EP1197936B2 - Alarm system - Google Patents

Alarm system Download PDF

Info

Publication number
EP1197936B2
EP1197936B2 EP01123041A EP01123041A EP1197936B2 EP 1197936 B2 EP1197936 B2 EP 1197936B2 EP 01123041 A EP01123041 A EP 01123041A EP 01123041 A EP01123041 A EP 01123041A EP 1197936 B2 EP1197936 B2 EP 1197936B2
Authority
EP
European Patent Office
Prior art keywords
line
detectors
testing
processor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01123041A
Other languages
German (de)
French (fr)
Other versions
EP1197936A2 (en
EP1197936A3 (en
EP1197936B1 (en
Inventor
Gerhard Röpke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Job Lizenz GmbH and Co KG
Original Assignee
Job Lizenz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7660027&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1197936(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Job Lizenz GmbH and Co KG filed Critical Job Lizenz GmbH and Co KG
Publication of EP1197936A2 publication Critical patent/EP1197936A2/en
Publication of EP1197936A3 publication Critical patent/EP1197936A3/en
Application granted granted Critical
Publication of EP1197936B1 publication Critical patent/EP1197936B1/en
Publication of EP1197936B2 publication Critical patent/EP1197936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/06Monitoring of the line circuits, e.g. signalling of line faults
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade

Definitions

  • the invention relates to a hazard alarm system according to the preamble of patent claim 1.
  • Danger alarm systems for example fire alarm systems, usually have a larger number of Gefaluenmeldern, which are connected to a two-wire signal line.
  • This can be designed as a branch line or as a loop, via which the individual detectors communicate with a control center.
  • Each detector has a sensor or the like which produces measured values in dependence on parameters of its environment.
  • the measured values are transmitted via the line to the control center, which usually polls the individual detectors cyclically.
  • the address is stored in a non-volatile memory of the detector.
  • the message addresses are stored in the processor of the control center so that the control center can monitor the individual detectors with the aid of a suitable program.
  • test circuit arrangements which are connected to the signaling line, for example for checking short-circuit faults or reverse polarity of lines. It is off DE 29611600 U1 an arrangement for testing an alarm system is known in which a plurality of speakers is connected to a central control device. Via a third line, a test unit provided with an address for each loudspeaker is connected to the control device for checking the loudspeakers and their lines.
  • the invention has for its object to provide a hazard alarm system in which a variety of errors can be detected and located in a simple manner, the cost of the test circuit and the cost of measurement are minimal.
  • a test circuit arrangement is provided which is part of the control center and, for example, checks the operational state of the network of the hazard alarm system on a special command of the central control processor. This is done with the help of at least one test unit that contains its own test processor in which a test program is stored.
  • a controlled by the test processor switch assembly is provided for selectively connecting the at least one test unit with the reporting line.
  • the measuring means for checking the operable state of the alarm system are integrated into the central office, so that in connection with an intelligent evaluation software installation errors can be detected quickly and effectively.
  • Frequent faults in alarm systems include polarity reversal of the wires, exceeding of permissible cable lengths, short-circuiting or touching of wires or shields as well as permutation of detector types and deviations from the installation plan as well as changes in contact resistance.
  • test circuit arrangement wherein all test units are connected to a test processor.
  • this can be provided redundantly.
  • the test circuit arrangement is designed as a module, for example in the form of a plug-in card, on which all components of the test circuit arrangement are arranged.
  • the test circuit arrangement has a modem connection for checking the network via a remote connection.
  • a remote connection for example the telephone network, for example.
  • the check can be started from a remote location, for example the place of manufacture of the hazard alarm system.
  • the results obtained during the check, in particular the errors found, can then be read out and transmitted via the remote connection to the remote location. In this way, for example, installation errors can be detected and remedied even before the final commissioning or acceptance of the hazard alarm system.
  • the test unit according to the invention for the detection of impermissibly large cable lengths provides a constant current source, which is connected via a modulator and a controllable switch to the line. Using a data word generated by the test processor via a modulator and also containing the address of a detector, a detector can be controlled and a cross-switch can be made to connect the wires of the line.
  • the constant current source limits the current on the line to a predetermined value, and a voltage measuring device can measure the total voltage drop across the shorted section of the line.
  • the voltage drop caused by the lines results from the difference of the measured voltage drop and the sum of the voltage drops at the detectors of the measured section and, if necessary, a measuring resistor over which the constant current flows to ground. If the voltage drop, which is determined solely by the line length, is known, the resistance of the line length can be determined, because the cross section of the line is known. From the determined in this way resistance for the lines of the measured section can therefore also determine the length of the measured section. In this way, the total length of a line can be determined. It is also possible in the manner described above to determine the length of line sections between selected detectors by sequentially closing the cross-switches in the detectors delimiting the line section.
  • the data word for controlling the individual detectors and for closing the cross-switches is preferably voltage-modulated according to an embodiment of the invention.
  • the detector is usually a logic circuit and a demodulator, so that the selected or addressed detector detects when it is given a command to close the cross switch. It can also be provided a timer, which opens after a predetermined time, the cross switch again, the line length can be established for another section between detectors.
  • Cables for the described networks often have a shield in the form of a braid or a conductive foil, which surrounds the wires of the lines.
  • Such a shield has a very low resistance. It is either grounded or at a predetermined potential. It can happen especially in the field of detectors during installation that a wire touches the shield and thereby causes a short circuit. With the help of the test unit for a so-called. Shield monitoring, such a short circuit can be determined. In a simple way, this is done according to the invention in that the potential of the shield is monitored by the test processor. If the potential deviates from a predetermined value, there is a contact between a wire and the shield.
  • an embodiment of the invention provides that the shield is connected via a measuring resistor with a potential source.
  • the test circuit arrangement has a constant voltage source. This ensures that in the case of the short circuit described limited in the amount of predetermined current flows through the line, via the short circuit point and the measuring resistor.
  • the total voltage drop is essentially composed of the voltage drop from the line sections and the measuring resistor.
  • the shield hardly contributes to a voltage reduction and can therefore be neglected. Since the voltage drop across the measuring resistor is known, can be calculated in this way, the voltage drop caused by the line.
  • the length of the line from the central office to the short circuit point is already an essential statement, which makes it easier to find a short circuit point. It is even easier if it can be determined between which adjacent detectors a short circuit has occurred. In the method described above, the length of the line sections between the detectors can be determined. If the individual cable lengths are therefore stored in the test processor, it can then be calculated between which detectors there is contact between the shield and the wire or the short circuit
  • ring lines are often used, the ends of which are each connected to symmetrical circuits of a central office. It is therefore possible to operate a loop from both ends, for example when it is interrupted in the region of the short circuit.
  • z. B. from one central portion of a stub and operated by the other central portion of the other spur line.
  • an embodiment of the invention provides that the detectors have in series with lying on the wire circuit breaker for separating the line on both sides of a short circuit point. In normal operation, the disconnectors are closed, but are opened by command from the control panel. Since the control panel "knows" between which detectors there is a short circuit, the detectors adjacent to the short circuit can be activated in order to open the circuit breaker.
  • a test circuit arrangement is shown, which is arranged within a dashed box 10 shown.
  • the test circuit arrangement 10 is part of a not shown control center of a hazard detection system having a loop.
  • the line A consists of the wires 12 and 14, and in the course of the line A a series of detectors M to M n is connected.
  • the detectors M1, M2 and M n are shown. Part of the circuit of the detector M is in Fig. 2 played.
  • the detector M further comprises a modulator / demodulator 16, which converts a voltage pulse on the line line into logic signals for a logic circuit 18.
  • the logic circuit 18 includes an address memory and a plurality of input / output lines. It receives a serial data signal (eg, an address or an instruction) and executes an instruction when a received address matches the address stored in the logic circuit 18. This can be z. B. be the case to actuate the cross switch T3 and thus short the wires 12, 14.
  • Each detector M has on both sides of the cross switch T3 in the wire 14 disconnectors T1, T2, which are normally closed during operation of the detectors.
  • the wires 12, 14 connected via unspecified Zener diodes, so that when a polarity reversal of the detector during installation, a short circuit, which in turn can be determined by a Kurzschlußprüfscnies, which will be discussed below.
  • the test circuit arrangement 10 has a first test processor 20 and a second test processor 22 (CPU1 or CPU2).
  • the test processor 20 is connected via an interface 24 (COM1) to the central processor, not shown, of the alarm system alarm center.
  • the test processor 22 is provided redundantly.
  • a constant voltage source 26 (I KA ) is connected to the core 12 via a modulator 28 (MA) and a switch 30 (S 1A ).
  • the constant voltage source 26 is connected to a power supply 32 (U STABA ).
  • the test processor 20 controls the modulator 28 and the switch 30 to operate z. B. to give a voltage modulated data word on the line when the switch 30 is closed.
  • Another switch 33 also controlled by the test processor 20 (S 2A ), connects the wire 12 to ground when closed.
  • a voltage measuring device 36 (A / D1 A ) is connected to the wire 12 and its output is connected to the test processor 20. The same is true for a voltage measuring device 38 (A / D2 A ) connected to the wire 14.
  • the wires 12, 14 are surrounded by a shield 40, which in Fig. 1 indicated by dashed lines.
  • the shield 40 is connected to a shield check unit 42 whose output is connected to the test processor 20. It contains a test resistor 44 (R A ), which is connected to the shield 40 and with the other terminal to the potential U s .
  • the shield is connected to the positive input of an operational amplifier 46 whose output is connected to the test processor 20.
  • the wire 14 is connected to ground (R MA ) via a measuring resistor 46a, the same pole of the resistor 46a connected to the wire 14 being connected to the positive input of an operational amplifier 48 whose output is connected to the test processor 20.
  • Equation 2 is calculated in the test processor 20 and the result R L (M n ) is stored. This value includes the line resistance between the connection of the line A and the detector M n .
  • the switch T3 is opened again in the detector M n . This is done with the help of a suitable timer, which is housed in the detector, for example in the logic module 18.
  • the line voltage returns to operating potential.
  • I G 2 I G 2
  • the measured values for the line sections and the entire line can be stored in the test processor 20.
  • a short circuit between the shield 40 and one of the wires can be determined as well as the location of the short circuit.
  • the shield 40 consists of a wire mesh or a foil and has a low impedance and is neglected in the following calculations.
  • the starting point is again a normal operating state, i. H. Switch 30 is closed and switch 33 is open. Now, the short circuit K1 should be detected and the short circuit location determined.
  • this line length can also be related to the determined lengths of the line sections between the detectors M1 ... M n . Therefore, it can be easily determined between which detectors the short circuit is located, so here between the detectors M1 and M2.

Abstract

The system has warning devices and possibly other line elements that respond to at least one hazard criterion connected to a two-wire line and a central station with stored warning device addresses and a program for monitoring warning device states. A test circuit checks the operating states of the network using a test unit. A test processor has evaluation software and a switch arrangement for selective connection of the test unit(s) to the line. The system has a number of warning devices (M1-Mn) and possibly other line elements that respond to at least one hazard criterion and are connected to a two-wire line (Linie A) and a central station connected to the line with stored warning device addresses and a program for monitoring warning device states. A test circuit (10) in the central station checks the operating states of the network using a test unit and contains a test processor (20,22) with evaluation software and a switch arrangement (30,33) for selective connection of the test unit(s) to the line. Independent claims are also included for the following: a method of measuring the resistance of sections or lengths of line in hazard warning systems and a method detecting a short circuit between the line and a screen.

Description

Die Erfindung bezieht sich auf eine Gefahrenmeldeanlage nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a hazard alarm system according to the preamble of patent claim 1.

Gefahrenmeldeanlagen, zum Beispiel Brandmeldeanlagen, weisen in der Regel eine größere Anzahl von Gefaluenmeldern auf, die an eine zweiadrige Meldeleitung angeschlossen sind. Diese kann als Stich- oder als Ringleitung konzipiert sein, über die die einzelnen Melder mit einer Zentrale kommunizieren. Jeder Melder weist einen Sensor oder dergleichen auf, der in Abhängigkeit von Parametern seiner Umgebung Meßwerte produziert. Die Meßwerte werden über die Leitung an die Zentrale übertragen, wobei diese üblicherweise die einzelnen Melder zyklisch abfragt. Um eine Zuordnung der Meßwerte zu den einzelnen Meldern vornehmen zu können, ist es notwendig, jedem Melder eine Kennung oder eine Adresse zuzuordnen. Die Adresse ist in einem nicht flüchtigen Speicher des Melders abgelegt. Im Prozessor der Zentrale sind die Meldeadressen gespeichert, so dass die Zentrale mit Hilfe eines geeigneten Programms eine Überwachung der individuellen Melder vornehmen kann.Danger alarm systems, for example fire alarm systems, usually have a larger number of Gefaluenmeldern, which are connected to a two-wire signal line. This can be designed as a branch line or as a loop, via which the individual detectors communicate with a control center. Each detector has a sensor or the like which produces measured values in dependence on parameters of its environment. The measured values are transmitted via the line to the control center, which usually polls the individual detectors cyclically. In order to be able to assign the measured values to the individual detectors, it is necessary to assign an identifier or an address to each detector. The address is stored in a non-volatile memory of the detector. The message addresses are stored in the processor of the control center so that the control center can monitor the individual detectors with the aid of a suitable program.

Die Installation und Inbetriebnahme einer derartigen Gefahrenmeldeanlage ist mit einem beträchtlichen Aufwand verbunden. Häufig werden die Installationsarbeiten Unternehmen übertragen, die für derartige Anlagen nicht als Fachfirmen bezeichnet werden können. Die Inbetriebnahme einer derartigen Meldeanlage erfolgt jedoch in der Regel durch speziell geschultes Personal.The installation and commissioning of such a hazard alarm system is associated with a considerable effort. Frequently, the installation work is transferred to companies that can not be described as specialist companies for such systems. The commissioning of such a signaling system is, however, usually by specially trained personnel.

Aus den erwähnten Gründen ergibt sich die Notwendigkeit, Fehler und Störungen, welche sich durch fehlerhafte Installation einstellen, möglichst kurz vor der Inbetriebnahme, jedoch spätestens bei der Inbetriebnahme aufzudecken und zu identifizieren.For the reasons mentioned, there is the necessity of detecting and identifying faults and malfunctions which occur as a result of faulty installation as soon as possible before commissioning, but at the latest during commissioning.

Es ist bekannt, separate Prüfschaltungsanordnungen vorzusehen, die an die Meldeleitung angeschlossen wird, zum Beispiel zur Überprüfung von Kurzschlußfehlern oder der Verpolung von Leitungen. Es ist aus DE 29611600 U1 eine Anordnung zur Prüfung einer Alarmanlage bekannt, bei der eine Vielzahl von Lautsprechern an eine zentrale Steuervorrichtung angeschlossen ist. Über eine dritte Leitung ist eine mit einer Adresse versehene Prüfeinheit für jeden Lautsprecher an die Steuervorrichtung angeschlossen zur Überprüfung der Lautsprecher und ihrer Leitungen.It is known to provide separate test circuit arrangements which are connected to the signaling line, for example for checking short-circuit faults or reverse polarity of lines. It is off DE 29611600 U1 an arrangement for testing an alarm system is known in which a plurality of speakers is connected to a central control device. Via a third line, a test unit provided with an address for each loudspeaker is connected to the control device for checking the loudspeakers and their lines.

Der Erfindung liegt die Aufgabe zugrunde, eine Gefahrenmeldeanlage zu schaffen, bei der auf einfache Weise eine Vielzahl von Fehlern erkannt und lokalisiert werden kann, wobei der Aufwand für die Prüfschaltung und der Meßaufwand minimal sind.The invention has for its object to provide a hazard alarm system in which a variety of errors can be detected and located in a simple manner, the cost of the test circuit and the cost of measurement are minimal.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is solved by the features of patent claim 1.

Bei der erfindungsgemäßen Gefahrenmeldeanlage ist eine Prüfschaltungsanordnung vorgesehen, die Bestandteil der Zentrale ist und zum Beispiel auf einen speziellen Befehl des zentralen Steuerprozessors den betriebsfähigen Zustand des Netzes der Gefahrenmeldeanlage überprüft. Dies geschieht mit Hilfe mindestens einer Prüfeinheit, die einen eigenen Prüfprozessor enthält, in dem ein Prüfprogramm gespeichert ist. Außerdem ist eine vom Prüfprozessor gesteuerte Schalteranordnung vorgesehen zur wahlweisen Verbindung der mindestens einen Prüfeinheit mit der Meldeleitung.In the hazard alarm system according to the invention, a test circuit arrangement is provided which is part of the control center and, for example, checks the operational state of the network of the hazard alarm system on a special command of the central control processor. This is done with the help of at least one test unit that contains its own test processor in which a test program is stored. In addition, a controlled by the test processor switch assembly is provided for selectively connecting the at least one test unit with the reporting line.

Bei der erfindungsgemäßen Gefahrenmeldeanlage sind die Meßmittel zur Überprüfung des betriebsfähigen Zustands der Gefahrenmeldeanlage in die Meldezentrale integriert, so daß in Verbindung mit einer intelligenten Auswertungs-Software Installationsfehler schnell und wirksam erkannt werden können.In the hazard alarm system according to the invention, the measuring means for checking the operable state of the alarm system are integrated into the central office, so that in connection with an intelligent evaluation software installation errors can be detected quickly and effectively.

Häufig vorkommende Fehler bei Gefahrenmeldeanlagen sind Verpolungen der Adern, Überschreitung zulässiger Leitungslängen, Kurzschlüsse bzw. Berührung von Adern oder Abschirmungen sowie Vertauschung von Detektortypen und Abweichung vom Installationsplan sowie Änderungen von Übergangswiderständen.Frequent faults in alarm systems include polarity reversal of the wires, exceeding of permissible cable lengths, short-circuiting or touching of wires or shields as well as permutation of detector types and deviations from the installation plan as well as changes in contact resistance.

Für derartige Fehler kann jeweils eine besondere Prüfeinheit in der Prüfungsschaltungsanordnung vorgesehen werden, wobei sämtliche Prüfeinheiten mit einem Prüfprozessor verbunden sind. Dieser kann jedoch redundant vorgesehen werden.For such errors, in each case a special test unit can be provided in the test circuit arrangement, wherein all test units are connected to a test processor. However, this can be provided redundantly.

Nach einer Ausgestaltung der Erfindung ist die Prüfschaltungsanordnung als Modul ausgebildet, etwa in Form einer Steckkarte, auf der alle Bauelemente der Prüfschaltungsanordnung angeordnet sind.According to one embodiment of the invention, the test circuit arrangement is designed as a module, for example in the form of a plug-in card, on which all components of the test circuit arrangement are arranged.

Nach einer Ausgestaltung der Erfindung weist die Prüfschaltungsanordnung einen Modemanschluß auf zur Überprüfung des Netzes über eine Fernverbindung. Diese kann zum Beispiel über das Telefonnetz stattfinden. Mit Hilfe einer derartigen Möglichkeit kann die Überprüfung von einem entfernten Ort, beispielsweise dem Herstellort der Gefahrenmeldeanlage, in Gang gesetzt werden. Die bei der Überprüfung erhaltenen Ergebnisse, insbesondere die aufgefundenen Fehler, können dann ausgelesen und über die Fernverbindung an den entfernten Ort übertragen werden. So können dann beispielsweise schon vor der endgültigen Inbetriebnahme bzw. Abnahme der Gefahrenmeldeanlage Installationsfehler aufgedeckt und behoben werden.According to one embodiment of the invention, the test circuit arrangement has a modem connection for checking the network via a remote connection. This can take place over the telephone network, for example. With the help of such a possibility, the check can be started from a remote location, for example the place of manufacture of the hazard alarm system. The results obtained during the check, in particular the errors found, can then be read out and transmitted via the remote connection to the remote location. In this way, for example, installation errors can be detected and remedied even before the final commissioning or acceptance of the hazard alarm system.

Es kommt häufiger vor, dass bei der Installation einer Gefahrenmeldeanlage zu große Leitungslängen verwendet werden. Dies kann zur Folge haben, dass die Übertragung von Signalen auf der Leitung dadurch geschwächt oder gestört wird, so dass ein ordnungsgemäßer Betrieb nicht mehr gewährleistet ist. Die Prüfeinheit nach der Erfindung zur Feststellung von unzulässig großen Leitungslängen sieht eine Konstantstromquelle vor, die über einen Modulator und einen steuerbaren Schalter an die Leitung geschaltet wird. Mit Hilfe eines Datenworts, das vom Prüfprozessor über einen Modulator erzeugt wird und das außerdem die Adresse eines Melders enthält, kann ein Melder angesteuert und ein Querschalter darin veranlaßt werden, die Adern der Leitung zu verbinden. Die Konstantstromquelle begrenzt den Strom auf der Leitung auf einen vorgegebenen Wert, und eine Spannungsmeßvorrichtung kann den gesamten Spannungsabfall über den kurzgeschlossenen Abschnitt der Leitung messen. Da die Spannungsabfälle von den in dem Abschnitt liegenden Meldern bekannt sind, ergibt sich der Spannungsabfall, der durch die Leitungen veranlaßt wird, aus der Differenz des gemessenen Spannungsabfalls und der Summe der Spannungsabfälle an den Meldern des gemessenen Abschnitts und ggf. eines Meßwiderstands, über den der Konstantstrom nach Masse fließt. Wenn der Spannungsabfall, der allein durch die Leitungslänge bestimmt wird, bekannt ist, läßt sich auch der Widerstand der Leitungslänge ermitteln, denn der Querschnitt der Leitung ist bekannt. Aus dem auf diese Weise ermittelten Widerstand für die Leitungen des gemessenen Abschnitts läßt sich mithin auch die Länge des gemessenen Abschnitts ermitteln. Auf diese Weise kann die Gesamtlänge einer Leitung ermittelt werden. Es ist auf die oben beschriebene Art und Weise auch möglich, die Länge von Leitungsabschnitten zwischen ausgewählten Meldern zu ermitteln, indem in den Meldern, welche den Leitungsabschnitt begrenzen, nacheinander die Querschalter geschlossen werden.It often happens that too long cable lengths are used when installing a hazard alarm system. This can result in the transmission of signals on the line being weakened or disturbed, so that proper operation is no longer guaranteed. The test unit according to the invention for the detection of impermissibly large cable lengths provides a constant current source, which is connected via a modulator and a controllable switch to the line. Using a data word generated by the test processor via a modulator and also containing the address of a detector, a detector can be controlled and a cross-switch can be made to connect the wires of the line. The constant current source limits the current on the line to a predetermined value, and a voltage measuring device can measure the total voltage drop across the shorted section of the line. As the voltage drops are known by the detectors located in the section , the voltage drop caused by the lines results from the difference of the measured voltage drop and the sum of the voltage drops at the detectors of the measured section and, if necessary, a measuring resistor over which the constant current flows to ground. If the voltage drop, which is determined solely by the line length, is known, the resistance of the line length can be determined, because the cross section of the line is known. From the determined in this way resistance for the lines of the measured section can therefore also determine the length of the measured section. In this way, the total length of a line can be determined. It is also possible in the manner described above to determine the length of line sections between selected detectors by sequentially closing the cross-switches in the detectors delimiting the line section.

Das Datenwort zur Ansteuerung der individuellen Melder und zum Schließen der Querschalter ist nach einer Ausgestaltung der Erfindung vorzugsweise spannungsmoduliert. Im Melder befindet sich üblicherweise eine Logikschaltung sowie ein Demodulator, so daß der angewählte bzw. adressierte Melder feststellt, wann ihm ein Befehl erteilt wird zum Schließen des Querschalters. Es kann außerdem eine Zeitschaltung vorgesehen werden, welche nach Ablauf einer vorgegebenen Zeit den Querschalter wieder öffnet, um die Leitungslänge für einen anderen Abschnitt zwischen Meldern errichtet werden kann.The data word for controlling the individual detectors and for closing the cross-switches is preferably voltage-modulated according to an embodiment of the invention. In the detector is usually a logic circuit and a demodulator, so that the selected or addressed detector detects when it is given a command to close the cross switch. It can also be provided a timer, which opens after a predetermined time, the cross switch again, the line length can be established for another section between detectors.

Leitungen für die beschriebenen Netze weisen häufig eine Abschirmung auf in Form eines Geflechts oder einer leitenden Folie, welche die Adern der Leitungen umgibt.Cables for the described networks often have a shield in the form of a braid or a conductive foil, which surrounds the wires of the lines.

Eine derartige Abschirmung weist einen sehr geringen Widerstand auf. Sie liegt entweder an Masse oder an einem vorgegebenen Potential. Es kann insbesondere im Bereich der Melder bei der Installation geschehen, daß eine Ader die Abschirmung berührt und dadurch einen Kurzschluß hervorruft. Mit Hilfe der Prüfeinheit für eine sog. Abschirmungsüberwachung läßt sich ein derartiger Kurzschluß ermitteln. Auf einfache Weise geschieht dies nach der Erfindung dadurch, daß das Potential der Abschirmung über den Prüfprozessor überwacht wird. Weicht das Potential von einem vorgegebenen Wert ab, liegt eine Berührung einer Ader mit der Abschirmung vor.Such a shield has a very low resistance. It is either grounded or at a predetermined potential. It can happen especially in the field of detectors during installation that a wire touches the shield and thereby causes a short circuit. With the help of the test unit for a so-called. Shield monitoring, such a short circuit can be determined. In a simple way, this is done according to the invention in that the potential of the shield is monitored by the test processor. If the potential deviates from a predetermined value, there is a contact between a wire and the shield.

Die beschriebenen Überwachungsschaltungen haben räumlich zum Teil erhebliche Abmessungen. Es ist daher von Vorteil, wenn nicht nur festgestellt wird, ob ein Kurzschluß vorliegt, sondern auch, an welcher Stelle er sich befindet. Daher sieht eine Ausgestaltung der Erfindung vor, daß die Abschirmung über einen Meßwiderstand mit einer Potentialquelle verbunden ist. Die Prüfschaltungsanordnung weist, wie eingangs schon beschrieben, eine Konstantspannungsquelle auf. Diese sorgt dafür, daß im Fall des beschriebenen Kurzschlusses ein in der Höhe begrenzter vorgegebener Strom durch die Leitung, über die Kurzschlußstelle und den Meßwiderstand fließt. Der gesamte Spannungsabfall setzt sich im wesentlichen aus dem Spannungsabfall aus den Leitungsabschnitten und am Meßwiderstand zusammen. Wie erwähnt, trägt die Abschirmung kaum zu einer Spannungsreduzierung bei und kann mithin vernachlässigt werden. Da der Spannungsabfall am Meßwiderstand bekannt ist, läßt sich auf diese Weise der durch die Leitung verursachte Spannungsabfall errechnen. Aus dem Strom und dem Leitungsspannungsabfall läßt sich auch der Widerstand des Leitungsstücks bis zur Kurzschlußstelle ermitteln. Da der Querschnitt und der spezifische Widerstand der Adern bekannt sind, läßt sich mithin aus dem Widerstand auch die Länge der Leitung bis zur Kurzschlußstelle errechnen. Diese Rechenvorgänge können im Prüfprozessor vorgenommen werden.The monitoring circuits described have spatially considerable dimensions. It is therefore advantageous if it is not only determined whether there is a short circuit, but also where it is located. Therefore, an embodiment of the invention provides that the shield is connected via a measuring resistor with a potential source. As already described, the test circuit arrangement has a constant voltage source. This ensures that in the case of the short circuit described limited in the amount of predetermined current flows through the line, via the short circuit point and the measuring resistor. The total voltage drop is essentially composed of the voltage drop from the line sections and the measuring resistor. As mentioned, the shield hardly contributes to a voltage reduction and can therefore be neglected. Since the voltage drop across the measuring resistor is known, can be calculated in this way, the voltage drop caused by the line. From the current and the line voltage drop can also determine the resistance of the line section to the short circuit point. Since the cross-section and the resistivity of the wires are known, can therefore be calculated from the resistance and the length of the line to the short-circuit point. These calculations can be done in the test processor.

Die Länge der Leitung von der Zentrale bis zur Kurzschlußstelle ist bereits eine wesentliche Aussage, welche das Auffinden einer Kurzschlußstelle erleichtert. Noch einfacher ist es, wenn festgestellt werden kann, zwischen welchen benachbarten Meldern ein Kurzschluß aufgetreten ist. Bei dem oben beschriebenen Verfahren läßt sich die Länge der Leitungsabschnitte zwischen den Meldern bestimmen. Sind daher die einzelnen Leitungslängen im Prüfprozessor gespeichert, kann dann ausgerechnet werden, zwischen welchen Meldern die Berührung zwischen Abschirmung und Ader bzw. des Kurzschlusses vorliegtThe length of the line from the central office to the short circuit point is already an essential statement, which makes it easier to find a short circuit point. It is even easier if it can be determined between which adjacent detectors a short circuit has occurred. In the method described above, the length of the line sections between the detectors can be determined. If the individual cable lengths are therefore stored in the test processor, it can then be calculated between which detectors there is contact between the shield and the wire or the short circuit

Bei den beschriebenen Gefahrenmeldeanlagen werden häufig Ringleitungen verwendet, deren Enden jeweils mit symmetrischen Schaltungsanordnungen einer Zentrale verbunden sind. Es ist daher möglich, eine Ringleitung von beiden Enden her zu betreiben, beispielsweise wenn sie im Bereich des Kurzschlusses unterbrochen wird. In diesem Fall kann z. B. von dem einen Zentralabschnitt eine Stichleitung und von dem anderen zentralen Abschnitt die andere Stichleitung betrieben werden. Damit bestimmte Melder aus der Meldeanlage herausgenommen werden können, sieht eine Ausgestaltung der Erfindung vor, daß die Melder in Reihe mit an der Ader liegende Trennschalter aufweisen zur Auftrennung der Leitung auf beiden Seiten einer Kurzschlußstelle. Im Normalbetrieb sind die Trennschalter geschlossen, werden jedoch auf Befehl von der Zentrale geöffnet. Da die Zentrale "weiß", zwischen welchen Meldern sich ein Kurzschluß befindet, können die dem Kurzschluß benachbarten Melder angesteuert werden zwecks Öffnens der Trennschalter.In the alarm systems described ring lines are often used, the ends of which are each connected to symmetrical circuits of a central office. It is therefore possible to operate a loop from both ends, for example when it is interrupted in the region of the short circuit. In this case, z. B. from one central portion of a stub and operated by the other central portion of the other spur line. So that certain detectors can be taken out of the signaling system, an embodiment of the invention provides that the detectors have in series with lying on the wire circuit breaker for separating the line on both sides of a short circuit point. In normal operation, the disconnectors are closed, but are opened by command from the control panel. Since the control panel "knows" between which detectors there is a short circuit, the detectors adjacent to the short circuit can be activated in order to open the circuit breaker.

Die Erfindung wird nachfolgend anhand von in Zeichnungen dargestellten Schaltungsanordnungen beschrieben.

Fig. 1
zeigt schematisch eine Prüfschaltungsanordnung nach der Erfindung für eine Gefahrenmeldeanlage.
Fig. 2
zeigt schematisch einen Melder der Gefahrenmeldeanlage nach Fig. 1.
The invention will be described below with reference to circuit arrangements shown in drawings.
Fig. 1
schematically shows a test circuit arrangement according to the invention for a hazard alarm system.
Fig. 2
schematically shows a detector of the hazard alarm system Fig. 1 ,

In Fig. 1 ist eine Prüfschaltungsanordnung dargestellt, die innerhalb eines gestrichelt dargestellten Kastens 10 angeordnet ist. Die Prüfschaltungsanordnung 10 ist Bestandteile einer nicht weiter dargestellten Zentrale einer Gefahrenmeldeanlage, die eine Ringleitung aufweist. In Fig. 1 ist nur die Linie A der Ringleitung dargestellt. Das andere Ende, das ebenfalls mit der Zentrale und mit einer zur Prüfschaltungsanordnung 10 symmetrischen Schaltungsanordnung verbunden ist, ist aus Einfachheitsgründen nicht gezeigt. Die Linie A besteht aus den Adern 12 und 14, und im Zuge der Linie A ist eine Reihe von Meldern M bis Mn geschaltet. In Fig. 1 sind die Melder M1, M2 und Mn dargestellt. Ein Teil der Schaltung der Melder M ist in Fig. 2 wiedergegeben. Man erkennt einen Querschalter T3, der im geschlossenen Zustand die Adern 12, 14 verbindet. Man erkennt ferner die Spannungsversorgung USTAB mit einem Kondensator C und einer Diode D. Dadurch wird die Meldeschaltung auch dann mit Spannung versorgt, wenn die Spannung der Linie A kurzzeitig absinkt oder gegen Null geht. Der Melder M weist ferner einen Modulator/Demodulator 16 auf, der einen Spannungsimpuls auf der Linienleitung in Logiksignale für eine Logikschaltung 18 umwandelt. Die Logikschaltung 18 beinhaltet einen Adreßspeicher und mehrere Ein/Ausgabeleitungen. Sie empfängt ein serielles Datensignal (z. B. eine Adresse oder einen Befehl) und führt einen Befehl aus, wenn eine empfangene Adresse mit der in der Logikschaltung 18 abgespeicherten Adresse übereinstimmt. Dies kann z. B. der Fall sein, um den Querschalter T3 zu betätigen und damit die Adern 12, 14 kurzzuschließen.In Fig. 1 a test circuit arrangement is shown, which is arranged within a dashed box 10 shown. The test circuit arrangement 10 is part of a not shown control center of a hazard detection system having a loop. In Fig. 1 only the line A of the loop is shown. The other end, which is also connected to the center and with a test circuit arrangement 10 symmetrical circuit arrangement is not shown for reasons of simplicity. The line A consists of the wires 12 and 14, and in the course of the line A a series of detectors M to M n is connected. In Fig. 1 the detectors M1, M2 and M n are shown. Part of the circuit of the detector M is in Fig. 2 played. One recognizes a cross-switch T3, which connects the wires 12, 14 in the closed state. It also recognizes the power supply U STAB with a capacitor C and a diode D. As a result, the signaling circuit is also supplied with voltage when the voltage of the line A briefly decreases or goes to zero. The detector M further comprises a modulator / demodulator 16, which converts a voltage pulse on the line line into logic signals for a logic circuit 18. The logic circuit 18 includes an address memory and a plurality of input / output lines. It receives a serial data signal (eg, an address or an instruction) and executes an instruction when a received address matches the address stored in the logic circuit 18. This can be z. B. be the case to actuate the cross switch T3 and thus short the wires 12, 14.

Jeder Melder M weist auf beiden Seiten des Querschalters T3 in der Ader 14 Trennschalter T1, T2 auf, die normalerweise im Betrieb der Melder geschlossen sind. Außerdem sind die Adern 12, 14 über nicht näher bezeichnete Zenerdioden miteinander verbunden, so daß bei einer Verpolung der Melder bei der Installation ein Kurzschluß entsteht, der wiederum durch eine Kurzschlußprüfschaltung ermittelt werden kann, worauf weiter unten noch eingegangen wird.Each detector M has on both sides of the cross switch T3 in the wire 14 disconnectors T1, T2, which are normally closed during operation of the detectors. In addition, the wires 12, 14 connected via unspecified Zener diodes, so that when a polarity reversal of the detector during installation, a short circuit, which in turn can be determined by a Kurzschlußprüfschaltung, which will be discussed below.

Die Prüfschaltungsanordnung 10 weist einen ersten Prüfprozessor 20 auf und einen zweiten Prüfprozessor 22 (CPU1 bzw. CPU2). Der Prüfprozessor 20 ist über eine Schnittstelle 24 (COM1) mit dem nicht dargestellten zentralen Prozessor der Zentrale für die Gefahrenmeldeanlage in Verbindung. Der Prüfprozessor 22 ist redundant vorgesehen.The test circuit arrangement 10 has a first test processor 20 and a second test processor 22 (CPU1 or CPU2). The test processor 20 is connected via an interface 24 (COM1) to the central processor, not shown, of the alarm system alarm center. The test processor 22 is provided redundantly.

Eine Konstantspannungsquelle 26 (IKA) ist über einen Modulator 28 (MA) und einen Schalter 30 (S1A) mit der Ader 12 verbunden. Die Konstantspannungsquelle 26 ist mit einer Spannungsversorgung 32 verbunden (USTABA). Der Prüfprozessor 20 steuert den Modulator 28 und den Schalter 30, um z. B. ein spannungsmoduliertes Datenwort auf die Leitung zu geben, wenn der Schalter 30 geschlossen ist. Ein weiterer Schalter 33, der ebenfalls vom Prüfprozessor 20 gesteuert wird (S2A), verbindet die Ader 12 mit Masse, wenn er geschlossen ist.A constant voltage source 26 (I KA ) is connected to the core 12 via a modulator 28 (MA) and a switch 30 (S 1A ). The constant voltage source 26 is connected to a power supply 32 (U STABA ). The test processor 20 controls the modulator 28 and the switch 30 to operate z. B. to give a voltage modulated data word on the line when the switch 30 is closed. Another switch 33, also controlled by the test processor 20 (S 2A ), connects the wire 12 to ground when closed.

Eine Spannungsmeßvorrichtung 36 (A/D1A) ist mit der Ader 12 verbunden, und ihr Ausgang ist mit dem Prüfprozessor 20 verbunden. Das gleiche trifft zu für eine Spannungsmeßvorrichtung 38 (A/D2A), die mit der Ader 14 verbunden ist.A voltage measuring device 36 (A / D1 A ) is connected to the wire 12 and its output is connected to the test processor 20. The same is true for a voltage measuring device 38 (A / D2 A ) connected to the wire 14.

Die Adern 12, 14 sind mit einer Abschirmung 40 umgeben, die in Fig. 1 gestrichelt angedeutet ist. Die Abschirmung 40 ist mit einer Abschirmungsprüfeinheit 42 verbunden, deren Ausgang mit dem Prüfprozessor 20 verbunden ist. Sie enthält einen Prüfwiderstand 44 (RA), der an die Abschirmung 40 angeschlossen ist und mit der anderen Klemme an das Potential Us. Außerdem ist die Abschirmung mit dem Pluseingang eines Operationsverstärkers 46 verbunden, dessen Ausgang mit dem Prüfprozessor 20 verbunden ist.The wires 12, 14 are surrounded by a shield 40, which in Fig. 1 indicated by dashed lines. The shield 40 is connected to a shield check unit 42 whose output is connected to the test processor 20. It contains a test resistor 44 (R A ), which is connected to the shield 40 and with the other terminal to the potential U s . In addition, the shield is connected to the positive input of an operational amplifier 46 whose output is connected to the test processor 20.

Die Ader 14 ist über einen Meßwiderstand 46a mit Masse verbunden (RMA), wobei derselbe Pol des Widerstands 46a, der mit der Ader 14 verbunden ist, mit dem positiven Eingang eines Operationsverstärkers 48 verbunden ist, dessen Ausgang auf den Prüfprozessor 20 geschaltet ist.The wire 14 is connected to ground (R MA ) via a measuring resistor 46a, the same pole of the resistor 46a connected to the wire 14 being connected to the positive input of an operational amplifier 48 whose output is connected to the test processor 20.

Mit Hilfe der gezeigten Schaltungsanordnung läßt sich z. B. die Leitungslänge der Linie A ermitteln bzw. der Adern 12, 14 und auch die Leitungslängen zwischen gewünschten Meldern M, z. B. zwischen benachbarten Meldern M. Hierzu nachfolgend die Beschreibung eines Ausführungsbeispiels.With the help of the circuit arrangement shown can be z. B. determine the line length of the line A or the wires 12, 14 and also the line lengths between desired detectors M, z. B. between adjacent detectors M. To this end, the description of an embodiment.

Es soll z. B. die Leitungslänge zwischen den Meldern M2 und Mn vermessen werden. Es wird dabei von einem normalen Betriebszustand ausgegangen, bei dem der Schalter 30 geschlossen ist und der Schalter 33 geöffnet. Die Schalter T1 und T2 in den Meldern M1 ... Mn sind geschlossen. Der Schalter T3 in den Meldern M1 ... Mn sind geöffnet. Damit ist die Leitung Linie A unter Spannung gesetzt (Betriebsspannung). Durch Ansteuerung des Modulators MA wird ein spannungsmoduliertes Signal auf der Leitung, z. B. einer Ringleitung, gesendet. Das Datenwort beinhaltet die Adresse des Melders bzw. seine Kommunikationsadresse und einen Befehl zum Schließen des Schalters T3, etwa von Mn. Nachdem Mn den Befehl empfangen hat, wird sein Schalter T3 geschlossen. Es fließt nunmehr ein Konstantstrom IA, verursacht durch die Konstantstromquelle 26. Der Strom fließt über die Schalter T3 und T1 von Mn, sowie über den Widerstand RMA. Mit Hilfe der Spannungsmeßvorrichtung 36 wird der Spannungsabfall am Anschluß plus Linie A gemessen und dem Prüfprozessor 20 zugeführt. Der gemessene Spannungsabfall setzt sich wie folgt zusammen:

  • U RMA = I IKA × R MA
    Figure imgb0001
  • U TX = I KA × M N × 2 × R TX
    Figure imgb0002
  • U RL = I KA × R L
    Figure imgb0003
  • U LT = U RMA + U RL + U TX
    Figure imgb0004
wobei
URMA
der Spannungsabfall über Widerstand RMA,
UTX
der Spannungsabfall über T1, T2 eines jeden Melders vor Mn,
ULT
der Spannungsabfall am Linienanschluß A,
RTX
der Gesamtwiderstand aller Schalter T1, T2 der Melder M1 bis Mn und
RMA
der Meßwiderstand vor dem Anschluß Minuslinie A ist.
It should be z. B. the line length between the detectors M2 and M n are measured. It is assumed that a normal operating state in which the switch 30 is closed and the switch 33 is opened. The switches T1 and T2 in the detectors M1 ... M n are closed. The switch T3 in the detectors M1 ... M n are open. Thus the line A line is energized (operating voltage). By driving the modulator MA is a voltage modulated signal on the line, z. B. a loop, sent. The data word includes the address of the detector or its communication address and a command to close the switch T3, such as M n . After M n has received the command, its switch T3 is closed. Now flows a constant current I A , caused by the constant current source 26. The current flows through the switches T3 and T1 of M n , and via the resistor R MA . With the aid of the voltage measuring device 36, the voltage drop at the terminal plus line A is measured and fed to the test processor 20. The measured voltage drop is composed as follows:
  • U RMA = I IKA × R MA
    Figure imgb0001
  • U TX = I KA × M N × 2 × R TX
    Figure imgb0002
  • U RL = I KA × R L
    Figure imgb0003
  • U LT = U RMA + U RL + U TX
    Figure imgb0004
in which
U RMA
the voltage drop across resistor R MA ,
U TX
the voltage drop across T1, T2 of each detector before M n ,
U LT
the voltage drop at the line terminal A,
R TX
the total resistance of all switches T1, T2 of the detectors M1 to M n and
RMA
the measuring resistor before the connection minus line A is.

Nach Umstellung der Gleichung 4. ergibt sich: U RL = U LT - U RMA - U TX

Figure imgb0005
RL ( M n ) = U LT - U RMA - U TX M n I KA
Figure imgb0006
After conversion of equation 4, the result is: U RL = U LT - U RMA - U TX
Figure imgb0005
RL ( M n ) = U LT - U RMA - U TX M n I KA
Figure imgb0006

Die Gleichung 2 wird im Prüfprozessor 20 berechnet und das Ergebnis RL(Mn) abgespeichert. Dieser Wert beinhaltet den Leitungswiderstand zwischen dem Anschluß der Linie A und dem Melder Mn.Equation 2 is calculated in the test processor 20 and the result R L (M n ) is stored. This value includes the line resistance between the connection of the line A and the detector M n .

Nach einer gewissen Zeit tM wird im Melder Mn der Schalter T3 wieder geöffnet. Dies geschieht mit Hilfe einer geeigneten Zeitschaltung, die im Melder, beispielsweise im Logikbaustein 18, untergebracht ist. Die Linienspannung geht wieder auf Betriebspotential.After a certain time t M , the switch T3 is opened again in the detector M n . This is done with the help of a suitable timer, which is housed in the detector, for example in the logic module 18. The line voltage returns to operating potential.

Anschließend werden die obigen Schritte für den Melder M2 durchgeführt. Das Ergebnis RL(M2) wird ebenfalls in dem Speicher von dem Prüfprozessor 20 abgelegt. Nunmehr wird die Differenz zwischen beiden Messungen gebildet: ΔR L = R L ( M n ) - R L M n

Figure imgb0007
Subsequently, the above steps are performed for the detector M2. The result R L (M2) is also stored in the memory by the test processor 20. Now the difference between the two measurements is formed: .DELTA.R L = R L ( M n ) - R L M n
Figure imgb0007

Bei einem gegebenen Leiterdurchmesser (Querschnitt) kann die Leitungslänge zwischen Melder M2 und Mn bestimmt werden: I G = A × R L ρ

Figure imgb0008
wobei A der Querschnitt der Leitung und p der spezifische Widerstand ist. Die einfache Länge einer Ader bzw. eines Aderabschnittes ergibt sich aus I = I G 2
Figure imgb0009
For a given conductor diameter (cross-section), the cable length between detector M2 and M n can be determined: I G = A × R L ρ
Figure imgb0008
where A is the cross section of the line and p is the resistivity. The simple length of a wire or a wire section results from I = I G 2
Figure imgb0009

Das gleiche Verfahren kann dazu angewendet werden, um die gesamte Länge der Leitung zu bestimmen. Ist z. B. eine Ringleitung vorgesehen, wird am anderen Ende der Schalter geschlossen, der dem Schalter 33 nach Fig. 1 entspricht. Dadurch fließt ein Konstantstrom über die Ader 12 zu Masse. Über die Spannungsmeßvorrichtung 36 wird nun die Spannung am Anschluß der Ader 12 gemessen. Die gemessene Spannung kann direkt in die Länge der Leitung umgerechnet werden: R L = U LT I K

Figure imgb0010
I = A × R L ρ
Figure imgb0011
The same procedure can be used to determine the total length of the pipe. Is z. B. provided a loop, the switch is closed at the other end of the switch 33 after Fig. 1 equivalent. As a result, a constant current flows via the wire 12 to ground. About the voltage measuring device 36, the voltage at the terminal of the wire 12 is now measured. The measured voltage can be converted directly into the length of the line: R L = U LT I K
Figure imgb0010
I = A × R L ρ
Figure imgb0011

Die gemessenen Werte für die Leitungsabschnitte und die gesamte Leitung können im Prüfprozessor 20 abgespeichert werden.The measured values for the line sections and the entire line can be stored in the test processor 20.

Mit Hilfe der gezeigten Schaltungsanordnung kann auch ein Kurzschluß zwischen der Abschirmung 40 und einer der Adern festgestellt werden sowie auch der Ort des Kurzschlusses.With the help of the circuit arrangement shown, a short circuit between the shield 40 and one of the wires can be determined as well as the location of the short circuit.

Wie schon erwähnt, besteht die Abschirmung 40 aus einem Drahtgeflecht oder einer Folie und ist niederohmig und wird bei den nachfolgenden Berechnungen vernachlässigt. Ausgegangen wird wiederum von einem Normalbetriebszustand, d. h. Schalter 30 ist geschlossen und Schalter 33 geöffnet. Es soll nun der Kurzschluß K1 detektiert und der Kurzschlußort bestimmt werden.As already mentioned, the shield 40 consists of a wire mesh or a foil and has a low impedance and is neglected in the following calculations. The starting point is again a normal operating state, i. H. Switch 30 is closed and switch 33 is open. Now, the short circuit K1 should be detected and the short circuit location determined.

Es fließt der Strom IA der Konstantstromquelle 26. Er fließt, wenn der Kurzschluß K1 besteht, auch über die Abschirmung 40 und den Widerstand 44 zum Potential Us der Schirmüberwachung 42. Mit Hilfe der Spannungsmeßvorrichtung 36 kann die Spannung, die sich einstellt, gemessen werden. Der Spannungsabfall am Widerstand 44 ist bekannt. Mithin kann hieraus der Spannungsabfall berechnet werden, der durch die Leitung bis zur Kurzschlußstelle K1 hervorgerufen wird, d.h. durch die Ader 12. Dieser Spannungsabfall ULA und der Strom IA erlauben die Berechnung des Widerstands Aderabschnitts, der mit RLK bezeichnet ist. Die Leitungslänge bis zur Kurzschlußstelle ist mithin I = A × R LK ρ

Figure imgb0012
wobei

A
der Querschnitt der Ader,
RLK
der gemessene Widerstandswert und
ρ
der spezifische Widerstand ist.
It flows the current I A of the constant current source 26. It flows when the short circuit is K1, using the shield 40 and the resistor 44 to the potential V s of the screen monitor 42. By means of the voltage measuring device 36, the voltage which is established can be measured, become. The voltage drop across resistor 44 is known. Consequently, the voltage drop caused by the line to the short-circuit point K1 can be calculated from this, ie, by the wire 12. This voltage drop U LA and the current I A allow the calculation of the resistance wire section, which is denoted by R LK . The cable length to the short circuit point is therefore I = A × R LK ρ
Figure imgb0012
in which
A
the cross section of the wire,
R LK
the measured resistance value and
ρ
the specific resistance is.

Auf diese Weise kann ermittelt werden, in welcher Leitungsentfernung der Kurzschluß aufgetreten ist. Da diese Leitungsentfernung noch wenig aussagt über den tatsächlichen Ort des Kurzschlusses, kann diese Leitungslänge auch in Beziehung gesetzt werden zu den ermittelten Längen der Leitungsabschnitte zwischen den Meldern M1 ... Mn. Daher läßt sich ohne weiteres ermitteln, zwischen welchen Meldern der Kurzschluß liegt, also hier zwischen den Meldern M1 und M2.In this way it can be determined in which line distance the short circuit has occurred. Since this line distance still says little about the actual location of the short circuit, this line length can also be related to the determined lengths of the line sections between the detectors M1 ... M n . Therefore, it can be easily determined between which detectors the short circuit is located, so here between the detectors M1 and M2.

Auf ähnliche Weise, wie oben beschrieben, kann auch festgestellt werden, ob eine Verpolung vorliegt. Bei einer Verpolung fließt der Konstantstrom IA über die nicht gezeichnete Zenerdiode und führt mithin einen durch die Konstantstromquelle 26 begrenzten Kurzschlußstrom herbei. Durch Messung der Leitungslänge läßt sich mithin feststellen, an welcher Stelle sich der Kurzschluß befindet. Da sich in diesem Fall auch der Spannungsabfall am Meßwiderstand 46a ändert, kann durch den Block DA ermittelt werden, ob ein Kurzschluß vorliegt oder die Leitung ungestört ist, was dann zu einer entsprechenden Meldung an den Prüfprozessor 20 führt.In a similar way, as described above, it can also be determined whether there is a reverse polarity. In a reverse polarity of the constant current I A flows through the not-shown Zener diode and thus leads a limited by the constant current source 26 short-circuit current. By measuring the cable length can thus determine, at which point the short circuit is. Since in this case also the voltage drop across the measuring resistor 46a changes, it can be determined by the block D A , whether a short circuit exists or the line is undisturbed, which then leads to a corresponding message to the test processor 20.

Claims (17)

  1. A danger signalling system, comprising:
    - a multiplicity of detectors (M1 to Mn) and other line members, in case of need, which respond to at least one danger criterion and are connected to a two-wire line (line A),
    - a control centre connected to the line (line A), which has a voltage supply and a central processor in which the addresses of the detectors (M1 to Mn) are stored for individually addressing and polling the detectors (M1 to Mn) as well as a program for monitoring the status of the detectors (M1 to Mn),
    characterized in that a testing circuitry (10) is disposed in the control centre for checking the working order of the network formed from the line (line A) and the detectors (M1 to Mn) or line members by means of a testing unit wherein the testing circuitry (10) includes a testing processor (20, 22) which, in turn, has an evaluation software, and a switch assembly (30, 33) controlled by the testing processor (20, 22) is provided for selectively connecting the at least one testing unit to the line (line A), the testing unit for checking the line lengths has a stabilized-current source (26) which is adapted to be connected to the line (line A) via a modulator (28) and a controllable switch (30) wherein the testing processor (20, 22) and the modulator (28) help in generating a data word which contains the address of a detector (M1 to Mn) and a control signal for a cross-connection switch (T3) inside the detector interconnecting the wires (12, 14) and, further, a voltage measuring device (36) connected to the line (line A) is provided which is connected to the testing processor (20, 22).
  2. The system according to claim 1, characterized in that the testing circuitry (10) is designed as a module, e.g. in the form of a p.c. plug-in card.
  3. The system according to claim 1 or 2, characterized in that the testing circuitry (10) has a modem connection for checking the network via a trunk connection line.
  4. The system according to any one of claims 1 to 3, characterized by a testing unit for checking any respective misplacement of poles of the detectors (M1 to Mn) and line members.
  5. The system according to any one of claims 1 to 4, characterized by a testing unit for checking any respective short-circuits in the line and/or any contact of wires (12, 14) of the line (line A) and the shielding enclosure (40) of the line with a wire (12, 14).
  6. The system according to any one of claims 1 to 5, characterized by a testing unit for checking the installed network with a predetermined installation scheme.
  7. The system according to claim 1, characterized in that the data word is formed by modulating the voltage in the modulator (28).
  8. The system according to claim 1, characterized in that a timing circuit is provided which causes the switch (T3) to open.
  9. The system according to claim 1, characterized in that at least a second switch (33) is provided which connects a wire (14) of the line (line A) to ground for generating a stabilized current flowing in the line (line A).
  10. The system according to any one of claims 5 to 9, characterized in that a shielding enclosure testing unit (42) monitors the potential of the shielding enclosure (40) by means of the testing processor (20, 22) and produces a signal if the potential deviates from a predetermined value.
  11. The system according to claim 10, characterized in that the shielding enclosure (40) has connected thereto a precision resistor (44) the voltage drop of which is provided to the testing processor (20, 22) and the line resistance up to the short-circuit location is determined from the voltage level at the connection of the line (line A) and the stored voltage drop of the precision resistor (URA) and the line length up to the short-circuit location is determined from said resistance.
  12. The system according to any one of claims 1 to 11, characterized in that the detectors (M1 to Mn) have disconnecting switches (T1, T2) located in series with a wire (14) for breaking up the line (line A) on either side of a short-circuit location (K1).
  13. A method for measuring the resistance of line portions or line lengths in danger signalling systems according to one of the claims 1 to 12 having the following features:
    - a multiplicity of detectors (M1 to Mn) and other line members, in case of need, which respond to at least one danger criterion and are connected to a two-wire line (line A),
    - a control centre connected to the line (line A), which has a voltage supply and a central processor in which the addresses of the detectors (M1 to Mn) are stored for individually addressing and polling the detectors (M1 to Mn) as well as a program for monitoring the status of the detectors (M1 to Mn),
    characterized by the following process steps:
    - a testing unit (10) is connected to the line (12, 14),
    - a testing processor (20, 22) of the testing unit (10) in which the addresses of the detectors (M1 to Mn) are stored provides an instruction to a predetermined detector (Mn), via its address, to close a cross-connection switch (T3) interconnecting the wires of the line (12, 14) in the detector (Mn),
    - a stabilized-current source (IKA) of the testing unit (10) generates a stabilized current (IA) on the line (12, 14),
    - a voltage measuring device (36) measures the voltage drop at the connection of the line (12, 14) and provides the value measured to the testing processor (20, 22),
    - the testing processor (20, 22) calculates the resistance of the sum of line portions between the connection of the line (12, 14) and the detector (Mn) while subtracting the resistances of the detectors (M1 to Mn-1) and a limiting resistance (RMA), if required.
  14. The method according to claim 13, characterized in that the resistance or line length between adjoining detectors (Mn, M2) is calculated by repeating the steps according to claim 15 for the adjoining detector (M2) and the minor resistance value is subtracted from the major one.
  15. The method according to claim 13 or 14, characterized in that a timing circuit in the detectors opens the cross-connection switch (T3) after a predetermined time if it had been closed before.
  16. The method according to any one of claims 13 to 15, characterized in that the resistances or line length of the single line portions between the detectors (M1 to Mn) and the predetermined resistance values of the single detectors (M1 to Mn) are stored in the testing processor (20, 22) and, when measurements are made in operation later, the resistances measured for the detectors are compared to the resistance values stored for the detectors.
  17. A method for determining a short-circuit between the line of a danger signalling system according to one of the claims 1 to 12 and a shielding enclosure for the line, the danger signalling system comprising:
    - a multiplicity of detectors (M1 to Mn) and other line members, in case of need, which respond to at least one danger criterion and are connected to a two-wire line (line A),
    - a control centre connected to the line (line A), which has a voltage supply and a central processor in which the addresses of the detectors (M1 to Mn) are stored for individually addressing and polling the detectors (M1 to Mn) as well as a program for monitoring the status of the detectors (M1 to Mn),
    characterized by the following process steps:
    - the shielding enclosure (40) is connected to ground via a resistor (RA) of the testing unit (10),
    - a stabilized-current source (IKA) of the testing unit (10) generates a stabilized current (IA) on the line (12, 14),
    - a voltage measuring device (36) measures the voltage drop at the connection of the line (12, 14) and provides the value measured to the testing processor (20, 22),
    - the testing processor (20, 22) calculates the resistance of the short-circuited line up to the short-circuit location (K1) and calculates the line length up to the short-circuit location (K1) from the parameters of the line (12, 14).
EP01123041A 2000-10-10 2001-09-26 Alarm system Expired - Lifetime EP1197936B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10051329 2000-10-10
DE10051329A DE10051329C2 (en) 2000-10-10 2000-10-10 Alarm system

Publications (4)

Publication Number Publication Date
EP1197936A2 EP1197936A2 (en) 2002-04-17
EP1197936A3 EP1197936A3 (en) 2003-07-02
EP1197936B1 EP1197936B1 (en) 2005-02-02
EP1197936B2 true EP1197936B2 (en) 2008-05-14

Family

ID=7660027

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01123041A Expired - Lifetime EP1197936B2 (en) 2000-10-10 2001-09-26 Alarm system

Country Status (5)

Country Link
US (1) US6507277B2 (en)
EP (1) EP1197936B2 (en)
CN (1) CN1157696C (en)
AT (1) ATE288605T1 (en)
DE (2) DE10051329C2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363261B1 (en) * 2002-05-17 2004-09-29 Securiton AG Method for the operation of an alarm system, and alarm system for the implementation of said method
DE10234612A1 (en) 2002-07-30 2004-02-19 Robert Bosch Gmbh Hazard warning system has modules controllable so energy storage device in system is charged up, arrangement for determining individual module distances by evaluating associated charging times
EP2051220A1 (en) * 2007-10-17 2009-04-22 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Separating device with energy storage for an electric circuit conducting energy
DE102008003799B4 (en) * 2008-01-10 2021-06-10 Robert Bosch Gmbh Monitoring device for a reporting system, reporting system and method for monitoring the reporting system
DE102010047227B3 (en) * 2010-10-04 2012-03-01 Hekatron Vertriebs Gmbh Hazard detector, hazard alarm system and method for detecting line faults
DE102010047220B4 (en) * 2010-10-04 2012-07-05 Novar Gmbh Method for operating a voice announcement system
EP3540706B1 (en) * 2018-03-14 2020-10-21 Siemens Schweiz AG System and method for addressing distant actuated safety devices
DE102019203627A1 (en) * 2019-03-18 2020-09-24 Siemens Healthcare Gmbh Detection of disturbances in the measurement of bioelectrical signals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2935335A1 (en) 1979-08-31 1981-03-19 Siemens AG, 1000 Berlin und 8000 München DC alarm signalling system - has two parallel lines connecting series of units, with terminal impedance and memory to record impedance at various times
EP0052220A2 (en) 1980-11-17 1982-05-26 Siemens Aktiengesellschaft Method and device for measuring the resistance in a signalling line
DE3614692A1 (en) 1986-04-30 1987-11-05 Nixdorf Computer Ag DANGER REPORTING SYSTEM
DE29611600U1 (en) 1996-07-03 1996-09-05 Siemens Ag Arrangement for testing an alarm system
DE19516092A1 (en) 1995-05-03 1996-11-07 Merk Gmbh Telefonbau Fried Danger warning system with screened leads
DE19538754A1 (en) 1995-10-18 1997-04-24 Bosch Gmbh Robert Primary line monitoring method for alarm system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797008A (en) 1971-02-04 1974-03-12 Nittan Co Ltd Fire detecting system
DE2939462C2 (en) * 1979-09-28 1983-01-05 Siemens AG, 1000 Berlin und 8000 München Process and device for the identification of individual detectors in intrusion or fire alarm systems
JPS5947694A (en) 1982-09-10 1984-03-17 ニツタン株式会社 Sensor testing circuit for alarm
EP0111178B1 (en) * 1982-11-23 1987-10-28 Cerberus Ag Control device with several detectors connected in chain form to a signal line
GB8431883D0 (en) * 1984-12-18 1985-01-30 Gent Ltd Transmission system
US5045787A (en) 1989-12-27 1991-09-03 General Signal Corporation Apparatus and method for measuring insulated track joint resistances
EP0532787B1 (en) * 1991-09-19 1995-12-13 Siemens Aktiengesellschaft Device for operating hazard detectors
US5499023A (en) 1992-05-27 1996-03-12 Kaye Instruments, Inc. Method of and apparatus for automated sensor diagnosis through quantitative measurement of one of sensor-to-earth conductance or loop resistance
DE4321054C2 (en) * 1993-06-24 1995-12-14 Siemens Ag Procedures to support test routines
US5583848A (en) * 1994-11-15 1996-12-10 Telefonaktiebolaget L M Ericsson Methods for verification of routing table information
US5544154A (en) * 1995-03-09 1996-08-06 Telefonaktiebolaget Lm Ericsson Method for determining the load induced by a routing verification test on a network
US5553058A (en) * 1995-07-10 1996-09-03 Telefonaktiebolaget Lm Ericsson Centralized load minimizing method for periodical routing verification tests scheduling
US5638357A (en) * 1995-08-25 1997-06-10 Telefonaktiebolaget Lm Ericsson (Publ) Distributed method for periodical routing verification test scheduling
US5680054A (en) * 1996-02-23 1997-10-21 Chemin De Fer Qns&L Broken rail position detection using ballast electrical property measurement
US6150936A (en) 1996-05-20 2000-11-21 Pittway Corporation Method and system for analyzing received signal strength
US5872823A (en) * 1997-04-02 1999-02-16 Sutton; Todd R. Reliable switching between data sources in a synchronous communication system
DE69817435T2 (en) 1997-04-21 2004-03-11 Honeywell International Inc. Installation and monitoring of wireless security devices with reduced energy
US6185191B1 (en) * 1997-12-03 2001-02-06 Harris Corporation Testing of ISDN line via auxiliary channel signaling
US6195395B1 (en) * 1998-03-18 2001-02-27 Intel Corporation Multi-agent pseudo-differential signaling scheme
US6342836B2 (en) * 2000-02-25 2002-01-29 Harry I. Zimmerman Proximity and sensing system for baggage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2935335A1 (en) 1979-08-31 1981-03-19 Siemens AG, 1000 Berlin und 8000 München DC alarm signalling system - has two parallel lines connecting series of units, with terminal impedance and memory to record impedance at various times
EP0052220A2 (en) 1980-11-17 1982-05-26 Siemens Aktiengesellschaft Method and device for measuring the resistance in a signalling line
DE3614692A1 (en) 1986-04-30 1987-11-05 Nixdorf Computer Ag DANGER REPORTING SYSTEM
DE19516092A1 (en) 1995-05-03 1996-11-07 Merk Gmbh Telefonbau Fried Danger warning system with screened leads
DE19538754A1 (en) 1995-10-18 1997-04-24 Bosch Gmbh Robert Primary line monitoring method for alarm system
DE29611600U1 (en) 1996-07-03 1996-09-05 Siemens Ag Arrangement for testing an alarm system

Also Published As

Publication number Publication date
EP1197936A2 (en) 2002-04-17
DE10051329A1 (en) 2002-04-18
ATE288605T1 (en) 2005-02-15
DE50105236D1 (en) 2005-03-10
CN1157696C (en) 2004-07-14
CN1372229A (en) 2002-10-02
EP1197936A3 (en) 2003-07-02
DE10051329C2 (en) 2003-12-11
US6507277B2 (en) 2003-01-14
US20020057198A1 (en) 2002-05-16
EP1197936B1 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
EP2804163B1 (en) Method and apparatus for detecting faults in control lines in hazard warning and control systems
DE69933839T2 (en) Method and device for detecting line shunt and ground fault
DE4441070C2 (en) Safety switch arrangement
EP0007579B1 (en) Circuit arrangement for monitoring the state of signalling systems, especially traffic light signalling systems
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
EP3273459A1 (en) Device and method for monitoring a load-breaking unit in an electrical energy supply system and distribution station with a monitored load-breaking unit
EP0004909B1 (en) Annunciator of danger
EP1197936B2 (en) Alarm system
EP2277154B1 (en) Monitoring device for functionally monitoring a reporting system reporting system and method for monitoring
CH618801A5 (en)
DE602004009707T2 (en) DIAGNOSTIC SYSTEM FOR A MODULAR FIELDBUS BOARD
DE3910864C1 (en)
EP2381703B1 (en) Method and device for monitoring a loudspeaker line
EP2437228B1 (en) Alarm, hazard warning assembly and method for detecting circuit faults
DE102011117248A1 (en) Method for monitoring high voltage components of electrical system of electrical vehicle, involves checking plug connections automatically to obtain plug connector test result, and comparing result with cable set test result
EP0295593B1 (en) Individual identification
EP0809361B1 (en) Electronic switching device and circuit arrangement for monitoring a technical installation
EP2169645A1 (en) Test of reporting lines on a danger reporting assembly
DE3122109C2 (en)
EP0958986A2 (en) Monitoring device for track-free signalling systems
DE2711519B2 (en) Data transmission system
EP0763877B1 (en) Communication system
DE2845101C2 (en) Circuit arrangement for testing intermediate lines in a multi-stage switching network
DE19620065A1 (en) Electronic switching device for cable=way or chair-lift installation
WO2020125996A1 (en) Method and testing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031017

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050202

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050202

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050202

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050202

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50105236

Country of ref document: DE

Date of ref document: 20050310

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050513

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050926

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: NOVAR GMBH

Effective date: 20051028

ET Fr: translation filed
PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

BERE Be: lapsed

Owner name: JOB LIZENZ G.M.B.H. & CO. KG

Effective date: 20050930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050702

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20080514

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050927

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50105236

Country of ref document: DE

Representative=s name: HAUCK PATENTANWALTSPARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50105236

Country of ref document: DE

Owner name: DETECTOMAT GMBH, DE

Free format text: FORMER OWNER: JOB LIZENZ GMBH & CO KG, 22926 AHRENSBURG, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171005

Year of fee payment: 17

Ref country code: FR

Payment date: 20171023

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171024

Year of fee payment: 17

Ref country code: IE

Payment date: 20171020

Year of fee payment: 17

Ref country code: CH

Payment date: 20171023

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50105236

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180926

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926