EP1190167B1 - Procede et dispositif pour faire fonctionner un moteur a combustion interne a injection d'essence directe - Google Patents

Procede et dispositif pour faire fonctionner un moteur a combustion interne a injection d'essence directe Download PDF

Info

Publication number
EP1190167B1
EP1190167B1 EP99959218A EP99959218A EP1190167B1 EP 1190167 B1 EP1190167 B1 EP 1190167B1 EP 99959218 A EP99959218 A EP 99959218A EP 99959218 A EP99959218 A EP 99959218A EP 1190167 B1 EP1190167 B1 EP 1190167B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
operating
internal combustion
combustion engine
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99959218A
Other languages
German (de)
English (en)
Other versions
EP1190167A1 (fr
Inventor
Juergen Pantring
Werner Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1190167A1 publication Critical patent/EP1190167A1/fr
Application granted granted Critical
Publication of EP1190167B1 publication Critical patent/EP1190167B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/266Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the computer being backed-up or assisted by another circuit, e.g. analogue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent

Definitions

  • the invention relates to a method and a device for operating an internal combustion engine with gasoline direct injection.
  • EP 0 838 582 already discloses a method for controlling the intake of a four-stroke engine known with direct injection gasoline, in which two cylinders or groups different from cylinder through a different inlet of air and fuel work.
  • One cylinder group works with a rich mixture and the other with a skinny one.
  • To reduce the pollutant emission is a part of the exhaust gas of the fat-operated cylinder group is recirculated to an inlet common to all cylinders.
  • a method and apparatus for operating an internal combustion engine with gasoline direct injection is also described in DE 43 32 171 A1 (US Patent 5,483,934).
  • Control system shown there is the entire operating range of the internal combustion engine after Speed and load divided into different areas and depending on the current operating range the fuel is injected either during the intake stroke or during the compression stroke. Injection during the intake stroke is due to the available standing time to ignition and due to the swirling of the injected Fuel through the intake air flow a largely homogeneous fuel distribution (Homogeneous operation), while in the case of injection in the compression stroke a stratified charge arises (shift operation). In homogeneous operation, the internal combustion engine is operated throttled, i.e.
  • the air supply is limited by a throttle valve, in stratified charge mode almost unthrottled operated throttled, i. the air supply through the throttle almost unlimited. Between these modes depends on the mentioned operating variables and / or of other predetermined criteria, e.g. in terms of performance requirements by the driver, switched.
  • Another advantage of such asymmetric operation the internal combustion engine is achieved is an improvement the noise emission or, more generally, the comfort of the Internal combustion engine.
  • Particularly advantageous in this context that when clearing a storage catalyst in Idle or in the partial load range, not all banks at the same time be switched. By switching alternately the noise emission is optimized.
  • the power request becomes the driver implemented so that a part the internal combustion engine in an exhaust gas-optimal mode and operated at an exhaust gas-optimal operating point, while the actual power requirement of the driver by controlling the operating point and possibly the Operating mode of another part of the internal combustion engine is carried out.
  • FIG. 1 shows an overview diagram of a control device for Control of an internal combustion engine with gasoline direct injection.
  • Figure 2 is based on an embodiment of a Flowchart illustrating the principle of asymmetric Represents operation of such an internal combustion engine.
  • FIG. 3 shows a further exemplary embodiment which is a preferred embodiment outlined as a flow chart.
  • FIG. 1 shows a block diagram of a control device for controlling an internal combustion engine with gasoline direct injection. It is a control unit 10 is provided which as Components an input circuit 14 at least one microcomputer 16 and an output circuit 18. One Communication system 20 connects these components to each other Data exchange.
  • the input circuit 14 of Control unit 10 are supplied to input lines 22 to 26, which in a preferred embodiment as Bus system are executed and via the control unit 10th Supply signals which are used to control the internal combustion engine represent operating variables to be evaluated. These signals are detected by measuring devices 28 to 32.
  • Operating variables are accelerator pedal position, engine speed, engine load (e.g., air mass), exhaust gas composition, engine temperature, etc.
  • About the output circuit 18 controls the controller 10 the performance of the internal combustion engine with gasoline direct injection. This is shown in FIG.
  • FIG. 1 on the basis of the output lines 34, 36 and 38 symbolizes which at least the fuel mass to be injected, the ignition angle of the internal combustion engine and at least one electrically operable Throttle valve for adjusting the air supply to the internal combustion engine actuate.
  • the representation chosen in FIG. 1 means in that on the symbolic output line 34th the injectors of a certain number of cylinders the internal combustion engine are actuated, i. the injected Fuel mass is supplied to these cylinders, over the output line 36 of the spark in these cylinders to predetermined time is triggered and an electric Actuatable throttle is controlled, which controls the air supply affected to these cylinders.
  • the two control units 10 and 10b are via a communication system connecting them 40 for mutual exchange of data with each other. At least one person will be able to use this communication system the control units depending on the embodiment individual or all of the other detected magnitude data signals or from these derived operating variables for further Evaluation transmitted.
  • Input lines 22b to 26b are next to the controller 10 also supplied to the control unit 10b, so that there alternatively for transmission over the communication system or in addition the operating variable signal is directly available.
  • the basic procedure for those in the microcomputer 16 of the control unit 10 running control of the internal combustion engine is sketched with reference to the flowchart of Figure 2.
  • essential operating variables are the microcomputer 16 the accelerator pedal position ⁇ and operating variables such as engine speed NMOT, air mass MHFM and set torques of others Control systems, for example, by a traction control system and / or a transmission control supplied.
  • the driver request pictures 100 is from the supplied accelerator pedal position signal ⁇ at least taking into account the engine speed, optionally a correction variable of an idle speed control, etc., a driver's request moment MIFA the Internal combustion engine determined. This is done in the preferred Embodiment by means of a map and the following Calculation steps.
  • the microcomputer 10 Desired torques of other control systems, e.g. a desired moment of a Drive slip control MIASR, a transmission control MIGS, etc. supplied. These desired torques and the driver's desired torque are fed to a selection stage 102, in which from the supplied Set torques a resulting desired torque MISOLL For controlling the internal combustion engine is determined. In the preferred Embodiment, the selection is made by minimum or maximum selection. The determined in this way resulting target torque MISOLL becomes another coordinator 104 supplied, in which the following with reference to Flowchart of Figure 3 described specifications for a asymmetric operation of the internal combustion engine can be determined.
  • the coordinator 104 sets the total target torque MISOLL in individual rolling moments MISOLL1 to MISOLLN for the individual Cylinder banks or for individual cylinder groups and / or in Desired modes BASOLL1 to BASOLLN of the individual cylinder banks or cylinder groups.
  • the division of the target torque and the specification of desired modes by the Coordinator 104 takes place according to predetermined strategies.
  • Another strategy used in coordinator 104 in one embodiment implemented is a comfort optimization, after the switching of individual cylinder banks or Cylinder groups never change from one mode to another simultaneously but temporally one after the other. Thereby, the noise emission associated with the switching becomes reduced.
  • an exhaust gas-optimal Strategy (e.g., in the area of low power requirements) be used.
  • the division takes place the torques and / or the specification of the desired mode such that the lowest possible exhaust pollution occurs. It is thus e.g. tries the total target torque as long by lean operation in the shift and / or homogeneous operation ready as long as with the respective operating mode this moment is adjustable. Only then is at a cylinder bank or group by specifying a different one Sollmoments and / or a desired mode a less exhaust gas optimal Operating point set.
  • the individual desired torques MISOLL1 to MISOLLN and the corresponding Desired modes become the respective control signal images 106 to 108 for the individual cylinder banks or cylinder groups supplied, in which, taking into account of operating variables such as engine speed, relative air charge (derived from the supplied air mass), etc. the respective nominal torque taking into account the desired Operating mode in a fuel mass to be injected, a Ignition angle and a throttle position can be implemented. It may happen that the desired mode is not can be met, for example, when a runflat situation present, with no adjustability of the Nominal torque, with special operating functions such as start, warm-up, Katformingen, etc.
  • FIG. 2 shows a system in which for each Cylinder bank or group can control its own throttle is.
  • the mode of operation for each bank are freely chosen and the torque requirements so on the Banks are distributed, that is optimal efficiency the internal combustion engine or depending on the strategy an optimal Operation of the internal combustion engine results. Owns the internal combustion engine only one throttle, so this is so adjust that results in an air filling, it by appropriate calculation of the fuel mass allowed, a Cylinder bank homogeneous and another cylinder bank layered to operate. This is one over the homogeneous Operation of the internal combustion engine as a whole increased air charge adjusted, which throttle losses are reduced. A quick change of the operating mode of the cylinder banks by controlling the fuel mass is possible here.
  • An embodiment of the coordinator 104 is based on the Flowchart of Figure 3 the example of an internal combustion engine with two independently controllable cylinder banks or - groups outlined in more detail.
  • the program is given in Go through time intervals.
  • the next step 202 will be on the Based on this target torque checks if an increased power requirement is present. In a preferred embodiment this is the case when the nominal torque exceeds a predetermined limit. This threshold is sized so that it is approximately a borderline corresponds, above which the internal combustion engine with homogeneous Mixture be operated for performance reasons would.
  • a predetermined limit is sized so that it is approximately a borderline corresponds, above which the internal combustion engine with homogeneous Mixture be operated for performance reasons would.
  • the power request is so high that all cylinder banks or switch groups. This is the case when a desired torque value is required, which is close to the maximum value lies.
  • step 206 initially as the desired mode of the first bank or cylinder group BASOLL1 the homogeneous mode output and a Setpoint torque value MISOLL1 for this cylinder bank or group determined.
  • This setpoint torque value is in a preferred Exemplary embodiment based on the total nominal torque value, which is read in step 200 formed. Especially is a percentage of this nominal torque value> 50% specified.
  • step 208 based on a If necessary, the notified mark checks whether the switchover finished.
  • step 210 it will be in step 210 also for the second cylinder bank or cylinder group as Desired mode of homogeneous operation output and the Target torque of this cylinder bank or group on the basis the Bactsollmoments and the desired torque of the first cylinder bank or group determined.
  • the switchover the first Cylinder bank according to step 208 is not yet finished is in step 212, the desired mode of operation of the second cylinder bank recorded on stratified charge mode and as desired torque value according to step 210, the difference between the total desired torque value and the desired torque value of the first Bank determined.
  • Step 214 outputs the formed setpoints and if no higher-level specifications, e.g. Emergency operation, missing Feasibility of the setpoint torque value in the desired operating mode, etc., realized. After that, the program part finished and again at the next time interval run through.
  • Step 216 the target mode of a bank on the homogeneous operation, that of the other bank on the stratified charge operation set.
  • the target moment of a bank the is to be operated homogeneously, formed analogously to step 206, while the target moment of the other bank, in the Stratified charge operation, based on the total desired torque and the target torque of the first bank becomes.
  • step 214 asymmetric operation of the internal combustion engine becomes a consumption-optimal control of the internal combustion engine achieved with increased performance requirement, as a Part of the internal combustion engine continues in fuel-efficient Stratified charge operation is operated.
  • step 226 it is checked whether the conditions for Clearing a storage catalyst present. Are the conditions cleared for, is in step 228 for a cylinder bank as a desired mode of homogeneous operation output and a corresponding desired torque (for example, minimum desired torque for this operating mode).
  • Step 230 is called the other bank's desired mode furthermore, the stratified charge mode is output and the setpoint torque based on the total desired torque and the desired torque the first bank. This is followed by step 214.
  • step 218 the target mode of the first bank on stratified charge mode and a corresponding one Target torque determined from the setpoint torque value specified. This corresponds in a preferred embodiment 50% of the total setpoint torque value read in step 200.
  • step 220 becomes checks, if necessary, the switchover from shift to Homogenous operation is completed. If this is the case, it will Step 222 also the second cylinder bank to the desired mode Layer charge set and the corresponding Setpoint based on the total setpoint torque value and the setpoint torque value of the first bank formed. Is the switch not completed in step 220, i. is the system becomes the second bank in step 224 as previously controlled and the setpoint torque value formed analogous to step 222. By this measure prevents both banks from switching simultaneously and in this way loss of comfort. After that follows Step 214.
  • asymmetric operation of the internal combustion engine i. during operation the internal combustion engine with two different modes or with two different nominal torque values
  • the respective operating state of the cylinder banks of to alternately change the internal combustion engine, i. in one predetermined time grid, for example, during operation of the one Cylinder bank in homogeneous and the other in shift operation to switch the banks so that the first bank in the Shift and the second bank operated in homogeneous operation will (toggle).
  • two cylinder banks provided, which via two independently controllable electrically operated throttle valves.
  • Such a solution is the solution according to the invention also on internal combustion engines with several cylinder banks and several (according to the number of cylinder banks) independently mutually controllable throttle valves, in particular also to be used on engines with individual throttle valves for each cylinder.
  • a cylinder bank or group is then switched, when the first cylinder in the new mode is operated.
  • the meaning of that switching to a bank or group within a period of time is introduced between the Switching signal and the successful injection in the first cylinder in the new mode at the bank or group is where the operating mode was previously changed.
  • Corresponding means successively initiating the switching at a bank outside of this, from the first one switched Bank or group specified time span.
  • a corresponding Procedure with an internal combustion engine with only one controllable throttle applied, with a cylinder group homogeneous and the other is stratified.
  • the air charge is increased by the throttle, so that a larger proportion of the desired torque value homogeneous control of a cylinder group with stoichiometric or lean mixture composition, while a smaller portion of the desired torque through stratified charge operation the other cylinder group is made.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Claims (10)

  1. Procédé de fonctionnement d'un moteur à combustion interne à injection directe d'essence, qui présente au moins deux rangées de cylindres ou groupes de cylindres, qui fonctionnent selon au moins deux modes de fonctionnement, et dans lesquels se produit l'injection de carburant,
    caractérisé en ce que
    les aux moins deux rangées de cylindres ou groupes de cylindres sont commandés respectivement en fonction d'une valeur de couple de consigne prédéterminée et selon un mode de fonctionnement prédéterminé, la première rangée de cylindres ou le premier groupe de cylindres, dans au moins un état de fonctionnement du moteur à combustion interne, fonctionnant selon un premier mode de fonctionnement (BAsoll1) tandis que la deuxième rangée de cylindres ou le deuxième groupe de cylindres fonctionne selon le deuxième mode de fonctionnement (BAsoll2), en prédéterminant pour chacun des groupes de cylindres, une valeur de couple de consigne variable (Misoll1, Misoll2) en fonction de laquelle est réglé le couple de rotation de la rangée de cylindres ou du groupe de cylindres respectifs.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    les couples de consigne pour les deux rangées de cylindres ou groupes de cylindres sont identiques.
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on prédétermine une valeur de couple de consigne globale (Misoll), le premier groupe de cylindres ou la première rangée de cylindres est commandé à l'aide d'une première partie (Misoll1) de ce couple de consigne global tandis qu'une autre rangée de cylindres ou un autre groupe de cylindres est commandé à l'aide d'une deuxième partie (Misoll2) du couple de consigne, les deux parties du couple de consigne formant le couple de consigne global.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'au moins un état de fonctionnement est l'état de fonctionnement avec exigence de performance accrue et/ou l'état de fonctionnement au cours duquel un catalyseur d'accumulation est purgé.
  5. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    un changement entre les modes de fonctionnement des rangées de cylindres ou groupes de cylindres individuels s'effectue successivement.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    en fonction de l'état de fonctionnement, on prédétermine un mode de fonctionnement souhaité (BAsoll), qui est alors réalisé par la commande des rangées de cylindres ou groupes de cylindres individuels, lorsque cette réalisation ne va pas à l'encontre d'autres prescriptions.
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    pour chaque rangée de cylindres ou groupe de cylindres, il est prévu un clapet d'étranglement pouvant être actionné électriquement, et dont la commande permet d'effectuer le changement de mode de fonctionnement.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on prévoit pour toutes les rangées de cylindres ou tous les groupes de cylindres, un seul clapet d'étranglement électriquement commandé en fonction des différents modes de fonctionnement dans le sens d'une admission d'air accrue par rapport au fonctionnement étranglé, de telle sorte qu'une partie des cylindres peut fonctionner selon le premier mode de fonctionnement tandis qu'une autre partie peut fonctionner selon le deuxième mode de fonctionnement sans étranglement.
  9. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le changement entre les modes de fonctionnement des rangées de cylindres ou groupes de cylindres individuels s'effectue au moins dans un état de fonctionnement avec une exigence de performance ou de couple élevée.
  10. Dispositif permettant de faire fonctionner un moteur à combustion interne à injection directe d'essence, qui présente au moins deux rangées de cylindres ou groupes de cylindres, qui fonctionnent selon au moins deux modes de fonctionnement, et comportant au moins un appareil de commande, qui commande en fonction de valeurs de couple de consigne prédéterminées et selon des modes de fonctionnement prédéterminés les groupes de cylindres ou rangées de cylindres du moteur à combustion interne,
    caractérisé en ce que
    l'appareil de commande contient des moyens qui, dans au moins un état de fonctionnement prédéterminé, commandent la première rangée de cylindres ou le premier groupe de cylindres selon un premier mode de fonctionnement (BAsoll1) et la deuxième rangée selon un deuxième mode de fonctionnement (BAsoll2), une injection de carburant se produisant dans chaque mode de fonctionnement, et on prédétermine pour une valeur de couple de consigne variable (Misolll, Misoll2) en fonction de laquelle est réglé le couple de rotation de la rangée de cylindres ou du groupe de cylindres respectif.
EP99959218A 1999-03-05 1999-10-21 Procede et dispositif pour faire fonctionner un moteur a combustion interne a injection d'essence directe Expired - Lifetime EP1190167B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19909658 1999-03-05
DE19909658A DE19909658A1 (de) 1999-03-05 1999-03-05 Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit Benzindirekteinspritzung
PCT/DE1999/003373 WO2000052318A1 (fr) 1999-03-05 1999-10-21 Procede et dispositif pour faire fonctionner un moteur a combustion interne a injection d'essence directe

Publications (2)

Publication Number Publication Date
EP1190167A1 EP1190167A1 (fr) 2002-03-27
EP1190167B1 true EP1190167B1 (fr) 2005-01-26

Family

ID=7899790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99959218A Expired - Lifetime EP1190167B1 (fr) 1999-03-05 1999-10-21 Procede et dispositif pour faire fonctionner un moteur a combustion interne a injection d'essence directe

Country Status (7)

Country Link
US (1) US6494179B1 (fr)
EP (1) EP1190167B1 (fr)
JP (1) JP2002538367A (fr)
BR (1) BR9917194A (fr)
DE (2) DE19909658A1 (fr)
RU (1) RU2236607C2 (fr)
WO (1) WO2000052318A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10047003A1 (de) 2000-09-22 2002-04-25 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE10123624A1 (de) * 2001-05-15 2002-11-21 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US6604504B2 (en) * 2001-06-19 2003-08-12 Ford Global Technologies, Llc Method and system for transitioning between lean and stoichiometric operation of a lean-burn engine
DE102004022593B4 (de) * 2004-05-07 2007-12-27 Siemens Ag Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
US7788923B2 (en) * 2006-02-02 2010-09-07 International Engine Intellectual Property Company, Llc Constant EGR rate engine and method
US7503312B2 (en) * 2007-05-07 2009-03-17 Ford Global Technologies, Llc Differential torque operation for internal combustion engine
US10100773B2 (en) * 2014-06-04 2018-10-16 Ford Global Technologies, Llc Method and system for dual fuel engine system
JP6352790B2 (ja) * 2014-12-09 2018-07-04 川崎重工業株式会社 乗物およびスロットル弁の駆動方法
FR3032421B1 (fr) 2015-02-06 2017-03-10 Airbus Operations Sas Ensemble pour aeronef comprenant une structure primaire de mat d'accrochage integree a la structure de l'element de voilure
WO2016154086A1 (fr) * 2015-03-26 2016-09-29 Cummins Inc. Moteur à carburant double et procédé de coupe-rangée de cylindres pendant des conditions de charge légère
US9893664B2 (en) * 2015-05-01 2018-02-13 Ford Global Technologies, Llc Methods and systems for efficient engine torque control
KR102581410B1 (ko) * 2022-01-14 2023-09-20 주식회사 현대케피코 연료 분사 제어 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332171C2 (de) 1993-09-22 2002-09-19 Bosch Gmbh Robert Verfahren zum Betrieb einer Viertaktbrennkraftmaschine mit Fremdzündung und Direkteinspritzung und Vorrichtung zur Durchführung des Verfahrens
JP3621147B2 (ja) 1995-02-28 2005-02-16 ヤマハマリン株式会社 船外機用燃料噴射式2サイクルエンジンの運転制御装置
DE19547916A1 (de) 1995-12-21 1997-06-26 Bosch Gmbh Robert Fremdgezündete Brennkraftmaschine mit Direkteinspritzung
FR2755186B1 (fr) 1996-10-28 1998-12-24 Inst Francais Du Petrole Procede de controle de l'admission d'un moteur quatre temps a injection directe
JP3494832B2 (ja) * 1996-12-18 2004-02-09 トヨタ自動車株式会社 内燃機関の燃焼制御装置
JP3815006B2 (ja) * 1997-12-09 2006-08-30 日産自動車株式会社 内燃機関の制御装置
US5950603A (en) 1998-05-08 1999-09-14 Ford Global Technologies, Inc. Vapor recovery control system for direct injection spark ignition engines
US6390054B1 (en) * 2000-08-26 2002-05-21 Ford Global Technologies, Inc. Engine control strategy for a hybrid HCCI engine

Also Published As

Publication number Publication date
WO2000052318A1 (fr) 2000-09-08
DE59911534D1 (de) 2005-03-03
DE19909658A1 (de) 2000-09-07
EP1190167A1 (fr) 2002-03-27
BR9917194A (pt) 2001-12-26
RU2236607C2 (ru) 2004-09-20
JP2002538367A (ja) 2002-11-12
US6494179B1 (en) 2002-12-17

Similar Documents

Publication Publication Date Title
DE10049860C2 (de) System und Verfahren zur Steuerung eines Motors mit Direkteinspritzung
EP0853723B1 (fr) Procede et dispositif pour la commande d'un moteur a combustion interne
DE69823269T2 (de) Drosselklappenkontrolleinrichtung für einen Verbrennungsmotor
DE112013007079B4 (de) Steuervorrichtung für Verbrennungsmotor
DE60004712T2 (de) Steuervorrichtung für eine Brennkraftmaschine mit Direkteinspritzung
DE19631986A1 (de) Steuereinrichtung für eine direkteinspritzende Benzinbrennkraftmaschine
DE10051424C2 (de) Direkteinspritzungssystem für Motoren
DE19619320A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19850581C1 (de) Verfahren und Vorrichtung zur Ermittlung des Drehmoments einer Brennkraftmaschine mit Benzindirekteinspritzung
EP1190167B1 (fr) Procede et dispositif pour faire fonctionner un moteur a combustion interne a injection d'essence directe
DE10046597B4 (de) Steuersystem für Motoren mit Direkteinspritzung
EP1071874B1 (fr) Procede et dispositif pour faire fonctionner un moteur a combustion interne
EP0764778B1 (fr) Méthode de commande de l'injection de carburant d'un moteur diesel
WO2000026524A1 (fr) Mode de fonctionnement d'un moteur a combustion interne
EP1242732B1 (fr) Procede et dispositif de commande de l'unite d'entrainement d'un vehicule
DE102008042781B4 (de) Bestimmung einer Betriebsart einer Hybridantriebsvorrichtung eines Kraftfahrzeugs
EP0981686B1 (fr) Systeme d'actionnement d'un moteur a combustion interne et a injection directe, notamment dans un vehicule
WO1999067523A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
EP1859136B1 (fr) Procede et dispositif de fonctionnement d'un moteur a combustion interne
DE19858584B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
EP0779428B1 (fr) Méthode et dispositif pour contrôler le couple d'un moteur
DE10305092A1 (de) Verfahren zur automatischen Anpassung eines Drehmomentenmodells sowie Schaltungsanordnung
DE19909657A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
DE19907693B4 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftfahrzeugs
DE10058355A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040202

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59911534

Country of ref document: DE

Date of ref document: 20050303

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051027

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091024

Year of fee payment: 11

Ref country code: GB

Payment date: 20091023

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121113

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59911534

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501