EP1188222A1 - Magnetic linear drive - Google Patents

Magnetic linear drive

Info

Publication number
EP1188222A1
EP1188222A1 EP00947808A EP00947808A EP1188222A1 EP 1188222 A1 EP1188222 A1 EP 1188222A1 EP 00947808 A EP00947808 A EP 00947808A EP 00947808 A EP00947808 A EP 00947808A EP 1188222 A1 EP1188222 A1 EP 1188222A1
Authority
EP
European Patent Office
Prior art keywords
coil
active part
magnetically active
current
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00947808A
Other languages
German (de)
French (fr)
Other versions
EP1188222B1 (en
Inventor
Karl Mascher
Klaus Schuler
Andreas Arndt
Holger Gerhard Wisken
Wolf Rüdiger CANDERS
Hardo May
Herbert Weh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1188222A1 publication Critical patent/EP1188222A1/en
Application granted granted Critical
Publication of EP1188222B1 publication Critical patent/EP1188222B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • H01F7/1646Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/28Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/268Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor using a linear motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators

Definitions

  • the invention relates to a magnetic linear drive, in particular for an electrical switch with a coil to which a current can be applied, in the interior of which a magnetic flux can be generated by the current in an axial direction.
  • Such a magnetic linear drive is known for example from GB 10 68 610.
  • the drive described there is a drive for a valve in which a liquid channel is blocked or opened by means of the movement of an armature.
  • the armature has a permanent magnet there, the magnetic flux of which is oriented in the interior in the direction of movement of the armature and perpendicular to the axial direction.
  • the armature moves against mechanical stops in such a way that one pole of the permanent magnet comes into contact with the stop and that the permanent magnet is held on the stop by the magnetic effect.
  • the magnetic effect of the current must first overcome the holding force of the permanent magnet at the stop. This manifests itself in a delay in the armature acceleration.
  • the armature is only pulled to the stop immediately before it reaches the stop when it moves toward an end position, since the air gap between the pole of the permanent magnet and the stop surface is only sufficiently reduced towards the end of the movement.
  • the present invention has for its object to provide a magnetic linear drive of the type mentioned, which achieves an instantaneous acceleration of the armature with little design effort and little control effort.
  • the magnetic linear drive is provided with an armature which can only be moved perpendicularly to the axial direction and which has a magnetically active part whose movement path passes through or on through an air gap within a core passing through the coil leads past an end face of the core, the magnetically active part being unmagnetized or magnetized in such a way that the magnetic flux within the magnetically active part runs parallel or parallel to the axial direction.
  • a magnetically active part of an armature which is, for example, ferromagnetically unmagnetized or magnetized, in particular permanently magnetized in a direction antiparallel to the direction of the magnetic flux of the coil, is accelerated towards the inside of the coil.
  • the magnetic linear drive can advantageously be used as a switch drive for an electrical switch, for example a high-voltage circuit breaker or a vacuum switch.
  • the armature is in an end position of its movement path in such a way that when the coil current is switched on, the magnetic flux of the coil passes through the magnetically active part to a small extent, this leads to the armature being accelerated towards the center of the coil until a maximum part of the magnetic flux of the coil passes through the magnetically active part.
  • the current flow through the coil is interrupted by means of a control device, so that the armature, due to its dynamic energy and the dynamic energy of the driven masses, continues to move beyond the coil without the magnetic flux of the coil through the Action on the magnetically active part can brake the armature.
  • a desired acceleration profile of the armature can be achieved, for example, in that the air gap between the core and the path of movement of the magnetically active part is of different width along the path of movement. The smaller the air gap in a certain area along the movement path, the greater the force acting on the armature in this area.
  • a drive rod of an electrical switch is connected to the armature and in turn drives a switch contact of an interrupter unit.
  • Mechanical stops can be realized in the area of the shift rod or in the area of the linear drive itself.
  • An advantageous embodiment of the invention provides that the magnetically active part is magnetized and that in at least one end position of the magnetically active part it is at least partially arranged in the region of a yoke body arranged outside the coil in such a way that it moves out of the electrically active part into this entering magnetic flux at least in part directly through a boundary surface of the yoke body facing the magnetically active part.
  • the boundary surface is advantageously oriented essentially perpendicular to the axial direction.
  • the magnetically active part is magnetized, for example as an electromagnet, or is permanently magnetized, the magnetic flux of the magnetically active part tends to reduce an air gap to an adjacent yoke body as much as possible.
  • At least one yoke body is arranged in the end region of the movement path of the armature, into which the magnetic flux of the magnetically active part can enter at least over part of the length of the magnetically active part.
  • a force effect thus takes place on the armature, which tends to produce as large an overlap as possible between the magnetically active part and the yoke body in such a way that as much as possible the entire magnetic flux of the magnetically active part in the yoke body by means of one arranged as perpendicular as possible to the axial direction Boundary surface can occur.
  • the force effect in the direction of the movement path of the armature is essentially independent of the extent to which the magnetically active part and the yoke body overlap.
  • Such an arrangement can advantageously be implemented for both end positions of the magnetically active part or of the armature.
  • a further advantageous embodiment of the invention provides that the coil with respect to the path of movement of the magnetically active part is opposite a second coil which can be acted upon by a current in the same direction as the first coil.
  • a correspondingly larger magnetic flux can be generated by two coils combined in the manner shown, which leads to a greater potential acceleration of the armature.
  • first and the second coil are offset from one another in the direction of movement of the armature. Such an offset of the coils in the direction of movement of the armature relative to one another enables a specific acceleration profile to be achieved along the movement path.
  • each of the coils is used for one of the directions of movement of the armature.
  • two yoke bodies are provided which lie opposite one another with respect to the movement path of the magnetically active part and which form air gaps between them which are at least partially penetrated by the movement path of the magnetically active part.
  • a further yoke body which lies opposite the first yoke body with respect to the path of movement of the magnetically active part, closes the magnetic circuit both for the flow through the coil and for the flow of the magnetically active part in each of the end positions, so that a large force is exerted in each case is achieved both for the acceleration and for the holding force in the end positions.
  • a further advantageous embodiment of the invention provides that a plurality of chargeable charging capacitors and, in some cases jointly or alternatively, connectable charging capacitors are provided in the control device.
  • the different charging capacitors can be used for different switching cases (for example, different load cases of a circuit breaker to be driven) or differently for switching on and off.
  • the invention also relates to a method for operating a magnetic linear drive, provided in the is that the coil for driving the armature in different
  • a current of the same direction is applied to each direction.
  • the armature Regardless of the end position of the armature or the magnetically active part, it is accelerated towards the inside of the coil when a magnetic flux is generated inside the coil. If the current through the coil is interrupted in time, the armature moves to the other end position. This considerably simplifies the control of the coil.
  • the method according to the invention can advantageously be designed in that the application of a current is ended before the magnetically active part has reached its end position.
  • Another advantageous embodiment provides that the current flow through the coil is interrupted as soon as the supply voltage reverses its sign due to an electrical oscillation process.
  • the coil represents an electrical inductance and an ohmic resistance and is normally fed by a capacitance, an electrical resonant circuit results in the control of the linear drive. This leads to the generation of an electrical oscillation, so that the supply voltage applied to the coil reverses its sign at some point.
  • the supply voltage is advantageously monitored and the current flow through the coil is interrupted as soon as the supply voltage reverses its sign.
  • the current flow is diverted to a charging capacitor as soon as the supply voltage reverses its sign due to an electrical oscillation process.
  • a further advantageous embodiment of a method for operating a linear drive according to the invention provides that a current is first generated in the coil, the resulting magnetic flux in the coil of which is directed antiparallel to magnetization of the magnetically active part, provided that it is magnetized, and that after the magnetically active part has reached the location of the greatest magnetic field strength of the coil on its path of movement, the direction of current through the coil is reversed.
  • the armature is first accelerated while being pulled towards the inside of the coil. After the magnetically active part has reached the location of the greatest magnetic field strength within the coil, it would be braked if the current continued to flow through the coil. If the direction of the current in the coil (s) is reversed at this point in time, the magnetically active part is pressed to areas of lower magnetic field strength, that is to say to the outside of the coil. As a result, the armature continues to act as a force, so that larger external loads can also be overcome. This effect occurs even without an initial magnetization of the magnetically active part due to the residual magnetization after passing through the first phase of the movement. For the reversal of the current direction, a suitable dimensioning of the charging capacitors of the coils is appropriate, the oscillation behavior with a suitable time constant in the oscillating circuit formed from the capacitor and the coil
  • Consequence This automatically reverses the coil current at the appropriate time.
  • An electronic control can also be provided for this.
  • FIG. 2 shows a control circuit for the coil of the linear drive
  • FIG. 3 shows schematically the energy supply for the linear drive.
  • FIG. 1 shows a magnetic linear drive, with an armature 1, which consists of a rod 2 made of glass fiber reinforced plastic and a magnetically active part 3 made of a permanent magnetic material and to which a switching rod 4 is coupled at one end, which is only shown schematically and is connected to a drivable switch contact 5 of the interrupter unit of a high-voltage circuit breaker.
  • the linear drive generates movements in the direction of the double arrow 6.
  • the armature 1 moves in the air gap 7 between a first yoke body 8 and a second yoke body 9, which opposite each other in mirror image with respect to the path of movement of the armature 1.
  • Each of the yoke bodies has an annular recess, into each of which a coil 10, 11 is introduced.
  • the coils 10, 11 are each provided with electrical connections and a current can be applied to them by means of a control device.
  • the current direction is, for example, such that the current runs into the drawing plane in the upper part of the coil 10 and the current emerges from the drawing plane in the lower part of the coil as through point 12 is illustrated.
  • part 16 of the magnetic flux 13 of the coils 10, 11 already passes through an edge region of the magnetically active part 3 of the armature.
  • the remaining part of the magnetic flux 13 of the coils 10, 11 must overcome the wide air gap between the cores 14, 15, which is not bridged by the GRP body of the armature 1. Accordingly, the magnetic flux has the tendency to accelerate the magnetically active part 3 in the illustration downward, so that the magnetic flux 13 of the coils 10, 11 passes through the magnetically active part 3 as long as possible and antiparallel to that in the The magnetic flux 17 prevailing inside the magnetically active part 3 runs.
  • the current flow through the coils 10, 11 is interrupted in order to prevent the magnetic part from braking when it exits from the flow 13 of the coils 10, 11 .
  • the armature continues to move due to the dynamic energy until a second end position 36 of the magnetically active part 3, shown in broken lines, is reached.
  • the magnetic flux 17 within the magnetically active part 3 tends to enter and exit one of the yoke bodies 8, 9 via the smallest possible air gap.
  • a part of the magnetic flux 17 inside the magnetically active part 3 can directly into the yoke body 8 enter through the boundary surface 35, the flow being closed via the second yoke body 9 with the interposition of the unavoidable air gaps, so that the magnetic flux can reenter the magnetically active part 3 from there.
  • the magnetic force effect on the armature 1 is largely independent of the extent to which the magnetically active part 3 already overlaps the part of the yoke body 8 above the coil 10. Therefore, the holding force on the armature in the end position is largely independent of mechanical tolerances.
  • both yoke bodies 8, 9 are profiled in the area of the cores 14, 15 along the movement path of the magnetically active part in such a way that the air gap between the armature 3 and the yoke bodies 8, 9 widens upwards . This means that the force acting on the magnetically active part 3 decreases during its upward movements. In this way, when the interrupter unit is switched off at the beginning of the movement, a high loading acceleration and towards the end a weakening
  • FIG. 2 shows a control circuit with a charging capacitor 19 which can be connected to the coil 22 within the magnetic linear drive via a first IGBT (insulated-gate bipolar transistor) 20 and a second IGBT 21. With 23 the ohmic resistance of the coil 22 and its supply lines is symbolically designated.
  • IGBT insulated-gate bipolar transistor
  • the capacitor 19 discharges, the voltage at the coil 22 drops and a counter voltage is induced there, which tends to maintain the current strength of the current 24.
  • the counter voltage on the coil 22 is opposite to the supply voltage, so that there is a voltage zero crossing.
  • the IGBTs 21, 22 are switched off, ie they block the current. The induced by the voltage inside the coil 22
  • FIG. 3 shows schematically the energy supply of a linear drive via three different control units 31, 32, 33, each of which has its own charging capacitor, the charging capacitors being able to have different capacities. As a result, a different amount of energy in the form of electrical field energy stored in the charging capacitors is made available for different switching cases.
  • the different controls 31, 32, 33 can also be used for quickly switching off-on-off circuits

Abstract

In a magnetic linear drive, a coil (10, 11) is provided, inside which a magnetic flow (13) can by produced by a current in axial direction (34). Said drive comprises an armature (1) that can only move perpendicular in relation to the axial direction (34) and that includes a magnetically active part (3) that is magnetized in a particularly antiparallel manner in relation to the axial direction (34). The armature is driven by a current impulse that accelerates said armature in the direction of the center of the coil independently of the starting position of the magnetically active part (3).

Description

Beschreibungdescription
Magnetischer LinearantriebMagnetic linear drive
Die Erfindung bezieht sich auf einen magnetischen Linearantrieb, insbesondere für einen elektrischen Schalter mit einer mit einem Strom beaufschlagbaren Spule, in deren Innerem durch den Strom in einer Axialrichtung ein magnetischer Fluß erzeugbar ist.The invention relates to a magnetic linear drive, in particular for an electrical switch with a coil to which a current can be applied, in the interior of which a magnetic flux can be generated by the current in an axial direction.
Ein derartiger magnetischer Linearantrieb ist beispielsweise aus der GB 10 68 610 bekannt. Bei dem dort beschriebenen Antrieb handelt es sich um einen Antrieb für ein Ventil, bei dem mittels der Bewegung eines Ankers ein Flüssigkeitskanal abgesperrt oder geöffnet wird.Such a magnetic linear drive is known for example from GB 10 68 610. The drive described there is a drive for a valve in which a liquid channel is blocked or opened by means of the movement of an armature.
Der Anker weist dort einen Permanentmagneten auf, dessen magnetischer Fluß in seinem Inneren in der Bewegungsrichtung des Ankers und senkrecht zu der Axialrichtung ausgerichtet ist.The armature has a permanent magnet there, the magnetic flux of which is oriented in the interior in the direction of movement of the armature and perpendicular to the axial direction.
In seinen Endstellungen fährt der Anker jeweils gegen mechanische Anschläge derart, daß jeweils ein Pol des Dauermagneten mit dem Anschlag in Berührung kommt und daß durch die ma- gnetische Wirkung des Dauermagneten dieser an dem Anschlag gehalten wird.In its end positions, the armature moves against mechanical stops in such a way that one pole of the permanent magnet comes into contact with the stop and that the permanent magnet is held on the stop by the magnetic effect.
Wird die Spule mit einem Strom beaufschlagt, so muß die magnetische Wirkung des Stroms zunächst die Haltekraft des Per- manentmagneten am Anschlag überwinden. Dies äußert sich in einer Verzögerung der Ankerbeschleunigung. Außerdem wird der Anker bei seiner Bewegung zu einer Endstellung hin erst unmittelbar vor Erreichen des Anschlages zum Anschlag gezogen, da der zwischen dem Pol des Permanentmagneten und der Anschlagsfläche befindliche Luftspalt erst zum Ende der Bewegung hin genügend verkleinert ist.If a current is applied to the coil, the magnetic effect of the current must first overcome the holding force of the permanent magnet at the stop. This manifests itself in a delay in the armature acceleration. In addition, the armature is only pulled to the stop immediately before it reaches the stop when it moves toward an end position, since the air gap between the pole of the permanent magnet and the stop surface is only sufficiently reduced towards the end of the movement.
Demgegenüber liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen magnetischen Linearantrieb der eingangs genannten Art zu schaffen, der eine unverzögerte Beschleunigung des Ankers bei geringem konstruktivem Aufwand und geringem Steuerungsaufwand erreicht.In contrast, the present invention has for its object to provide a magnetic linear drive of the type mentioned, which achieves an instantaneous acceleration of the armature with little design effort and little control effort.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß der magnetische Linearantrieb, mit einem Anker versehen ist, der ausschließlich senkrecht zu der Axialrichtung beweglich ist und der einen magnetisch aktiven Teil aufweist, dessen Bewe- gungsbahn durch einen Luftspalt innerhalb eines die Spule durchsetzenden Kernes hindurch oder an einer Stirnseite des Kernes vorbeiführt, wobei der magnetisch aktive Teil unmagne- tisiert ist oder derart magnetisiert ist, daß der magnetische Fluß innerhalb des magnetisch aktiven Teils parallel oder an- tiparallel zu der Axialrichtung verläuft.The object is achieved according to the invention in that the magnetic linear drive is provided with an armature which can only be moved perpendicularly to the axial direction and which has a magnetically active part whose movement path passes through or on through an air gap within a core passing through the coil leads past an end face of the core, the magnetically active part being unmagnetized or magnetized in such a way that the magnetic flux within the magnetically active part runs parallel or parallel to the axial direction.
Wird die Spule mit einem Strom beaufschlagt, so wird in ihrem Inneren in der Axialrichtung ein magnetischer Fluß erzeugt, der innerhalb des Kerns verläuft und im Bereich des Luftspal- tes aus dem Kern austritt. Ein magnetisch aktiver Teil eines Ankers, der beispielsweise ferromagnetisch unmagnetisiert oder magnetisiert, insbesondere dauermagnetisiert in einer Richtung antiparallel zu der Richtung des magnetischen Flusses der Spule ist, wird zum Spuleninneren hin beschleunigt. Ein Magnet, dessen innerer magnetischer Fluß parallel zum Fluß der Spule ausgerichtet ist, wird aus dem Inneren der Spule heraus abgestoßen. Dieser Effekt wird zum Antrieb des Ankers ausgenutzt. Insbesondere dann, wenn der magnetisch aktive Teil ferroma- gnetisch oder als Dauermagnet in antiparalleler Richtung zu der Axialrichtung magnetisiert ist, kann der magnetische Li- nearantrieb vorteilhaft als Schalterantrieb für einen elektrischen Schalter, beispielsweise einen Hochspannungslei- stungsschalter oder einen Vakuumschalter, verwendet werden.If a current is applied to the coil, a magnetic flux is generated in its interior in the axial direction, which flows within the core and emerges from the core in the region of the air gap. A magnetically active part of an armature, which is, for example, ferromagnetically unmagnetized or magnetized, in particular permanently magnetized in a direction antiparallel to the direction of the magnetic flux of the coil, is accelerated towards the inside of the coil. A magnet, the internal magnetic flux of which is aligned parallel to the flow of the coil, is repelled from inside the coil. This effect is used to drive the armature. In particular, if the magnetically active part is magnetized magnetically or as a permanent magnet in the antiparallel direction to the axial direction, the magnetic linear drive can advantageously be used as a switch drive for an electrical switch, for example a high-voltage circuit breaker or a vacuum switch.
Befindet sich der Anker in einer Endposition seiner Bewe- gungsbahn derart, daß beim Einschalten des Spulenstromes der magnetische Fluß der Spule zu einem geringen Anteil durch den magnetisch aktiven Teil hindurchtritt, so führt dies dazu, daß der Anker zur Spulenmitte hin beschleunigt wird, bis ein maximaler Teil des magnetischen Flusses der Spule durch den magnetisch aktiven Teil hindurchtritt. Während der Bewegung des Ankers wird der Stromfluß durch die Spule mittels einer Steuereinrichtung unterbrochen, so daß der Anker aufgrund seiner dynamischen Energie und der dynamischen Energie der angetriebenen Massen sich über die Spule hinaus weiter be- wegt, ohne daß der magnetische Fluß der Spule durch die Einwirkung auf den magnetisch aktiven Teil den Anker abbremsen kann.If the armature is in an end position of its movement path in such a way that when the coil current is switched on, the magnetic flux of the coil passes through the magnetically active part to a small extent, this leads to the armature being accelerated towards the center of the coil until a maximum part of the magnetic flux of the coil passes through the magnetically active part. During the movement of the armature, the current flow through the coil is interrupted by means of a control device, so that the armature, due to its dynamic energy and the dynamic energy of the driven masses, continues to move beyond the coil without the magnetic flux of the coil through the Action on the magnetically active part can brake the armature.
Auf diese Weise ist eine optimale Beschleunigung des Ankers zu Beginn der Bewegung gewährleistet.This ensures optimal acceleration of the armature at the start of the movement.
Ein gewünschtes Beschleunigungsprofil des Ankers kann beispielsweise dadurch erreicht werden, daß der Luftspalt zwischen dem Kern und der Bewegungsbahn des magnetisch aktiven Teils entlang der Bewegungsbahn unterschiedlich breit ausgebildet wird. Je geringer der Luftspalt in einem bestimmten Bereich entlang der Bewegungsbahn ist, desto größer ist die Kraftwirkung auf den Anker in diesem Bereich. Mit dem Anker ist beispielsweise eine Antriebsstange eines elektrischen Schalters verbunden, die ihrerseits einen Schaltkontakt einer Unterbrechereinheit antreibt.A desired acceleration profile of the armature can be achieved, for example, in that the air gap between the core and the path of movement of the magnetically active part is of different width along the path of movement. The smaller the air gap in a certain area along the movement path, the greater the force acting on the armature in this area. For example, a drive rod of an electrical switch is connected to the armature and in turn drives a switch contact of an interrupter unit.
Mechanische Anschläge können im Bereich der Schaltstange oder im Bereich des Linearantriebs selbst realisiert sein.Mechanical stops can be realized in the area of the shift rod or in the area of the linear drive itself.
Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der magnetisch aktive Teil magnetisiert ist und daß in wenigstens einer Endposition des magnetisch aktiven Teils dieser wenigstens teilweise derart im Bereich eines außerhalb der Spule angeordneten Jochkörpers angeordnet ist, daß der aus dem elektrisch aktiven Teil aus- oder in diesen eintretende magnetische Fluß wenigstens zum Teil unmittelbar durch eine dem magnetisch aktiven Teil zugewandte Begrenzungsfläche des Jochkörpers hindurchtritt.An advantageous embodiment of the invention provides that the magnetically active part is magnetized and that in at least one end position of the magnetically active part it is at least partially arranged in the region of a yoke body arranged outside the coil in such a way that it moves out of the electrically active part into this entering magnetic flux at least in part directly through a boundary surface of the yoke body facing the magnetically active part.
Die Begrenzungsfläche ist vorteilhaft im wesentlichen senk- recht zu der Axialrichtung ausgerichtet.The boundary surface is advantageously oriented essentially perpendicular to the axial direction.
Für den Fall, daß der magnetisch aktive Teil magnetisiert, beispielsweise als Elektromagnet, oder dauermagnetisiert ist, hat der magnetische Fluß des magnetisch aktiven Teils die Tendenz, einen Luftspalt zu einem benachbart angeordneten Jochkörper möglichst zu verringern.In the event that the magnetically active part is magnetized, for example as an electromagnet, or is permanently magnetized, the magnetic flux of the magnetically active part tends to reduce an air gap to an adjacent yoke body as much as possible.
Im Endbereich der Bewegungsbahn des Ankers ist wenigstens ein Jochkörper angeordnet, in den der magnetische Fluß des magne- tisch aktiven Teils wenigstens auf einem Teil der Länge des magnetisch aktiven Teils eintreten kann. Auf den Anker findet somit eine Kraftwirkung statt, die bestrebt ist, eine möglichst große Überlappung zwischen dem magnetisch aktiven Teil und dem Jochkörper zu erzeugen derart, daß möglichst der gesamte magnetische Fluß des magnetisch aktiven Teils in den Jochkörper durch eine möglichst senkrecht zu der Axialrichtung angeordnete Begrenzungsfläche eintreten kann. Die Kraftwirkung in Richtung der Bewegungsbahn des Ankers ist im wesentlichen unabhängig davon, wieweit der magnetisch aktive Teil und der Jochkörper überlappen.At least one yoke body is arranged in the end region of the movement path of the armature, into which the magnetic flux of the magnetically active part can enter at least over part of the length of the magnetically active part. A force effect thus takes place on the armature, which tends to produce as large an overlap as possible between the magnetically active part and the yoke body in such a way that as much as possible the entire magnetic flux of the magnetically active part in the yoke body by means of one arranged as perpendicular as possible to the axial direction Boundary surface can occur. The force effect in the direction of the movement path of the armature is essentially independent of the extent to which the magnetically active part and the yoke body overlap.
Hierdurch ist eine von der Stellung des Ankers im Endbereich der Bewegung im wesentlichen unabhängige Haltekraft realisiert, die den Anker in einer seiner Endpositionen hält.This results in a holding force which is essentially independent of the position of the armature in the end region of the movement and which holds the armature in one of its end positions.
Eine derartige Anordnung kann vorteilhaft für beide Endpositionen des magnetisch aktiven Teils bzw. des Ankers realisiert sein.Such an arrangement can advantageously be implemented for both end positions of the magnetically active part or of the armature.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der Spule bezüglich der Bewegungsbahn des magnetisch aktiven Teils eine zweite Spule gegenüberliegt, die mit einem Strom in demselben Richtungssinn wie die erste Spule beaufschlagbar ist.A further advantageous embodiment of the invention provides that the coil with respect to the path of movement of the magnetically active part is opposite a second coil which can be acted upon by a current in the same direction as the first coil.
Durch zwei in der dargestellten Weise kombinierte Spulen ist ein entsprechend größerer magnetischer Fluß erzeugbar, was zu einer größeren potentiellen Beschleunigung des Ankers führt.A correspondingly larger magnetic flux can be generated by two coils combined in the manner shown, which leads to a greater potential acceleration of the armature.
Außerdem kann vorgesehen sein, daß die erste und die zweite Spule in Bewegungsrichtung des Ankers gegeneinander versetzt sind. Durch einen derartigen Versatz der Spulen in Bewegungsrichtung des Ankers gegeneinander kann ein bestimmtes Beschleunigungsprofil entlang der Bewegungsbahn erreicht werden.In addition, it can be provided that the first and the second coil are offset from one another in the direction of movement of the armature. Such an offset of the coils in the direction of movement of the armature relative to one another enables a specific acceleration profile to be achieved along the movement path.
Es kann auch vorgesehen sein, daß jede der Spulen für jeweils eine der Bewegungsrichtungen des Ankers genutzt wird.It can also be provided that each of the coils is used for one of the directions of movement of the armature.
Außerdem kann vorteilhaft vorgesehen sein, daß zwei Jochkörper vorgesehen sind, die einander bezüglich der Bewegungsbahn des magnetisch aktiven Teils gegenüberliegen und die zwischen sich Luftspalte bilden, die wenigstens teilweise von der Bewegungsbahn des magnetisch aktiven Teils durchsetzt sind.In addition, it can advantageously be provided that two yoke bodies are provided which lie opposite one another with respect to the movement path of the magnetically active part and which form air gaps between them which are at least partially penetrated by the movement path of the magnetically active part.
Durch einen weiteren Jochkörper, der dem ersten Jochkörper bezüglich der Bewegungsbahn des magnetisch aktiven Teils gegenüberliegt, wird der magnetische Kreis sowohl für den Fluß durch die Spule als auch für den Fluß des magnetisch aktiven Teils in jeder der Endpositionen geschlossen, so daß jeweils eine große Kraftwirkung sowohl für die Beschleunigung als auch für die Haltekraft in den Endpositionen erreicht wird.A further yoke body, which lies opposite the first yoke body with respect to the path of movement of the magnetically active part, closes the magnetic circuit both for the flow through the coil and for the flow of the magnetically active part in each of the end positions, so that a large force is exerted in each case is achieved both for the acceleration and for the holding force in the end positions.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, in der Steuerungseinrichtung mehrere aufladbare und fallweise gemeinsam oder alternativ mit der Spule verbindbare Ladekondensatoren vorgesehen sind.A further advantageous embodiment of the invention provides that a plurality of chargeable charging capacitors and, in some cases jointly or alternatively, connectable charging capacitors are provided in the control device.
Die verschiedenen Ladekondensatoren können für unterschiedliche Schaltfälle (beispielsweise unterschiedliche Belastungsfälle eines anzutreibenden Leistungsschalters) oder unter- schiedlich für eine Ein- und Ausschaltung genutzt werden.The different charging capacitors can be used for different switching cases (for example, different load cases of a circuit breaker to be driven) or differently for switching on and off.
Die Erfindung bezieht sich außerdem auf ein Verfahren zum Betrieb eines magnetischen Linearantriebs, bei dem vorgesehen ist, daß die Spule zum Antrieb des Ankers in verschiedeneThe invention also relates to a method for operating a magnetic linear drive, provided in the is that the coil for driving the armature in different
Richtungen jeweils mit einem Strom gleicher Richtung beaufschlagt wird.A current of the same direction is applied to each direction.
Gleich in welcher Endposition sich der Anker bzw. der magnetisch aktive Teil befindet, wird er bei Erzeugung eines magnetischen Flusses im Inneren der Spule zum Spuleninneren hin beschleunigt. Wird der Strom durch die Spule rechtzeitig unterbrochen, so bewegt sich der Anker bis zu der jeweils ande- ren Endposition. Dies vereinfacht die Ansteuerung der Spule beträchtlich .Regardless of the end position of the armature or the magnetically active part, it is accelerated towards the inside of the coil when a magnetic flux is generated inside the coil. If the current through the coil is interrupted in time, the armature moves to the other end position. This considerably simplifies the control of the coil.
Das erfindungsgemäße Verfahren kann vorteilhaft dadurch ausgestaltet werden, daß die Beaufschlagung mit einem Strom be- endet wird, bevor das magnetisch aktive Teil seine Endposition erreicht hat.The method according to the invention can advantageously be designed in that the application of a current is ended before the magnetically active part has reached its end position.
Eine weitere vorteilhafte Ausgestaltung sieht vor, daß der Stromfluß durch die Spule unterbrochen wird, sobald aufgrund eines elektrischen Schwingungsvorgangs die Speisespannung ihr Vorzeichen umkehrt.Another advantageous embodiment provides that the current flow through the coil is interrupted as soon as the supply voltage reverses its sign due to an electrical oscillation process.
Da die Spule eine elektrische Induktivität sowie einen ohm- schen Widerstand darstellt und im Normalfall durch eine Kapa- zität gespeist wird, ergibt sich ein elektrischer Schwingkreis in der Ansteuerung des Linearantriebs. Dies führt zur Entstehung einer elektrischen Schwingung, so daß die an der Spule anliegende Speisespannung irgendwann ihr Vorzeichen umkehrt .Since the coil represents an electrical inductance and an ohmic resistance and is normally fed by a capacitance, an electrical resonant circuit results in the control of the linear drive. This leads to the generation of an electrical oscillation, so that the supply voltage applied to the coil reverses its sign at some point.
Dies würde eine Umkehrung des magnetischen Flusses bedeuten, was eine Umkehrung der magnetischen Kraftwirkung auf den magnetisch aktiven Teil bedeuten würde, die ungewollt ist. Da- her wird vorteilhaft die Speisespannung überwacht und der Stromfluß durch die Spule unterbrochen, sobald die Speisespannung ihr Vorzeichen umkehrt.This would mean a reversal of the magnetic flux, which would mean a reversal of the magnetic force action on the magnetically active part, which is undesired. There- The supply voltage is advantageously monitored and the current flow through the coil is interrupted as soon as the supply voltage reverses its sign.
Es kann auch vorteilhaft vorgesehen sein, daß der Stromfluß zu einem Ladekondensator umgeleitet wird, sobald die Speisespannung aufgrund eines elektrischen Schwingungsvorgangs ihr Vorzeichen umkehrt.It can also be advantageously provided that the current flow is diverted to a charging capacitor as soon as the supply voltage reverses its sign due to an electrical oscillation process.
Eine weitere vorteilhafte Gestaltung eines Verfahrens zum Betrieb eines erfindungsgemäßen Linearantriebs sieht vor, dass zuerst ein Strom in der Spule erzeugt wird, dessen resultierender magnetischer Fluss in der Spule antiparallel zu einer Magnetisierung des magnetisch aktiven Teils gerichtet ist, sofern dieses magnetisiert ist, und dass, nachdem das magnetisch aktive Teil auf seiner Bewegungsbahn den Ort der größten Magnetfeldstärke der Spule erreicht hat, die Stromrichtung durch die Spule umgekehrt wird.A further advantageous embodiment of a method for operating a linear drive according to the invention provides that a current is first generated in the coil, the resulting magnetic flux in the coil of which is directed antiparallel to magnetization of the magnetically active part, provided that it is magnetized, and that after the magnetically active part has reached the location of the greatest magnetic field strength of the coil on its path of movement, the direction of current through the coil is reversed.
Durch Anwendung dieses Verfahrens wird der Anker zunächst beschleunigt, während er zum Spuleninneren gezogen wird. Nachdem das magnetisch aktive Teil den Ort der größten Magnetfeldstärke innerhalb der Spule erreicht hat, würde er, wenn der Strom durch die Spule weiter fließen würde, abgebremst. Kehrt man zu diesem Zeitpunkt die Stromrichtung in der/den Spule (n) um, so wird das magnetisch aktive Teil zu Bereichen geringerer Magnetfeldstärke gedrückt, das heißt zum Spulenäußeren. Dadurch findet eine fortgesetzte Kraftwirkung auf den Anker statt, so dass auch größere äußere Lasten überwunden werden können. Dieser Effekt tritt auch ohne ein anfängliche Magnetisierung des magnetisch aktiven Teils ein aufgrund der Restmagnetisierung nach Durchlaufen der ersten Phase der Bewegung . Für die Umkehrung der Stromrichtung bietet sich eine passende Dimensionierung der Ladekondensatoren der Spulen an, die in dem aus Kondensator und Spule gebildeten Schwingkreis ein Schwingverhalten mit einer geeigneten Zeitkonstanten zurBy using this method, the armature is first accelerated while being pulled towards the inside of the coil. After the magnetically active part has reached the location of the greatest magnetic field strength within the coil, it would be braked if the current continued to flow through the coil. If the direction of the current in the coil (s) is reversed at this point in time, the magnetically active part is pressed to areas of lower magnetic field strength, that is to say to the outside of the coil. As a result, the armature continues to act as a force, so that larger external loads can also be overcome. This effect occurs even without an initial magnetization of the magnetically active part due to the residual magnetization after passing through the first phase of the movement. For the reversal of the current direction, a suitable dimensioning of the charging capacitors of the coils is appropriate, the oscillation behavior with a suitable time constant in the oscillating circuit formed from the capacitor and the coil
Folge hat. Dadurch kehrt sich der Spulenstrom selbsttätig zum geeigneten Zeitpunkt um. Hierfür kann auch eine elektronische Steuerung vorgesehen sein.Consequence. This automatically reverses the coil current at the appropriate time. An electronic control can also be provided for this.
Im folgenden wird die Erfindung anhand eines Ausführungsbei- spiels in einer Zeichnung gezeigt und anschließend beschrieben.In the following, the invention is shown on the basis of an exemplary embodiment in a drawing and then described.
Dabei zeigt Figur 1 schematisch im Querschnitt den magnetischen Linearantrieb,1 schematically shows in cross section the magnetic linear drive,
Figur 2 eine Ansteuerungsschaltung für die Spule des Linearantriebs und Figur 3 schematisch die Energieversorgung für den Linearan- trieb.2 shows a control circuit for the coil of the linear drive, and FIG. 3 shows schematically the energy supply for the linear drive.
In der Figur 1 ist ein magnetischer Linearantrieb dargestellt, mit einen Anker 1, der aus einem Stab 2 aus glasfaserverstärktem Kunststoff und einem magnetisch aktiven Teil 3 aus einem dauermagnetischem Werkstoff besteht und an den an einem Ende eine Schaltstange 4 angekoppelt ist, die nur schematisch dargestellt und mit einem antreibbaren Schaltkontakt 5 der Unterbrechereinheit eines Hochspannungsleistungsschal- ters verbunden ist. Der Linearantrieb erzeugt Bewegungen in Richtung des Doppelpfeiles 6.1 shows a magnetic linear drive, with an armature 1, which consists of a rod 2 made of glass fiber reinforced plastic and a magnetically active part 3 made of a permanent magnetic material and to which a switching rod 4 is coupled at one end, which is only shown schematically and is connected to a drivable switch contact 5 of the interrupter unit of a high-voltage circuit breaker. The linear drive generates movements in the direction of the double arrow 6.
Der Anker 1 bewegt sich in dem Luftspalt 7 zwischen einem ersten Jochkörper 8 und einem zweiten Jochkörper 9, die ein- ander bezüglich der Bewegungsbahn des Ankers 1 spiegelbildlich gegenüberliegen.The armature 1 moves in the air gap 7 between a first yoke body 8 and a second yoke body 9, which opposite each other in mirror image with respect to the path of movement of the armature 1.
Jeder der Jochkörper weist eine ringförmige Ausnehmung auf, in die jeweils eine Spule 10, 11 eingebracht ist. Die Spulen 10, 11 sind jeweils mit elektrischen Anschlüssen versehen und mittels einer Steuereinrichtung mit einem Strom beaufschlag- bar .Each of the yoke bodies has an annular recess, into each of which a coil 10, 11 is introduced. The coils 10, 11 are each provided with electrical connections and a current can be applied to them by means of a control device.
Wird wenigstens eine der Spulen 10, 11 mit einem Strom beaufschlagt, so ist beispielsweise die Stromrichtung derart, daß im oberen Teil der Spule 10 der Strom in die Zeichenebene hineinläuft und im unteren Teil der Spule der Strom aus der Zeichenebene heraustritt wie durch den Punkt 12 veranschau- licht wird.If a current is applied to at least one of the coils 10, 11, the current direction is, for example, such that the current runs into the drawing plane in the upper part of the coil 10 and the current emerges from the drawing plane in the lower part of the coil as through point 12 is illustrated.
Hierdurch wird ein magnetischer Fluß in der Axialrichtung 34 erzeugt, der durch die Pfeile 13 dargestellt ist und der durch einen ersten Kern 14 des ersten Jochkörpers 8 innerhalb der Spule 10 und durch einen zweiten Kern 15 des zweitenThis produces a magnetic flux in the axial direction 34, which is represented by the arrows 13 and which flows through a first core 14 of the first yoke body 8 within the coil 10 and through a second core 15 of the second
Jochkörpers 9 innerhalb der Spule 11 hindurchtritt.Yoke body 9 passes inside the coil 11.
In der dargestellten Endposition des Ankers, in der dieser in nicht dargestellter Weise an einem mechanischen Anschlag ruht, tritt bereits ein Teil 16 des magnetischen Flusses 13 der Spulen 10, 11 durch einen Randbereich des magnetisch aktiven Teils 3 des Ankers hindurch.In the illustrated end position of the armature, in which it rests against a mechanical stop in a manner not shown, part 16 of the magnetic flux 13 of the coils 10, 11 already passes through an edge region of the magnetically active part 3 of the armature.
Der übrige Teil des magnetischen Flusses 13 der Spulen 10, 11 muß den breiten Luftspalt zwischen den Kernen 14, 15 überwinden, der durch den GFK-Körper des Ankers 1 nicht überbrückt wird. Demgemäß hat der magnetische Fluß die Tendenz, den magnetisch aktiven Teil 3 in der Darstellung nach unten zu beschleunigen, so daß der magnetische Fluß 13 der Spulen 10, 11 auf einer möglichst großen Länge des magnetisch aktiven Teils 3 durch diesen hindurchtritt und antiparallel zu dem im Inneren des magnetisch aktiven Teils 3 herrschenden magnetischen Fluß 17 verläuft.The remaining part of the magnetic flux 13 of the coils 10, 11 must overcome the wide air gap between the cores 14, 15, which is not bridged by the GRP body of the armature 1. Accordingly, the magnetic flux has the tendency to accelerate the magnetically active part 3 in the illustration downward, so that the magnetic flux 13 of the coils 10, 11 passes through the magnetically active part 3 as long as possible and antiparallel to that in the The magnetic flux 17 prevailing inside the magnetically active part 3 runs.
Wenn der magnetisch aktive Teil 3 etwa in der Mitte der Spu- len 10, 11 angekommen ist, wird der Stromfluß durch die Spulen 10, 11 unterbrochen, um ein Abbremsen des magnetischen Teils beim Austritt aus dem Fluß 13 der Spulen 10, 11 zu verhindern .When the magnetically active part 3 has arrived approximately in the middle of the coils 10, 11, the current flow through the coils 10, 11 is interrupted in order to prevent the magnetic part from braking when it exits from the flow 13 of the coils 10, 11 .
Der Anker bewegt sich aufgrund der dynamischen Energie weiter, bis daß eine zweite, gestrichelt dargestellte Endposition 36 des magnetisch aktiven Teils 3 erreicht ist.The armature continues to move due to the dynamic energy until a second end position 36 of the magnetically active part 3, shown in broken lines, is reached.
In dem Bewegungsbereich vor Erreichen der Endposition hat der magnetische Fluß 17 innerhalb des magnetisch aktiven Teils 3 das Bestreben, über einen möglichst geringen Luftspalt in einen der Jochkörper 8, 9 ein und aus diesem wieder auszutreten.In the range of motion before the end position is reached, the magnetic flux 17 within the magnetically active part 3 tends to enter and exit one of the yoke bodies 8, 9 via the smallest possible air gap.
Die auf den Anker in seinen Endpositionen wirkenden Haltekräfte werden anhand der in der Figur 1 dargestellten oberen Endposition beschrieben.The holding forces acting on the armature in its end positions are described using the upper end position shown in FIG.
Wenn der Stromfluß durch die Spulen 10, 11 unterbrochen ist, entfällt der magnetische Fluß 13.If the current flow through the coils 10, 11 is interrupted, the magnetic flux 13 is omitted.
Ein Teil des magnetischen Flusses 17 im Inneren des magnetisch aktiven Teils 3 kann unmittelbar in den Jochkörper 8 durch die Begrenzungsfläche 35 eintreten, wobei der Fluß über den zweiten Jochkörper 9 unter Zwischenschaltung der unvermeidbaren Luftspalte geschlossen wird, so daß von dort der magnetische Fluß wieder in den magnetisch aktiven Teil 3 ein- treten kann .A part of the magnetic flux 17 inside the magnetically active part 3 can directly into the yoke body 8 enter through the boundary surface 35, the flow being closed via the second yoke body 9 with the interposition of the unavoidable air gaps, so that the magnetic flux can reenter the magnetically active part 3 from there.
Die Teile 18 des magnetischen Flusses in dem magnetisch aktiven Teil 3, die in Höhe einer Spulenwicklung 10, 11 liegen, müssen einen breiten Luftspalt überwinden, um in einen Joch- körper 8 einzutreten. Daher besteht in der dargestellten Konstellation das Bestreben, den magnetisch aktiven Teil 3 weiter nach oben zu bewegen, um eine möglichst große Überlappung der Länge des magnetisch aktiven Teils 3 mit dem Teil des Jochkörpers 8 oberhalb der Spule 10 zu erreichen.The parts 18 of the magnetic flux in the magnetically active part 3, which are at the level of a coil winding 10, 11, have to overcome a wide air gap in order to enter a yoke body 8. Therefore, in the constellation shown, there is a tendency to move the magnetically active part 3 further upward in order to achieve the greatest possible overlap of the length of the magnetically active part 3 with the part of the yoke body 8 above the coil 10.
Die magnetische Kraftwirkung auf den Anker 1 ist hierbei weitgehend unabhängig davon, wieweit der magnetisch aktive Teil 3 mit dem Teil des Jochkörpers 8 oberhalb der Spule 10 bereits überlappt. Daher ist die Haltekraft auf den Anker in der Endposition weitgehend unabhängig von mechanischen Toleranzen.The magnetic force effect on the armature 1 is largely independent of the extent to which the magnetically active part 3 already overlaps the part of the yoke body 8 above the coil 10. Therefore, the holding force on the armature in the end position is largely independent of mechanical tolerances.
Entsprechendes gilt für die andere, gestrichelt dargestellte Endposition des Ankers.The same applies to the other end position of the armature shown in dashed lines.
In der Figur 1 ist außerdem dargestellt, daß beide Jochkörper 8, 9 im Bereich der Kerne 14, 15 entlang der Bewegungsbahn des magnetisch aktiven Teils derart profiliert sind, daß der Luftspalt zwischen dem Anker 3 und den Jochkörpern 8, 9 nach oben hin breiter wird. Dies bedeutet, daß die Kraftwirkung auf den magnetisch aktiven Teil 3 während dessen Bewegungen nach oben abnimmt. Auf diese Weise kann beim Ausschalten der Unterbrechereinheit zum Anfang der Bewegung eine hohe Be- schleunigung und zu deren Ende hin eine schwächer werdende1 also shows that both yoke bodies 8, 9 are profiled in the area of the cores 14, 15 along the movement path of the magnetically active part in such a way that the air gap between the armature 3 and the yoke bodies 8, 9 widens upwards . This means that the force acting on the magnetically active part 3 decreases during its upward movements. In this way, when the interrupter unit is switched off at the beginning of the movement, a high loading acceleration and towards the end a weakening
Beschleunigung erreicht werden. Außerdem ist denkbar, daß beispielsweise die zweite Spule 11 gegenüber der ersten SpuleAcceleration can be achieved. It is also conceivable that, for example, the second coil 11 compared to the first coil
10 nach unten entlang der Bewegungsbahn des Ankers 1 versetzt ist, so daß bei einem Ausschaltvorgang, d. h. einer Bewegung des Ankers 1 von unten nach oben, zunächst die zweite Spule10 is offset downward along the path of movement of the armature 1, so that in a switch-off process, d. H. a movement of the armature 1 from bottom to top, first the second coil
11 die Hauptlast der Beschleunigung tragen würde und später die erste Spule 10.11 would bear the main load of the acceleration and later the first coil 10.
Auch hierdurch läßt sich eine bestimmt Profilierung der Beschleunigung erreichen.This also allows a certain profiling of the acceleration to be achieved.
In der Figur 2 ist eine Ansteuerschaltung gezeigt, mit einem Ladekondensator 19, der über einen ersten IGBT (insulated- gate bipolar Transistor) 20 und einen zweiten IGBT 21 mit der Spule 22 innerhalb des magnetischen Linearantriebs verbindbar ist. Mit 23 ist der ohmsche Widerstand der Spule 22 und ihrer Zuleitungen symbolisch bezeichnet.FIG. 2 shows a control circuit with a charging capacitor 19 which can be connected to the coil 22 within the magnetic linear drive via a first IGBT (insulated-gate bipolar transistor) 20 and a second IGBT 21. With 23 the ohmic resistance of the coil 22 and its supply lines is symbolically designated.
Werden die IGBT's 20, 21 durchgeschaltet, so fließt ein Strom durch die Spule 22 in Richtung des mit 24 bezeichneten Pfeiles. Dieser fließt durch den ersten IGBT 20 und weiter entlang der Pfeile 25, 26, 27.If the IGBTs 20, 21 are switched through, a current flows through the coil 22 in the direction of the arrow labeled 24. This flows through the first IGBT 20 and further along the arrows 25, 26, 27.
Entlädt sich der Kondensator 19, so sinkt die Spannung an der Spule 22 und es wird dort eine Gegenspannung induziert, die bestrebt ist, die Stromstärke des Stromes 24 aufrecht zu erhalten. Die Gegenspannung an der Spule 22 ist der Speisespannung entgegengesetzt, so daß sich ein Spannungsnulldurchgang ergibt. Zu diesem Zeitpunkt werden die IGBT's 21, 22 ausgeschaltet, d. h. sie sperren den Strom. Der durch die Spannung innerhalb der Spule 22 induzierteIf the capacitor 19 discharges, the voltage at the coil 22 drops and a counter voltage is induced there, which tends to maintain the current strength of the current 24. The counter voltage on the coil 22 is opposite to the supply voltage, so that there is a voltage zero crossing. At this time, the IGBTs 21, 22 are switched off, ie they block the current. The induced by the voltage inside the coil 22
Strom fließt über die Dioden 28, 29 in Richtung des Pfeiles 30 zu dem Kondensator 19 zurück und lädt diesen teilweise wieder auf. Dadurch wird Energie beim Betrieb des Linearan- triebs gespart, was insbesondere dann von Bedeutung ist, wenn ein mit diesem angetriebener Hochspannungsschalter im Notbetrieb mittels Batterien betrieben werden muß.Current flows back through diodes 28, 29 in the direction of arrow 30 to capacitor 19 and partially charges it again. This saves energy when operating the linear drive, which is particularly important when a high-voltage switch driven with it has to be operated by batteries in emergency operation.
Die Figur 3 zeigt schematisch die Energieversorgung eines Li- nearantriebs über drei unterschiedliche Ansteuerungseinheiten 31, 32, 33, von denen jede einen eigenen Ladekondensator aufweist, wobei die Ladekondensatoren unterschiedliche Kapazitäten haben können. Hierdurch wird für unterschiedliche Schaltfälle jeweils eine unterschiedliche Energiemenge in Form von in den Ladekondensatoren gespeicherter elektrischer Feldenergie zur Verfügung gestellt.FIG. 3 shows schematically the energy supply of a linear drive via three different control units 31, 32, 33, each of which has its own charging capacitor, the charging capacitors being able to have different capacities. As a result, a different amount of energy in the form of electrical field energy stored in the charging capacitors is made available for different switching cases.
Die unterschiedlichen Ansteuerungen 31, 32, 33 können auch für schnell aufeinander folgende Aus-Ein-Aus-Schaltungen ge- nutzt werden The different controls 31, 32, 33 can also be used for quickly switching off-on-off circuits

Claims

Patentansprüche claims
1. Magnetischer Linearantrieb, insbesondere für einen elektrischen Schalter, mit einer mit einem Strom beaufschlagbaren Spule (10,11), in deren Innerem durch den Strom in einer1. Magnetic linear drive, in particular for an electrical switch, with a coil (10, 11) to which a current can be applied, inside of which the current flows in a
Axialrichtung (34) ein magnetischer Fluß (13) erzeugbar ist, mit einem Anker (1) , der ausschließlich senkrecht zu der Axialrichtung (34) beweglich ist und der einen magnetisch aktiven Teil (3) aufweist, dessen Bewegungsbahn durch einen Luftspalt (7) innerhalb eines die Spule (10,11) durchsetzenden Kernes (14,15) hindurch oder an einer Stirnseite des Kernes (14,15) vorbeiführt, wobei der magnetisch aktive Teil (3) unmagnetisiert ist oder derart magnetisiert ist, daß der magnetische Fluß (17) innerhalb des magnetisch aktiven Teils (3) parallel oder antiparallel zu der Axialrichtung (34) verläuft.In the axial direction (34), a magnetic flux (13) can be generated, with an armature (1) which can only be moved perpendicular to the axial direction (34) and which has a magnetically active part (3), the path of which moves through an air gap (7). inside a core (14, 15) passing through the coil (10, 11) or past an end face of the core (14, 15), the magnetically active part (3) being unmagnetized or being magnetized in such a way that the magnetic flux ( 17) runs parallel or antiparallel to the axial direction (34) within the magnetically active part (3).
2. Magnetischer Linearantrieb nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß der magnetisch aktive Teil (3) magnetisiert ist und daß in wenigstens einer Endposition des magnetisch aktiven Teils (3) dieser wenigstens teilweise derart im Bereich eines außerhalb der Spule angeordneten Jochkörpers (8,9) angeordnet ist, daß der aus dem elektrisch aktiven Teil (3) aus- oder in diesen eintretende magnetische Fluß (17) wenigstens zum Teil unmittelbar durch eine dem magnetisch aktiven Teil zugewandte Begrenzungsfläche (35) des Jochkörpers hindurchtritt.2. Magnetic linear drive according to claim 1 or 2, characterized in that the magnetically active part (3) is magnetized and that in at least one end position of the magnetically active part (3) this at least partially in the region of a yoke body (8) arranged outside the coil 9) it is arranged that the magnetic flux (17) emerging from or entering the electrically active part (3) at least partly passes directly through a boundary surface (35) of the yoke body facing the magnetically active part.
3. Magnetischer Linearantrieb nach einem der Ansprüche 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß der Spule (10) bezüglich der Bewegungsbahn des magnetisch aktiven Teils (3) eine zweite Spule (11) gegenüberliegt, die mit der ersten Spule (10) mit einem Strom in demselben Richtungssinn wie die erste Spule (10) beaufschlagbar ist.3. Magnetic linear drive according to one of claims 1 or 2, characterized in that the coil (10) with respect to the path of movement of the magnetically active part (3) opposite a second coil (11) a current can be applied to the first coil (10) in the same direction as the first coil (10).
4. Magnetischer Linearantrieb nach Anspruch 1, 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß die erste und die zweite Spule (10,11) in Bewegungsrichtung des Ankers (1) gegeneinander versetzt sind.4. Magnetic linear actuator according to claim 1, 2 or 3, d a d u r c h g e k e n n z e i c h n e t that the first and the second coil (10,11) are offset from each other in the direction of movement of the armature (1).
5. Magnetischer Linearantrieb nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß zwei Jochkörper (8,9) vorgesehen sind, die einander bezüglich der Bewegungsbahn des magnetisch aktiven Teils (3) gegenüberliegen und die zwischen sich Luftspalte (7) bilden, die we- nigstens teilweise von der Bewegungsbahn des magnetisch aktiven Teils (3) durchsetzt sind.5. Magnetic linear drive according to one of claims 1 to 4, characterized in that two yoke bodies (8,9) are provided which face each other with respect to the path of movement of the magnetically active part (3) and which form air gaps (7) between them, which we - Are at least partially penetrated by the path of movement of the magnetically active part (3).
6. Magnetischer Linearantrieb nach einem der Ansprüche 1 bis 5 mit einer Steuerungseinrichtung , d a d u r c h g e k e n n z e i c h n e t , daß in der Steuerungseinrichtung (31,32,33) mehrere aufladbare und fallweise gemeinsam oder alternativ mit einer Spule verbindbare Ladekondensatoren (19) vorgesehen sind.6. Magnetic linear drive according to one of claims 1 to 5 with a control device, d a d u r c h g e k e n z e i c h n e t that in the control device (31,32,33) several chargeable and occasionally together or alternatively connectable with a coil charging capacitors (19) are provided.
7. Verfahren zum Betrieb eines magnetischen Linearantriebs nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t , daß die Spule (10,11) zum Antrieb des Ankers (1) in verschiedene7. The method for operating a magnetic linear drive according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the coil (10,11) for driving the armature (1) in different
Richtungen jeweils mit einem Strom gleicher Richtung beauf- schlagt wird.A current of the same direction is applied to each direction.
8. Verfahren nach Anspruch 7 , d a d u r c h g e k e n n z e i c h n e t , daß die Beaufschlagung mit einem Strom beendet wird, bevor das magnetisch aktive Teil (3) seine Endposition erreicht hat.8. The method according to claim 7, characterized in that the application of a current is ended before the magnetically active part (3) has reached its end position.
9 Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , daß der Stromfluß durch die Spule (10,11) unterbrochen wird, sobald aufgrund eines elektrischen Schwingungsvorgangs die Speisespannung ihr Vorzeichen umkehrt.9. The method according to claim 8, so that the current flow through the coil (10, 11) is interrupted as soon as the supply voltage reverses its sign due to an electrical oscillation process.
10. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , daß der Stromfluß zu einem Ladekondensator (19) umgeleitet wird, sobald die Speisespannung aufgrund eines elektrischen Schwin- gungsvorgangs ihr Vorzeichen umkehrt.10. The method according to claim 8, so that the current flow is diverted to a charging capacitor (19) as soon as the supply voltage reverses its sign due to an electrical oscillation process.
11. Verfahren zum Betrieb eines magnetischen Linearantriebes nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß zuerst ein Strom in der Spule (10,11) erzeugt wird, dessen resultierender magnetischer Fluss in der Spule (10,11) antiparallel zu einer Magnetisierung des magnetisch aktiven Teils (3) gerichtet ist, sofern dieses magnetisiert ist, und dass, nachdem das magnetisch aktive Teil (3) auf seiner Bewegungsbahn den Ort der größten Magnetfeldstärke der Spule (10,11) erreicht hat, die Stromrichtung durch die Spule (10,11) umgekehrt wird. 11. A method of operating a magnetic linear drive according to claim 1, characterized in that first a current is generated in the coil (10, 11), the resulting magnetic flux in the coil (10, 11) antiparallel to a magnetization of the magnetically active part ( 3) is directed, provided that it is magnetized, and that after the magnetically active part (3) has reached the location of the greatest magnetic field strength of the coil (10, 11) on its path of movement, the current direction through the coil (10, 11) is reversed becomes.
EP00947808A 1999-06-22 2000-06-20 Magnetic linear drive Expired - Lifetime EP1188222B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19929572 1999-06-22
DE19929572A DE19929572A1 (en) 1999-06-22 1999-06-22 Magnetic linear drive
PCT/DE2000/001981 WO2000079672A1 (en) 1999-06-22 2000-06-20 Magnetic linear drive

Publications (2)

Publication Number Publication Date
EP1188222A1 true EP1188222A1 (en) 2002-03-20
EP1188222B1 EP1188222B1 (en) 2003-05-02

Family

ID=7912818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00947808A Expired - Lifetime EP1188222B1 (en) 1999-06-22 2000-06-20 Magnetic linear drive

Country Status (6)

Country Link
US (1) US6888269B1 (en)
EP (1) EP1188222B1 (en)
CN (1) CN1242534C (en)
AU (1) AU6148600A (en)
DE (2) DE19929572A1 (en)
WO (1) WO2000079672A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497676B1 (en) 2000-02-10 2002-12-24 Baxter International Method and apparatus for monitoring and controlling peritoneal dialysis therapy
DE10132553A1 (en) 2001-07-04 2003-01-23 Siemens Ag Electrodynamic linear drive
US7175606B2 (en) 2002-05-24 2007-02-13 Baxter International Inc. Disposable medical fluid unit having rigid frame
US7153286B2 (en) 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
US7238164B2 (en) 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
DE10309697B3 (en) * 2003-02-26 2004-09-02 Siemens Ag Magnetic linear drive
EP2368589B1 (en) 2003-10-28 2016-08-03 Baxter International Inc. Apparatuses for medical fluid systems
GB0411802D0 (en) * 2004-05-26 2004-06-30 Electro Magnetic Rams Ltd Switchgear system
EP1975960A1 (en) * 2007-03-30 2008-10-01 Abb Research Ltd. A bistable magnetic actuator for circuit breakers with electronic drive circuit and method for operating said actuator
DE102007030391A1 (en) * 2007-06-29 2009-01-02 Siemens Ag Manufacturing method for a ram and such a plunger
FR2934923B1 (en) * 2008-08-11 2013-05-31 Schneider Electric Ind Sas HYBRID ELECTROMAGNETIC ACTUATOR WITH FIXED COIL
GB2467363A (en) * 2009-01-30 2010-08-04 Imra Europ S A S Uk Res Ct A linear actuator
FR2943170B1 (en) * 2009-03-10 2013-03-22 Areva T & D Sa MAGNETIC ACTUATOR CIRCUIT
EP2367189B1 (en) * 2010-03-18 2013-09-04 ABB Technology AG Switch unit, and related method
US20150091677A1 (en) * 2012-04-06 2015-04-02 Hitachi, Ltd. Gas Circuit Breaker
US9520699B2 (en) * 2012-04-18 2016-12-13 Hitachi, Ltd. Switchgear
DE102013201084A1 (en) 2013-01-24 2014-07-24 Siemens Aktiengesellschaft Electrical machine e.g. power converter has armature having layers, which is moved relative to stator and is connected to fitting, where armature and fitting are electrically isolated from each other
CN103178685B (en) * 2013-03-04 2015-08-05 中国科学院国家天文台南京天文光学技术研究所 For the electromagnetic type force actuator that astronomical telescope minute surface initiatively supports
CN105513844B (en) * 2015-12-22 2018-04-13 福州大学 Based on fault current energy and the quick electromagnetic tensile machine of change rate and its application
CN105374584B (en) * 2015-12-22 2017-09-05 福州大学 Can quick acting, effectively buffering, the stable device for keeping or having magnetic suspension effect
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7432801U (en) 1975-03-27 Siemens Ag Electromagnet with linear drive of the armature
GB829782A (en) 1956-03-23 1960-03-09 Chausson Usines Sa An electro-magnetically driven oscillating movement compressor
US3203447A (en) * 1963-10-09 1965-08-31 Skinner Prec Ind Inc Magnetically operated valve
US3379214A (en) 1965-01-15 1968-04-23 Skinner Prec Ind Inc Permanent magnet valve assembly
EP0127692B1 (en) 1983-06-01 1988-06-01 Ibm Deutschland Gmbh Electromagnetic driving element
US4817494A (en) * 1987-04-06 1989-04-04 The United States Of America As Represented By The United States Department Of Energy Magnetic reconnection launcher
DE3942542A1 (en) 1989-12-22 1991-06-27 Lungu Cornelius BISTABLE MAGNETIC DRIVE WITH PERMANENT MAGNETIC HUBANKER
JP3121948B2 (en) 1993-03-18 2001-01-09 河西工業株式会社 Clip mounting seat
GB9409988D0 (en) * 1994-05-18 1994-07-06 Huntleigh Technology Plc Linear magnetic actuator
US5729067A (en) * 1995-08-30 1998-03-17 Eaton Corporation Method and apparatus for closed loop position control in a linear motor system
NL1006087C2 (en) 1997-05-20 1998-11-23 Bogey Venlo B V Electromagnetic actuator drive for e.g. records

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0079672A1 *

Also Published As

Publication number Publication date
WO2000079672A1 (en) 2000-12-28
EP1188222B1 (en) 2003-05-02
CN1357166A (en) 2002-07-03
AU6148600A (en) 2001-01-09
US6888269B1 (en) 2005-05-03
CN1242534C (en) 2006-02-15
DE19929572A1 (en) 2001-01-04
DE50001984D1 (en) 2003-06-05

Similar Documents

Publication Publication Date Title
EP1188222B1 (en) Magnetic linear drive
DE102004005770B4 (en) Circuit for controlling a plurality of magnetic drives and power switching device with such a circuit
DE102010032456B4 (en) Electric contactor
DE10128616A1 (en) switching device
EP0373142A1 (en) Bistable magnet
EP0898780B1 (en) Magnetically driven electric switch
WO1987005075A1 (en) Method and circuit for driving electromagnetic consumers
DE4304921C1 (en) Bistable magnetic drive for an electrical switch
EP1859462A1 (en) Magnetic actuating device
WO2006133659A1 (en) Electromagnetic switching device and method for the operation thereof
DE212303C (en)
DE3841592A1 (en) DRIVING DEVICE FOR A DC SWITCH
EP1402546B1 (en) Electrodynamic linear drive
WO2003017308A1 (en) Electromagnet arrangement for a switch
DE102011081893B3 (en) Magnetic actuator and method for its operation
DE102006013013B9 (en) Force generating unit
EP0844637B1 (en) Electrodynamic actuator, in particular for high voltage circuit breaker
DE102018216223B3 (en) Actuator and method for operating a high-voltage switch
DE102013105670A1 (en) Bistable electro-permanent actuator
DE3826087A1 (en) CIRCUIT ARRANGEMENT IN THE AMPLIFIERS FOR THE CONTROL OF ACTUATORS
DE2539133C2 (en)
DE102009046999A1 (en) Electromagnet for relay i.e. switch, of direct current chopper of vehicle, has damping element with contact surface, where distance between contact surface and core surface is smaller than distance between contact surface and body surface
DE2305573A1 (en) ARRANGEMENT FOR SWITCHING THROUGH THE ARMATURE OF AN ELECTROMAGNETIC SWITCHING DEVICE, STRAIGHT FROM THE REST POSITION
DE1640525A1 (en) Electromagnet
WO1996002018A1 (en) Electromagnetically actuatable central shutter for photographic camera

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 50001984

Country of ref document: DE

Date of ref document: 20030605

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1188222E

Country of ref document: IE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070607

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070906

Year of fee payment: 8

Ref country code: GB

Payment date: 20070607

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070626

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070629

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080620

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080621