EP1185890A1 - Dispositif utilisant une asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage meteorologiques - Google Patents

Dispositif utilisant une asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage meteorologiques

Info

Publication number
EP1185890A1
EP1185890A1 EP00929629A EP00929629A EP1185890A1 EP 1185890 A1 EP1185890 A1 EP 1185890A1 EP 00929629 A EP00929629 A EP 00929629A EP 00929629 A EP00929629 A EP 00929629A EP 1185890 A1 EP1185890 A1 EP 1185890A1
Authority
EP
European Patent Office
Prior art keywords
balloon
wind
quality
measurement
improve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00929629A
Other languages
German (de)
English (en)
Inventor
Jean Barat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9906270A external-priority patent/FR2783932B1/fr
Application filed by Individual filed Critical Individual
Publication of EP1185890A1 publication Critical patent/EP1185890A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/40Balloons
    • B64B1/42Construction or attachment of stabilising surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/10Influencing air flow over aircraft surfaces by affecting boundary layer flow using other surface properties, e.g. roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material
    • F15D1/12Influencing flow of fluids around bodies of solid material by influencing the boundary layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/08Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention relates to a device which has the aim of attenuating, or even eliminating, the parasitic movements to which the meteorological balloons are subjected during the ascent phase.
  • the device is more specifically intended for closed type balloons whose envelope is made of an elastic material and which are used to measure the wind in the atmosphere, that is to say to measure the speed and direction of the wind.
  • these balloons are followed either by a GPS positioner integrated in a radiosonde attached below the balloon, or by a tracking radar.
  • the ball must follow the movements of the atmosphere as perfectly as possible, which is not the case with conventional balloons.
  • An object of the present invention is to improve the quality of measurement of the wind of meteorological balloons having an inflatable envelope and provided with a probe of the GPS type, during their ascending phase.
  • the balloon is provided with a device comprising an asperity integral with a portion of the wall of said balloon located in the upper hemisphere of said balloon during ascent, so that said asperity transmits to said balloon any aerodynamic force acting on it and that said roughness modifies the air streams marrying the external surface of said balloon to prevent said air streams stick to the surface of the lower hemisphere of said baJIon during ascent.
  • the device according to the invention makes it possible to significantly increase the stability of a balloon during its ascent, this device being more specifically adapted to meteorological balloons of the closed type which have an elastic envelope.
  • the air flow regime can be supercritical, which means that the air streams stick in a laminar way to the wall on a large fraction of the lower hemisphere of the balloon This regime causes instabilities in the movement and, consequently, poor tracking of the wind by the balloon It is therefore imperative that the speed is no longer supercritical and therefore that the air streams come off the wall of the balloon before arriving on the hemisphere
  • the object of the present invention is to provide this separation in order to obtain good measurements of the wind speed
  • the detachment of the air streams from the upper hemisphere of the balloon during the ascent phase is caused by means of a single asperity rigidly fixed to the wall of this upstream hemisphere (upper) of the balloon, the dimension of the separation roughness being chosen large enough so that the turbulent wake which forms behind it can act gradually on the adjacent nets and disturb the flow over very large portions of the balloon
  • said roughness consists of an element forming a plate with sharp edges, the mean plane of which cuts the surface defined by said ball.
  • said device further comprises a system comprising a mast, capable of connecting said roughness to said wall portion of said balloon, said mast being integral with said envelope of said balloon.
  • the mast is able to be fixed on the ball and said astig ⁇ té is fixed on the mast.
  • said mast has an internal shoulder formed by an external flange and said system- comprises an elastically deformable part, internal to said ball, able to be embedded in said mast so as to bear on said internal shoulder to wedge said envelope between said part and said mast, by which said mast is fixed on said wall portion of said balloon. It is understood that the mast must be deformable so that the flange encloses said mat and forms the internal shoulder.
  • the elastically deformable part is inserted with the portion of balloon, not inflated, corresponding to the portion of wall located in the upper hemisphere, in the mast having a tubular shape at the origin. Then the lower part of the mast is clamped with the flange so as to form an internal shoulder on which is capable of pressing the elastically deformable part to wedge said portion of balloon against the shoulder.
  • the mast is secured to the portion of the balloon.
  • said plate member is able to be fixed in an adjustable manner on said mast, so as to give it a position relative to the balloon causing the minimum disturbance.
  • said plate element has a cylindrical type curvature, the concavity of which is directed upstream of said air streams.
  • the concave side of the plate element obstructs the air when the balloon is in the ascent phase.
  • the plate element is pierced with orifices so as to create a grid turbulence capable of preventing said air streams from sticking to the surface of the hemisphere. lower of said balloon during ascent.
  • said plate element has two parts, the mean planes of which form an angle less than 180 °.
  • the roughness consists of two flat surfaces forming between them an angle which can be chosen at a any value, said surfaces being able to be of different dimensions so as to create, under the effect of the forces due to the speed of ascent, a torque tending to make the ball rotate and this, to better propagate laterally the turbulent disturbance of the wake .
  • said plate element is fixed in said portion of the wall of said ball so that the mean plane of said element is inclined relative to the horizontal to cause the rotation of said ball around its vertical axis during the ascent phase.
  • the plate element has a longitudinal slot.
  • said roughness is made of one or more flat or concave surfaces which are used to disturb the flow in the upper part of the balloon during the climb, said surfaces being held rigidly integral with the wall of the ball.
  • said roughness transmits the forces which it undergoes, it is rigid, relative to the aerodynamic constraints.
  • said roughness is elastically deformable, and is made of a flexible material to be able to deform and not to damage the envelope of the balloon in the event of contact at the time of launch.
  • FIG. 1 represents, in the general case, the device which is the subject of the invention, mounted on a meteorological balloon and the operation, during the ascent phase, of the asperity fixed on the upper hemisphere of the balloon
  • - Figure 2 shows an embodiment in which the roughness consists of a plate with sharp edges pierced with orifices, integral with the envelope of the balloon and placed so that the angle it makes with the envelope allows it to obstruct the flow of air around the balloon, the plate itself being fixed on a part integral with the balloon envelope so that any force of aerodynamic origin on the plate directly affects the movement of the ball,
  • FIG. 3 shows the attachment to the envelope of the balloon of the plate used to create a turbulent wake downstream to take off the air streams
  • FIG. 4 represents a preferred embodiment according to the invention in which the roughness is this time made up of two flat plates which are made integral with the envelope by means of a part of the type of that shown in FIG. 3, these two plates forming a non-zero angle between them, having sharp edges and obstructing the flow of air around the balloon, and
  • FIG 1 there is shown for the ascent phase the configuration of the device according to the invention and its operation.
  • the wind speed measurement probe 1 is hooked under the balloon 4, by means of a wire 2, to the sleeve 3 used to fill the balloon with center O and elastic envelope 5.
  • a non-deformable asperity As is rigidly fixed under the action of the aerodynamic forces which it undergoes.
  • the air streams FAs meet the walls of the roughness As at a significant angle, which implies that the roughness is not too close to the upper pole Ps of the ball.
  • the turbulent wake it is also necessary that this roughness is not located in the vicinity of the equator E of the balloon.
  • the angle ⁇ made by 0, As with the vertical axis zz 'of the balloon will advantageously be limited to values which are not close to 0 ° or 90 °.
  • the stabilization effect is all the more effective the greater the wake.
  • FIG 2 is shown an embodiment according to the invention in which the roughness As consists of a plate P whose thickness is small compared to its other dimensions and which therefore constitutes an obstacle with sharp edges.
  • This plate is fixed to a mast M secured to the envelope of the balloon.
  • the plate P which has a generally rectangular shape, projects beyond the mast M and is oriented facing the flow of the air streams. Under these conditions, the wake behind the plate has, with respect to that of the mast M alone, dimensions which are much greater and a density which is much higher due to the sharp edges of the plate P. It follows that the stabilizing effect on the ball is more significant since the turbulent nets Ft disperse faster on the sides of the plate P than if there were only the mast M to obstruct.
  • the plate P In order for the system to be effective, the plate P must be made of a material sufficiently rigid so that the aerodynamic pressure forces which it undergoes, and which are linked to the speed of rise of the balloon, are fully reflected on the balloon himself.
  • the angular position of the plate P and of the mast M characterized by the angle ⁇ , have a value such that the threads FAs arriving there are then well detached from the envelope of the balloon.
  • a series of orifices ⁇ are drilled therein so that the incident air streams FAs give, downstream, a grid turbulence which makes it possible to better take off the air and further increase stability.
  • FIG 3 there is shown, according to the invention and by way of example, an embodiment of the mast-plate system used to unstick the air streams.
  • the mast M shown in Figure 2 is in fact composed of a set of four parts.
  • the first is a cylindrical sleeve which will advantageously be made of a material which is both rigid and deformable of the polyurethane foam type, this sleeve being made integral with the casing 5 by a system which will be detailed below.
  • the part 7 is also made of a rigid but deformable material whose diameter is taken slightly smaller than that of the internal diameter of the sleeve 8 so that with the thickness of the envelope 5 between the part 7 and the sleeve 8 there is no play between the two pieces.
  • the part 7 was introduced into the sleeve 8 also passing through a circular orifice 11 located on a flat part 6 which is therefore interposed between the envelope 5 of the balloon and the base 14 of the sleeve 8.
  • the diameter of the circular orifice 11 must be less than the outside diameter of the sleeve 8 for the reasons which will appear subsequently.
  • a groove 9 In the lower part of the outer surface of the sleeve 8 is hollowed out a groove 9 in which a collar or a retractable flange 10 is placed. Once tightened, the collar 10, taking into account the elasticity of the material constituting the sleeve 8, limits the internal diameter of said sleeve 8 to a value less than that of the part 7 which can then no longer escape downwards. his accommodation.
  • the envelope 5 When the balloon 4 is inflated before its launch for the sounding, the envelope 5 therefore ensures, by its elastic tension forces, the separation of the mast M and of the plate P on itself, it being understood that the part 7 does not can escape through the orifice 11, which keeps the flat piece 6 interposed between the sleeve 8 and the balloon, the flat piece 6 serving to support the ball asperity As serving as an aerodynamic obstacle.
  • a second embodiment according to the invention consists in replacing the collar 10 by an elastic bracelet in extension making one or more turns in the groove 9 and which, by the elastic forces which it exerts, prevents the part 7 from leaving the sleeve 8.
  • Figure 4 there is shown, still in no way limiting, a second embodiment of the roughness forming obstacle As.
  • two thin plates P1 and P2 are used which are made integral with a mast M2 fixed on the envelope 5.
  • the plates P1 and P2 are oriented relative to the surface of the balloon. so as to obstruct the air streams FAs which arrive thereon and they form between them an angle ⁇ which may have an arbitrary value but more advantageously less than 180 °.
  • FIG. 5 another embodiment of the obstacle has been shown, still according to the invention, which serves to detach the air streams from the surface of the balloon and therefore to ensure perfect stabilization thereof during the climb.
  • the obstacle consists of two parallel plates Pa and Pb leaving between them a rectangular slot fr. The incident air streams pass partly through the slit fr and give rise, downstream, to the turbulent threads Ft which take off from the wall of the balloon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Toys (AREA)

Abstract

Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques présentant une enveloppe gonflable et munis d'une sonde du type GPS, durant leur phase ascensionnelle, caractérisé en ce qu'il comprend une aspérité (As) solidaire d'une portion de la paroi dudit ballon (4) située dans l'hémisphère supérieur dudit ballon (4) en cours d'ascension, de façon que ladite aspérité (As) transmette audit ballon (4) toute force d'origine aérodynamique agissant sur elle et que ladite aspérité (As) modifie les filets d'air (FAs) épousant la surface externe dudit ballon pour empêcher lesdits filets d'air (FAs) de coller à la surface de l'hémisphère inférieur dudit ballon (4) en cours d'ascension.

Description

Dispositif utilisant une aspérité locale pour réduire l'amplitude des mouvements parasites des ballons de sondage météorologiques.
La présente invention concerne un dispositif qui a pour but d'atténuer, voire de supprimer, les mouvements parasites auxquels les ballons météorologiques sont soumis au cours de la phase de montée. Le dispositif est plus spécialement destiné aux ballons de type fermé dont l'enveloppe est faite dans un matériau élastique et qui servent à mesurer le vent dans l'atmosphère, c'est-à-dire à mesurer la vitesse et la direction du vent. Pour effectuer cette mesure, ces ballons sont suivis soit par un positionneur GPS intégré dans une radiosonde accrochée en dessous du ballon, soit par un radar de poursuite. Pour que la vitesse du vent soit mesurée dans de bonnes conditions, il faut que le ballon suive aussi parfaitement que possible les mouvements de l'atmosphère, ce qui n'est pas le cas des ballons classiques. En effet, lorsqu'une sonde est accrochée en dessous d'un ballon météorologique normal de forme sensiblement sphérique, elle est soumise pendant la phase de montée à des oscillations très importantes. Ces oscillations sont créées par les mouvements parasites du ballon lui-même et, si l'on veut que les mesures de la vitesse du vent soient précises, il faut impérativement réduire au maximum l'amplitude des mouvements parasites du ballon pendant toute la phase de montée.
Un objet de la présente invention est d'améliorer la qualité de mesure du vent des ballons météorologiques présentant une enveloppe gonflable et munis d'une sonde du type GPS, durant leur phase ascensionnelle. Pour atteindre ce but, selon l'invention, le ballon est muni d'un dispositif comprenant une aspérité solidaire d'une portion de la paroi dudit ballon située dans l'hémisphère supérieur dudit ballon en cours d'ascension, de façon que ladite aspérité transmette audit ballon toute force d'origine aérodynamique agissant sur elle et que ladite aspérité modifie les filets d'air épousant la surface externe dudit ballon pour empêcher lesdits filets d'air de coller à la surface de l'hémisphère inférieur dudit baJIon en cours d'ascension.
Le dispositif selon l'invention permet d'augmenter de façon importante la stabilité d'un ballon pendant son ascension, ce dispositif étant plus spécifiquement adapté aux ballons météorologiques de type fermé qui ont une enveloppe élastique II est bien connu que, pour ces ballons et pendant la montée, le régime d'écoulement de l'air peut être supercritique, ce qui veut dire que les filets d'air collent de façon laminaire à la paroi sur une fraction importante de l'hémisphère inférieur du ballon Ce régime entraîne des instabilités dans le mouvement et, par voie de conséquence, un mauvais SUIVI du vent par le ballon II faut donc impérativement que le régime ne soit plus supercritique et donc que les filets d'air se décrochent de la paroi du ballon avant d'arriver sur l'hémisphère inférieur L'objet de la présente invention est d'assurer ce décollement dans le but d'obtenir de bonnes mesures de la vitesse du vent
Ainsi, suivant une première caractéristique de l'invention, le décrochement des filets d'air de l'hémisphère supérieur du ballon pendant la phase de montée est provoqué au moyen d'une aspérité unique fixée de façon rigide sur la paroi de cet hémisphère amont (supérieur) du ballon, la dimension de l'aspérité de décollement étant choisie suffisamment grande pour que le sillage turbulent qui se forme derrière elle puisse agir de proche en proche sur les filets adjacents et perturber l'écoulement sur de très larges portions du ballon Selon un mode préféré de mise en œuvre, ladite aspérité est constituée d'un élément formant plaque à arrêtes vives dont le plan moyen coupe la surface définie par ledit ballon. Afin de fixer ladite aspérité ou ledit élément, de façon avantageuse, ledit dispositif comprend en outre un système comportant un mât, apte à relier ladite aspérité à ladite portion de paroi dudit ballon, ledit mât étant solidaire de ladite enveloppe dudit ballon. Ainsi, le mât est apte à être fixe sur le ballon et ladite aspéπté est fixable sur le mât. Afin de fixer le mât sur le ballon, préférentiellement, ledit mât présente un epaulement interne forme par une bride externe et ledit système- comprend une pièce élastiquement déformable, interne audit ballon, apte à être encastrée dans ledit mât de façon à prendre appui sur ledit épaulement interne pour coincer ladite enveloppe entre ladite pièce et ledit mât, par quoi ledit mât est fixé sur ladite portion de paroi dudit ballon. On comprend que le mât doit être déformable pour que la bride enserre ledit mat et forme i'épaulement interne.
De manière pratique, la pièce élastiquement déformable est insérée avec la portion de ballon, non gonflé, correspondant à la portion de paroi située dans l'hémisphère supérieur, dans le mât de forme tubulaire à l'origine. Ensuite on enserre la partie inférieure du mât avec la bride de manière à former un épaulement interne sur lequel est apte à s'appuyer la pièce élastiquement déformable pour coincer ladite portion de ballon contre I'épaulement. Ainsi, après gonflage du ballon, le mât est solidaire de la portion du ballon. De manière avantageuse, ledit élément formant plaque est apte à être fixé de manière réglable sur ledit mât, de manière à lui donner une position par rapport au ballon provoquant le minimum de perturbation.
Selon un mode préféré de mise en .uvre de l'invention, ledit élément formant plaque présente une courbure de type cylindrique dont la concavité est dirigée vers l'amont desdits filets d'air. Ainsi le côté concave de l'élément formant plaque fait obstacle à l'air lorsque le ballon est en phase ascensionnelle.
Selon encore un mode préféré de mise en .uvre de l'invention, l'élément formant plaque est percé d'orifices de manière à créer une turbulence de grille apte à empêcher lesdits filets d'air de coller à la surface de l'hémisphère inférieur dudit ballon en cours d'ascension.
Selon un autre mode préféré de mise en .uvre de l'invention, ledit élément formant plaque présente deux parties dont les plans moyens forment un angle inférieur à 180°. Suivant ce mode de réalisation, l'aspérité se compose de deux surfaces planes faisant entre elles un angle qui peut être choisi à une valeur quelconque, lesdites surfaces pouvant être de dimensions différentes de manière à créer, sous l'effet des forces dues à la vitesse de montée, un couple tendant à faire tourner le ballon et ce, pour mieux faire se propager latéralement la perturbation turbulente du sillage. Dans le but de parvenir au même résultat, avantageusement, ledit élément formant plaque est fixé dans ladite portion de la paroi dudit ballon de façon que le plan moyen dudit élément soit incliné par rapport à l'horizontale pour provoquer la rotation dudit ballon autour de son axe vertical durant la phase d'ascension. De façon préférentielle, l'élément formant plaque présente une fente longitudinale.
Ainsi, suivant ces caractéristiques de l'invention, ladite aspérité est faite de une ou plusieurs surfaces planes ou concaves qui sont utilisées pour perturber l'écoulement dans la partie supérieure du ballon pendant la montée, lesdites surfaces étant maintenues rigidement solidaires de la paroi du ballon. Ainsi, les forces d'origine aérodynamique subies par ladite aspérité sont-elles transmises au ballon et en modifient révolution.
Afin que ladite aspérité transmette les forces qu'elle subit, elle est rigide, relativement aux contraintes aérodynamiques. Cependant, de façon avantageuse, ladite aspérité est élastiquement déformable, et est constituée d'un matériau souple pour pouvoir se déformer et ne pas endommager l'enveloppe du ballon en cas de contact au moment du lancement. D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la Figure 1 représente, dans le cas général, le dispositif objet de l'invention, monté sur un ballon météorologique et le fonctionnement, pendant la phase de montée, de l'aspérité fixée sur l'hémisphère supérieur du ballon, - la Figure 2 représente un mode de réalisation dans lequel l'aspérité est constituée d'une plaque à arêtes vives percée d'orifices, solidaire de l'enveloppe du ballon et placée de telle sorte que l'angle qu'elle fait avec l'enveloppe lui permette de faire obstacle à l'écoulement de l'air autour du ballon, la plaque étant elle-même fixée sur une pièce solidaire de l'enveloppe du ballon de telle sorte que toute force d'origine aérodynamique sur la plaque se répercute directement sur le mouvement du ballon,
- la Figure 3 représente la fixation sur l'enveloppe du ballon de la plaque servant à créer un sillage turbulent en aval pour décoller les filets d'air,
- la Figure 4 représente un mode préféré de réalisation suivant l'invention dans lequel l'aspérité est cette fois constituée de deux plaques planes qui sont rendues solidaires de l'enveloppe au moyen d'une pièce du type de celle représentée en Figure 3, ces deux plaques faisant entre elles un angle non nul, ayant des arêtes vives et faisant obstacle à l'écoulement de l'air autour du ballon, et
- la Figure 5 représente un autre mode préféré de réalisation suivant l'invention.
Sur la Figure 1 , on a représenté pour la phase de montée la configuration du dispositif selon l'invention et son fonctionnement. La sonde 1 de mesure de la vitesse du vent est accrochée sous le ballon 4, au moyen d'un fil 2, au manchon 3 servant à remplir de gaz le ballon de centre O et d'enveloppe élastique 5. Sur cette enveloppe 5 et sur l'hémisphère supérieur du ballon pendant la phase de montée, est fixée rigidement une aspérité As indéformable sous l'action des forces d'origine aérodynamiques qu'elle subit.
Pendant la montée, les filets d'air Fs qui rencontrent le pôle supérieur Ps du ballon sont ensuite déviés pour contourner celui-ci.
Comme il a été dit auparavant, les filets FNas qui ne rencontrent pas l'aspérité As sur leur chemin collent fidèlement aux parois du ballon en régime supercritique jusque sur sa surface inférieure. En revanche, tous les filets d'air FAs qui vont rencontrer l'aspérité As vont être déviés et donner naissance, en aval de As, à des filets turbulents Ft qui constituent le sillage. Ces filets qui partent derrière l'obstacle dans des directions multiples vont, en raison de leur nature turbulente, contribuer à empêcher l'écoulement de l'air de coller parfaitement à la paroi du ballon dans une large portion de son hémisphère inférieur ce qui a pour effet, comme il a été dit auparavant, de réduire les mouvements parasites du ballon et donc de permettre les bonnes mesures de la vitesse du vent. Pour que l'aspérité As soit efficace, il est donc nécessaire que les filets d'air FAs rencontrent les parois de l'aspérité As sous un angle important, ce qui implique que l'aspérité ne soit pas trop proche du pôle supérieur Ps du ballon. De même, pour que le sillage turbulent puisse agir avec efficacité en aval de l'aspérité As, il est également nécessaire que cette aspérité ne soit pas située au voisinage de l'équateur E du ballon. Dans ces conditions, l'angle α que fait 0,As avec l'axe vertical zz' du ballon sera avantageusement limité à des valeurs qui ne soient pas proches de 0° ou de 90°. Comme on l'a vu avec la description précédente, l'effet de stabilisation est d'autant plus efficace que le sillage est plus important. Sur la Figure 2 est représenté un mode de réalisation selon l'invention dans lequel l'aspérité As est constituée d'une plaque P dont l'épaisseur est faible par rapport à ses autres dimensions et qui constitue donc un obstacle à arêtes vives. Cette plaque est fixée sur un mât M solidaire de l'enveloppe du ballon. Selon ce mode de réalisation nullement limitatif, la plaque P, qui a une forme généralement rectangulaire, déborde du mât M et est orientée face à l'écoulement des filets d'air. Dans ces conditions, le sillage en arrière de la plaque présente, par rapport à celui du mât M seul, des dimensions qui sont beaucoup plus importantes et une densité qui est très supérieure en raison des arêtes vives de la plaque P. Il en résulte que l'effet de stabilisation sur le ballon est plus important puisque les filets turbulents Ft se dispersent plus vite sur les côtés de la plaque P que s'il y avait seulement le mât M pour faire obstacle. Afin que le système soit efficace, il faut que la plaque P soit réalisée dans un matériau suffisamment rigide pour que les forces de pression aérodynamiques qu'elle subit, et qui sont liées à la vitesse de montée du ballon, se répercutent intégralement sur le ballon lui-même. De plus, il est nécessaire, comme cela a déjà été expliqué auparavant, que la position angulaire de la plaque P et du mât M, caractérisé par l'angle α, ait une valeur telle que les filets FAs y arrivant soient ensuite bien décollés de l'enveloppe du ballon. Pour améliorer encore l'efficacité de la plaque P, une série d'orifices ω sont percés dans celle-ci afin que les filets d'air incidents FAs donnent, en aval, une turbulence de grille qui permet de mieux décoller les filets d'air et d'augmenter encore la stabilité.
Sur la Figure 3, a représenté, selon l'invention et à titre d'exemple, un mode de réalisation du système plaque-mât servant à décoller les filets d'air. Le mât M représenté en Figure 2 est en fait composé d'un ensemble de quatre pièces. La première est un manchon cylindrique qui sera avantageusement fait dans un matériau à la fois rigide et déformable de type mousse de polyuréthane, ce manchon étant rendu solidaire de l'enveloppe 5 par un système que l'on détaillera par la suite.
Dans le cylindre intérieur du manchon 8 se trouve une pièce élastiquement déformable 7, cylindrique, qui a été introduite préalablement à l'intérieur du ballon 4 par le manchon 3 de remplissage. La pièce 7 est elle aussi constituée d'un matériau rigide mais déformable dont le diamètre est pris légèrement inférieur à celui du diamètre intérieur du manchon 8 de sorte qu'avec l'épaisseur de l'enveloppe 5 entre la pièce 7 et le manchon 8 il n'y ait pas de jeu entre les deux pièces.
La pièce 7 a été introduite dans le manchon 8 en passant également à travers un orifice circulaire 11 situé sur une pièce plane 6 qui se trouve donc intercalée entre l'enveloppe 5 du ballon et le soubassement 14 du manchon 8. Le diamètre de l'orifice circulaire 11 doit être inférieur au diamètre extérieur du manchon 8 pour les raisons qui apparaîtront par la suite. Dans la partie basse de la surface extérieure du manchon 8 est creusée une gorge 9 dans laquelle est placé un collier ou une bride rétractable 10 . Une fois serré, le collier 10, compte tenu de l'élasticité du matériau constituant le manchon 8, limite le diamètre intérieur dudit manchon 8 à une valeur inférieure à celle de la pièce 7 qui ne peut alors plus s'échapper vers le bas de son logement. Ces pièces étant montées lorsque le ballon est vide de gaz, l'enveloppe 5 n'est soumise à aucune tension.
Dès que, au cours du gonflement, le ballon 4 prend une forme sphérique, il se développe dans l'enveloppe 5 une tension qui tend à plaquer la pièce 7 sur la partie 13 du manchon 8 qui est rétrécie par le collier 10. Cette force de tension plaque également le soubassement 14 du manchon 8 sur la pièce plane 6. Sur la paroi extérieure 15 du manchon 8 on peut utiliser un méplat sur lequel est collée la plaque P de la Figure 2 qui sert d'obstacle aérodynamique mais cette fixation peut se faire par tout moyen permettant de solidariser la plaque P au manchon 8 avant ie lâcher. Quand le ballon 4 est gonflé avant son lancement pour le sondage, l'enveloppe 5 assure donc, de par ses forces de tension élastique, la soiidarisation du mât M et de la plaque P sur elle-même, étant entendu que la pièce 7 ne peut s'échapper à travers l'orifice 11 , ce qui maintient la pièce plane 6 intercalée entre le manchon 8 et le ballon, la pièce plane 6 servant de support sur le ballon à l'aspérité As servant d'obstacle aérodynamique.
Un second mode de réalisation suivant l'invention consiste à remplacer le collier 10 par un bracelet élastique en extension faisant un ou plusieurs tours dans la gorge 9 et qui, de par les forces élastiques qu'il exerce, empêche la pièce 7 de quitter le manchon 8. Sur la Figure 4, on a représenté, toujours à titre nullement limitatif, un deuxième exemple de réalisation de l'aspérité formant obstacle As. Dans ce cas, on utilise pour l'aspérité As deux plaques fines P1 et P2 qui sont rendues solidaires d'un mât M2 fixé sur l'enveloppe 5. Les plaques P1 et P2 sont orientées par rapport à la surface du ballon de façon à faire obstacle aux filets d'air FAs qui arrivent dessus et elles forment entre elles un angle β qui peut avoir une valeur arbitraire mais plus avantageusement inférieure à 180°. Ces plaques P1 et P2 sont solidaires d'une pièce mât M2 du type de celle représentée en Figure 3 sauf que, dans cette réalisation, deux méplats faisant entre eux l'angle β ont été faits sur le manchon 8 afin de pouvoir y solidariser les plaques P1 et P2. Quand les filets d'air FAs autour du ballon arrivent sur l'aspérité As, ils sont déviés par les plaques P1 et P2 suivant des filets Ft qui divergent suivant l'angle β entre les deux plaques de sorte que leur effet sur le décollement en aval est encore augmenté par rapport à celui d'une plaque plane unique. Outre l'amélioration d'efficacité qu'elle procure pour stabiliser le ballon, cette configuration offre deux autres avantages. D'une part, elle impose une symétrie du sillage en aval et, par voie de conséquence, une amélioration du coefficient de traînée aérodynamique du ballon. D'autre part, en prenant des surfaces des plaques P1 et P2 différentes, la force résultante d'origine aérodynamique qu'exerce sur elles la vitesse de montée crée un couple qui tend à faire tourner ie ballon autour de son axe vertical zz' et dans un sens et une vitesse qui dépendent uniquement de l'importance relative des surfaces des plaques P1 et P2. Cette rotation permet donc d'améliorer l'effet de décollement des filets Ft. Dans l'exemple à une seule plaque représenté en Figure 2, il est également possible de créer la rotation du ballon autour de l'axe vertical zz' en orientant la surface plane P solidaire du mât M sur le ballon de telle sorte que les filets FAs qui, avant de se heurter à l'obstacle, suivent des trajectoires parallèles aux génératrices Q du ballon, tombent sur la plaque P avec une incidence oblique qui se traduit par un couple faisant tourner le ballon. Sur la Figure 5 enfin, on a représenté, toujours suivant l'invention, un autre mode de réalisation de l'obstacle servant à décoller les filets d'air de la surface du ballon et donc à assurer la parfaite stabilisation de celui- ci pendant la montée. Selon ce mode de réalisation, l'obstacle se compose de deux plaques Pa et Pb parallèles laissant entre elles une fente rectangulaire fr. Les filets d'air incidents passent en partie à travers la fente fr et donnent naissance, en aval, aux filets turbulents Ft qui décollent de la paroi du ballon.

Claims

REVENDICATIONS
1. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques présentant une enveloppe gonflable et munis d'une sonde du type GPS, durant leur phase ascensionnelle, caractérisé en ce qu'il comprend une aspérité (As) solidaire d'une portion de la paroi dudit ballon (4) située dans l'hémisphère supérieur dudit ballon (4) en cours d'ascension, de façon que ladite aspérité (As) transmette audit ballon (4) toute force d'origine aérodynamique agissant sur elle et que ladite aspérité (As) modifie les filets d'air (FAs) épousant la surface externe dudit ballon pour empêcher lesdits filets d'air (FAs) de coller à la surface de l'hémisphère inférieur dudit ballon (4) en cours d'ascension.
2. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon la revendication 1 , caractérisé en ce que ladite aspérité (As) est constitué d'un élément formant plaque (P) à arêtes vives dont le plan moyen coupe la surface définie par ledit ballon (4).
3. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon la revendication 1 ou 2, caractérisé en ce qu'il comprend en outre un système comportant un mât (M), apte à relier ladite aspérité avec ladite portion de paroi dudit ballon, ledit mât (M) étant solidaire de ladite enveloppe (5) dudit ballon (4).
4. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon la revendication 3, caractérisé en ce que ledit mât (M) présente un épaulement interne (13) formé par une bride externe (10) et en ce que le système comprend une pièce élastiquement déformable (7), interne audit ballon (4) apte à être encastrée dans ledit mât (M) de façon à prendre appui sur ledit épaulement interne (13) pour coincer ladite enveloppe (5) entre ladite pièce (7) et ledit mât (M), par quoi ledit mât (M) est fixé sur ladite portion de paroi dudit ballon (4).
5. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon l'une quelconque des revendications 2 à 4, caractérisé en ce que ledit élément formant plaque (P) est apte à être fixé de manière réglable sur ledit mât (M).
6. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon l'une quelconque des revendications 2 à 5, caractérisé en ce que ledit élément formant plaque (P) présente une courbure de type cylindrique dont la concavité est dirigée vers l'amont desdits filets d'air (FAs)
7. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon l'une quelconque des revendications 2 à 6, caractérisé en ce que ledit élément formant plaque (P) est percé d'orifices (ω) de manière à créer une turbulence de grille apte à empêcher lesdits filets d'air (FAs) de coller à la surface de l'hémisphère inférieur dudit ballon (4) en cours d'ascension.
8. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon l'une quelconque des revendications 2 à 7, caractérisé en ce que ledit élément formant plaque (P) présente deux parties (P1 , P2) dont les plans moyens forment un angle inférieur à 180°.
9. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon l'une quelconque des revendications 2 à 8, caractérisé en ce que ledit élément formant plaque (P) est fixé dans iadite portion de la paroi dudit ballon de façon que le plan moyen dudit élément soit incliné par rapport à l'horizontale pour provoquer la rotation dudit ballon (4) autour de son axe vertical durant la phase d'ascension.
10. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon l'une quelconque des revendications 2 à 9, caractérisé en ce que ledit élément formant plaque (P) présente une fente longitudinale (fr).
11. Dispositif destiné à améliorer la qualité de mesure du vent des ballons météorologiques selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ladite aspérité est élastiquement déformable.
EP00929629A 1999-05-18 2000-05-18 Dispositif utilisant une asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage meteorologiques Withdrawn EP1185890A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9906270A FR2783932B1 (fr) 1999-05-18 1999-05-18 Dispositif a asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage de type meteorologique
FR9906270 1999-05-18
FR0000047A FR2793887B1 (fr) 1999-05-18 2000-01-04 Dispositif utilisant une asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage meteorologiques
FR0000047 2000-01-04
PCT/FR2000/001343 WO2000070369A1 (fr) 1999-05-18 2000-05-18 Dispositif utilisant une asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage meteorologiques

Publications (1)

Publication Number Publication Date
EP1185890A1 true EP1185890A1 (fr) 2002-03-13

Family

ID=26212068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00929629A Withdrawn EP1185890A1 (fr) 1999-05-18 2000-05-18 Dispositif utilisant une asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage meteorologiques

Country Status (6)

Country Link
US (1) US6655206B1 (fr)
EP (1) EP1185890A1 (fr)
JP (1) JP2002544064A (fr)
AU (1) AU4764700A (fr)
FR (1) FR2793887B1 (fr)
WO (1) WO2000070369A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147184B1 (en) * 2005-08-24 2006-12-12 Sierra Nevada Corporation Aerodynamic fairing system for airship
CN102241274A (zh) * 2011-04-08 2011-11-16 祝永刚 多功能夹层气囊飞艇
US20150078620A1 (en) * 2012-04-20 2015-03-19 Eth Zurich Aircraft, Methods for Providing Optical Information, Method for Transmission of Acoustic Information and Method for Observing or Tracking an Object
US9085348B1 (en) * 2013-12-20 2015-07-21 Google Inc. Variable weft webbing for use as superpressure envelope load tendon
US9027874B1 (en) 2014-05-06 2015-05-12 Google Inc. Tendon routing at envelope apex
CN105044801B (zh) * 2015-08-29 2018-01-16 盐城师范学院 一种三维大气湍流测量装置
FI20195996A1 (en) * 2019-11-20 2021-05-21 Hurricane Unwinder Oy Ab Aerological probe and method for measuring meteorological conditions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2762399A1 (fr) * 1996-05-02 1998-10-23 Aero Produits Ballon meteorologique stabilise par ballon secondaire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340732A (en) * 1965-01-07 1967-09-12 James R Scoggins Meteorological balloon
US4112753A (en) * 1977-05-09 1978-09-12 Call David B Meteorological measuring apparatus
US4956646A (en) * 1988-10-17 1990-09-11 Viz Manufacturing Company Deployment apparatus and method for radiosondes
US5857760A (en) * 1995-11-29 1999-01-12 Lumatech Corporation Illuminated balloon apparatus and method
US5788190A (en) * 1996-10-22 1998-08-04 The Boeing Company Slotted cruise trailing edge flap
FR2755245A1 (fr) 1996-10-24 1998-04-30 Barat Jean Dispositif de stabilisation des ballons de sondage meteorologiques
FR2759787B1 (fr) * 1997-02-17 1999-03-19 Modem Aerostat pour l'etude des composantes horizontales du vent ainsi que des diverses mesures effectuees sur l'atmosphere au travers de capteurs
FR2775352A1 (fr) 1998-02-20 1999-08-27 Nicolas Stanislas Barat Dispositif de stabilisation des ballons de sondage vent gps

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2762399A1 (fr) * 1996-05-02 1998-10-23 Aero Produits Ballon meteorologique stabilise par ballon secondaire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0070369A1 *

Also Published As

Publication number Publication date
US6655206B1 (en) 2003-12-02
JP2002544064A (ja) 2002-12-24
WO2000070369A1 (fr) 2000-11-23
AU4764700A (en) 2000-12-05
FR2793887A1 (fr) 2000-11-24
FR2793887B1 (fr) 2001-09-07

Similar Documents

Publication Publication Date Title
EP2125556B1 (fr) Bouchon articule en matiere plastique
EP1655802B1 (fr) Système de compensation en température reglable pour résonateur micro-ondes
EP1185890A1 (fr) Dispositif utilisant une asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage meteorologiques
FR2960851A1 (fr) Procede et dispositif d'ouverture d'une paroi gonflee
CA2454670C (fr) Dispositif de mesure de la pression totale d'un ecoulement
FR2640875A1 (fr)
FR2783932A1 (fr) Dispositif a asperite locale pour reduire l'amplitude des mouvements parasites des ballons de sondage de type meteorologique
CA2839417A1 (fr) Dispositif de freinage pour eolienne a axe vertical
FR2681625A1 (fr) Dispositif de mise en tension pour toile de tente.
FR3017440A1 (fr) Support pour servomoteur et ensemble d'un tel support et d'un servomoteur
EP3931413B1 (fr) Dispositif d'ancrage, dans le sable ou dans un sol sablonneux, d'un piquet de parasol de plage
EP2734986B1 (fr) Dispositif de detection d'intrusion
FR3070756B1 (fr) Accessoire d’aide au reglage de l’alignement d’une roue avant d’une bicyclette par rapport a la potence de son guidon
FR2775352A1 (fr) Dispositif de stabilisation des ballons de sondage vent gps
FR2762399A1 (fr) Ballon meteorologique stabilise par ballon secondaire
FR2549169A1 (fr) Moyen de fixation d'un ballon-sonde
FR2762400A1 (fr) Piece d'ancrage multi usages pour ballons meteorologiques
FR2755245A1 (fr) Dispositif de stabilisation des ballons de sondage meteorologiques
EP0946860B1 (fr) Compteur de liquide a pivotage ameliore
EP1685371A1 (fr) Sonde d incidence
FR2642723A1 (fr) Dispositif d'ancrage avec piece de stabilisation
FR3104709A1 (fr) Structure présentant une paroi munie d’un dispositif de mesure à capteur optique entouré par une enveloppe souple accolée à la dite paroi et procédé d’installation dudit dispositif
CA3121379A1 (fr) Cable tracteur carene
FR2827393A1 (fr) Dispositif mesureur de charges electrostatiques
WO2024008811A1 (fr) Dispositif de détection acoustique d'un arc électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030507

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040915