EP1191291B1 - Regelverfahren für eine Tieftemperatur-Rektifikationsanlage - Google Patents

Regelverfahren für eine Tieftemperatur-Rektifikationsanlage Download PDF

Info

Publication number
EP1191291B1
EP1191291B1 EP20010122754 EP01122754A EP1191291B1 EP 1191291 B1 EP1191291 B1 EP 1191291B1 EP 20010122754 EP20010122754 EP 20010122754 EP 01122754 A EP01122754 A EP 01122754A EP 1191291 B1 EP1191291 B1 EP 1191291B1
Authority
EP
European Patent Office
Prior art keywords
column
working
relatively high
high pressure
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010122754
Other languages
English (en)
French (fr)
Other versions
EP1191291A1 (de
Inventor
Horst Corduan
Dietrich Rottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10047102A external-priority patent/DE10047102A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP20010122754 priority Critical patent/EP1191291B1/de
Publication of EP1191291A1 publication Critical patent/EP1191291A1/de
Application granted granted Critical
Publication of EP1191291B1 publication Critical patent/EP1191291B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon

Definitions

  • the invention relates to a method for regulating the capacity of a cryogenic rectification plant, in which a fluid in a working at a higher pressure column a cryogenic rectification unit is initiated, which at higher Pressure working column and a lower pressure column and at the liquid from the sump of the higher pressure working Column is passed into the lower pressure column.
  • Control methods are known for changing the capacity of a cryogenic rectification plant, in which in the working at higher pressure column Setpoint for the sump level is set as manipulated variable. By changing the Setpoint of the sump level, the plant is on a modified amount of feed fluid set.
  • the change in capacity is also called load change.
  • the known control methods therefore have the goal keep the F / D ratio as constant as possible, so that the products of the Rectification plant for different load cases of the plant the same purity exhibit. This is in all known methods by a regulation of Sump level reached, which uses the level as a control variable.
  • Control methods are known for example from the publications EP 0 684 436 or US 3,912,476 known.
  • the invention is therefore based on the object of a method available provide a cryogenic rectification with consistent product purity Load changes, as well as in case of malfunction with fluctuating amount of input fluid guaranteed.
  • This object is achieved according to the invention in that the amount of liquid, which is taken from the bottom of the working column at higher pressure and the working at lower pressure column is fed via a Flow control is regulated, with a manipulated variable for the flow control a desired flow rate is set and the level of the Liquid in the bottom of the working at higher pressure column without Setpoint setting according to the amount of liquid removed.
  • flow control a FIC unit (Flow Indicated Control) as Control component used.
  • This unit usually has one Flow meter, as well as at least one with the flow meter via a Control line connected, controllable valve on.
  • the cryogenic rectification plant is a cryogenic rectification plant for air separation.
  • Particularly preferred is to increase the Operational safety in addition to flow control a sump level indicator (Level Indicator) whose purpose is to exceed a set maximum value for the sump level, as well as the undershoot a specified minimum value. Appropriately, in the described Under- or overruns issued a warning signal.
  • Level Indicator level Indicator
  • a development of the invention provides that the cryogenic rectification plant in addition to the higher pressure column and the working at lower pressure column an argon column with a Head condenser and liquid from the sump at higher pressure working column in the top condenser and from the top condenser in the lower pressure working column is passed, wherein by means of Flow control a valve is controlled, the amount of zu adopteddem Fluid determined in the working at lower pressure column, and a valve is controlled, the corresponding amount of fluid in the top condenser of the Argon column enter.
  • the degree of opening of the two valves by means of a split-range control specified. This is a division of the sump taken amount of liquid.
  • the distribution of the amount on the two valves specified in proportions.
  • the invention has the advantage that even with fluctuations of Use of fluid only a constant amount of liquid from the bottom of the higher pressure working column is removed. This leaves the diestechniksaufgabe in the working at lower pressure column constant and undisturbed. The rectification remains in the lower pressure column unchanged, good. The product purity is retained. Furthermore, one is Flow control a simple, with little effort on components to be realized, reliable control method.
  • the change in the amount of feed fluid makes each case only in a change of Sump level noticeable, which without setpoint specification according to the Bottom of the working at higher pressure column amount Adjusting fluid.
  • To increase security are just a maximum value and a Minimum value for the sump level. When exceeding the specified Maximum value for the sump level and below the specified level Minimum value is conveniently issued a warning signal. Within this Limits may be the sump level of the column operating at higher pressure or rise without disturbing the rectification.
  • the removal amount of liquid from the sump increased or the amount of feed air reduced. It can also be the feed amount of the nitrogen-rich liquid in the be raised at a lower pressure column or in a storage tank.
  • a working at a higher pressure column 1, a at lower pressure column 2, a subcooler 3, and a FIC control 4 (Flow Indicated Control 4), a valve 5, and a control line 6 are shown.
  • the taken from the bottom of working at higher pressure column 1 Liquid is passed via the subcooler 3 to the FIC control 4, the one Flowmeter has.
  • the flow and the resulting Feed via the valve 5 in the lower pressure column 2 is regulated so that the F / D ratio in the column 2 also change in itself Feed air quantity remains constant.
  • a sump level indicator 7 mounted at the Exceeding a specified maximum value for the sump level and at Falls below a specified minimum value gives a signal.
  • FIG. 2 shows, in addition to those already described in the section on FIG Components an argon column 8, a top condenser 9 of the argon column 8, and a second control line 10, which controls a second valve 11, through the the supply amount of fluid is fed to the overhead condenser 9 of the argon column 8 becomes.
  • the FIC control 4 is executed in this example as a split-range control 4, thereby ensuring that the division of the withdrawn from the sump Amount of liquid to the two valves 5, 11 at a change of Flow rate through the FIC unit is adjusted so that the Readjust valve positions automatically according to their fluid proportions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung der Kapazität einer Tieftemperatur-Rektifikationsanlage, bei dem ein Fluid in eine bei höherem Druck arbeitende Kolonne einer Tieftemperatur-Rektifikationsanalge eingeleitet wird, welche die bei höherem Druck arbeitende Kolonne und eine bei niedrigerem Druck arbeitende Kolonne aufweist, und bei dem Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne in die bei niedrigerem Druck arbeitende Kolonne geleitet wird.
Bekannt sind Regelverfahren zur Änderung der Kapazität einer Tieftemperatur-Rektifikationsanlage, bei denen in der bei höherem Druck arbeitenden Kolonne ein Sollwert für den Sumpfpegel als Stellgröße eingestellt wird. Durch Änderung des Sollwerts des Sumpfpegels wird die Anlage auf eine geänderte Menge an Einsatzfluid eingestellt. Die Änderung der Kapazität wird auch Lastwechsel genannt. Bei einer mit einem Lastwechsel einhergehenden Änderung der Menge des Einsatzfluids tritt in der Rektifikationskolonne vorübergehend eine Änderung des Verhältnisses von Flüssigkeit zu Dampf (F/D-Verhältnis) auf. Diese Änderung zieht eine unerwünschte Änderung der Reinheit der Produkte nach sich. Die bekannten Regelverfahren haben daher zum Ziel, das F/D-Verhältnis möglichst konstant zu halten, so dass die Produkte der Rektifikationsanlage für verschiedene Lastfälle der Anlage die gleiche Reinheit aufweisen. Dies wird bei allen bekannten Verfahren durch eine Regelung des Sumpfpegels erreicht, die den Pegelstand als Stellgröße benutzt. Derartige Regelverfahren sind beispielsweise aus den Druckschriften EP 0 684 436 oder US 3,912,476 bekannt.
Darüber hinaus ist es bekannt, zum Konstanthalten des F/D-Verhältnisses Pufferspeicher einzusetzen. Diese Methode ist jedoch mit einem erheblichen baulichen Aufwand verbunden.
Bekannt ist außerdem, dass nicht nur bei Kapazitätsänderungen Maßnahmen ergriffen werden müssen, um das F/D-Verhältnis konstant zu halten, sondern auch bei auftretenden Betriebsstörungen. Beispielsweise führen Schwankungen in der Luftmenge bei einer Luftzerlegungsanlage zu unterschiedlichen Flüssigkeitszuläufen in den Sumpf der bei höherem Druck arbeitenden Kolonne. Bei der bekannten Sumpfstandregelung, die den Sumpfstand konstant hält, wird die geänderte Flüssigkeitszulaufmenge auch als ebenso geänderte Flüssigkeitsablaufmenge weitergegeben. Das heißt, dass aus dem Sumpf der bei höherem Druck arbeitenden Kolonne variable Stöme in die bei niedrigerem Druck arbeitende Kolonne gelangen. Dies wirkt sich in der bei niedrigerem Druck arbeitenden Kolonne negativ aus, weil die variable Flüssigkeitsaufgabe die Rektifikation stört.
Der Erfindung liegt daher die Aufgabe zugrunde ein Verfahren zur Verfügung zu stellen, das eine Tieftemperatur-Rektifikation mit gleichbleibender Produktreinheit bei Lastwechsel, wie auch bei Betriebsstörungen mit schwankender Einsatzfluidmenge gewährleistet.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Menge der Flüssigkeit, die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne entnommen wird und der bei niedrigerem Druck arbeitenden Kolonne zugeführt wird, über eine Durchflussregelung geregelt wird, wobei eine Stellgröße für die Durchflussregelung auf eine gewünschte Durchflussmenge eingestellt ist und sich der Pegelstand der Flüssigkeit im Sumpf der bei höherem Druck arbeitenden Kolonne ohne Sollwertvorgabe entsprechend der entnommenen Menge an Flüssigkeit einstellt. Dabei ist als Durchflussregelung bevorzugt eine FIC-Einheit (Flow Indicated Control) als Regelungskomponente eingesetzt. Diese Einheit weist üblicherweise einen Durchflussmesser, sowie mindestens ein mit dem Durchflussmesser über eine Regelungsleitung verbundenes, ansteuerbares Ventil auf.
Bevorzugt ist die Tieftemperatur-Rektifikationsanlage eine Tieftemperatur-Rektifikationsanlage zur Luftzerlegung. Besonders bevorzugt wird zur Erhöhung der Betriebssicherheit zusätzlich zur Durchflussregelung ein Sumpfpegelanzeiger (Level Indicator) eingesetzt, dessen Zweck darin besteht, die Überschreitung eines festgelegten Maximalwerts für den Sumpfpegel anzuzeigen, sowie die Unterschreitung eines festgelegten Minimalwerts. Zweckmäßigerweise wird bei den beschriebenen Unter- bzw. Überschreitungen ein Warnsignal abgegeben.
Eine Weiterbildung der Erfindung sieht vor, dass die Tieftemperatur-Rektifikationsanlage zusätzlich zu der bei höherem Druck arbeitenden Kolonne und der bei niedrigerem Druck arbeitenden Kolonne eine Argonkolonne mit einem Kopfkondensator aufweist und Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne in den Kopfkondensator und von dem Kopfkondensator in die bei niedrigerem Druck arbeitende Kolonne geleitet wird, wobei mittels der Durchflussregelung ein Ventil angesteuert wird, das die Menge an zuzuführendem Fluid in die bei niedriegerem Druck arbeitende Kolonne bestimmt, und ein Ventil angesteuert wird, das die entsprechende Menge an Fluid in den Kopfkondensator der Argonkolonne eintreten lässt.
Besonders vorteilhaft wird der Öffnungsgrad der beiden Ventile mittels einer Split-Range-Regelung vorgegeben. Dabei erfolgt eine Aufteilung der aus dem Sumpf entnommenen Flüssigkeitsmenge. Vorteilhaft wird die Verteilung der Menge auf die beiden Ventile in Anteilen vorgegeben. Bei einer Änderung der Durchflussmenge passen sich die Ventilstellungen entsprechend ihrer Anteile automatisch an.
Mit besonderem Vorteil wird bei einer Erhöhung der Kapazität einer Tieftemperatur-Rektifikationsanlage keine außerhalb der bei höherem Druck arbeitenden Kolonne gespeicherte stickstoffreiche Flüssigkeit in die bei höherem Druck arbeitende Kolonne eingeführt. Bevorzugt werden der Sumpf und das anschließende Leitungsnetz in der bei höherem Druck arbeitenden Kolonne, sowie gegebenenfalls der Kopfkondensator der Argonkolonne als Flüssigkeitspuffer bei Laständerungen eingesetzt. Damit wird das konstanthalten des F/D-Verhältnisses erleichtert. Mit Vorteil wird auch eine Kombination von beidem als Pufferspeicher eingesetzt.
Die Erfindung weist den Vorteil auf, dass auch bei Schwankungen der Einsatzfluidmenge nur eine konstante Flüssigkeitsmenge aus dem Sumpf der bei höherem Druck arbeitenden Kolonne entnommen wird. Dadurch bleibt die Flüsigkeitsaufgabe in die bei niedrigerem Druck arbeitende Kolonne konstant und ungestört. Die Rektifikation in der bei niedrigerem Druck arbeitenden Kolonne bleibt unverändert gut. Die Produktreinheit bleibt erhalten. Des Weiteren ist eine Durchflussregelung eine einfach, mit geringem Aufwand an Bauteilen zu realisierende, zuverlässige Regelungsmethode.
Die Änderung der Einsatzfluidmenge macht sich jeweils nur in einer Änderung des Sumpfpegels bemerkbar, der sich ohne Sollwertvorgabe entsprechend der aus dem Sumpf der bei höherem Druck arbeitenden Kolonne entnommenen Menge an Flüssigkeit einstellt. Zur Erhöhung der Sicherheit sind lediglich ein Maximalwert und ein Mmimalwert für den Sumpfpegel festgelegt. Bei Überschreitung des festgelegten Maximalwerts für den Sumpfpegel sowie bei Unterschreitung des festgelegten Minimalwerts wird zweckmäßigerweise ein Wamsignal abgegeben. Innerhalb dieser Grenzen kann der Sumpfpegel der bei höherem Druck arbeitenden Kolonne fallen oder steigen, ohne dass das störende Auswirkungen auf die Rektifikation hat.
Für den Fall, dass eine Überschreitung des festgelegten Maximalwerts oder eine Unterschreitung des festgelegten Minimalwerts für den Sumpfpegel durch ein Warnsignal angezeigt wird, stehen mehrere Maßnahmen zu Verfügung, die alle darauf abzielen, den Sumpfpegel wieder in den unkritischen Bereich zwischen dem Maximal- und dem Minimalwert zu bringen. Allen Maßnahmen ist gemein, dass ein oder mehrere der Fluidströme, die aus der bei höherem Druck arbeitenden Kolonne heraus oder in diese hinein strömen, in ihrem Durchsatz verändert werden.
Beispielsweise wird bei einer Überschreitung des Maximalwerts für den Sumpfpegel die Entnahmemenge an Flüssigkeit aus dem Sumpf erhöht oder die Einsatzluftmenge vermindert. Es kann auch die Einspeisemenge der stickstoffreichen Flüssigkeit in die bei niedrigerem Druck arbeitende Kolonne oder in einen Speichertank erhöht werden.
Im Falle einer Unterschreitung des Minimalwerts für den Sumpfpegel in der bei höherem Druck arbeitenden Kolonne werden die genannten Maßnahmen mit umgekehrtem Vorzeichen durchgeführt.
Im folgenden soll die Erfindung anhand von in den Figuren schematisch dargestellten Ausführungsbeispielen näher erläutert werden:
Figur 1
zeigt einen Ausschnitt einer Tieftemperatur-Rektifikationsanlage, die zur Durchführung des erfindungsgemäßen Verfahrens eine FIC-Regelung aufweist.
Figur 2
zeigt einen Ausschnitt einer Tieftemperatur-Rektifikationsanlage mit Argonkolonne, wobei zur Durchführung des erfindungsgemäßen Verfahrens eine FIC-Regelung vorgesehen ist, die zwei Ventile ansteuert.
Im einzelnen ist in der Figur 1 eine bei höherem Druck arbeitende Kolonne 1, eine bei niedrigerem Druck arbeitende Kolonne 2, ein Unterkühler 3, sowie eine FIC-Regelung 4 (Flow Indicated Control 4), ein Ventil 5, sowie eine Regelungsleitung 6 gezeigt. Die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne 1 entnommene Flüssigkeit wird über den Unterkühler 3 zu der FIC-Regelung 4 geleitet, die einen Durchflussmesser aufweist. Der Durchfluss und die sich daraus ergebende Einspeisung über das Ventil 5 in die bei niedrigerem Druck arbeitende Kolonne 2 wird so geregelt, dass das F/D-Verhältnis in der Kolonne 2 auch bei sich ändemder Einsatzluftmenge konstant bleibt. Mit besonderem Vorteil wird der Durchfluss des Fluids gemessen nachdem das Fluid den Unterkühler 3 passiert hat. Zur Erhöhung der Sicherheit ist im Bereich des Sumpfes der bei höherem Druck arbeitenden Kolonne 1 vorteilhaft ein Sumpfpegelanzeiger 7 (Level Indicator 7) angebracht, der bei Überschreitung eines festgelegten Maximalwerts für den Sumpfpegel sowie bei Unterschreitung eines festgelegten Minimalwerts ein Signal abgibt.
Die Figur 2 zeigt zusätzlich zu den bereits im Abschnitt über die Figur 1 beschriebenen Komponenten eine Argonkolonne 8, einen Kopfkondensator 9 der Argonkolonne 8, sowie eine zweite Regelungsleitung 10, die ein zweites Ventil 11 ansteuert, durch das die Zufuhrmenge an Fluid in den Kopfkondensator 9 der Argonkolonne 8 eingespeist wird. Die FIC-Regelung 4 ist in diesem Beispiel als Split-Range-Regelung 4 ausgeführt, wodurch sichergestellt ist, dass die Aufteilung der aus dem Sumpf entnommenen Flüssigkeitsmenge auf die beiden Ventile 5, 11 bei einer Änderung der Durchflussmenge durch die FIC-Einheit so angepasst wird, dass sich die Ventilstellungen entsprechend ihren Fluidanteilen automatisch nachregeln.

Claims (5)

  1. Verfahren zur Regelung der Kapazität einer Tieftemperatur-Rektifikationsanlage, bei dem ein Fluid in eine bei höherem Druck arbeitende Kolonne (1) einer Tieftemperatur-Rektifikationsanlage eingeleitet wird, welche die bei höherem Druck arbeitende Kolonne (1) und eine bei niedrigerem Druck arbeitende Kolonne (2) aufweist, und bei dem Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) in die bei niedrigerem Druck arbeitende Kolonne (2) geleitet wird, dadurch gekennzeichnet, dass die Menge der Flüssigkeit, die aus dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) entnommen wird und der bei niedrigerem Druck arbeitenden Kolonne (2) zugeführt wird, über eine Durchflussregelung (4) geregelt wird, wobei eine Stellgröße für die Durchflussregelung (4) auf eine gewünschte Durchflussmenge eingestellt ist und sich der Pegelstand der Flüssigkeit im Sumpf der bei höherem Druck arbeitenden Kolonne (1) ohne Sollwertvorgabe entsprechend der entnommenen Menge an Flüssigkeit einstellt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Tieftemperatur-Rektifikationsanlage eine Tieftemperatur-Rektifikationsanlage zur Luftzerlegung ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Tieftemperatur-Rektifikationsanlage zusätzlich zu der bei höherem Druck arbeitenden Kolonne (1) und der bei niedrigerem Druck arbeitenden Kolonne (2) eine Argonkolonne (8) mit einem Kopfkondensator (9) aufweist und Flüssigkeit von dem Sumpf der bei höherem Druck arbeitenden Kolonne (1) in den Kopfkondensator (9) und von dem Kopfkondensator (9) in die bei niedrigerem Druck arbeitende Kolonne (2) geleitet wird, wobei mittels der Durchflussregelung (4) ein Ventil (5) angesteuert wird, das die Menge an zuzuführendem Fluid in die bei niedrigerem Druck arbeitende Kolonne (2) bestimmt, und ein Ventil (11) angesteuert wird, das die entsprechende Menge an Fluid in den Kopfkondensator (9) der Argonkolonne (8) eintreten lässt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Öffnungsgrad der beiden Ventile (5, 11) mittels einer Split-Range-Regelung (4) vorgegeben wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei einer Erhöhung der Kapazität einer Tieftemperatur-Rektifikationsanlage keine außerhalb der bei höherem Druck arbeitenden Kolonne (1) gespeicherte stickstoffreiche Flüssigkeit in die bei höherem Druck arbeitende Kolonne (1) eingeführt wird.
EP20010122754 2000-09-21 2001-09-21 Regelverfahren für eine Tieftemperatur-Rektifikationsanlage Expired - Lifetime EP1191291B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20010122754 EP1191291B1 (de) 2000-09-21 2001-09-21 Regelverfahren für eine Tieftemperatur-Rektifikationsanlage

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10047102A DE10047102A1 (de) 2000-09-21 2000-09-21 Regelverfahren für eine Tieftemperatur-Rektifikationsanlage
DE10047102 2000-09-21
EP01103827 2001-02-15
EP01103827A EP1191290A1 (de) 2000-09-21 2001-02-15 Regelverfahren für eine Tieftemperatur-Rektifikationsanlage
EP20010122754 EP1191291B1 (de) 2000-09-21 2001-09-21 Regelverfahren für eine Tieftemperatur-Rektifikationsanlage

Publications (2)

Publication Number Publication Date
EP1191291A1 EP1191291A1 (de) 2002-03-27
EP1191291B1 true EP1191291B1 (de) 2005-05-04

Family

ID=27214078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010122754 Expired - Lifetime EP1191291B1 (de) 2000-09-21 2001-09-21 Regelverfahren für eine Tieftemperatur-Rektifikationsanlage

Country Status (1)

Country Link
EP (1) EP1191291B1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784677A (en) * 1987-07-16 1988-11-15 The Boc Group, Inc. Process and apparatus for controlling argon column feedstreams
DE3732363A1 (de) * 1987-09-25 1989-04-06 Linde Ag Verfahren und vorrichtung zum wiederanfahren einer gaszerlegungsanlage
FR2676371B1 (fr) * 1991-05-17 1993-07-23 Air Liquide Colonne de distillation d'air a garnissage ondule-croise.
FR2704632B1 (fr) * 1993-04-29 1995-06-23 Air Liquide Procede et installation pour la separation de l'air.
US5996373A (en) * 1998-02-04 1999-12-07 L'air Liquide, Societe Ananyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus

Also Published As

Publication number Publication date
EP1191291A1 (de) 2002-03-27

Similar Documents

Publication Publication Date Title
EP0399197B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1845323A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung
DE69418827T2 (de) Verfahren und Vorrichtung zur Stickstoffbereitstellung mittels semipermeablen Membranen in einer variablen Membrangeometrie
DE69922124T2 (de) Verfahren und Einrichtung zur Herstellung von variablen Gasmengen
DE3429556C2 (de) Verfahren zur Regelung eines simuliert bewegten Bettsystems
EP1664551A1 (de) Steueranordnung und verfahren zur druckmittelversorgung von zumindest zwei hydraulischen verbrauchern
DE102005029274A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
DE112005001691B4 (de) Anordnung und Verfahren zum Steuern bzw. Regeln der Ableitung von Kohlendioxid für Klimaanlagensysteme
DE69216400T2 (de) Verfahren und anordnung zur kontrolle der luftzufuhr zu festgesteinsbohrmaschinen
DE3915349A1 (de) Kuehlvorrichtung
DE60214174T2 (de) Verfahren und anlage zur erzeugung von elektrischer energie durch eine gasturbine, die mit einer luftzerlegungsanlage versehen ist
DE2100397A1 (de) Automatisches Reguherverfahren fur eine Lufttrennanlage
DE60312107T2 (de) Luftversorgungsvorrichtung für Düsenwebmaschine
EP3141295A1 (de) Vorrichtung und verfahren zur auftrennung eines gasgemisches mittels einer membraneinheit
EP1191291B1 (de) Regelverfahren für eine Tieftemperatur-Rektifikationsanlage
DE3540285A1 (de) Verfahren und einrichtung zum regeln von turbokompressoren
EP0898013B1 (de) Vorrichtung und Verfahren zur Steuerung oder Regelung eines Bahneigenschaftsprofils
EP1191290A1 (de) Regelverfahren für eine Tieftemperatur-Rektifikationsanlage
DE102007014465A1 (de) Peep-Ansteuerung
DE4204172A1 (de) Verfahren zur behandlung eines einsatzstromes und verfahren zur tieftemperaturzerlegung von luft
WO2020074120A1 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP0974880A1 (de) Selbstadaptiver PID-Regler
DE10249383A1 (de) Verfahren und Vorrichtung zur variablen Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
DE3039613A1 (de) Verfahren und vorrichtung zum regeln der leerlaufdrehzahl von ottomotoren
DE10130754A1 (de) Regelung einer Luftzerlegungsanlage mit Argongewinnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020821

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040311

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050504

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106083

Country of ref document: DE

Date of ref document: 20050609

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050815

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050921

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051017

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20050930

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090916

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090917

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091012

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100921

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50106083

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100921