fluid flow, wherein the flow rate of the cooling air flow in accordance with the inlet geometry of the control fluid flow into the cooling air flow and / or adjustable by the geometry of the flow channel is.
  • This type of scheme is well suited for poorly accessible Make of machines or the like, at the same time are exposed to a heavy load.
  • the device works almost independent of pollution or other environmental influences, such as aggressive chemical attacks through a corresponding cooling air flow.
  • the regulatory element is not subject to any wear, a wear-free Switching is due to contactless setting for example, without electricity or mechanical Devices possible.
  • Such a control device is therefore very low maintenance, as the regulation of the cooling air flow only by a specially adjusted addition a control fluid flow takes place.
  • the originally set Cooling air flow in its basic setting.
  • the cooling air flow can be used before commissioning, regardless of the function of the control current the device can be adjusted so that he is sufficient for the desired function.
  • the control fluid flow engages in the flow behavior of Cooling air flow to the effect that he either the flow accelerates or decelerates or the flow rate increases or decreases.
  • This essentially happens by changes in the type of Nutzfluidströmung in certain edge or center areas of the cooling air flow in the flow channel.
  • This is especially true a transformation of the flow from a laminar flow into to turn off a turbulent flow.
  • the control fluid flow when flowing into the cooling air flow a flow component suitable for influencing the flow having. That is, a component of its main flow direction, the transverse to the flow direction of the cooling air flow is directed through the flow channel. hereby the flow behavior of the cooling air flow is in a predetermined Way influenced.
  • control fluid is air. It is also conceivable, the Nutzfluid a control fluid with respect to the Cooling air flow to a certain extent of "neutral" composition, such as. supplying water to an aqueous solution.
  • the control fluid flow can on the one hand in its strength or be set in its flow rate and thereby exerts a controlling influence on the cooling air flow out.
  • its introduction geometry recordable the angular position of the control fluid flow relative to Cooling air flow or the approach of the control fluid flow relative to the cooling air flow to be changed.
  • a Influence is also due to a change in geometry the flow channel through which the cooling air flow flows, possible.
  • the aforementioned possibilities of regulation can be mutually exclusive be combined, after incorporation of an inventive Device in a machine preferably the Flow rate or strength of the control fluid flow adjusted becomes.
  • the regulation of the control fluid flow with fixed Geometry takes place with control parameters of the control fluid flow, however, of the geometry chosen depend.
  • the flow rate of the cooling air flow is advantageous by Adjustment of the pressure of the control fluid flow adjustable. This allows a stepless and very accurate adjustment of the control fluid flow can be achieved with low Effort is to be made. At the same time this device is very low maintenance, because almost constantly a control current flows, whereby the supply channels of the control flow are released.
  • the flow rate of the control fluid stream is preferably small compared to the flow rate of the cooling air flow, well in this way, no changes in the physical and chemical properties of the cooling air flow are made, for example, pressure or temperature changes or changes the chemical composition, for example, a cooling function.
  • the cooling air flow for the fulfillment of the intended Tasks continue to be sufficient, so that the system in which the Device used for regulation, by the failure the scheme is not significantly disturbed.
  • the share of Control fluid flow, which led into the cooling air flow is, the total current is preferably less than total 50% and in particular less than 10%.
  • the resulting total current, resulting from the control fluid flow with the cooling air flow composed corresponds practically to the previously introduced Cooling air flow.
  • Another advantage of controlling a large current through a small current is moreover the lower energy input, which is necessary for this, or the low Consumption of control fluid flow.
  • a special introduction geometry is the control fluid flow radially into the flow of cooling air flowing in the flow channel introducible, i. the control fluid flow is in the middle and perpendicular or at least with a flow component perpendicular to the flow channel. This will be a non-uniform Flow of the cooling air flow achieved. On this way, the current is strongly swirling, with the Turbulence according to the control parameters of the control fluid flow directed. In this way, the flow rate the cooling air flow reduced more or less.
  • the mass flow is at optimal setting of the introduction geometry and optimal control parameter values minimum. at given inlet geometry can by changing the control pressure a continuous control of the cooling air flow from the normal value down to a minimum value become.
  • control fluid flow is secantially flowing in the flow channel cooling air flow introducible, i. the control current is still available with at least one component perpendicular to the Cooling air flow direction, but is not centrally located, so at a cylindrical flow channel at the maximum Diameter of the flow channel, but more or less far to the side, so that the control fluid flow accordingly a kind of secant in the case of a cylindrical Flow channel is introduced into the cooling air flow.
  • Type of designation is not limited to cylindrical Flow channels to understand but can also other channel shapes are applied. Through this special Type of feed becomes a swirl in the flow channel and in particular generated by the flowing Nutzfluistrom. This Swirl stabilizes the flow of cooling air flow and increases its flow rate.
  • the flow rate of the originally set up to a maximum value Depending on the control parameter of the control fluid flow ranges accordingly, the flow rate of the originally set up to a maximum value.
  • the achievable values of the flow rate are at the tangential as well as the radial inflow next to the control parameters also strongly from the inlet geometry of the control fluid flow and the geometry of the flow channel dependent.
  • An advantageous in the application geometry of the flow channel is that the flow channel a nozzle and a downstream diffuser with a predetermined opening angle and the control fluid flow into a transition peripheral region introduced between the nozzle and the diffuser is.
  • This formation of the geometry of the flow channel allows a very precise control of the cooling air flow, the first through the nozzle and then the diffuser flows, wherein a very small control fluid flow is sufficient between Nozzle and diffuser is fed into the cooling air flow.
  • control fluid flow preferably in the region of the beginning of the diffuser initiated.
  • the introduction of the control fluid flow becomes a non-uniform flow of the diffuser achieved, wherein the pressure recovery of the diffuser reduced becomes.
  • the pressure recovery of the diffuser reduced With a strong supply of control fluid flow an almost complete disturbance of the flow is achieved, whereby finally the pressure recovery almost completely is prevented. In this way, the flow rate or the mass flow through the nozzle minimal. If the control fluid flow fails, the original flows through set cooling air flow the nozzle and the diffuser.
  • control fluid flow in the cooling air flow is preferably the control fluid flow fed to the central region of the nozzle.
  • the generated Twist thus stabilizes the diffuser flow.
  • the pressure recovery and the mass flow through the nozzle is elevated.
  • the perfused diffuser an opening angle of approximately 10% and a ratio of inlet area of Nozzle to the outlet surface of the diffuser of approximately 1: 3, is at a radial introduction of the control fluid flow a control range of the individual nozzle and diffuser existing throttle body from 70% to 100% of undisturbed To achieve flow rate. This very wide regulation area can be adjusted by the pressure of the control fluid flow is changed.
  • the perfused diffuser an opening angle of approximately Has 30% and a ratio of inlet area of Nozzle to the outlet surface of the diffuser of approximately 1: 3, you get a diffuser that is only a minor one Pressure recovery generated.
  • the control fluid flow tangentially fed into the nozzle reached the control range of the existing nozzle and diffuser throttle body when the pressure of the control fluid is 100% to nearly 140% of the unaffected flow rate of the cooling air flow.
  • An extension of the control range of the throttle body can be achieved in that several of the above Devices mounted in rows or in parallel are, wherein they are flowed through by the cooling air flow.
  • a series connection of Throttling elements with radial flow to 70% of undisturbed Flow rate reduced cooling air flow at flow again reduced by the second throttle body, whereby a reduction of the undisturbed flow rate can reach almost 50%.
  • Fall the control currents out flows again - as already stated above - the original set undisturbed cooling air flow. So it is in each case the fault of the control device, a cooling air flow present, especially for cooling or other Gas regulations to safeguard a certain basic supply very advantageous to destruction of facilities too prevent, for example, due to a failure of a Cooling function.
  • control fluid stream may be a control gas stream be.
  • the proposed device can Even hot or aggressive gases are safely controlled. Mechanical Parts, for example, by oxidative or corrosive Attack could be damaged and thereby their Function would be associated with the control gas flow not necessary to continuous regulation to reach the Nutzgasstroms.
  • both gas streams can also be used, for example the control device in a gas turbine the same gas supply, which is compressed in the gas turbine, be removed, not having the same gas parameters, e.g. print and temperature, must have.
  • a very good use of the above advantages of the control device is possible in a gas turbine.
  • a gas turbine with blades used on carrier discs, with stationary vanes arranged between the carrier disks, from a radially outer area to a radially inner region of cooling air are flowed through and with each a carrier disk side space between a blade and a vane, which at least part of the through the guide vane flowing cooling air can be supplied, has particularly high demands on the durability and the Maintenance freedom of a throttle device for in the carrier disk side space outgoing cooling air on, as already presented in the introduction. In addition, there is a heavy burden due to high working gas temperatures.
  • the object is achieved in that at least one vane at an inner radial end region has a device influencing the cooling air supply to the carrier disk side space.
  • a control device blocked by the ejected from her cooling air also referred to as “blocking air”, and the associated "pressure" in the carrier disk side space relative to the hot gas duct, an air supply from the hot gas duct entry into the carrier disk side space and thus prevents damage.
  • a control in the cooling air supply duct to the vane affects, as shown above, in addition to the cooling air supply to Sparusionn side space and the cooling air supply to film cooling holes on the blade nose, which can lead to unwanted film breaks and thus overheating of the blade nose at very low pressures of the cooling air.
  • the cooling air supply can be adjusted by the proposed device individually to the specific geometry of the blades and the carrier disk side spaces.
  • a particularly well controllable and low-maintenance device for Influencing the cooling air supply to the carrier disk side space a gas turbine is given by the fact that at the inner radial End portion of a vane mounted a control device is, whereby the cooling air supply from the carrier disk side space with a control air flow is adjustable, as it is in various forms was presented above.
  • the invention then represents, so to speak, a pneumatic or aerodynamic Volume control of the sealing air.
  • the cooling air supply to the carrier disk side space does not have to in the first place be determined in size, as soon as the vane installed in the gas turbine, but can be retrofitted with respect to the desired flow behavior at the inner Radial end by means of the control air flow be set. This is particularly advantageous because because in the manufacturing process no vane device exactly corresponds to another and in this way one Optimization of the cooling air supply and a minimization of the Cooling air demand by slight changes in the cooling air flow can be achieved later. This way will not too much cooling air consumed, but at the same time one ensures safe cooling of the carrier disk side space.
  • An independent and low-maintenance device for feeding the control air flow to the throttle body at the inner radial End region of a guide vane is given by the fact that the Control air flow through a supply duct to the transitional peripheral area be fed between the nozzle and the diffuser is, wherein the feed channel inside the vane is accommodated and at its outer end portion a control device for adjusting the control air pressure.
  • the control air flow at the inner Radial end portion of the vane so to speak "remotely controlled” can be adjusted without complex mechanical Devices are needed.
  • the regulation takes place outside of the high Temperatures heavily loaded inner radial end portion The guide vane instead, and is therefore easily accessible for maintenance.
  • the throttle device is also characterized by high temperature not damaged in their function and assigns one permanent high control speed. She can without Damage can also be overburdened once, for example by too high a set pressure of the control airflow. The air flow then bounces only on the walls of the nozzle or However, the diffuser can not do this seriously to damage.
  • a basic cooling air flow regardless of the function the control air flow before commissioning of the gas turbine for example, by a predetermined size of the openings in the Flow channel and a fixed cooling air flow can be adjusted so that its current for the desired Function is sufficient.
  • the control air flow is very small is selectable, the supply channel is small and thus can easily housed inside the vane. Outside the vane, he would operate the gas turbine disturb and impossible for a regulation.
  • the intermediate region allows cooling of the surrounding material and thus also serves to lower the temperature in the region of the inner radial end region of the leischaufeln.
  • Fig. 1a shows schematically and not to scale a principal Structure of a Nutzfluid-control device.
  • the Nutzfluid 1 flows through a flow channel 2.
  • the flow channel 2 is not fixed in its form, but becomes here assumed as cylindrical.
  • a control fluid channel 34 is attached, through the flowing through the flow channel 2 cooling air flow. 1 a control fluid stream 30 is supplied.
  • the geometry of the Control fluid channel 34 is also not specified, in particular the transition 45 of the control fluid channel 34 in the Flow channel 2. Depending on whether you have a laminar or a would like to generate turbulent flow, it is appropriate to one appropriate transition 45 to choose, for example, adapted, rounded edges.
  • the control fluid stream 30 may be in at least two flow components 3 are decomposed, wherein always a flow component 3 transversely to the flow direction 30 of the cooling air flow 1 through the flow channel 2 given is.
  • This decomposition into flow components 3 is vectorial to understand, wherein at the decomposition a flow component 3 is chosen so that they are parallel to the flow direction 35 of the cooling air flow 1 through the flow channel 2 is.
  • the flow rate of the cooling air flow 1 can be set. This happens because that the cooling air flow 1 by the introduction of the control fluid flow 30 is changed in its flow behavior. in principle are two primary changes in flow rate conceivable, on the one hand the acceleration and on the other hand the disability the flow of the cooling air flow through the side introduced control fluid flow 30.
  • the strength and nature of Regulation of the cooling air flow 1 through the control fluid flow depends on the inlet geometry of the control fluid flow 30 in the cooling air flow 1 from. Below is For example, the transition 45 of the control fluid channel 34 in to understand the flow channel 2, for example, an approach with edges or a rounded neck.
  • control fluid channel 34-flow channel 2 can be changed and thus the direction of the incoming control fluid flow 30.
  • the size of the control fluid channel 34, in particular its thickness 36 can be changed. Further influence options exist for example in the Choice of a particular geometry of the flow channel 2. So the flow channel can be made larger or narrower or with a funnel-shaped outlet opening 25, as in FIG Fig. 1b, 2a and 3a shown. Are the geometries of the arrangement firmly, the cooling air flow 1 can continue to measure adjusted by control parameters of the control fluid flow 30 become. As a control parameter is in particular the Adjustment of the pressure of the control fluid flow 30 proposed.
  • a regulation of the cooling air flow 1 by a control fluid flow 30 is already with very low flow rates of Control fluid flow 30 possible.
  • the control fluid channel 34 against the flow channel 2 very be kept small and the entire device also on very inaccessible places, for example, inside machines be easily accommodated.
  • FIG. 1b shows schematically and not to scale a section from a gas turbine, with used on carrier discs 7 Blades 8 and with stationary between the carrier discs 7 arranged vanes 11.
  • the blades 8 are driven by the hot gas stream 22, wherein the hot gas stream 22 between the blades 8 and the Guide vanes 11 flows through.
  • the Shovels made of high temperature resistant material, however Often a further cooling is needed.
  • cooling of the vane 11 is in that cooling air 1 'from the circumference of the gas turbine the radially outer region 9 through the interior of the vane eleventh to a radially inner portion 10 of the vane eleventh is directed.
  • the outflow of the cooling air 1 'happens in essential to film cooling holes 28, which have a cooling film outside of the vane 11 generate, as well as by a Discharge channel in the radially inner region 10 of the guide vane 11, which has a nozzle 2 'and a diffuser 3'.
  • the outflowing Cooling air 1 ' is thereby in the carrier disk side space 12 passed between each of a blade 8 and a vane 11 is formed.
  • the carrier disk side space 12 is substantially limited by the side wall 38 of the foot 26 of the blade 8, an upper area 27, the support plate 7 adjacent, on which the foot 26 of Blade 8 is fixed, a lower side wall 39 of the Guide vane 11 and the collar 37 of the blade 8 as well the collar 40 of the vane 11, wherein the collars by a Sealing lip 20 are sealed with each other.
  • This connection the two collars 37 and 40 separates the hot gas channel 18 for the hot gas stream 22 from the carrier disk side space 12th
  • the hot gas air 22 may partially at the sealing lip 20 penetrate into the carrier disk side space 12 and unwanted heat up, which is prevented by the proposed cooling becomes.
  • the guide vane 11 provided with transition seals 24, in particular the End seal 21 between the radially inner portion 10 of Guide vane 11 and the wall 27, the Stromitenitenraums 12, which bears against the carrier disc 7, noted is two carrier disc side spaces adjacent to the vane 11 12 separated from each other.
  • the through the nozzle 2 'and the diffuser 3 'exiting cooling air 1' is from a control device 23 regulated, via a feeder channel 14, which extends radially through the vane interior, a Control air flow 4 a widened intermediate region 15th from which discharges a channel 16, the supplied Control air flow 4 in the nozzle 2 ', or the diffuser 3 'or the transitional peripheral region 5 between nozzle 2' and diffuser 3 'initiates.
  • the control air flow 4 is through a control device 23, preferably at the top Area of the supply channel 14 is regulated. To this Way is the through the nozzle 2 'and the diffuser 3' flowing out Cooling air flow 1 'in different flow rate a control air flow 4 is supplied, the flow rate of the Cooling air flow 1 'reinforced or reduced.
  • the reinforcing function occurs in particular when, as shown in Figures 3a and 3b, respectively, of the expanded Intermediate 15 laxative channel 16 secant to the Transition peripheral region 5 is attached, so that a twist arises, the flowing through the cooling air 1 'with it tears and thus increases the flow rate.
  • a Reduction of the flow rate occurs especially then as shown in Figures 2a and 2b, when the front of the intermediate area 15 laxative channel 16 radially, that is almost is placed centrally in the region of the nozzle 2 ', so that the inflowing control air 4, the flowing cooling air flow 1 'compressed or in its flow rate with special needs.
  • predetermined ratio of the inlet surface 30th the nozzle 2 'to the outlet surface 25 of the diffuser 3' leave reach fixed control ranges of the control device.
  • cooling air 1 ' thus ensures that the control air flow 4 through the scheme 23 can be easily adjusted so that only the exactly required amount of cooling air 1 'through the nozzle 2' or the diffuser 3 'in the carrier disk side space 12th flows out and not an unnecessarily strong cooling air flow.
  • the exact setting is a cancel the film cooling through the film cooling holes 28th flowing through cooling air 1 'prevented.
  • control air flow 4 shows a longitudinal section through several by a widened Intermediate area 15 connected control devices of juxtaposed vanes 11.
  • the control air flow 4 is by a control 23 for several Guides 11 controlled, but it can also several Regulations 23 may be appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

La présente invention concerne un dispositif permettant de réguler, en fonction des besoins, un flux d'air de refroidissement (1), notamment un flux d'air de refroidissement (1`) d'une turbine à gaz, avec des moyens nécessitant peu d'entretien. Ledit flux d'air de refroidissement s'écoule à travers un canal d'écoulement (2), un flux de fluide de régulation (30) étant introduit à travers le canal d'écoulement (2) dans ledit flux d'air de refroidissement (1), dans la zone du canal d'écoulement (2), avec une composante d'écoulement (9) qui est perpendiculaire à la direction d'écoulement (35) du flux d'air de refroidissement (1). La vitesse d'écoulement du flux d'air de refroidissement (1) peut être réglée en fonction de paramètres de régulation du flux de fluide de régulation (30) et/ou d'autres paramètres.

Claims (18)

  1. Dispositif de réglage d'un courant (1) d'air de refroidissement pouvant passer dans un canal (2) de passage d'une turbine à gaz, comprenant une buse (2'), qui est montée dans le canal (2) de passage et en aval de laquelle est monté un diffuseur (3'),
    comprenant un courant (30) de fluide de réglage, pouvant être introduit dans la zone du canal (2) de passage, entre la buse (2') et le diffuseur (3'), dans le courant (1) d'air de refroidissement avec une composante (3) d'écoulement transversalement à la direction (35) de passage du courant (1) d'air de refroidissement, le débit de passage du courant (1) d'air de refroidissement pouvant être réglé en fonction de la géométrie d'introduction du courant (30) du fluide de réglage dans le courant (1) d'air de refroidissement et/ou de la géométrie du canal (2) de passage.
  2. Dispositif suivant la revendication 1, caractérisé en ce que le courant (30) du fluide de réglage peut être introduit dans la zone du débit du diffuseur (3') radialement dans le courant (1) de fluide de refroidissement passant dans le canal (2) de passage.
  3. Dispositif suivant la revendication 1, caractérisé en ce que le courant (30) du fluide de réglage peut être introduit dans la zone de la buse (2') tangentiellement dans le courant (1) d'air de refroidissement passant dans le canal (2) de passage.
  4. Dispositif suivant la revendication 1, caractérisé en ce que le courant (30) de fluide de réglage peut être introduit séquentiellement dans le courant (1) d'air de refroidissement passant dans le canal (2) de passage.
  5. Dispositif suivant l'une ou plusieurs des revendications 1 à 4,
    caractérisé en ce que le diffuseur (3') a un angle (6) d'ouverture d'à peu près 30° et il y a un rapport de la surface (22) d'admission de la buse (2') à la surface (25) de sortie du diffuseur (3') d'à peu près 1 : 3.
  6. Dispositif suivant l'une ou plusieurs des revendications 1 à 5, caractérisé en ce que le diffuseur (3') a un angle (6) d'ouverture d'à peu près 10° et il y a un rapport de la surface (22) d'admission de la buse (2') à la surface (25) de sortie du diffuseur (3') d'à peu près 1 : 3.
  7. Dispositif suivant l'une ou plusieurs des revendications 1 à 7, caractérisé en ce que plusieurs dispositifs suivant les revendications 1 à 6 sont montés en série ou en parallèle en étant parcourus par le courant (1) d'air de refroidissement.
  8. Turbine à gaz ayant des aubes (8) mobiles insérées sur des disques (7) supports, des aubes (11) directrices montées de manière fixe entre les disques (7) supports et parcourues par de l'air (1') de refroidissement d'une zone (9) extérieure radialement à une zone (10) intérieure radialement, et respectivement une chambre (12) latérale de disque support entre une aube (8) mobile et une aube (11) directrice, à laquelle peut être envoyée au moins une partie de l'air (1') de refroidissement passant dans l'aube (11) directrice, caractérisé en ce qu'au moins une aube (11) directrice a sur une zone (10) d'extrémité radiale intérieure un dispositif, suivant l'une ou plusieurs des revendications 1 à 7, influant sur l'envoi de l'air de refroidissement à la chambre (12) latérale de disque support.
  9. Turbine à gaz suivant la revendication 8, caractérisé en ce que le dispositif est monté dans la zone (12) d'extrémité radiale intérieure d'une aube (11) directrice, de sorte que l'envoi d'air de refroidissement à la chambre (12) latérale de disque support peut être réglé par un courant (4) d'air de réglage.
  10. Turbine à gaz suivant la revendication 8 ou 9, caractérisé en ce que le courant (4) d'air de réglage peut être envoyé par un canal (14) d'entrée à la zone (5) périphérique de transition entre la buse (2') et le diffuseur (3'), le canal (14) d'entrée étant monté à l'intérieur de l'aube (11) directrice et ayant dans sa zone (31) extérieure un dispositif (23) de réglage de la pression de l'air de réglage.
  11. Turbine à gaz suivant l'une ou plusieurs des revendications 8 à 10, caractérisé en ce que le canal (14) d'entrée a, entre le dispositif (23) de réglage monté dans sa zone (31) extérieure et son entrée dans la zone (5) périphérique de transition entre la buse (2') et le diffuseur (3'), une zone (15) intermédiaire, les zones (15) intermédiaires communiquant par les dispositifs, influant sur l'envoi d'air de refroidissement, de plusieurs aubes (11) directrices d'un disque (7) support.
  12. Procédé de réglage d'un courant (1) d'air de refroidissement, notamment d'un courant (1') d'air de refroidissement d'une turbine à gaz, qui passe dans un canal (2) de passage ayant une buse (2') et un diffuseur (3') en aval, par un courant (30) de fluide de réglage introduit, dans la zone du canal (2) de passage, dans le courant (1) d'air de refroidissement en ayant une composante (3) d'écoulement transversalement à la direction (4) d'écoulement du courant d'air de refroidissement, le débit du courant (1) d'air de refroidissement étant réglé en fonction de paramètres de réglage du courant (30) du fluide de réglage,
       le débit de passage du courant (30) du fluide de réglage étant plus petit que le débit de passage du courant (1) d'air de refroidissement par le fait que le canal de passage a une buse et un diffuseur en aval.
  13. Procédé suivant la revendication 12, caractérisé en ce que l'on règle le débit de passage du courant (1) d'air de refroidissement en réglant la pression du courant (1) du fluide de réglage.
  14. Procédé suivant l'une ou plusieurs des revendications 12 à 13, caractérisé en ce que l'on introduit le courant (30) du fluide de réglage, pour perturber le courant (1) d'air de refroidissement, radialement dans le courant (1) d'air de refroidissement passant dans le canal (2) de passage.
  15. Procédé suivant l'une ou plusieurs des revendications 12 à 13, caractérisé en ce que l'on introduit le courant (30) du fluide de réglage, pour stabiliser le courant (1) d'air de refroidissement, tangentiellement dans le courant (1) d'air de refroidissement passant dans le canal (2) de passage.
  16. Procédé suivant l'une ou plusieurs des revendications 12 à 15, caractérisé en ce que l'on introduit le courant (30) du fluide de réglage séquentiellement dans le courant (1) d'air de refroidissement passant dans le canal (2) de passage.
  17. Procédé suivant l'une ou plusieurs des revendications 12 à 16, caractérisé en ce que l'on règle le courant (1) d'air de refroidissement, en montant en série ou en parallèle plusieurs des dispositifs des revendications 1 à 8.
  18. Procédé suivant l'une ou plusieurs des revendications 12 à 17, caractérisé en ce que le courant (1) d'air de refroidissement est un courant de gaz utile et le courant (30) de fluide de réglage est un courant de gaz de réglage.
EP00953106A 1999-07-29 2000-07-27 Dispositif et procede permettant de reguler un flux d'air de refroidissement d'une turbine a gaz et turbine a gaz a circulation d'air de refroidissement Expired - Lifetime EP1200744B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00953106A EP1200744B1 (fr) 1999-07-29 2000-07-27 Dispositif et procede permettant de reguler un flux d'air de refroidissement d'une turbine a gaz et turbine a gaz a circulation d'air de refroidissement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99114280 1999-07-29
EP99114280 1999-07-29
EP00953106A EP1200744B1 (fr) 1999-07-29 2000-07-27 Dispositif et procede permettant de reguler un flux d'air de refroidissement d'une turbine a gaz et turbine a gaz a circulation d'air de refroidissement
PCT/EP2000/007255 WO2001009518A1 (fr) 1999-07-29 2000-07-27 Dispositif et procede permettant de reguler un flux d'air de refroidissement d'une turbine a gaz et turbine a gaz a circulation d'air de refroidissement

Publications (2)

Publication Number Publication Date
EP1200744A1 EP1200744A1 (fr) 2002-05-02
EP1200744B1 true EP1200744B1 (fr) 2005-04-06

Family

ID=8238633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00953106A Expired - Lifetime EP1200744B1 (fr) 1999-07-29 2000-07-27 Dispositif et procede permettant de reguler un flux d'air de refroidissement d'une turbine a gaz et turbine a gaz a circulation d'air de refroidissement

Country Status (6)

Country Link
US (1) US6749395B1 (fr)
EP (1) EP1200744B1 (fr)
JP (1) JP2003506614A (fr)
CA (1) CA2380474A1 (fr)
DE (1) DE50009999D1 (fr)
WO (1) WO2001009518A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1869289B1 (fr) * 2005-04-11 2014-12-03 Alstom Technology Ltd Support d'aubes directrices
EP1728973A1 (fr) 2005-06-01 2006-12-06 Siemens Aktiengesellschaft Procédé pour le blocage du jeu dans une turbomachine et turbomachine pour la réalisation du procédé
US8142138B2 (en) * 2009-05-01 2012-03-27 General Electric Company Turbine engine having cooling pin
US9181813B2 (en) 2012-07-05 2015-11-10 Siemens Aktiengesellschaft Air regulation for film cooling and emission control of combustion gas structure
US9963994B2 (en) 2014-04-08 2018-05-08 General Electric Company Method and apparatus for clearance control utilizing fuel heating
EP2949871B1 (fr) * 2014-05-07 2017-03-01 United Technologies Corporation Segment d'aube variable
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US10273812B2 (en) 2015-12-18 2019-04-30 Pratt & Whitney Canada Corp. Turbine rotor coolant supply system
GB2553144B (en) * 2016-08-26 2019-10-30 Rolls Royce Plc Apparatus for insertion into a cavity of an object
GB201615429D0 (en) * 2016-09-12 2016-10-26 Rolls Royce Plc Apparatus for insertion into a cavity of an object
US10739002B2 (en) 2016-12-19 2020-08-11 General Electric Company Fluidic nozzle assembly for a turbine engine
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123285A (en) * 1964-03-03 Diffuser with boundary layer control
GB444103A (en) 1936-01-13 1936-03-13 Babcock & Wilcox Ltd Method of and means for controlling the flow of a gaseous fluid in a conduit, duct or the like
US2656096A (en) 1946-01-04 1953-10-20 Rateau Soc Centrifugal pump and compressor
NL84721C (fr) * 1950-04-28 1900-01-01
US2957306A (en) 1955-06-16 1960-10-25 John S Attinello Gas jets for controlling entrance and/or exit flow effective diameter
GB1259124A (fr) 1968-12-06 1972-01-05
US4117669A (en) * 1977-03-04 1978-10-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for reducing thermal stress in a turbine rotor
GB2090333B (en) * 1980-12-18 1984-04-26 Rolls Royce Gas turbine engine shroud/blade tip control
DE3505975A1 (de) * 1985-02-21 1986-08-21 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gasturbinenstrahltriebwerk fuer flugzeuge mit gezielter turbinenbauteilkuehlung
US4815928A (en) * 1985-05-06 1989-03-28 General Electric Company Blade cooling
US4668162A (en) * 1985-09-16 1987-05-26 Solar Turbines Incorporated Changeable cooling control system for a turbine shroud and rotor
US5340274A (en) * 1991-11-19 1994-08-23 General Electric Company Integrated steam/air cooling system for gas turbines
FR2695161B1 (fr) * 1992-08-26 1994-11-04 Snecma Système de refroidissement d'un compresseur de turbomachine et de contrôle des jeux.
US5320483A (en) * 1992-12-30 1994-06-14 General Electric Company Steam and air cooling for stator stage of a turbine
US5591002A (en) * 1994-08-23 1997-01-07 General Electric Co. Closed or open air cooling circuits for nozzle segments with wheelspace purge
US5488825A (en) * 1994-10-31 1996-02-06 Westinghouse Electric Corporation Gas turbine vane with enhanced cooling
JP3816150B2 (ja) * 1995-07-18 2006-08-30 株式会社荏原製作所 遠心流体機械

Also Published As

Publication number Publication date
CA2380474A1 (fr) 2001-02-08
JP2003506614A (ja) 2003-02-18
WO2001009518A1 (fr) 2001-02-08
EP1200744A1 (fr) 2002-05-02
US6749395B1 (en) 2004-06-15
DE50009999D1 (de) 2005-05-12

Similar Documents

Publication Publication Date Title
EP1200744B1 (fr) Dispositif et procede permettant de reguler un flux d'air de refroidissement d'une turbine a gaz et turbine a gaz a circulation d'air de refroidissement
DE69933601T2 (de) Gasturbine
DE102010061592B4 (de) Temperaturaktivierte Ventile für Gasturbinen
EP0565923B1 (fr) Mélangeur pour le mélange de deux fluides, produisant un courrant de volume constant, pour l'alimentation de la caisse de tête d'une machine à papier
DE2953333C1 (de) Turbinenabdampfstutzen
EP2513488B1 (fr) Turbocompresseur
DE4437795C2 (de) Bearbeitungskopf mit Haupt- und Neben-Hilfsgasdüsen für eine Laserbearbeitungseinrichtung sowie Laserbearbeitungseinrichtung
EP2033057B1 (fr) Dispositif et procédé pour réaliser un essai de fonction d'organe de réglage sur une turbomachine
DE4336010A1 (de) Laserstrahlbearbeitungskopf
DE102007007090A1 (de) Gasturbine mit Kühlluft-Übertragungssystem
DE1962061A1 (de) Luftkondensationsanlage
EP1099825A1 (fr) Aube de turbine et sa méthode de production
EP2881548A1 (fr) Compresseur de turbine à gaz
EP1069314A1 (fr) Commande d'une unité-compresseur
EP2868898A1 (fr) Mode de fonctionnement en charge partielle amélioré d'une turbine à gaz comprenant un canal d'écoulement à dérivation réglable
EP1730442B1 (fr) Injecteur de gaz
DE69724063T2 (de) Ringbrennkammer für Gasturbinen
CH656690A5 (de) Ventil zum geraeuscharmen steuern der stroemung eines fluids.
DE10025639A1 (de) Düsenbalken für die Kühlung oder Entzunderung von metallischem Stranggut, insbesondere von Walzgut
DE112015004881B4 (de) Hauptdampfventil und Dampfturbine
CH663268A5 (de) Heizanlage an einem fernheizsystem.
EP2382410B1 (fr) Soupape à fermeture rapide
DE9205111U1 (de) Mischeinrichtung zum Mischen von zwei Flüssigkeiten bei konstantem Gemischvolumenstrom zur Versorgung des Stoffauflaufs einer Papiermaschine
DE19719879B4 (de) Luftverteilungsvorrichtung
DE3313321A1 (de) Abblasvorrichtung an einem mehrstufigen axialverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040603

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50009999

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071016

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080715

Year of fee payment: 9

Ref country code: IT

Payment date: 20080729

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080710

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090727

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090727