EP1182247B1 - Procédé associant hydroisomerisation et separation avec un adsorbant zeolithique a structure mixte pour la production d'essences a haut indice d'octane - Google Patents

Procédé associant hydroisomerisation et separation avec un adsorbant zeolithique a structure mixte pour la production d'essences a haut indice d'octane Download PDF

Info

Publication number
EP1182247B1
EP1182247B1 EP01402163A EP01402163A EP1182247B1 EP 1182247 B1 EP1182247 B1 EP 1182247B1 EP 01402163 A EP01402163 A EP 01402163A EP 01402163 A EP01402163 A EP 01402163A EP 1182247 B1 EP1182247 B1 EP 1182247B1
Authority
EP
European Patent Office
Prior art keywords
section
separation
paraffins
hydroisomerisation
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01402163A
Other languages
German (de)
English (en)
Other versions
EP1182247A1 (fr
Inventor
Olivier Ducreux
Elsa Jolimaitre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1182247A1 publication Critical patent/EP1182247A1/fr
Application granted granted Critical
Publication of EP1182247B1 publication Critical patent/EP1182247B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen

Definitions

  • the present invention relates to the production of high octane gasoline by a process combining at least one hydroisomerization section and at least one separation section by adsorption in which the adsorbent is a microporous zeolitic solid having a mixed structure with channels of different sizes.
  • the process of the invention makes it possible to obtain a petrol base with a high octane number which forms part of the composition of a petrol pool.
  • the quality of a gasoline is partly dependent on its octane number.
  • the hydrocarbons constituting the gasoline are as branched as possible as shown by the values of the research octane numbers (RON) and engine octane number (MON) of different hydrocarbon compounds (table below).
  • Essence pools include several components.
  • the majority components are reforming gasoline, which usually comprises between 60 and 80% vol. of compounds aromatic, and FCC essences which typically contain 35% vol. aromatic but provide the majority of the olefin and sulfur compounds present in the pools species.
  • the other components can be alkylates, without aromatic compounds nor olefinic, light isomerized or non-isomerized gasolines, which do not contain unsaturated compounds, oxygenated compounds such as MTBE, and butanes. Insofar where the aromatic contents are not reduced below 35-40% vol., the contribution reformates in the gasoline pools will remain significant, typically 40% vol. Conversely, increased severity of the maximum admissible content of aromatic compounds at 20-25% flight. will lead to a decrease in the use of reforming, and consequently the need to enhance C7-C10 direct distillation cuts by other means than reforming.
  • a separation unit producing at least two separate effluents, one with a high octane number and the other with a low octane number, and integrated into a process also comprising at least one hydroisomerization unit makes it possible to recycling the effluent with a low octane index to the hydroisomerization unit, which converts linear and monobranched paraffins of low octane to multibranched paraffins with high octane.
  • the main difficulty in implementing such a process, combining hydroisomerization and separation steps, is the separation of multibranched paraffins.
  • Adsorption separation techniques using selective molecular sieves thanks to the size of the accessible pores, are particularly suitable for the separation of linear, monobranched and multibranched paraffins. Separation processes by conventional adsorption can result from PSA (Pressure Swing) type implementations Adsorption), TSA (Temperature Swing Adsorption), chromatography (chromatography of elution or simulated counter-current for example). They can also result from a combination of these implementations. These processes all have in common the contacting of a mixture liquid or gaseous with a fixed bed of adsorbent to remove certain constituents from the mixture which can be adsorbed. Desorption can be carried out by various means.
  • PSA gas separation by adsorption processes
  • the TSA processes that use temperature as the driving force for desorption are the first to have been developed in adsorption.
  • the bed to be regenerated is heated by a circulation of preheated gas, in open or closed loop, in the opposite direction to that of the adsorption stage.
  • Many variations of schemes (“gas separation by adsorption processes ”, Butterworth Publishers, US, 1987) are used depending on the constraints local conditions and the nature of the gas used.
  • This implementation technique is generally used in purification processes (drying, desulfurization of gases and liquids, natural gas purification; US-4-770 676).
  • Gas or liquid chromatography is a separation technique very efficient thanks to the use of a very large number of theoretical stages (BE 891 522, Seko M., Miyake J., Inada K .; Ind. Eng. Chem. Prod. Res. Develop., 1979, 18, 263). She thus makes it possible to take advantage of relatively low adsorption selectivities and to produce difficult separations. These processes are highly competitive with the continuous processes at simulated moving bed or simulated counter current. The latter have experienced very strong development in the petroleum field (US-A-3,636,121, US-A-3,997,620 and US-A-6,069,289).
  • the regeneration of the adsorbent uses the displacement technique by a desorbent which can optionally be separated by distillation of the extract and the raffinate.
  • the separation by adsorption of linear, monobranched and multibranched paraffins can be performed by two different techniques well known to those skilled in the art: separation by difference in adsorption thermodynamics, and separation by difference in kinetics of adsorption of the species to be separated.
  • the adsorbent chosen will have different pore diameters. Zeolites, made up of channels, are adsorbents of choice for the separation of such paraffins.
  • pore diameter is conventional for those skilled in the art. It is used to functionally define the size of a pore in terms of the size of the molecule capable of entering this pore. It does not designate the real size of the pore because it is often difficult to determine since often of irregular shape (that is to say non-circular).
  • DW Breck provides a discussion of effective pore diameter in his book Zeolite Molecular Sieves (John Wiley and Sons, New York, 1974) at pages 633-641.
  • the sections of the channels of zeolites being rings of oxygen atoms , one can also define the pore size of zeolites by the number of oxygen atoms forming the annular section of the rings, designated by the term "member rings" or MR in English.
  • zeolites of structural type FAU have a network of crystal channels of 12 MR, that is to say of which the section consists of 12 oxygen atoms. This definition is well known to those skilled in the art and will be used later.
  • US-A-3,706,813 proposes the same type of selectivity on X or Y zeolites exchanged with barium.
  • US Pat. No. 6,069,289 proposes, on the contrary, to use zeolites having selectivities inversely proportional to the degree of branching of paraffins, such as beta, X or Y zeolites exchanged with alkaline or alkaline-earth cations, SAPO- 31, MAPO-31. All the zeolites mentioned above have pore diameters of 12 MR.
  • the separating power of the adsorbent is due to the difference in diffusion kinetics of the molecules to be separated in the pores of the zeolite.
  • the adsorbent In the case of separation of multi-branched paraffins from paraffins monobranches and linear, we can thus use the fact that the higher the degree of connection important, the more the kinetic diameter of the molecule increases, and therefore the more the kinetics of diffusion is low. So that the adsorbent can have a separation power, the adsorbent must have a pore diameter close to that of the molecules to be separated, which corresponds to zeolites with a pore diameter of 10 MR.
  • US-A-4,717,784, US-A-4,804,802 US-A-4,855,529 and US-A-4,982 048 use adsorbents of intermediate channel size between 8 and 10 MR, the adsorbent preferred being ferrierite.
  • US-A-4,982,052 recommends the use of silicalite.
  • US-A-4,956,521, US-A-5,055,633 and US-A-5,055,634 describe the use of zeolites having pores of elliptical cross section of dimensions between 5.0 and 5.5 ⁇ according to the minor axis and approximately 5.5 to 6.0 ⁇ along the major axis, and in particular the ZSM-5 and its shape dealuminated, silicalite, or of dimensions between 4.5 and 5.0 ⁇ , and in particular the ferrierite, ZSM-23 and ZSM-11.
  • EP-A-0 922 748 and EP-A-0 934 996 describe methods for separating a charge C5-C8 or an intermediate charge, in three tributaries respectively rich in paraffins linear, monobranched and multibranched.
  • Zeolite adsorbents proposed for the diffusional separation of paraffins multibranches have a homogeneous structure with regard to their channel size and are not composed of only small channels (8 to 10 MR), which considerably reduces their volume adsorption capacity. These materials which sin in particular by their low adsorption capacity do not allow optimal efficiency of the unit to be obtained separation. The performance of a process combining both hydroisomerization and separation by adsorption is therefore inevitably hindered.
  • the present invention is based on the new use of zeolitic adsorbents with a structure mixed, composed of two types of channels of different sizes, in a section of separation of multibranched paraffins included in a hydrocarbon feed consisting of a section between C5 and C8 and containing in particular paraffins linear, monobranched and multibranched, said separation section being integrated in a process also comprising at least one hydroisomerization section.
  • the process of the invention is such that it comprises at least one hydroisomerization section and at minus a separation section of multibranched paraffins functioning by adsorption and containing at least one zeolitic adsorbent of mixed structure with main channels whose opening is defined by a ring with 10 oxygen atoms (also called 10 MR) and secondary channels whose opening is defined by a ring with at least 12 atoms of oxygen (12 MR), the channels with at least 12 MR being not accessible to the load to be separated only through the channels at 10 MR.
  • main channels whose opening is defined by a ring with 10 oxygen atoms (also called 10 MR) and secondary channels whose opening is defined by a ring with at least 12 atoms of oxygen (12 MR)
  • the channels with at least 12 MR being not accessible to the load to be separated only through the channels at 10 MR.
  • the zeolitic adsorbents targeted by the invention are zeolites which advantageously belong to the structural types EUO, NES and MWW.
  • the NU-85 and NU-86 zeolites are also particularly suitable for implementing the process of the invention.
  • the process comprises at least one hydroisomerization section and at least one separation section.
  • the hydroisomerization section comprises at least one reactor.
  • the separation section (composed of one or more units) produces two streams, a first stream rich in di- and tribranched paraffins, possibly in naphthenes and aromatics which constitutes the base gasoline with high octane number and which is sent to the pool gasoline, a second stream rich in linear and monobranched paraffins which is recycled at the entrance to the hydro-isomerization section.
  • the overall method comprises at least two hydroisomerization sections and at least one separation section.
  • the separation section (composed of one or more units) produces three streams, a first stream rich in paraffins di- and tribranchées, possibly in naphthenes and aromatic which constitutes a base high octane gasoline which is sent to the gasoline pool, a second stream rich in linear paraffins which is recycled to the inlet of the first hydroisomerization section and a third stream rich in monobranched paraffins which is recycled at the entrance to the second section.
  • the method according to the invention thus makes it possible to obtain a gasoline pool with a high octane number by incorporating into said pool a high octane petrol base from hydroisomerization of sections between C5 and C8, such as sections C5-C8, C5-C6, C5-C7, C6-C8, C6-C7, C7-C8, C7, C8 etc
  • the zeolitic adsorbents used in the separation section for the implementation of the process of the invention have adsorbent properties markedly improved by compared to the adsorbents of the prior art, in particular as regards the capacity adsorption itself. Indeed, it has been surprisingly discovered that the use of a zeolitic adsorbent having at least two types of channels of distinct sizes, main channels whose opening is defined by a ring with 10 oxygen atoms and secondary channels whose opening is defined by a ring with at least 12 atoms oxygen, has a beneficial effect on the performance of a process for the separation of multibranched paraffins included in a hydrocarbon charge consisting of a cut between C5 and C8 and containing in particular linear, monobranched paraffins and multibranched.
  • the zeolitic adsorbent used in the separation section of the invention combines good selectivity with an optimal adsorption capacity, allowing in particular to ensure productivity gains compared to previous adsorbents. It results in a better profitability of the process of the invention compared to the other processes associating hydroisomerization and separation by adsorption with the previous adsorbents.
  • the process of the invention leads to an improvement of the separation process associated with the hydroisomerization process.
  • the combination of these processes concerns the recovery of light cuts comprising paraffinic, naphthenic, aromatic and olefins having a number of carbon atoms between 5 and 8, by hydroisomerization and recycling of low octane paraffins, that is to say linear paraffins and monobranched while multibranched paraffin, high octane, separated linear and monobranched paraffins, constitute a petrol base which is sent to the petrol pool. Said base makes it possible to increase the octane number of the gasoline pool.
  • a C5-C8 cut for example obtained by direct distillation
  • the process for producing a high octane gasoline base highlights operates at least one hydroisomerization section and at least one separation section operating by adsorption and containing at least one zeolitic adsorbent.
  • the section separation integrated into the process of the invention is designed so as to separate the multibranched paraffins linear and monobranched paraffins, contained in a load consisting of a cut between C5 and C8.
  • Said separation section of multibranched paraffins thus produces at least two effluents, a first index effluent high octane, rich in dibranched, tribranched paraffins and possibly in compounds naphthenic and / or aromatic, and a second effluent with a low octane number rich in linear and monobranched paraffins.
  • the linear paraffins and monobranches are recycled to the hydroisomerization section so as to convert them into compounds having a better octane number.
  • the section hydroisomerization converts linear paraffins into monobranched paraffins and monobranched paraffins into multibranched paraffins.
  • multibranched paraffins are understood to mean paraffins having at least two branches. According to the invention, multibranched paraffins therefore include dibranched paraffins.
  • the process of the invention is characterized in that said adsorbent, in the separation section, has a mixed structure with main channels, the opening of which is defined by a ring with 10 oxygen atoms (also called 10 MR) and secondary channels whose opening is defined by a ring with at least 12 oxygen atoms (12 MR), the channels with at least 12 MR being accessible only through the channels with 10 MR.
  • the channels at 10 MR, respectively at 12 MR can schematically be represented by a continuous succession of rings, each ring being made up of 10, respectively 12, oxygen atoms.
  • the invention is in no way limited to the use of a zeolitic adsorbent having channels having a specific number of rings. In particular, it is not going beyond the scope of the invention if the process for separating multibranched paraffins is implemented with an adsorbent having 10 MR channels restricted to a single ring.
  • These zeolitic adsorbents can have a mono-, bi- or three-dimensional structure.
  • the zeolitic adsorbent preferentially adsorbs linear paraffins, to a lesser extent monobranched paraffins and finally in a minority multibranched paraffins, naphthenic and aromatic compounds.
  • the charge treated in the method according to the invention consists of a section between C5 and C8 such that cuts C5-C8, C5-C6, C5-C7, C6-C8, C6-C7, C7-C8, C7, C8 etc from the atmospheric distillation of crude oil, a reforming unit (light reformate) or a conversion unit (hydrocracking naphtha for example).
  • this set of possible loads will be designated by the terms "C5-C8 cuts and cuts intermediaries ”. It is mainly composed of linear, monobranched and multibranches, naphthenic compounds such as dimethylcyclopentanes, compounds aromatics such as benzene or toluene and optionally olefinic compounds.
  • the feed introduced into the process according to the invention comprises at least one alkane which will be isomerized to form at least one product of greater degree of branching.
  • the filler may in particular contain normal pentane, 2-methylbutane, neopentane, normal hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3 dimethylbutane, normal heptane, 2-methylhexane, 3-methylhexane, 2,2-dimethylpentane, 3,3-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 2,2,3-trimethylbutane, normal octane, 2-methylheptane, 3-methylheptane, 4-methylheptane, 2,2-dimethylhexane, 3,3-dimethylhexane 2,3-dimethylhexane, 3,4-dimethylhexane, 2,4-di
  • the charge comes from C5-C8 cuts and / or intermediate cuts obtained after distillation atmospheric, it can also contain cyclic alkanes, such as dimethylcyclopentanes, aromatic hydrocarbons (such as benzene, toluene, xylenes) as well as other C9 + hydrocarbons (i.e. hydrocarbons containing at least 9 carbon atoms) in less quantity.
  • cyclic alkanes such as dimethylcyclopentanes
  • aromatic hydrocarbons such as benzene, toluene, xylenes
  • C9 + hydrocarbons i.e. hydrocarbons containing at least 9 carbon atoms
  • the charges made up of sections C5-C8 and intermediate cuts of reformate origin may also contain hydrocarbons olefinic, in particular when the reforming units are operated at low pressure.
  • the paraffin content (P) essentially depends on the origin of the charge, i.e. its paraffinic or naphthenic and aromatic character, sometimes measured by the parameter N + A (sum of the naphthenes content (N) and the aromatics content (A)), as well as its initial point of distillation, that is to say the content of C5 and C6 in the feed.
  • N + A sum of the naphthenes content (N) and the aromatics content (A)
  • the paraffin content in the feed will generally be low, from around 30% by weight.
  • C5-C8 cuts and intermediate cuts (such as for example C5-C6, C5-C7, C6-C8, C6-C7, C7-C8 ).
  • the paraffin content varies between 30 and 80% by weight, with an average value of 55-60% by weight.
  • the gain in octane is all the more important as the paraffin content of the load is higher.
  • the fraction corresponding heavy naphtha can feed a catalytic reforming section.
  • the installation of a hydro-isomerization section of these sections will cause reduction in the load rate of the reforming section, which can continue to process the C8 + heavy fraction of naphtha.
  • the effluent from the hydro-isomerization section can contain the same types of hydrocarbons than those described above, but their respective proportions in the mixture leads to higher octane numbers RON and MON than those of the filler.
  • the filler introduced into the process of the invention and containing paraffins comprising 5 to 8 carbon atoms is generally of low octane number.
  • the method according to the invention consists in particular in increasing the octane number of said charge without increasing its content in aromatics using at least one hydro-isomerization section and at least a separation section operating by adsorption.
  • the octane number of the effluent of the process of the invention varies depending on the nature of the load introduced, and in particular depending on the nature of the cut.
  • typical values of the base RON and MON gasoline leaving the process of the invention are of the order of 93 and 89 respectively.
  • petrol base comprising in its composition such a petrol base therefore has a high octane number.
  • the separation section contains one or more adsorbents, at least one of the adsorbents being a zeolitic solid having a mixed structure whose microporous network has both main channels whose opening is defined by a ring at 10 oxygen atoms (also called 10 MR) and secondary channels whose opening is defined by a ring with at least 12 oxygen atoms (12 MR), said main channels and secondary channels being arranged in such a way that access to the secondary channels of at least 12 MR is only possible via the main channels at 10 MR.
  • the adsorbents being a zeolitic solid having a mixed structure whose microporous network has both main channels whose opening is defined by a ring at 10 oxygen atoms (also called 10 MR) and secondary channels whose opening is defined by a ring with at least 12 oxygen atoms (12 MR), said main channels and secondary channels being arranged in such a way that access to the secondary channels of at least 12 MR is only possible via the main channels at 10 MR.
  • an optimal diffusive selectivity is obtained by slowing down the entry of multibranched molecules via the channels at 10 MR and an optimal adsorption capacity is obtained by the presence of the channels at least 12 MR.
  • Channels at least 12 MR can be either simple side pockets (or called by those skilled in the art “side pockets”) (cf. FIG. 3) or form porous segments perpendicular to the channels at 10 MR, such that these segments are only accessible by the 10 MR channels (see Figure 4).
  • the adsorbents used in the separation section for implementing the process according to the invention advantageously contain silicon and at least one element T chosen from the group formed by aluminum, iron, gallium and boron, preferably aluminum and boron.
  • the silica content of these adsorbents can be variable.
  • the most suitable adsorbents for this type of separation are those with high silica contents.
  • the molar ratio If / T is preferably at least equal to 10.
  • Said microporous adsorbents can be in acid form, that is to say containing hydrogen atoms, or preferably exchanged with alkaline or alkaline-earth cations.
  • zeolites with structural type zeolites LTA, such as those described in patent US-A-2 882 243, preferably zeolite A.
  • structural type zeolites LTA such as those described in patent US-A-2 882 243, preferably zeolite A.
  • these zeolites In most of their exchanged cationic forms, in particular in the calcium form, these zeolites have a pore diameter of the order of 5 ⁇ and have strong capacities to adsorb linear paraffins.
  • zeolitic adsorbents having a structure as defined above, they can make it possible to accentuate the separation of the elution fronts and therefore make it possible to obtain better purity in each of the enriched streams obtained.
  • the zeolitic adsorbents used in the process of the invention are structural type EUO, NES and MWW zeolites.
  • Examples of zeolites included in these families are the zeolites EU-1 (EP-A-42 226), ZSM-50 (US-A-4 640 829), TPZ-3 (US-A-4 695 667), NU-87 (EP-A-378 916), SSZ-37 (US-A-5 254 514), MCM-22, ERB-1 (EP-A-293 032), ITQ-1 (US-A-004 941), PSH-3 (US-A-4 439 409), and SSZ-25 (EP-A-231 860).
  • the NU-85 zeolites US-A-5,385,718 and EP-A-462,745) and NU-86 (EP-A-463,768), which have no specific structural type, are also advantageously used in the method of the invention.
  • EUO structural type zeolites (EU-1, ZSM-50, TPZ-3) have a one-dimensional porous network.
  • the main channels have openings of 10 MR, and they are provided with side pockets corresponding to an opening of 12 MR.
  • NES structural type zeolites (NU-87 and SSZ-37) have a two-dimensional network interconnected. They have 10 MR channels in one direction, interconnected by porous segments of 12 MR, perpendicular to the channels of 10 MR. 12 MR canals are therefore only accessible via the 10 MR channels.
  • NU-85 zeolite is an intergrowth of the NU-87 zeolites and EU-1: each crystal of NU-85 includes discrete bands of NU-87 and EU-1, said bands practically presenting between them a continuity of the crystal lattice.
  • the NU-86 zeolite has a three-dimensional porous network. In one of the dimensions are channels with 11 oxygen atoms (11 MR). In the other two dimensions are channels with 12 oxygen atoms with restrictions at 10. Channels with 12 MR are only accessible only by the channels at 10 MR.
  • MWW structural type zeolites (MCM-22, ERB-1, ITQ-1, PSH-3, SSZ-25) have a network two-dimensional non-interconnected.
  • One of the porous networks consists of channels of 10 MR, and the second of 12 MR channels linked together by 10 MR channels, in such a way that access to the 12 MR channels can only take place through the 10 MR channels.
  • Any other zeolitic adsorbent having main channels whose opening is defined by a ring with 10 oxygen atoms and secondary channels whose opening is defined by a ring with more than 12 oxygen atoms, the secondary channels being accessible to the load to be separated only by the main channels, suitable for implementation of the method of the invention.
  • the separation section or sections by adsorption using one or more adsorbents separate the multibranched paraffins from the normal and monobranched paraffins, the normal and monobranched paraffins then being recycled.
  • the separation section can be arranged upstream or downstream of the hydro-isomerization section.
  • the separation section integrated into the process of the present invention can use the separation techniques by adsorption well known to those skilled in the art such as PSA (Pressure Swing Adsorption), TSA (Temperature Swing Adsorption), and methods chromatography (elution chromatography or simulated counter-current for example) or result from a combination of these techniques.
  • the separation section can operate both in the liquid phase and in the gas phase.
  • generally several separation units are used in parallel and alternately to lead to a section operating continuously while by its nature it is discontinuous.
  • the operating conditions of the separation section depend on the adsorbent (s) considered, as well as the degree of purity in each of the desired flows. They are included between 50 ° C and 450 ° C for the temperature and from 0.01 to 7 MPa for the pressure. More specifically, if the separation is carried out in the liquid phase, the separation conditions are: 50 ° C to 250 ° C for temperature and 0.1 to 7 MPa, preferably 0.5 to 5 MPa, for pressure. If said separation is carried out in the gas phase, these conditions are: 150 ° C. at 450 ° C for temperature and 0.01 to 7 MPa, preferably 0.1 to 5 MPa, for pressure.
  • the hydro-isomerization section 2 comprises at least one reactor.
  • the separation section 4 operating by adsorption, consisting of at least one unit, produces two streams, a first stream, with a high octane number, rich in di- and tribranched paraffins, possibly in naphthenes and aromatics (stream 8 for the variant 1a and 18 for variant 1b), which constitutes a petroleum base with a high octane number and can be sent to the petrol pool, a second stream rich in linear and monobranched paraffins which is recycled (7 for variant 1a and 9 for the variant 1b) at the entrance to the hydro-isomerization section 2.
  • regenerable is meant both the first introduction and the reintroduction into the hydro-isomerization section of linear and monobranched paraffins, as explained below below that said separation section is arranged upstream or downstream of the hydroisomerization section.
  • the hydro-isomerization section 2 precedes the separation section 4 whereas it is the reverse in variant 1b. Consequently in variant 1a, only the linear and monobranched paraffins are recycled to the hydro-isomerization section (stream 7).
  • variant 1b all of the effluent 10 from the hydro-isomerization section 2 is recycled to the separation section 4. Said effluent therefore contains linear, monobranch and multibranch paraffins.
  • the process for recycling linear and monobranched paraffins can optionally comprise a deisopentanizer, disposed upstream or downstream of the hydro-isomerization and / or separation sections. It can in particular be placed on the load 1, between the separation and hydro-isomerization sections (flow 6 and 9) or on the recycled flows 7 and 10.
  • the isopentane can indeed be eliminated insofar as it does not is not isomerized to a higher degree of connection under the operating conditions of the hydro-isomerization section.
  • Isopentane, pentane or the mixture of these two bodies thus removed from the charge can advantageously serve as an eluent for the separation section. Isopentane can also possibly be sent directly to the petrol pool due to its good index octane.
  • a deisohexanizer can optionally be placed on at least any one of streams 1, 6, 7, 9 or 10 ( Figures 1A and 1B).
  • the isohexane thus recovered can serve as an eluent for the section separation by adsorption.
  • isohexane is not sent to the petrol pool due to its too low octane number and must therefore be separated from streams 8 or 18 high octane number.
  • the separation section it may be advantageous to prepare, by distillation of the charge, one or more several light fractions, which can serve as eluent for the separation section.
  • This use of part of the load in the separation section is a very good integration of said separation section.
  • this section can also use other compounds.
  • light paraffins such as butane and isobutane can be advantageously used because they are easily separable from paraffins more heavy by distillation.
  • the separation section is arranged upstream of the hydro-isomerization section (variant 1b)
  • the quantity of naphthenic and aromatic compounds crossing the section hydroisomerization is less than in the reverse configuration (variant 1a). This limits the saturation of the aromatic compounds contained in sections C5 to C8 resulting in a lower consumption of hydrogen in the hydro-isomerization section.
  • the volumes of the flows passing through the hydro-isomerization section are reduced by compared to variant 1a, which allows a reduction in the size of this section, and a minimization of the amount of catalyst required.
  • the hydro-isomerization reaction is carried out in at least two separate sections, each comprising at minus one reactor (sections 2 and 3).
  • the load is divided into three flows in at least one separation section operating by adsorption (sections 4 and possibly 5), comprising at least one unit, to lead to the production of a first stream rich in di- and tribranched, possibly in naphthenes and aromatics, of a second stream rich in linear paraffins and a third stream rich in monobranched paraffins.
  • the rich effluent in linear paraffins is recycled to the hydro-isomerization section 2 and the effluent rich in monobranched paraffins is recycled to the hydro-isomerization section 3.
  • a first embodiment (2.1) of the second version of the method all of the effluent leaving the first hydro-isomerization section 2 is sent to the second hydro-isomerization section 3.
  • This embodiment has two variants in which the separation section, composed of one or possibly of several units, is located downstream (variant 2.1a) or upstream (variant 2.1b) of the hydro-isomerization section.
  • the fresh charge (flow 1) containing linear paraffins, monobranches and multibranches, as well as naphthenic and aromatic compounds, is mixed with the recycling of linear paraffins from separation section 4 (flow 30).
  • the resulting mixture 33 is sent to the first hydro-isomerization section 2 which converts part of the linear paraffins into monobranched paraffins and part of the monobranched paraffins into multibranched paraffins.
  • the effluent (flow 6) leaving the hydro-isomerization section 2 is mixed with recycling 39, rich in paraffins monobranched and coming from the separation section 4, then the mixture is sent to the hydro-isomerization section 3.
  • the effluent 37 from section 3 is sent to the section for separation 4.
  • a separation process in three streams is implemented to lead to the production of three effluents rich either in linear paraffins (30) or in monobranched paraffins (39), or multibranched paraffins, naphthenic compounds and aromatic (8).
  • the effluent (8) rich in multibranched paraffins as well as in compounds naphthenic and aromatic has a high octane number, it constitutes a petrol base with a high octane number and can be sent to the petrol pool.
  • the process of the invention leads the production of a gasoline rich in multibranched paraffins with a high octane number.
  • the fresh charge (stream 1) containing linear, monobranched and multibranched paraffins, naphthenes and aromatic compounds is mixed with stream 14 from the hydro-isomerization section 3, then the resulting mixture 23 is sent to the separation section 4 in which the charge is divided into three streams leading to the production of three effluents rich in either linear paraffins (11), monobranched paraffins (12), or multibranched paraffins, naphthenic and aromatic compounds (18).
  • the effluent (11) rich in linear paraffins is sent to the hydroisomerization section 2.
  • the effluent (18) rich in multibranched paraffins as well as in naphthenic and aromatic compounds has a high octane number.
  • Said effluent (18) therefore constitutes a gasoline base with a high octane number and can be sent to the gasoline pool.
  • the hydroisomerization section 2 converts part of the linear paraffins into monobranched paraffins and into multibranched paraffins.
  • the stream rich in monobranched paraffins (12) from the separation section 4 is added.
  • the assembly is sent to the second hydroisomerization section 3 (fig. 2.1 B).
  • the separation section made up of one or more units, is arranged upstream of the hydro-isomerization section (variant 2.1b), the quantity of naphthenic compounds and aromatics crossing the hydro-isomerization section is less than in the configuration reverse (variant 2.1a). This limits the saturation of the aromatic compounds contained in the C5-C8 cut or in intermediate cuts, resulting in lower consumption of hydrogen in the process.
  • the method according to the invention in its mode of implementation 2.1 may possibly include a deisopentanizer disposed upstream or downstream of the hydro-isomerization and / or separation.
  • this deisopentanizer can be placed on flow 1 (load), between the two hydro-isomerization sections (flow 6 for variant 2.1a and flow 13 for variant 2.1b), after the hydro-isomerization section (flow 37 or 14), after the separation section on the stream rich in monobranched paraffins (stream 39 or 12).
  • isopentane can possibly here again be eliminated as far as it is not isomerized to a degree of higher connection under the operating conditions of the hydro-isomerization section.
  • Isopentane can optionally be used as an eluent for the separation section. he can also be sent directly to the petrol pool because of its voucher octane number. It may be advantageous to place a depentanizer on at minus any of flows 1, 6, 37, 30 (fig. 2.1A) or 1, 11, 13 and 14 (fig. 2.1B). The combination of a deisopentanizer and a depentanizer is also optionally possible.
  • pentane or the mixture of pentane and isopentane thus separated can optionally serve as an eluent for the adsorption separation section.
  • pentane cannot be sent to the gasoline pool because of its low octane number. he must therefore be separated from streams 8 and 18 of high octane.
  • a deisohexanizer can optionally be placed on at least one of streams 1, 6, 37, 39 for the variant 2.1a (fig. 2.1A) and 1, 13, 14 and 12 for variant 2.1b (fig. 2.1B).
  • Isohexane as well recovered can be used as eluent for the adsorption separation section. Isohexane cannot however not be sent to the petrol pool due to its too low octane number and must therefore be separated from streams 8 and 18 (fig. 2.1A and 2.1B) of high octane number.
  • one or more light fractions by distillation of the feed which can serve as an eluent for the separation section.
  • These uses of part of the load in the separation section constitute a very good integration of said separation section.
  • this section can also use other compounds.
  • light paraffins such as butane and isobutane are advantageous since they are easily separable from heavier paraffins by distillation.
  • a second embodiment (2.2) of version 2 of the method of the invention is such that the effluents from hydro-isomerization sections 2 and 3 are sent to the section (s) separation 4 and 5.
  • This embodiment can be divided into four variants 2.2a, 2.2b, 2.2c and 2.2d.
  • Variants 2.2a and 2.2b correspond to the case where the process includes at least two separation sections to perform two types of separation that is to say to separate the linear paraffins and the monobranched paraffins in two separate sections.
  • the section separation can consist of one or more units.
  • Variants 2.2a, 2.2b, 2.2c and 2.2d present an optimization in the assembly of the separation and hydro-isomerization sections since they make it possible in particular to avoid the mixing of flows with high indices octane with the low index charge.
  • Variant 2.2a has the following steps: The fresh charge (flow 1, FIG. 2.2A) containing linear, monobranched and multibranched paraffins, naphthenes and aromatic compounds is mixed with the effluent (36) rich in linear paraffins coming from the separation section 4, then the resulting mixture 33 is sent to the hydroisomerization section 2 which converts part of the linear paraffins into monobranched paraffins and part of the monobranched paraffins into multibranched paraffins. The assembly leaving the hydro-isomerization section 2 is sent to the separation section 4. Said separation section 4 leads to the production of two effluents respectively rich in linear paraffins (36) and in monobranched, multibranched, compound paraffins naphthenic and aromatic (35).
  • the effluent (35) is mixed with the stream (12) rich in monobranched paraffins from the separation section 5, then sent to the hydroisomerization section 3.
  • the hydro-isomerization section 3 converts part of the monobranched paraffins into multibranched paraffins.
  • the assembly (stream 31) leaving the hydro-isomerization section 3 is sent to the separation section 5.
  • a process for separation into two streams is implemented to lead to the production of two effluents, one rich in monobranched paraffins (12), the other rich in multibranched paraffins (8).
  • Effluent 8 (fig. 2.2A) rich in di- and tribranched paraffins as well as naphthenic and aromatic compounds has a high octane number, it constitutes a gasoline base with high octane number and can be sent to the pool petrol.
  • Variant 2.2b differs from variant 2.2a in that the separation sections 4 and 5 (fig. 2.2B) are placed before the hydroisomerization sections 2 and 3. In this configuration, the charge 1 is mixed with the effluent (17) from the hydro-isomerization section 2, then the resulting mixture (23) is sent to separation section 4. Said section produces two fluxes respectively rich in linear paraffins (16) and in monobranched paraffins and multi-branch (32).
  • the flow (16) is sent to the hydro-isomerization section 2 to produce the effluent (17).
  • the effluent (32) is mixed with the stream (15) from the hydro-isomerization section 3, then the mixture is sent to separation section 5.
  • Said section produces two effluents, one rich in monobranched paraffins (34), which is sent to the hydro-isomerization section 3, the other rich in multibranched paraffins, naphthenic and aromatic compounds (18), which has a high octane number and constitutes a high octane gasoline base.
  • the effluent (18) can therefore be sent to the petrol pool.
  • the separation section 4 consists of one or more several units, and is located between two hydro-isomerization sections (2 and 3).
  • the charge 1 is mixed with the effluent rich in linear paraffins from the separation section 4, and the resulting mixture 33 is sent to the hydro-isomerization section 2.
  • This effluent (19) is mixed with the effluent (22) from the hydro-isomerization section 3, then the assembly is sent to the separation section 4.
  • This section produces three streams (20, 21 and 28).
  • the stream (21) rich in monobranched paraffins is sent to the hydro-isomerization section 3 which converts these paraffins into higher degrees of branching.
  • the effluent (28, fig. 2.2C)) can therefore be sent to the petrol pool.
  • the separation section which consists of one or more several units, is placed upstream of the two hydro-isomerization sections.
  • the load 1 is mixed with the recycled flows (25) and (27) from hydro-isomerization sections 2 and 3 respectively.
  • the resulting stream (23) is sent to the separation section 4.
  • the flow (24), rich in linear paraffins, is sent to the hydro-isomerization section 2 which converts these paraffins in higher degrees of branching.
  • the flux (26) rich in paraffins monobranched is sent to the hydro-isomerization section 3 which also converts these paraffins in higher degrees of branching.
  • the stream (38) rich in paraffins multibranches, aromatic and naphthenic compounds, has a high octane number and constitutes a petroleum base with a high octane number.
  • the effluent (38, fig. 2.2D) can therefore be sent to the petrol pool.
  • the advantages of the implementation mode 2.2 are multiple. It allows, as for the mode of implementation 2.1, to operate the reactors of the hydro-isomerization sections at different temperatures and different VVH so as to minimize the cracking of di- and tribranched paraffins. It also leads to minimizing the amount of catalyst by recycling to the hydroisomerization section 2 only the linear paraffins, which allows you to work at a higher temperature and therefore minimize the amount of catalyst in this section.
  • the hydroisomerization section 3 mainly supplied with monobranched paraffins for 2.2b, c and d and in mono and multibranched paraffins for 2.2a, operates at a lower temperature, which improves the yield of di- and tribranchées because of the more favorable thermodynamic equilibrium under these conditions, while limiting the cracking of multi-branched paraffins, disadvantaged at low temperatures.
  • This configuration (with the exception of variant 2.2d) also makes it possible to avoid mixing the flows with high octane numbers with low index fluxes.
  • recycling flows (36, fig. 2.2A) and (20, fig. 2.2C) rich in linear paraffins are mixed with the filler 1.
  • the flow 12 rich in monobranched paraffins is mixed with the stream (35) rich in paraffins monobranches and multibranches.
  • the flows (15) and (22) from the hydro-isomerization sections 3 are respectively mixed with the streams (32) and (19) of higher octane number to that of the load.
  • the arrangement of the separation sections 4 and optionally 5 with respect to the hydro-isomerization sections 2 and 3 is such that the quantity of naphthenic and aromatic compounds crossing the hydro-isomerization section is less than in configuration 2.2a. This limits the saturation of aromatic compounds contained in section C5-C8 or in intermediate sections where consumption less hydrogen in the process.
  • the arrangement of the separation section 4 with respect to the hydro-isomerization section 3 makes it possible to reduce the hydrogen consumption in the latter.
  • the method according to embodiment 2.2 may optionally include a deisopentanizer located upstream or downstream of the separation and hydroisomerization sections.
  • this deisopentanizer can be placed on the feed stream 1, on any of the feeds 1, 6, 35, 40, 31, 12 (fig. 2.2A), on any of the flows 1, 32, 34, 15, 17 (fig. 2.2B), on one any of flows 19, 21, 22 (fig 2.2C) and on any of flows 23, 25, 26 and 27 (fig 2.2D).
  • a depentaniser on one any of flows 1, 6 and 36 (variant 2.2a) or 1, 16 and 17 (variant 2.2b), 1, 19 and 20 (variant 2.2c) or 1, 23, 24, 25 (variant 2.2d).
  • the combination of a deisopentanizer and a depentanizer is also possible.
  • Isopentane, pentane or mixture of pentane and isopentane thus separated can optionally serve as eluent for the separation section by adsorption.
  • the pentane is not sent to the pool gasoline due to its low octane number. It is therefore preferably separated from streams 8, 18, 28 and 38 (fig. 2.1A and 2.1B) of high octane numbers.
  • Isopentane on the contrary, is preferentially sent to the petrol pool with flows 8, 18, 28 and 38 due to its good octane number.
  • a deisohexanizer can optionally be placed on any of the flow 1, 6, 35, 40, 31 and 12 (fig. 2.2A) or 1, 32, 34, 15 and 17 (fig. 2.2B) or 19, 21, 22 (fig. 2.2C) or 23, 25, 26 and 27 (fig. 2.2D).
  • the isohexane thus recovered can serve as an eluent for the section separation by adsorption.
  • isohexane is not sent to the pool gasoline due to its too low octane number. It is preferably separated from flows 8, 18, 28 and 38 (fig.
  • each separation section integrated into the process of the invention can be composed of several units, at least one of which contains a zeolitic adsorbent having the characteristics defined above, namely at least the presence of at least two types channels, main channels whose opening is defined by a ring with 10 atoms oxygen (10 MR) and secondary channels whose opening is defined by a ring at at least 12 oxygen atoms (at least 12 MR), said secondary channels being accessible to the load to be separated only by said main channels.
  • the other (s) unit (s) may (may) contain a different adsorbent such as silicalite. It is not no more excluded from mixing in the same unit a zeolitic adsorbent having the characteristics defined previously with another adsorbent such as those used in prior art.
  • the hydro-isomerization of the light sections can be carried out in the gas, liquid or mixed liquid-gas phase in one or more reactors where the catalyst is used in a fixed bed.
  • a catalyst from the family of bifunctional catalysts, such as catalysts based on platinum or of sulphide phase on an acid support (chlorinated alumina, zeolite such as mordenite, SAPO, zeolite Y, zeolite beta) or of the family of acid monofunctional catalysts, such as chlorinated alumina, sulfated zirconia with or without platinum and promoter, heteropolyacids based on phosphorus and tungsten, oxycarbons and molybdenum oxynitrides which are usually classified among monofunctional catalysts of metallic character.
  • bifunctional catalysts such as catalysts based on platinum or of sulphide phase on an acid support (chlorinated alumina, zeolite such as mordenite, SAPO, zeolite Y, zeolite beta)
  • the chlorinated aluminas are preferably used between 80 and 110 ° C. and the platinum-based catalysts on a support containing a zeolite between 260 and 350 ° C.
  • the operating pressure is between 0.01 and 0.7 MPa, and depends on the C5-C6 concentration of the charge, the operating temperature and the H 2 / HC molar ratio.
  • the space velocity, measured in kg of feed per kg of catalyst and per hour, is between 0.5 and 2.
  • the hydro-isomerization section may include one or more reactors arranged in series or in parallel which may contain for example one or more of the catalysts mentioned above.
  • the hydro-isomerization section 2 includes at least one reactor, but may include two or more reactors arranged in series or in parallel.
  • the sections hydroisomerization 2 and 3 can optionally each comprise, for example, two reactors possibly containing two different catalysts. Sections 2 and 3 can optionally also each comprising several reactors in series and / or in parallel, with different catalysts depending on the reactors.
  • each separation section can consist of one or more units allowing overall separation into two or three effluents rich in linear, monobranched and multibranched paraffins, naphthenic compounds and aromatics.
  • each of the separations 4 and / or 5 of any of the variants 2.1a or b, 2.2 a, b, c or d includes at least one separation unit which may be substituted by two or more separation units, arranged in series or in parallel.
  • the method according to the invention leads to the production of a gasoline pool with a high octane number. thanks to the incorporation in its composition of a high octane gasoline base obtained according to the method of the invention.
  • the aromatic compounds and Naphthenics cross all or at least part of the hydro-isomerization section. It may then be necessary to add, immediately upstream of the isomerization section (if there is only one) or from the first isomerization section (if there is more than one), a reactor saturation of aromatic compounds.
  • the criterion adopted for the addition of a saturation could be, for example, an aromatic content in the feed greater than 5% weight.
  • the zeolitic adsorbents studied are the EU-1 zeolites (one-dimensional structure with side pockets) and NU-87 (two-dimensional structure). These zeolites are in their Na + exchanged form, that is to say that each of the crude synthesis zeolites, once calcined, has undergone three successive ionic exchanges in a 1N NaCl solution, at ambient temperature.
  • the EU-1 zeolite has an Si / B ratio equal to 24 and the NU-87 zeolite has a Si / Al ratio equal to 16.
  • the adsorption capacities of EU-1 and NU-87 were measured by gravimetry at different temperatures (100 and 200 ° C) for a partial pressure of 200 mbar of isopentane (iC5) using a SETARAM TAG 24 symmetrical thermobalance. Before each adsorption measurement, the solids are regenerated for 4 hours at 380 ° C. The results are found in Table 1 below: adsorption capacity of EU-1 and NU-87 zeolites Temperature (° C) Mass of iC5 adsorbed (mg.g -1 ) with a partial pressure of iC5 of 200 mbar EU-1 NU-87 100 80.3 92.9 200 49.6 58.8
  • the ratio ⁇ is calculated between the overall resistances of 2MP and 2.2DMB and between the overall resistances of 2MP and nC6 to assess the diffusive selectivity of the EU-1 and NU-87 zeolites in the separation of these three hydrocarbons.
  • ⁇ values have been calculated at 200 ° C for EU-1 and NU-87. These values are noted in Table 3.
  • Silicalite belongs to the structural type MFI and has only 10 MR channels. It is in its Na + exchanged form and has an Si / Al ratio of 250.
  • the EU-1 and Nu-87 have very interesting diffusional selectivities for the separation of hydrocarbons at different degrees of connections.
  • the 2,2DMB does not penetrate at all in the pores of the EU-1 zeolite (Table 2) under the experimental conditions data above, and the selectivity of this zeolite for the separation of 2,2DMB and 2MP is therefore infinite, therefore much greater than that of silicalite.
  • the NU-87 zeolite presents at 200 ° C. better selectivity for the separation of 2.2DMB and 2MP than silicalite, and it also has better selectivity than silicalite for the separation of 2MP and of nC6.
  • the NU-87 and EU-1 zeolites have better adsorption capacity than silicalite and a generally better diffusive selectivity making it possible to guarantee a gain in productivity compared to a separation section of multi-branched paraffins using silicalite and therefore better profitability of the process of the invention combining hydroisomerization and separation by adsorption than another process also combining hydroisomerization and separation by adsorption but with an adsorbent not having the same characteristics as those defined in the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

La présente invention concerne la production d'essence à haut indice d'octane par un procédé associant au moins une section d'hydroisomerisation et au moins une section de séparation par adsorption dans laquelle l'adsorbant est un solide zéolithique microporeux présentant une structure mixte avec des canaux de tailles distinctes.
Plus précisément, le procédé de l'invention permet d'obtenir une base essence à haut indice d'octane qui rentre dans la composition d'un pool essence.
La qualité d'une essence est en partie dépendante de son indice d'octane. Ainsi, du point de vue de l'indice d'octane, il est préférable que les hydrocarbures constituant l'essence soient les plus ramifiés possible comme le montrent les valeurs des indices d'octane recherche (RON) et indice d'octane moteur (MON) de différents composés hydrocarbonés (tableau ci-dessous).
Paraffines nC8 nC7 mono C7 mono C6 di C6 di C5 tri C4 tri C5
RON < 0 0 21-27 42-52 55-76 80-93 112 100-109
MON < 0 0 23-39 23-39 56-82 84-95 101 96-100
Pour augmenter l'indice d'octane d'une essence, plusieurs techniques ont déjà été proposées. Dans un premier temps, les composés aromatiques, constituants principaux des essences de réformage, les isoparaffines produites par alkylation aliphatique ou isomérisation d'essences légères ont compensé la perte d'indice d'octane résultant de la suppression du plomb dans les essences, cette suppression étant due à la prise en compte de contraintes environnementales toujours plus drastiques. Par la suite, des composés oxygénés tels que le Méthyl Tertiobutyl Ether (MTBE) ou l'Ethyl Tertiobutyl Ether (ETBE) ont été introduits dans les carburants. Plus récemment, la toxicité reconnue de composés tels que les aromatiques, en particulier le benzène, les oléfines et les composés soufrés, ainsi que la volonté de diminuer la pression de vapeur des essences, ont entraíné la production d'essences reformulées. Par exemple, depuis le premier janvier 2000, les teneurs maximales en oléfines, composés aromatiques totaux et benzène dans les essences distribuées en France sont respectivement de 18 % vol., 42 % vol. et 1 % vol.
Les pools essences comprennent plusieurs composants. Les composants majoritaires sont l'essence de reformage, qui comprend habituellement entre 60 et 80% vol. de composés aromatiques, et les essences de FCC qui contiennent typiquement 35% vol. d'aromatiques mais apportent la majorité des composés oléfiniques et soufrés présents dans les pools essences. Les autres composants peuvent être les alkylats, sans composés aromatiques ni oléfiniques, les essences légères isomérisées ou non isomérisées, qui ne contiennent pas de composés insaturés, les composés oxygénés tels le MTBE, et des butanes. Dans la mesure où les teneurs en aromatiques ne sont pas réduites en dessous de 35-40% vol., la contribution des réformats dans les pools essences restera importante, typiquement 40% vol. A l'inverse, une sévérisation accrue de la teneur maximale admissible en composés aromatiques à 20-25% vol. entraínera une diminution de l'utilisation du reformage, et par voie de conséquence la nécessité de valoriser les coupes C7-C10 de distillation directe par d'autres voies que le reformage.
Dans cette optique, la production d'isomères multibranchés à partir des heptanes et octanes faiblement branchés contenus dans les naphtas, au lieu de la production de toluène et de xylènes à partir de ces mêmes composés, apparaít comme une voie extrêmement prometteuse. Ceci justifie la recherche de systèmes catalytiques performants en isomérisation des heptanes (également appelée hydro-isomérisation lorsqu'elle est effectuée en présence d'hydrogène), des octanes et plus généralement des coupes C5-C8 et des coupes intermédiaires ainsi que la recherche de procédés permettant de recycler sélectivement à l'isomérisation (hydro-isomérisation) les composés de faible indice d'octane que sont les paraffines linéaires et monobranchées.
Afin de recycler sélectivement à l'hydroisomérisation les paraffines linéaires et monobranchées et de récupérer les paraffines multibranchées, à indice d'octane élevé, pour les introduire dans la composition d'un pool essence, il est nécessaire de procéder au moins à la séparation des paraffines multibranchées. Ainsi une unité de séparation, produisant au moins deux effluents distincts, l'un à indice d'octane élevé et l'autre de faible indice d'octane, et intégrée dans un procédé comprenant également au moins une unité d'hydroisomérisation permet d'effectuer le recyclage de l'effluent à faible indice d'octane vers l'unité d'hydroisomérisation, laquelle convertit les paraffines linéaires et monobranchées de faible indice d'octane en paraffines multibranchées à indice d'octane élevé.
La difficulté principale de mise en oeuvre d'un tel procédé, associant des étapes d'hydroisomérisation et de séparation, est la séparation des paraffines multibranchées.
Etat de la technique antérieure
Les techniques de séparation par adsorption, utilisant des tamis moléculaires sélectifs grâce à la dimension des pores accessibles, sont particulièrement adaptées à la séparation des paraffines linéaires, monobranchées et multibranchées. Les procédés de séparation par adsorption conventionnels peuvent résulter de mises en oeuvre de type PSA (Pressure Swing Adsorption), TSA (Temperature Swing Adsorption), chromatographique (chromatographie d'élution ou contre-courant simulé par exemple). Ils peuvent aussi résulter d'une combinaison de ces mises en oeuvre. Ces procédés ont tous en commun de mettre en contact un mélange liquide ou gazeux avec un lit fixe d'adsorbant afin d'éliminer certains constituants du mélange qui peuvent être adsorbés. La désorption peut être réalisée par différents moyens. Ainsi, la caractéristique commune de la famille des PSA est d'effectuer la régénération du lit par dépressurisation et dans certains cas par balayage à basse pression. Les procédés de type PSA sont décrits dans le brevet US-3-430 418 ou dans l'ouvrage plus général de Yang (« gas separation by adsorption processes », Butterworth Publishers, US, 1987). En général, les procédés de type PSA sont opérés de façon séquentielle et en utilisant alternativement tous les lits d'adsorption. Ces PSA ont remporté de nombreux succès dans le domaine du gaz naturel, de la séparation des composés de l'air, de la production de solvant et dans différents secteurs du raffinage.
Les procédés TSA qui utilisent la température comme force motrice de désorption sont les premiers à avoir été développés en adsorption. Le chauffage du lit à régénérer est assuré par une circulation de gaz préchauffé, en boucle ouverte ou fermée, en sens inverse de celui de l'étape d'adsorption. De nombreuses variantes de schémas (« gas separation by adsorption processes », Butterworth Publishers, US, 1987) sont utilisées en fonction des contraintes locales et de la nature du gaz employé. Cette technique de mise en oeuvre est généralement utilisée dans les procédés de purification (séchage, désulfuration de gaz et liquides, purification du gaz naturel ; US-4-770 676).
La chromatographie en phase gazeuse ou en phase liquide est une technique de séparation très efficace grâce à la mise en oeuvre d'un très grand nombre d'étages théoriques (BE 891 522, Seko M., Miyake J., Inada K.; Ind. Eng. Chem. Prod. Res. Develop.,1979, 18, 263). Elle permet ainsi de tirer partie de sélectivités d'adsorption relativement faibles et de réaliser des séparations difficiles. Ces procédés sont fortement concurrencés par les procédés continus à lit mobile simulé ou contre courant simulé. Ces derniers ont connu un très fort développement dans le domaine pétrolier (US-A-3,636,121, US-A-3,997,620 et US-A-6,069,289). La régénération de l'adsorbant fait appel à la technique de déplacement par un désorbant qui peut éventuellement être séparé par distillation de l'extrait et du raffinat.
La séparation par adsorption des paraffines linéaires, monobranchées et multibranchées peut être effectuée par deux techniques différentes bien connues de l'homme de l'art : la séparation par différence de thermodynamique d'adsorption, et la séparation par différence de cinétiques d'adsorption des espèces à séparer. Selon la technique utilisée, l'adsorbant choisi aura des diamètres de pores différents. Les zéolithes, composées de canaux, sont des adsorbants de choix pour réaliser la séparation de telles paraffines.
Le terme diamètre de pore est conventionnel pour l'homme du métier. Il est utilisé pour définir de façon fonctionnelle la taille d'un pore en terme de taille de molécule capable d'entrer dans ce pore. Il ne désigne pas la dimension réelle du pore car celle-ci est souvent difficile à déterminer puisque souvent de forme irrégulière (c'est-à-dire non circulaire). D.W. Breck fournit une discussion sur le diamètre de pore effectif dans son livre intitulé Zeolite Molecular Sieves (John Wiley and Sons, New York, 1974) aux pages 633 à 641. Les sections des canaux des zéolithes étant des anneaux d'atomes d'oxygène, on peut également définir la taille des pores des zéolithes par le nombre d'atomes d'oxygène formant la section annulaire des anneaux, désigné par le terme « member rings » ou MR en anglais. Il est par exemple indiqué dans l'« Atlas of Zeolite Structure Types » (W.M. Meier et D.H. Olson, 4ème Edition, 1996) que les zéolithes de type structural FAU ont un réseau de canaux cristallins de 12 MR c'est à dire dont la section est constituée de 12 atomes d'oxygène. Cette définition est bien connue de l'homme de l'art et sera utilisée par la suite.
L'utilisation de procédés de séparation par adsorption pour fractionner des charges contenant des paraffines linéaires, monobranchées et multibranchées est bien connue et de nombreux brevets y font référence. Différents adsorbants sont préconisés dans ces brevets.
Dans le cas de la séparation dite « thermodynamique », l'adsorbant a un diamètre de pores supérieur au diamètre critique des molécules à séparer. Ainsi, quelques brevets décrivent la séparation des paraffines multibranchées des paraffines linéaires et monobranchées par adsorption thermodynamiquement sélective. Le brevet US-A-5 107 052 propose d'adsorber préférentiellement les paraffines multibranchées sur des zéolithes SAPO-5, AIPO-5, SSZ-24, MgAPO-5 ou MAPSO-5. Le brevet US-A-3 706 813 propose le même type de sélectivité sur des zéolithes X ou Y échangées au baryum. Le brevet US-A-6 069 289 propose au contraire d'utiliser des zéolithes ayant des sélectivités inversement proportionnelles au degré de branchement des paraffines, telles que les zéolithes beta, X ou Y échangées avec des cations alcalins ou alcalino-terreux, SAPO-31, MAPO-31. Toutes les zéolithes citées précédemment ont des diamètres de pores de 12 MR.
Dans le cas de la séparation dite « diffusionnelle » , le pouvoir séparateur de l'adsorbant est dû à la différence de cinétique de diffusion des molécules à séparer dans les pores de la zéolithe. Dans le cas de la séparation des paraffines multibranchées des paraffines monobranchées et linéaires, on peut ainsi utiliser le fait que plus le degré de branchement est important, plus le diamètre cinétique de la molécule augmente, et donc plus la cinétique de diffusion est faible. Pour que l'adsorbant puisse avoir un pouvoir de séparation, l'adsorbant doit avoir un diamètre de pore proche de celui des molécules à séparer, ce qui correspond aux zéolithes dont le diamètre des pores est de 10 MR. De nombreux brevets décrivent la séparation des paraffines linéaires, monobranchées et multibranchées par sélectivité diffusionnelle. Les brevets US-A-4 717 784, US-A-4 804 802, US-A-4 855 529 et US-A-4 982 048 utilisent des adsorbants de taille de canaux intermédiaires entre 8 et 10 MR, l'adsorbant préféré étant la ferriérite. Le brevet US-A-4 982 052 préconise l'utilisation de la silicalite. Les brevets US-A-4 956 521, US-A-5 055 633 et US-A-5 055 634 décrivent l'utilisation de zéolithes possédant des pores de section elliptique de dimensions comprises entre 5,0 et 5,5 Å suivant le petit axe et environ 5,5 à 6,0 Å suivant le grand axe, et en particulier la ZSM-5 et sa forme désaluminée, la silicalite, ou de dimensions comprises entre 4.5 et 5,0 Å, et en particulier la ferriérite, la ZSM-23 et la ZSM-11.
EP-A-0 922 748 et EP-A-0 934 996 décrivent des procédés de séparation d'une charge C5-C8 ou d'une charge intermédiaire, en trois affluents respectivement riches en paraffines linéaires, monobranchées et multibranchées.
Les adsorbants zéolithiques proposés pour la séparation diffusionnelle des paraffines multibranchées présentent une structure homogène quant à leur taille de canaux et ne sont composés de canaux que de faible taille (8 à 10 MR), ce qui réduit considérablement leur capacité volumique d'adsorption. Ces matériaux qui pèchent notamment par leur faible capacité d'adsorption ne permettent pas d'obtenir une efficacité optimale de l'unité de séparation. Les performances d'un procédé associant à la fois hydroisomérisation et séparation par adsorption s'en trouvent donc inévitablement entravées.
Résumé de l'invention
La présente invention est basée sur l'utilisation nouvelle d'adsorbants zéolithiques à structure mixte, composée de deux types de canaux de tailles distinctes, dans une section de séparation de paraffines multibranchées comprises dans une charge hydrocarbonée constituée d'une coupe comprise entre C5 et C8 et contenant notamment des paraffines linéaires, monobranchées et multibranchées, ladite section de séparation étant intégrée dans un procédé comprenant également au moins une section d'hydroisomérisation. Ainsi, le procédé de l'invention est tel qu'il comprend au moins une section hydroisomérisation et au moins une section séparation de paraffines multibranchées fonctionnant par adsorption et contenant au moins un adsorbant zéolithique de structure mixte avec des canaux principaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (également appelés 10 MR) et des canaux secondaires dont l'ouverture est définie par un anneau à au moins 12 atomes d'oxygène (12 MR), les canaux à au moins 12 MR n'étant accessibles à la charge à séparer que par les canaux à 10 MR.
Les adsorbants zéolithiques visés par l'invention sont des zéolithes qui appartiennent avantageusement aux types structuraux EUO, NES et MWW. Les zéolithes NU-85 et NU-86 sont également particulièrement adaptées à la mise en oeuvre du procédé de l'invention.
Dans une première version du procédé de l'invention, le procédé comprend au moins une section d'hydroisomérisation et au moins une section de séparation. La section d'hydroisomérisation comprend au moins un réacteur. La section séparation (composée d'une ou de plusieurs unités) produit deux flux, un premier flux riche en paraffines di- et tribranchées, éventuellement en naphtènes et aromatiques qui constitue la base essence à haut indice d'octane et qui est envoyé au pool essence, un second flux riche en paraffines linéaires et monobranchées qui est recyclé à l'entrée de la section d'hydro-isomérisation.
Dans une autre version du procédé de l'invention, le procédé global comprend au moins deux sections d'hydroisomérisation et au moins une section de séparation. La section séparation (composée d'une ou de plusieurs unités) produit trois flux, un premier flux riche en paraffines di- et tribranchées, éventuellement en naphtènes et aromatiques qui constitue une base essence à haut indice d'octane et qui est envoyé au pool essence, un second flux riche en paraffines linéaires qui est recyclé à l'entrée de la première section d'hydroisomérisation et un troisième flux riche en paraffines monobranchées qui est recyclé à l'entrée de la deuxième section. Deux types de mise en oeuvre de cette version du procédé sont préférés : dans la première la totalité de l'effluent de la première section d'hydro-isomérisation traverse la deuxième section, dans la seconde les effluents des sections d'hydro-isomérisation sont envoyés vers la ou les sections de séparation.
Le procédé selon l'invention permet ainsi d'obtenir un pool essence à haut indice d'octane en incorporant dans ledit pool une base essence à haut indice d'octane issue de l'hydroisomérisation de coupes comprises entre C5 et C8, telles que les coupes C5-C8, C5-C6, C5-C7, C6-C8, C6-C7, C7-C8, C7, C8 etc
Intérêt de l'invention
Les adsorbants zéolithiques utilisés dans la section séparation pour la mise en oeuvre du procédé de l'invention présentent des propriétés adsorbantes nettement améliorées par rapport aux adsorbants de l'art antérieur, notamment en ce qui concerne la capacité d'adsorption elle-même. En effet, il a été découvert, de manière surprenante, que l'utilisation d'un adsorbant zéolithique présentant au moins deux types de canaux de tailles distinctes, des canaux principaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène et des canaux secondaires dont l'ouverture est définie par un anneau à au moins 12 atomes d'oxygène, a un effet bénéfique sur les performances d'un procédé de séparation de paraffines multibranchées comprises dans une charge hydrocarbonée constituée d'une coupe comprise entre C5 et C8 et contenant notamment des paraffines linéaires, monobranchées et multibranchée. L'adsorbant zéolithique utilisé dans la section séparation du procédé de l'invention allie une bonne sélectivité à une capacité d'adsorption optimale, permettant notamment d'assurer des gains de productivité par rapport aux adsorbants antérieurs. Il en résulte une meilleure rentabilité du procédé de l'invention par rapport aux autres procédés associant hydroisomérisation et séparation par adsorption avec les adsorbants antérieurs.
Le procédé de l'invention conduit à une amélioration du procédé de séparation associé au procédé d'hydroisomérisation. La combinaison de ces procédés concerne la valorisation des coupes légères comprenant des hydrocarbures paraffiniques, naphténiques, aromatiques et oléfiniques ayant un nombre d'atomes de carbone compris entre 5 et 8, par hydroisomérisation et recyclage des paraffines de faible indice d'octane, c'est-à-dire des paraffines linéaires et monobranchées tandis que les paraffines multibranchées, d'indice d'octane élevé, séparées des paraffines linéaires et monobranchées, constituent une base essence qui est envoyée au pool essence. Ladite base permet d'augmenter l'indice d'octane du pool essence.
Le procédé selon l'invention vise à modifier le paysage de la production d'essence en diminuant la teneur en aromatiques tout en conservant un haut indice d'octane par l'envoi d'une charge constituée par une coupe C5-C8 (par exemple obtenue par distillation directe) ou toute coupe intermédiaire incluse entre C5 et C8, non plus vers des unités de reformage et d'hydro-isomérisation des paraffines C5-C6, mais vers au moins une section d'hydroisomérisation qui convertit les paraffines linéaires (nCx, x=5 à 8) en paraffines branchées et éventuellement les paraffines monobranchées (monoC(x-1)) en paraffines di- et tribranchées (diC(x-2) ou triC(x-3)).
Description détaillée de l'invention
Le procédé de production d'une base essence à haut indice d'octane selon l'invention met en oeuvre au moins une section hydroisomérisation et au moins une section séparation fonctionnant par adsorption et contenant au moins un adsorbant zéolithique. La section séparation intégrée dans le procédé de l'invention est conçue de manière à séparer les paraffines multibranchées des paraffines linéaires et monobranchées, contenues dans une charge constituée d'une coupe comprise entre C5 et C8. Ladite section de séparation de paraffines multibranchées produit ainsi au moins deux effluents, un premier effluent à indice d'octane élevé, riche en paraffines dibranchées, tribranchées et éventuellement en composés naphténiques et/ou aromatiques, et un second effluent à indice d'octane faible et riche en paraffines linéaires et monobranchées. Selon l'invention, les paraffines linéaires et monobranchées sont recyclées vers la section hydroisomérisation de manière à les convertir en des composés ayant un meilleur indice d'octane. Généralement, la section hydroisomérisation convertit les paraffines linéaires en paraffines monobranchées et les paraffines monobranchées en paraffines multibranchées.
Dans tout ce qui suit, on entend par paraffines multibranchées des paraffines présentant au moins deux ramifications. Selon l'invention, les paraffines multibranchées incluent donc les paraffines dibranchées.
Le procédé de l'invention se caractérise en ce que ledit adsorbant, dans la section séparation, présente une structure mixte avec des canaux principaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (également appelés 10 MR) et des canaux secondaires dont l'ouverture est définie par un anneau à au moins 12 atomes d'oxygène (12 MR), les canaux à au moins 12 MR n'étant accessibles que par l'intermédiaire des canaux à 10 MR. On rappelle que les canaux à 10 MR, respectivement à 12 MR, peuvent schématiquement être représentés par une succession continue d'anneaux, chaque anneau étant constitué de 10, respectivement 12, atomes d'oxygène. L'invention n'est nullement limitée à l'utilisation d'un adsorbant zéolithique présentant des canaux ayant un nombre spécifique d'anneaux. En particulier, on ne sort pas du cadre de l'invention si le procédé de séparation de paraffines multibranchées est mis en oeuvre avec un adsorbant présentant des canaux à 10 MR restreints à un seul anneau. Ces adsorbants zéolithiques peuvent présenter une structure mono-, bi- ou tridimensionnelle.
Selon l'invention, l'adsorbant zéolithique adsorbe préférentiellement les paraffines linéaires, dans une moindre mesure les paraffines monobranchées et enfin de façon minoritaire les paraffines multibranchées, les composés naphténiques et aromatiques.
Dans un contexte de réduction de la teneur en aromatiques des essences, la charge traitée dans le procédé selon l'invention est constituée d'une coupe comprise entre C5 et C8 telles que les coupes C5-C8, C5-C6, C5-C7, C6-C8, C6-C7, C7-C8, C7, C8 etc issues de la distillation atmosphérique du pétrole brut, d'une unité de réformage (réformat léger) ou d'une unité de conversion (naphta d'hydrocracking par exemple). Dans la suite du texte, cet ensemble de charges possibles sera désigné par les termes « coupes C5-C8 et coupes intermédiaires ». Elle est composée principalement de paraffines linéaires, monobranchées et multibranchées, de composés naphténiques tels que les diméthylcyclopentanes, de composés aromatiques tels que le benzène ou le toluène et éventuellement de composés oléfiniques.
La charge introduite dans le procédé selon l'invention comprend au moins un alcane qui va être isomérisé pour former au moins un produit de degré de ramification plus important. La charge peut notamment contenir du normal pentane, du 2-méthylbutane, du néopentane, du normal hexane, du 2-méthylpentane, du 3-méthylpentane, du 2,2-diméthylbutane, du 2,3 diméthylbutane, du normal heptane, du 2-méthylhexane, du 3-méthylhexane, du 2,2-diméthylpentane, du 3,3-diméthylpentane, du 2,3-diméthylpentane, du 2,4-diméthylpentane, du 2,2,3-triméthylbutane, du normal octane, du 2-méthylheptane, du 3-méthylheptane, du 4-méthylheptane, du 2,2-diméthylhexane, du 3,3-diméthylhexane du 2,3-diméthylhexane, du 3,4-diméthylhexane, du 2,4-diméthylhexane, du 2,5-diméthylhexane, du 2,2,3-triméthylpentane, du 2,3,3-triméthylpentane, du 2,3,4-triméthylpentane. Dans la mesure où la charge provient des coupes C5-C8 et/ou des coupes intermédiaires obtenues après distillation atmosphérique, elle peut de plus contenir des alcanes cycliques, tels les diméthylcyclopentanes, des hydrocarbures aromatiques (tels que benzène, toluène, xylènes) ainsi que d'autres hydrocarbures C9+ (c'est-à-dire des hydrocarbures contenant au moins 9 atomes de carbone) en quantité moindre. Les charges constituées des coupes C5-C8 et coupes intermédiaires d'origine réformat peuvent de plus contenir des hydrocarbures oléfiniques, en particulier lorsque les unités reformage sont opérées à basse pression.
La teneur en paraffines (P) dépend essentiellement de l'origine de la charge, c'est à dire de son caractère paraffinique ou naphténique et aromatique, parfois mesuré par le paramètre N+A (somme de la teneur en naphtènes (N) et de la teneur en aromatiques (A)), ainsi que de son point initial de distillation, c'est-à-dire de la teneur en C5 et C6 dans la charge. Dans les naphtas d'hydrocracking, riches en composés naphténiques, ou les réformats légers, riches en composés aromatiques, la teneur en paraffines dans la charge sera en général faible, de l'ordre de 30% poids. Dans les coupes C5-C8 et coupes intermédiaires (comme par exemple C5-C6, C5-C7, C6-C8, C6-C7, C7-C8... ) de distillation directe, la teneur en paraffines varie entre 30 et 80% poids, avec une valeur moyenne de 55-60% poids. Conformément à l'invention, le gain en octane est d'autant plus important que la teneur en paraffines de la charge est plus élevée.
Dans le cas d'une charge C5-C8 ou d'une charge composée de coupes intermédiaires issue de la distillation atmosphérique, obtenue par exemple en tête de splitter de naphta, la fraction lourde correspondante du naphta pourra alimenter une section de réformage catalytique. Dans ce cas, l'installation d'une section d'hydro-isomérisation de ces coupes entraínera une diminution du taux de charge de la section de réformage, qui pourra continuer à traiter la fraction lourde C8+ du naphta.
L'effluent de la section d'hydro-isomérisation peut contenir les mêmes types d'hydrocarbures que ceux décrits précédemment, mais leurs proportions respectives dans le mélange conduit à des indices d'octane RON et MON plus élevés que ceux de la charge.
La charge introduite dans le procédé de l'invention et contenant des paraffines comprenant de 5 à 8 atomes de carbone est en général de faible indice d'octane. Le procédé selon l'invention consiste notamment à augmenter l'indice d'octane de ladite charge sans augmenter sa teneur en aromatiques en mettant en oeuvre au moins une section d'hydro-isomérisation et au moins un section séparation fonctionnant par adsorption.
L'indice d'octane de l'effluent du procédé de l'invention varie en fonction de la nature de la charge introduite, et en particulier en fonction de la nature de la coupe. Pour une coupe C5-C6 issue de la distillation du pétrole brut, des valeurs typiques du RON et MON de la base essence en sortie du procédé de l'invention sont de l'ordre respectivement de 93 et 89. Une base essence comprenant dans sa composition une telle base essence présente donc un indice d'octane élevé.
Selon l'invention, la section séparation contient un ou plusieurs adsorbants, au moins un des adsorbants étant un solide zéolithique ayant une structure mixte dont le réseau microporeux présente à la fois des canaux principaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (également appelés 10 MR) et des canaux secondaires dont l'ouverture est définie par un anneau à au moins 12 atomes d'oxygène (12 MR), lesdits canaux principaux et secondaires étant disposés de telle manière que l'accès aux canaux secondaires d'au moins 12 MR ne soit possible que par l'intermédiaire des canaux principaux à 10 MR.
Ces différents adsorbants ont des tailles de canaux telles que chacun des isomères des coupes C5-C8 ou des coupes intermédiaires peut être adsorbé. La cinétique de diffusion de ces isomères dans les canaux à 10 MR est cependant suffisamment différente pour être mise à profit.
Conformément à l'invention, une sélectivité diffusionnelle optimale est obtenue en freinant l'entrée des molécules multibranchées par l'intermédiaire des canaux à 10 MR et une capacité d'adsorption optimale est obtenue par la présence des canaux à au moins 12 MR.
Il va de soi que la section séparation intégrée dans le procédé de l'invention est fondée sur la différence de cinétique d'adsorption des espèces à séparer et exploite ainsi les caractéristiques de la séparation dite « diffusionnelle ».
Les canaux à au moins 12 MR peuvent être soit de simples poches latérales (ou encore appelés par l'homme de l'art « side pockets ») (cf. figure 3) soit former des segments poreux perpendiculaires aux canaux à 10 MR, tels que ces segments ne soient accessibles que par les canaux à 10 MR (cf. figure 4).
Les adsorbants utilisés dans la section séparation pour la mise en oeuvre du procédé selon l'invention contiennent avantageusement du silicium et au moins un élément T choisi dans le groupe formé par l'aluminium, le fer, le gallium et le bore, de préférence l'aluminium et le bore. La teneur en silice de ces adsorbants peut être variable. Les adsorbants les plus adaptés à ce type de séparation sont ceux qui présentent des teneurs en silice élevées. Le rapport molaire Si/T est de préférence au moins égal à 10.
Lesdits adsorbants microporeux peuvent être sous forme acide, c'est à dire contenant des atomes d'hydrogène, ou préférentiellement échangés avec des cations alcalins ou alcalino-terreux.
Il est avantageux de mélanger aux adsorbants zéolithiques des zéolithes de type structural LTA, telles que celles décrites dans le brevet US-A-2 882 243, préférentiellement la zéolithe A. Dans la plupart de leurs formes cationiques échangées, notamment sous la forme calcium, ces zéolithes présentent un diamètre de pore de l'ordre de 5Å et possèdent de fortes capacités pour adsorber les paraffines linéaires. Mélangées avec des adsorbants zéolithiques ayant une structure telle que définie précédemment, elles peuvent permettre d'accentuer la séparation des fronts d'élution et donc permettre d'obtenir une meilleure pureté en chacun des flux enrichis obtenus.
Avantageusement, les adsorbants zéolithiques mis en oeuvre dans le procédé de l'invention sont des zéolithes de type structural EUO, NES et MWW. Des exemples de zéolithes incluses dans ces familles sont les zéolithes EU-1 (EP-A-42 226), ZSM-50 (US-A-4 640 829), TPZ-3 (US-A-4 695 667), NU-87 (EP-A-378 916), SSZ-37 (US-A-5 254 514), MCM-22, ERB-1(EP-A-293 032), ITQ-1 (US-A- 004 941), PSH-3 (US-A-4 439 409), et SSZ-25 (EP-A-231 860). Les zéolithes NU-85 (US-A-5 385 718 et EP-A-462 745) et NU-86 (EP-A-463 768), qui ne possèdent pas de type structural déterminé, sont également avantageusement utilisées dans le procédé de l'invention.
Les zéolithes de type structural EUO (EU-1, ZSM-50, TPZ-3) ont un réseau poreux mono-dimensionnel. Les canaux principaux ont des ouvertures de 10 MR, et ils sont pourvus de poches latérales correspondant à une ouverture de 12 MR.
Les zéolithes du type structural NES (NU-87 et SSZ-37) présentent un réseau bidimensionnel interconnecté. Elles possèdent dans une direction des canaux à 10 MR, reliés entre eux par des segments poreux de 12 MR, perpendiculaires aux canaux à 10 MR. Les canaux à 12 MR ne sont donc accessibles que par les canaux à 10 MR.
Il convient de préciser que la zéolithe NU-85 est une intercroissance des zéolithes NU-87 et EU-1 : chaque cristal de NU-85 comprend des bandes discrètes de NU-87 et EU-1, lesdites bandes présentant pratiquement entre elles une continuité du réseau cristallin.
La zéolithe NU-86 a un réseau poreux tridimensionnel. Dans une des dimensions se trouvent des canaux à 11 atomes d'oxygène (11 MR). Dans les deux autres dimensions se trouvent des canaux à 12 atomes d'oxygène avec des restrictions à 10. Les canaux à 12 MR ne sont accessibles que par les canaux à 10 MR.
Les zéolithes de type structural MWW (MCM-22, ERB-1, ITQ-1, PSH-3, SSZ-25) ont un réseau bidimensionnel non-interconnecté. Un des réseaux poreux est constitué de canaux de 10 MR, et le second de canaux de 12 MR reliés entre eux par des canaux de 10 MR, de telle manière que l'accès aux canaux de 12 MR ne puisse avoir lieu qu'à travers les canaux de 10 MR.
Tout autre adsorbant zéolithique présentant des canaux principaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène et des canaux secondaires dont l'ouverture est définie par un anneau comptant plus de 12 atomes d'oxygène, les canaux secondaires étant accessibles à la charge à séparer uniquement par les canaux principaux, convient pour la mise en oeuvre du procédé de l'invention.
Plusieurs versions et modes de réalisation du procédé sont possibles suivant le nombre et l'agencement des différentes sections d'hydro-isomérisation ou de séparation et des différents recyclages.
Pour toutes les versions et modes de réalisation du procédé selon l'invention, la ou les sections de séparation par adsorption mettant en oeuvre un ou plusieurs adsorbants séparent les paraffines multibranchées des paraffines normales et monobranchées, les paraffines normales et monobranchées étant ensuite recyclées. Selon les variantes du procédé, la section séparation peut être disposée en amont ou en aval de la section d'hydro-isomérisation.
La section séparation intégrée dans le procédé de la présente invention peut utiliser les techniques de séparation par adsorption bien connues de l'homme de l'art telles que le PSA (Pressure Swing Adsorption), le TSA (Temperature Swing Adsorption), et les procédés chromatographiques (chromatographie d'élution ou contre-courant simulé par exemple) ou résulter d'une combinaison de ces techniques. La section séparation peut aussi bien fonctionner en phase liquide qu'en phase gazeuse. De plus, généralement plusieurs unités de séparation (de deux à quinze) sont utilisées en parallèle et alternativement pour conduire à une section fonctionnant de façon continue alors que par nature elle est discontinue.
Les conditions opératoires de la section séparation dépendent du ou des adsorbants considérés, ainsi que du degré de pureté en chacun des flux désiré. Elles sont comprises entre 50°C et 450°C pour la température et de 0,01 à 7 MPa pour la pression. Plus précisément, si la séparation est effectuée en phase liquide, les conditions de séparation sont : 50°C à 250°C pour la température et 0,1 à 7 MPa, de préférence de 0,5 à 5 MPa, pour la pression. Si ladite séparation est effectuée en phase gazeuse, ces conditions sont : 150°C à 450°C pour la température et 0,01 à 7 MPa, de préférence de 0,1 à 5 MPa, pour la pression.
Dans une première version préférée du procédé (figures 1A et 1B pour les variantes 1a et 1b), la section d'hydro-isomérisation 2 comprend au moins un réacteur. La section séparation 4 fonctionnant par adsorption, constituée d'au moins une unité, produit deux flux, un premier flux, à haut indice d'octane, riche en paraffines di- et tribranchées, éventuellement en naphtènes et aromatiques (flux 8 pour la variante 1a et 18 pour la variante 1b), qui constitue une base essence à haut indice d'octane et peut être envoyé au pool essence, un second flux riche en paraffines linéaires et monobranchées qui est recyclé (7 pour la variante 1a et 9 pour la variante 1b) à l'entrée de la section d'hydro-isomérisation 2. Par « recyclé », on entend aussi bien la première introduction que la réintroduction dans la section hydroisomérisation des paraffines linéaires et monobranchées, comme il est explicité ci-dessous suivant que ladite section séparation est disposée en amont ou en aval de la section hydroisomérisation.
Dans la variante 1a, la section hydro-isomérisation 2 précède la section séparation 4 alors que c'est l'inverse dans la variante 1b. En conséquence dans la variante 1a, seules les paraffines linéaires et monobranchées sont recyclées vers la section d'hydro-isomérisation (flux 7). Dans la variante 1b, la totalité de l'effluent 10 de la section d'hydro-isomérisation 2 est recyclée vers la section séparation 4. Ledit effluent contient donc des paraffines linéaires, monobranchées et multibranchées. Les conditions de fonctionnement de cette variante du procédé sont en particulier choisies pour minimiser le craquage des paraffines di- et tribranchées contenant plus de 7 atomes de carbone. De plus, dans le cas où la charge du procédé inclut la coupe C5, le procédé de recyclage des paraffines linéaires et monobranchées peut éventuellement comprendre un déisopentaniseur, disposé en amont ou en aval des sections d'hydro-isomérisation et/ou de séparation. Il peut notamment être placé sur la charge 1, entre les sections séparation et hydro-isomérisation (flux 6 et 9) ou sur les flux recyclés 7 et 10. De préférence, l'isopentane peut en effet être éliminé dans la mesure où il n'est pas isomérisé en un degré de branchement plus élevé dans les conditions de fonctionnement de la section hydro-isomérisation.
Il peut ainsi être éventuellement intéressant d'ajouter un dépentaniseur ou la combinaison d'un dépentaniseur et d'un déisopentaniseur sur au moins l'un quelconque des flux 1, 6, 9, 7 ou 10. L'isopentane, le pentane ou le mélange de ces deux corps ainsi retirés de la charge, peuvent avantageusement servir d'éluant pour la section séparation. L'isopentane peut aussi éventuellement être envoyé directement vers le pool essence du fait de son bon indice d'octane.
De la même façon, lorsque la coupe ne contient pas de C5 mais contient des C6, un déisohexaniseur peut éventuellement être placé sur au moins l'un quelconque des flux 1, 6, 7, 9 ou 10 (figures 1A et 1B). L'isohexane ainsi récupéré peut servir d'éluant pour la section séparation par adsorption. De préférence, l'isohexane n'est pas envoyé vers le pool essence du fait de son indice d'octane trop faible et doit en conséquence être séparé des flux 8 ou 18 de haut indice d'octane.
D'une façon générale, il peut être intéressant de préparer par distillation de la charge une ou plusieurs fractions légères, qui peuvent servir d'éluant pour la section de séparation. Cette utilisation d'une partie de la charge dans la section de séparation constitue une très bonne intégration de ladite section séparation. Toutefois cette section peut aussi utiliser d'autres composés. En particulier, les paraffines légères telles que le butane et l'isobutane peuvent être avantageusement utilisées, car elles sont aisément séparables des paraffines plus lourdes par distillation.
Enfin, lorsque la section séparation est disposée en amont de la section d'hydro-isomérisation (variante 1b), la quantité de composés naphténiques et aromatiques traversant la section d'hydroisomérisation est moindre que dans la configuration inverse (variante 1a). Ceci limite la saturation des composés aromatiques contenus dans les coupes C5 à C8 d'où une consommation moindre d'hydrogène dans la section d'hydro-isomérisation. De plus, dans la variante 1b, les volumes des flux traversant la section d'hydro-isomérisation sont diminués par rapport à la variante 1a, ce qui permet une réduction de la taille de cette section, et une minimisation de la quantité de catalyseur nécessaire.
Dans une seconde version préférée du procédé (figures 2.1A, 2.1B, 2.2A, 2.2B, 2.2C, 2.2D modes de réalisation 2.1 et 2.2; variantes 2.1a et b ; 2.2 a, b, c et d), la réaction d'hydro-isomérisation est réalisée en au moins deux sections distinctes, comprenant chacune au moins un réacteur (sections 2 et 3). La charge est fractionnée en trois flux dans au moins une section séparation fonctionnant par adsorption (sections 4 et éventuellement 5), comprenant au moins une unité, pour conduire à la production d'un premier flux riche en paraffines di- et tribranchées, éventuellement en naphtènes et aromatiques, d'un second flux riche en paraffines linéaires et d'un troisième flux riche en paraffines monobranchées. L'effluent riche en paraffines linéaires est recyclé vers la section d'hydro-isomérisation 2 et l'effluent riche en paraffines monobranchées est recyclé vers la section d'hydro-isomérisation 3.
Dans un premier mode de réalisation (2.1) de la deuxième version du procédé, la totalité de l'effluent sortant de la première section d'hydro-isomérisation 2 est envoyée à la deuxième section d'hydro-isomérisation 3. Ce mode de réalisation comporte deux variantes dans lesquelles la section séparation, composée d'une ou éventuellement de plusieurs unités, est située en aval (variante 2.1a) ou en amont (variante 2.1b) de la section d'hydro-isomérisation.
Dans la variante 2.1a (fig 2.1A), la charge fraíche (flux 1) contenant des paraffines linéaires, monobranchées et multibranchées, ainsi que des composés naphténiques et aromatiques, est mélangée au recyclage des paraffines linéaires en provenance de la section de séparation 4 (flux 30). Le mélange résultant 33 est envoyé à la première section d'hydro-isomérisation 2 qui convertit une partie des paraffines linéaires en paraffines monobranchées et une partie des paraffines monobranchées en paraffines multibranchées. L'effluent (flux 6) sortant de la section d'hydro-isomérisation 2 est mélangé au recyclage 39, riche en paraffines monobranchées et en provenance de la section de séparation 4, puis le mélange est envoyé à la section d'hydro-isomérisation 3. L'effluent 37 de la section 3 est envoyé à la section de séparation 4. Dans cette section 4, un procédé de séparation en trois flux est mis en oeuvre pour conduire à la production de trois effluents riches soit en paraffines linéaires (30), soit en paraffines monobranchées (39), soit en paraffines multibranchées, composés naphténiques et aromatiques (8). L'effluent (8) riche en paraffines multibranchées ainsi qu'en composés naphténiques et aromatiques présente un indice d'octane élevé, il constitue une base essence à haut indice d'octane et peut être envoyé au pool essence. Le procédé de l'invention conduit à la production d'une essence riche en paraffines multibranchées d'indice d'octane élevé.
Dans la variante 2.1b (fig. 2.1B), la charge fraíche (flux 1) contenant des paraffines linéaires, monobranchées et multibranchées, naphtènes et composés aromatiques est mélangée au flux 14 issu de la section d'hydro-isomérisation 3, puis le mélange résultant 23 est envoyé dans la section de séparation 4 dans laquelle la charge est fractionnée en trois flux conduisant à la production de trois effluents riches, soit en paraffines linéaires (11), soit en paraffines monobranchées (12), soit en paraffines multibranchées, composés naphténiques et aromatiques (18). L'effluent (11) riche en paraffines linéaires est envoyé à la section d'hydroisomérisation 2. L'effluent (18) riche en paraffines multibranchées ainsi qu'en composés naphténiques et aromatiques présente un indice d'octane élevé. Ledit effluent (18) constitue donc une base essence à haut indice d'octane et peut être envoyé au pool essence.
La section d'hydroisomérisation 2 convertit une partie des paraffines linéaires en paraffines monobranchées et en paraffines multibranchées. A l'effluent (13) issu de la section 2, on ajoute le flux riche en paraffines monobranchées (12) en provenance de la section de séparation 4. L'ensemble est envoyé à la deuxième section d'hydroisomérisation 3 (fig. 2.1B).
Les avantages des configurations des variantes 2.1a et 2.1b sont multiples. Ces configurations permettent en effet, de faire fonctionner les deux sections d'hydro-isomérisation 2 et 3 à des températures différentes et des VVH différentes de façon à minimiser le craquage des paraffines dibranchées et tribranchées, ce qui est particulièrement important pour les coupes considérées. Elles permettent de plus de minimiser la quantité de catalyseur dans la section 2 en ne recyclant à cette section que les paraffines linéaires, ce qui permet par ailleurs de travailler à température plus élevée. La section 3, alimentée majoritairement en paraffines monobranchées, opère par contre à plus basse température ce qui améliore le rendement en paraffines di- et tribranchées du fait de l'équilibre thermodynamique plus favorable dans ces conditions, tout en limitant le craquage des paraffines multibranchées, défavorisé aux basses températures.
Lorsque la section séparation, composée d'une ou de plusieurs unités, est disposée en amont de la section d'hydro-isomérisation (variante 2.1b), la quantité de composés naphténiques et aromatiques traversant la section d'hydro-isomérisation est moindre que dans la configuration inverse (variante 2.1a). Ceci limite la saturation des composés aromatiques contenus dans la coupe C5-C8 ou dans les coupes intermédiaires, d'où une consommation moindre d'hydrogène dans le procédé.
Dans le cas où la charge comprend la coupe C5, le procédé selon l'invention dans son mode de réalisation 2.1 (variantes 2.1a et 2.1b) peut éventuellement comprendre un déisopentaniseur disposé en amont ou en aval des sections d'hydro-isomérisation et/ou de séparation. En particulier, ce déisopentaniseur peut être placé sur le flux 1 (charge), entre les deux sections d'hydro-isomérisation (flux 6 pour la variante 2.1a et flux 13 pour la variante 2.1b), après la section d'hydro-isomérisation (flux 37 ou 14), après la section de séparation sur le flux riche en paraffines monobranchées (flux 39 ou 12). De préférence, l'isopentane peut éventuellement ici encore être éliminé dans la mesure où il n'est pas isomérisé en un degré de branchement plus élevé dans les conditions de fonctionnement de la section hydro-isomérisation. L'isopentane peut éventuellement servir d'éluant pour la section séparation. Il peut aussi éventuellement être envoyé directement vers le pool essence du fait de son bon indice d'octane. Il peut éventuellement être intéressant de placer un dépentaniseur sur au moins l'un quelconque des flux 1, 6, 37, 30 (fig. 2.1A) ou 1, 11, 13 et 14 (fig. 2.1B). La combinaison d'un déisopentaniseur et d'un dépentaniseur est également éventuellement possible. Le pentane ou le mélange de pentane et d'isopentane ainsi séparés peuvent éventuellement servir d'éluant pour la section séparation par adsorption. Dans ce dernier cas, le pentane ne peut être envoyé vers le pool essence du fait de son faible indice d'octane. Il doit en conséquence être séparé des flux 8 et 18 d'indice d'octane élevé.
De la même façon, lorsque la coupe ne contient pas de C5 mais contient des C6, un déisohexaniseur peut éventuellement être placé sur au moins l'un des flux 1, 6, 37, 39 pour la variante 2.1a (fig. 2.1A) et 1, 13, 14 et 12 pour la variante 2.1b (fig. 2.1B). L'isohexane ainsi récupéré peut servir d'éluant pour la section séparation par adsorption. L'isohexane ne peut cependant pas être envoyé vers le pool essence du fait de son indice d'octane trop faible et doit en conséquence être séparé des flux 8 et 18 (fig. 2.1A et 2.1B) de haut indice d'octane.
D'une façon générale, il peut être intéressant de préparer par distillation de la charge une ou plusieurs fractions légères, qui peuvent servir d'éluant pour la section séparation.
Ces utilisations d'une partie de la charge dans la section de séparation constituent une très bonne intégration de ladite section séparation. Toutefois cette section peut aussi utiliser d'autres composés. En particulier, les paraffines légères comme le butane et l'isobutane sont intéressantes puisque facilement séparables des paraffines plus lourdes par distillation.
Un second mode de réalisation (2.2) de la version 2 du procédé de l'invention est tel que les effluents des sections d'hydro-isomérisation 2 et 3 sont envoyés vers la ou les sections de séparation 4 et 5. Ce mode de réalisation peut être découpé selon quatre variantes 2.2a, 2.2b, 2.2c et 2.2d. Les variantes 2.2a et 2.2b (fig. 2.2A et 2.2B) correspondent au cas où le procédé comprend au moins deux sections séparation permettant d'effectuer deux types de séparation différents c'est-à-dire de séparer les paraffines linéaires et les paraffines monobranchées dans deux sections distinctes. Dans les variantes 2.2c et 2.2d (fig. 2.2C et 2.2D), la section séparation peut être constituée d'une ou plusieurs unités. Les variantes 2.2a, 2.2b, 2.2c et 2.2d présentent une optimisation dans l'assemblage des sections séparations et hydro-isomérisation puisqu'elles permettent notamment d'éviter le mélange des flux à hauts indices d'octane avec la charge de faible indice.
La variante 2.2a comporte les étapes suivantes :
La charge fraíche (flux 1, figure 2.2A) contenant des paraffines linéaires, monobranchées et multibranchées, naphtènes et composés aromatiques est mélangée à l'effluent (36) riche en paraffines linéaires provenant de la section de séparation 4, puis le mélange résultant 33 est envoyé à la section d'hydroisomérisation 2 qui convertit une partie des paraffines linéaires en paraffines monobranchées et une partie des paraffines monobranchées en paraffines multibranchées. L'ensemble sortant de la section d'hydro-isomérisation 2 est envoyé dans la section de séparation 4. Ladite section de séparation 4 conduit à la production de deux effluents respectivement riches en paraffines linéaires (36) et en paraffines monobranchées, multibranchées, composés naphténiques et aromatiques (35). L'effluent (35) est mélangé au flux (12) riche en paraffines monobranchées issu de la section de séparation 5, puis envoyé à la section d'hydroisomérisation 3. La section d'hydro-isomérisation 3 convertit une partie des paraffines monobranchées en paraffines multibranchées. L'ensemble (flux 31) sortant de la section d'hydro-isomérisation 3 est envoyé dans la section de séparation 5. Dans ladite section, un procédé de séparation en deux flux est mis en oeuvre pour conduire à la production de deux effluents, l'un riche en paraffines monobranchées (12), l'autre riche en paraffines multibranchées (8). L'effluent 8 (fig. 2.2A) riche en paraffines di- et tribranchées ainsi qu'en composés naphténiques et aromatiques présente un haut indice d'octane, il constitue une base essence à haut indice d'octane et peut être envoyé au pool essence.
La variante 2.2b diffère de la variante 2.2a par le fait que les sections de séparation 4 et 5 (fig. 2.2B) sont placées avant les sections d'hydroisomérisation 2 et 3. Dans cette configuration, la charge 1 est mélangée à l'effluent (17) issu de la section d'hydro-isomérisation 2, puis le mélange résultant (23) est envoyé à la section de séparation 4. Ladite section produit deux flux respectivement riches en paraffines linéaires (16) et en paraffines monobranchées et multibranchées (32).
Le flux (16) est envoyé vers la section d'hydro-isomérisation 2 pour produire l'effluent (17). L'effluent (32) est mélangé au flux (15) issu de la section d'hydro-isomérisation 3, puis le mélange est envoyé vers la section de séparation 5. Ladite section produit deux effluents, l'un riche en paraffines monobranchées (34), qui est envoyé vers la section d'hydro-isomérisation 3, l'autre riche en paraffines multibranchées, composés naphténiques et aromatiques (18), qui présente un haut indice d'octane et constitue une base essence à haut indice d'octane. L'effluent (18) peut donc être envoyé au pool essence.
Dans la variante 2.2c (fig. 2.2C) la section de séparation 4 est constituée d'une ou de plusieurs unités, et est située entre deux sections d'hydro-isomérisation (2 et 3). Dans cette configuration, la charge 1 est mélangée à l'effluent riche en paraffines linéaires issu de la section de séparation 4, et le mélange résultant 33 est envoyé vers la section d'hydro-isomérisation 2. Celui-ci produit un effluent (19) d'indice d'octane supérieur à celui de la charge. Cet effluent (19) est mélangé à l'effluent (22) issu de la section d'hydro-isomérisation 3, puis l'ensemble est envoyé vers la section séparation 4. Cette section produit trois flux (20, 21 et 28). Le flux (21) riche en paraffines monobranchées est envoyé vers la section d'hydro-isomérisation 3 qui convertit ces paraffines en des degrés de branchement plus élevés. Le flux (28), riche en paraffines multibranchées, composés naphténiques et aromatiques, présente un haut indice d'octane et constitue une base essence à haut indice d'octane. L'effluent (28, fig. 2.2C)) peut donc être envoyé au pool essence.
Dans la variante 2.2d (fig. 2.2D), la section de séparation qui est constituée d'une ou de plusieurs unités, est placée en amont des deux sections d'hydro-isomérisation. Dans cette configuration, la charge 1 est mélangée avec les flux recyclés (25) et (27) issus respectivement des sections d'hydro-isomérisation 2 et 3. Le flux (23) résultant est envoyé vers la section de séparation 4. Celui-ci produit trois effluents (24), (26) et (38). Le flux (24), riche en paraffines linéaires, est envoyé vers la section d'hydro-isomérisation 2 qui convertit ces paraffines en des degrés de branchement plus élevés. Le flux (26), riche en paraffines monobranchées est envoyé vers la section d'hydro-isomérisation 3 qui convertit également ces paraffines en des degrés de branchement plus élevés. Le flux (38) riche en paraffines multibranchées, composés aromatiques et naphténiques, présente un haut indice d'octane et constitue une base essence à haut indice d'octane. L'effluent (38, fig. 2.2D) peut donc être envoyé au pool essence.
Les avantages du mode de mise en oeuvre 2.2 sont multiples. Elle permet, comme pour le mode de mise en oeuvre 2.1, de faire fonctionner les réacteurs des sections d'hydro-isomérisation à des températures différentes et des VVH différentes de façon à minimiser le craquage des paraffines di- et tribranchées. Elle conduit de plus à minimiser la quantité de catalyseur en recyclant à la section hydroisomérisation 2 uniquement les paraffines linéaires, ce qui permet de travailler à température plus élevée et donc de minimiser la quantité de catalyseur dans cette section. La section d'hydroisomérisation 3, alimentée majoritairement en paraffines monobranchées pour 2.2b, c et d et en paraffines mono et multibranchées pour 2.2a, opère à plus basse température, ce qui améliore le rendement en paraffines di- et tribranchées du fait de l'équilibre thermodynamique plus favorable dans ces conditions, tout en limitant le craquage des paraffines multibranchées, défavorisé aux basses températures. Cette configuration (à l'exception de la variante 2.2d) permet de plus d'éviter le mélange des flux à hauts indices d'octane avec des flux de faible indice. Ainsi, les flux de recyclage (36, fig. 2.2A) et (20, fig. 2.2C) riches en paraffines linéaires sont mélangés avec la charge 1. Le flux 12 riche en paraffines monobranchées est mélangé avec le flux (35) riche en paraffines monobranchées et multibranchées. Enfin, les flux (15) et (22) issus des sections d'hydro-isomérisation 3 sont respectivement mélangés aux flux (32) et (19) d'indice d'octane supérieur à celui de la charge.
Dans les variantes 2.2b et 2.2d (fig. 2.2B et 2.2D), la disposition des sections séparations 4 et éventuellement 5 par rapport aux sections d'hydro-isomérisation 2 et 3 est telle que la quantité de composés naphténiques et aromatiques traversant la section d'hydro-isomérisation est moindre que dans la configuration 2.2a. Ceci limite la saturation des composés aromatiques contenus dans la coupe C5-C8 ou dans les coupes intermédiaires d'où une consommation moindre d'hydrogène dans le procédé. De même, dans la variante 2.2c, la disposition de la section séparation 4 par rapport à la section d'hydro-isomérisation 3 permet de réduire la consommation en hydrogène dans cette dernière.
Comme dans le cas du mode de réalisation 2.1, lorsque la charge comporte une coupe C5, le procédé selon le mode de réalisation 2.2 peut éventuellement comporter un déisopentaniseur situé en amont ou en aval des sections de séparation et d'hydroisomérisation. En particulier, ce déisopentaniseur peut être placé sur le flux 1 de charge, sur l'un quelconque des flux 1, 6, 35, 40, 31, 12 (fig. 2.2A), sur l'un quelconque des flux 1, 32, 34, 15, 17 (fig. 2.2B), sur l'un quelconque des flux 19, 21, 22 (fig 2.2C) et sur l'un quelconque des flux 23, 25, 26 et 27 (fig 2.2D). Il peut aussi être éventuellement intéressant de placer un dépentaniseur sur l'un quelconque des flux 1, 6 et 36 (variante 2.2a) ou 1, 16 et 17 (variante 2.2b), 1, 19 et 20 (variante 2.2c) ou 1, 23, 24, 25 (variante 2.2d). La combinaison d'un déisopentaniseur et d'un dépentaniseur est aussi possible. L'isopentane, le pentane ou le mélange de pentane et d'isopentane ainsi séparés peuvent éventuellement servir d'éluant pour la section séparation par adsorption. Dans ce dernier cas, de préférence le pentane n'est pas envoyé vers le pool essence du fait de son faible indice d'octane. Il est en conséquence de préférence séparé des flux 8, 18, 28 et 38 (fig. 2.1A et 2.1B) de forts indices d'octane. L'isopentane, au contraire, est préférentiellement envoyé vers le pool essence avec les flux 8, 18, 28 et 38 du fait de son bon indice d'octane.
Comme pour le mode de mise en oeuvre 2.1, lorsque la coupe ne contient pas de C5 mais contient des C6, un déisohexaniseur peut éventuellement être placé sur l'un quelconque des flux 1, 6, 35, 40, 31 et 12 (fig. 2.2A) ou 1, 32, 34, 15 et 17 (fig. 2.2B) ou 19, 21, 22 (fig. 2.2C) ou 23, 25, 26 et 27 (fig. 2.2D). L'isohexane ainsi récupéré peut servir d'éluant pour la section séparation par adsorption. Préférentiellement, l'isohexane n'est pas envoyé vers le pool essence du fait de son indice d'octane trop faible. Il est préférentiellement séparé des flux 8, 18, 28 et 38 (fig. 2.2A, 2.2B, 2.2C, 2.2D) de hauts indices d'octane. Cette utilisation d'une partie de la charge dans la section de séparation constitue une très bonne intégration du procédé. Toutefois cette section peut aussi utiliser d'autres composés comme éluant pour les séparations par adsorption. En particulier, les paraffines légères comme le butane et l'isobutane sont intéressantes puisque facilement séparables des paraffines plus lourdes par distillation.
On rappelle que chaque section séparation intégrée dans le procédé de l'invention peut être composée de plusieurs unités dont une au moins contient un adsorbant zéolithique ayant les caractéristiques définies précédemment, à savoir au moins la présence d'au moins deux types de canaux, des canaux principaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (10 MR) et des canaux secondaires dont l'ouverture est définie par un anneau à au moins 12 atomes d'oxygène (au moins 12 MR), lesdits canaux secondaires étant accessibles à la charge à séparer uniquement par lesdits canaux principaux. Lorsque ladite section séparation est composée de plusieurs unités et qu'au moins une de ces unités contient un adsorbant zéolithique ayant les caractéristiques définies précédemment, la (ou les) autre(s) unité(s) peut (peuvent) contenir un adsorbant différent telle que la silicalite. Il n'est pas non plus exclu de mélanger dans la même unité un adsorbant zéolithique ayant les caractéristiques définies précédemment avec un autre adsorbant tels que ceux utilisés dans l'art antérieur.
Pour chacune de ces variantes et de ces mises en oeuvre, l'hydro-isomérisation des coupes légères peut être effectuée en phase gazeuse, liquide ou mixte liquide-gaz dans un ou plusieurs réacteurs où le catalyseur est mis en oeuvre en lit fixe. Par exemple on peut employer un catalyseur de la famille des catalyseurs bifonctionnels, tels les catalyseurs à base de platine ou de phase sulfure sur support acide (alumine chlorée, zéolithe telle la mordénite, SAPO, zéolite Y, zéolite béta) ou de la famille des catalyseurs monofonctionnels acides, telles les alumines chlorées, zircones sulfatées avec ou sans platine et promoteur, les hétéropolyacides à base de phosphore et de tungstène, les oxycarbures et oxynitrures de molybdène qui sont habituellement rangés parmi les catalyseurs monofonctionnels à caractère métallique. Ils fonctionnent dans une gamme de températures comprises entre 25°C, pour les plus acides d'entre eux (hétéropolyanions, acides supportés) et 450°C, pour les catalyseurs bifonctionnels ou les oxycarbures de molybdène. Les alumines chlorées sont mises en oeuvre préférentiellement entre 80 et 110°C et les catalyseurs à base de platine sur support contenant une zéolithe entre 260 et 350°C. La pression opératoire est comprise entre 0,01 et 0,7 MPa, et dépend de la concentration en C5-C6 de la charge, de la température opératoire et du rapport molaire H2/HC. La vitesse spatiale, mesurée en kg de charge par kg de catalyseur et par heure, est comprise entre 0,5 et 2. Le rapport molaire H2/hydrocarbures est généralement compris entre 0,01 et 50, selon le type de catalyseur mis en oeuvre et sa résistance au cokage aux températures opératoires. Dans le cas de rapports H2/HC faibles, par exemple H2/HC = 0,06, il n'est pas nécessaire de prévoir un recyclage de l'hydrogène, ce qui permet de faire l'économie d'un ballon séparateur et d'un compresseur de recyclage de l'hydrogène.
La section d'hydro-isomérisation peut comprendre un ou plusieurs réacteurs disposés en série ou en parallèle qui pourront contenir par exemple un ou plusieurs des catalyseurs mentionnés ci-dessus. Par exemple, dans le cas des variantes 1a et 1b, la section d'hydro-isomérisation 2 comprend au moins un réacteur, mais peut comprendre deux réacteurs ou plus disposés en série ou en parallèle. Dans le cas des variantes 2.1a et b, et 2.2 a, b, c et d, les sections d'hydro-isomérisation 2 et 3 peuvent éventuellement comprendre par exemple chacune deux réacteurs contenant éventuellement deux catalyseurs différents. Les sections 2 et 3 peuvent éventuellement également comprendre chacune plusieurs réacteurs en série et/ou en parallèle, avec des catalyseurs différents selon les réacteurs.
De même chaque section séparation peut être constituée de une ou plusieurs unités permettant d'effectuer globalement la séparation en deux ou trois effluents riches en paraffines linéaires, monobranchées et multibranchées, composés naphténiques et aromatiques. Ainsi, chacune des séparations 4 et/ou 5 de l'une quelconque des variantes 2.1a ou b, 2.2 a, b, c ou d, comprend au moins une unité de séparation qui peut être substituée par deux unités ou plus de séparation, disposées en série ou en parallèle.
Le procédé selon l'invention conduit à l'obtention d'un pool essence à haut indice d'octane grâce à l'incorporation dans sa composition d'une base essence de haut indice d'octane obtenue selon le procédé de l'invention.
En aval de la section d'hydro-isomérisation, il sera en général avantageux de disposer une colonne de stabilisation de la charge afin de limiter à une valeur acceptable la tension de vapeur de l'isomérat. Ce contrôle de la tension de vapeur sera obtenu en éliminant une certaine quantité de composés volatils, tels que les C1-C4, suivant des techniques bien connues de l'homme de l'art. En l'absence de recyclage de l'hydrogène, l'hydrogène pourra être séparé de la charge dans la colonne de stabilisation. Dans le cas où le bon fonctionnement de l'un des catalyseurs d'isomérisation mis en oeuvre en amont requiert l'ajout dans la charge d'un agent chloré en amont de la section d'hydro-isomérisation, la colonne de séparation permettra également l'élimination du chlorure d'hydrogène formé. Dans ce cas, il est avantageux de monter un ballon laveur des gaz issus de la stabilisation afin de limiter les rejets de gaz acides à l'atmosphère.
Ainsi qu'il est décrit précédemment, la section séparation peut être disposée en amont (figures 1B, 2.1B, 2.2B, 2.2D) ou en aval (figures 1A, 2.1A, 2.2A, 2.2C) de la section d'hydro-isomérisation. Dans le premier cas, la majeure partie des composés naphténiques et aromatiques évite la section d'hydro-isomérisation, ce qui a au moins deux conséquences importantes :
  • un volume moindre de la section d'hydro-isomérisation
  • les aromatiques présents dans la charge ne sont pas saturés, d'où une moindre consommation d'hydrogène dans le procédé et une réduction moins importante de l'indice d'octane de l'effluent.
Dans le second cas (figures 1A, 2.1A, 2.2A et 2.2C), les composés aromatiques et naphténiques traversent la totalité ou au moins une partie de la section d'hydro-isomérisation. Il peut alors être nécessaire d'ajouter, immédiatement en amont de la section d'isomérisation (s'il n'y en a qu'un) ou de la première section d'isomérisation (s'il y en a plusieurs), un réacteur de saturation des composés aromatiques. Le critère retenu pour l'ajout d'un réacteur de saturation pourra être, par exemple, une teneur en aromatiques dans la charge supérieure à 5% poids.
Comme illustré par les figures 2.1A ; 2.1B ; 2.2A, 2.2B, 2.2C et 2.2D, il pourra également y avoir au moins deux sections d'hydro-isomérisation 2 et 3 avec recyclage, en tête de la section 2, d'un flux riche en paraffines linéaires et recyclage en tête de la section 3, d'un flux riche en paraffines monobranchées. Un tel agencement permet d'opérer la seconde section à une température plus basse que la première, ce qui diminue le craquage des paraffines mono- et multibranchées formées dans la première section, en particulier le craquage des paraffines tribranchées telles que le 2,2,4 triméthylpentane qui donne très facilement de l'isobutane par craquage acide.
Les exemples qui suivent ne limitent en rien la portée de l'invention.
EXEMPLES
Les tests de sélectivité diffusionnelle (exemples 1b et 2b) sont mis en oeuvre avec un mélange d'une charge provenant d'un réacteur d'hydroisomérisation et contenant du normal hexane (nC6), du 2-méthylpentane (2MP) et du 2,2-diméthylbutane (2,2DMB). Les RON et MON de ces composés sont donnés dans le tableau ci-dessous :
paraffine nC6 2MP 2,2DMB
RON 24,8 73,4 91,1
MON 26 74,2 93,4
EXEMPLE 1 (selon l'invention)
Les adsorbants zéolithiques étudiés sont les zéolithes EU-1 (structure monodimensionnelle avec des poches latérales) et NU-87 (structure bidimensionnelle). Ces zéolithes sont sous leur forme échangées Na+, c'est-à-dire que chacune des zéolithes brutes de synthèse, une fois calcinée, a subi trois échanges ioniques successifs dans une solution de NaCI 1N, à température ambiante. La zéolithe EU-1 a un rapport Si/B égal à 24 et la zéolithe NU-87 a un rapport Si/Al égal à 16.
a) capacité d'adsorption :
Les capacités d'adsorption de la EU-1 et la NU-87 ont été mesurées par gravimétrie à différentes températures (100 et 200°C) pour une pression partielle de 200 mbar d'isopentane (iC5) à l'aide d'une thermobalance symétrique TAG 24 de SETARAM. Avant chaque mesure d'adsorption, les solides sont régénérés pendant 4 heures à 380°C. Les résultats se trouvent dans le Tableau 1 ci-dessous :
capacité d'adsorption des zéolithes EU-1 et NU-87
Température (°C) Masse d'iC5 adsorbée (mg.g-1) avec une pression partielle d'iC5 de 200 mbar
EU-1 NU-87
100 80,3 92,9
200 49,6 58,8
b) sélectivité diffusionnelle :
Les sélectivités diffusionnelles du normal hexane (nC6), du 2-méthylpentane (2MP) et du 2,2-diméthylbutane (2,2DMB) ont été déterminées expérimentalement par chromatographie inverse. Pour ce faire, la réponse d'un lit fixe de zéolithe à une perturbation de concentration de type « impulsionnelle » à été mesurée. Une colonne de 10 cm remplie de 1,4 g de zéolithe, maintenue à une température constante de 200°C est traversée par un débit d'azote à 1 nl/h. La pression dans la colonne est de 1 bar et on opère en phase gazeuse. Les réponses de la colonne aux injections des différents hydrocarbures ont été mesurées. Les résultats obtenus sont résumés dans le Tableau 2, sous forme du premier moment (µ1) ou temps moyen de sortie et du second moment (µ c / 2 ) ou variance des courbes. L'analyse dite « des moments » (cf. p. 246 dans l'ouvrage de D. Ruthven «Principles of Adsorption and Adsorption Processes » , John Wiley and Sons, New York, 1984) nous enseigne que la résistance globale au transfert de matière notée R peut se calculer par l'intermédiaire de l'équation ci-dessous : R = µ c 2 2·µ2 1 · L v où L est la longueur du lit et v la vitesse interstitielle dans le lit.
Cette résistance est également notée dans le Tableau 2.
zéolithe Température (°C) Hydrocarbure µ1 (min) µ c / 2 (min2) R (min)
EU-1 200 nC6 54,3 2074,1 5,1
2 MP 20,6 330,1 5,6
2,2 DMB 0 0
Nu-87 200 nC6 59,3 1220,5 2,5
2 MP 40,1 1068,3 4,8
2,2 DMB 13,1 546,1 22,9
On calcule le rapport □ entre les résistances globales du 2MP et du 2,2DMB et entre les résistances globales du 2MP et du nC6 pour évaluer la sélectivité diffusionnelle des zéolithes EU-1 et NU-87 dans la séparation de ces trois hydrocarbures. Les valeurs de □ ont été calculées à 200°C pour la EU-1 et la NU-87. Ces valeurs sont notées dans le Tableau 3.
Zéolithe Température (°C) □ (2MP/22DMB) □ (2MP/nC6)
EU-1 200 1,1
NU-87 200 4,76 1,9
Exemple 2 (comparatif) :
On reprend les mêmes tests que ceux donnés dans l'exemple 1 et dans les mêmes conditions opératoires en utilisant comme adsorbant zéolithique la zéolithe silicalite de structure tridimensionnelle. La silicalite appartient au type structural MFI et présente uniquement des canaux de 10 MR. Elle est sous sa forme échangée Na+ et présente un rapport Si/Al de 250.
a) capacité d'adsorption :
Température (°C) Masse d'iC5 adsorbée (mg.g-1) avec une pression partielle d'iC5 de 200 mbar
100 47,0
200 24,0
D'après les résultats présentés dans les tableaux 1 et 4, on constate que les capacités d'adsorption des zéolithes EU-1 et NU-87 sont supérieures aux capacités d'adsorption de la silicalite aux températures étudiées. La capacité d'adsorption en iC5 est environ 1,9 fois supérieure à celle de la silicalite pour la EU-1 et de 2,2 fois pour la NU-87.
b) sélectivité diffusionnelle :
zéolithe Température (°C) Hydrocarbure µ1 (min) µ c / 2 (min2) R (min)
silicalite 200 nC6 28,7 321,5 2,8
2 MP 16,3 388,5 3,2
2,2 DMB 7,5 183,0 13,3
Zéolithe Température (°C) □ (2,2DMB/2MP) □ (2MP/nC6)
silicalite 200 4,17 1,2
D'après les résultats présentés dans les tableaux 3 et 6, on constate que les zéolithes EU-1 et Nu-87 présentent des sélectivités diffusionnelles très intéressantes pour la séparation des hydrocarbures à différents degrés de branchements. Notamment, le 2,2DMB ne pénètre pas du tout dans les pores de la zéolithe EU-1 (tableau 2) dans les conditions expérimentales données ci-dessus, et la sélectivité de cette zéolithe pour la séparation du 2,2DMB et du 2MP est donc infinie, donc largement supérieure à celle de la silicalite. La zéolithe NU-87 présente à 200°C une meilleure sélectivité pour la séparation du 2,2DMB et du 2MP que la silicalite, et elle possède également une meilleure sélectivité que la silicalite pour la séparation du 2MP et du nC6.
En conclusion, les zéolithes NU-87 et EU-1 présentent une meilleure capacité d'adsorption que la silicalite et une sélectivité diffusionnelle généralement meilleure permettant de garantir un gain de productivité par rapport à une section séparation de paraffines multibranchées utilisant la silicalite et donc une meilleure rentabilité du procédé de l'invention associant hydroisomérisation et séparation par adsorption qu'un autre procédé associant également hydroisomérisation et séparation par adsorption mais avec un adsorbant n'ayant pas les mêmes caractéristiques que celles définies dans l'invention.

Claims (22)

  1. Procédé pour la production d'une base essence d'indice d'octane élevé par hydroisomérisation d'une charge constituée d'une coupe comprise entre C5 et C8, comprenant au moins une section hydroisomérisation et au moins une section séparation fonctionnant par adsorption, ladite section séparation réalisant la séparation des paraffines multibranchées des paraffines linéaires et monobranchées contenues dans ladite coupe en C5-C8, les paraffines linéaires et monobranchées, étant recyclées vers la section hydroisomérisation, ledit procédé étant caractérisé en ce que ladite section séparation contient au moins un adsorbant zéolithique présentant au moins deux types de canaux, des canaux principaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (10 MR) et des canaux secondaires dont l'ouverture est définie par un anneau à au moins 12 atomes d'oxygène (au moins 12 MR), lesdits canaux secondaires étant accessibles à la charge à séparer uniquement par lesdits canaux principaux.
  2. Procédé selon la revendication 1, caractérisé en ce que ledit adsorbant dans la section séparation contient du silicium et au moins un élément T choisi dans le groupe formé par l'aluminium, le fer, le gallium et le bore, le rapport molaire Si/T étant au moins égal à 10.
  3. Procédé selon la revendication 1 ou 2 caractérisé en ce que ledit adsorbant zéolithique dans la section séparation est une zéolithe de type structural EUO.
  4. Procédé selon la revendication 1 ou 2 caractérisé en ce que ledit adsorbant zéolithique dans la section séparation est une zéolithe de type structural NES.
  5. Procédé selon la revendication 1 ou 2 caractérisé en ce que ledit adsorbant zéolithique est une zéolithe de type structural MWW.
  6. Procédé selon la revendication 1 ou 2 caractérisé en ce que ledit adsorbant zéolithique dans la section séparation est la zéolithe NU-85.
  7. Procédé selon la revendication 1 ou 2 caractérisé en ce que ledit adsorbant zéolithique dans la section séparation est la zéolithe NU-86.
  8. Procédé selon l'une des revendications 1 à 7 caractérisé en ce que ledit adsorbant zéolithique est mélangé avec une zéolithe de type structural LTA.
  9. Procédé selon l'une des revendications 1 à 8 caractérisé en ce qu'il comprend au moins une section hydro-isomérisation (2) et au moins une section séparation (4) par adsorption, dans lequel la section d'hydro-isomérisation (2) comprend au moins un réacteur, la section séparation (4) comprend au moins une unité et produit au moins deux flux, un premier flux (8, 18) riche en paraffines di- et tribranchées, éventuellement en naphtènes et aromatiques qui est envoyé au pool essence, un second flux (7, 9) riche en paraffines linéaires et monobranchées qui est recyclé à l'entrée de la section d'hydro-isomérisation (2).
  10. Procédé selon l'une des revendications 1 à 8 caractérisé en ce qu'il comprend au moins deux sections d'hydroisomérisation (2, 3) et au moins une section séparation (4), dans lequel la section séparation produit trois flux, un premier flux (8, 18, 28, 38) riche en paraffines di- et tribranchées, éventuellement en naphtènes et aromatiques qui est envoyé au pool essence, un second flux (11, 16, 20, 24, 30, 36) riche en paraffines linéaires qui est recyclé à l'entrée de la première section d'hydroisomérisation et un troisième flux (12, 21, 26, 34, 35, 39) riche en paraffines monobranchées qui est recyclé à l'entrée de la deuxième section d'hydroisomérisation (3).
  11. Procédé selon la revendication 10, caractérisé en ce que la totalité de l'effluent de la première section d'hydroisomérisation (2) traverse la deuxième section (3).
  12. Procédé selon la revendication 11, caractérisé en ce que la section séparation (4) est située en aval des sections d'hydroisomérisation (2, 3), la charge (1) est mélangée au recyclage des paraffines (30) en provenance de la section de séparation (4), le mélange résultant (33) est envoyé à la première section d'hydroisomérisation (2), l'effluent sortant de la première section d'hydroisomérisation est mélangé au flux riche en paraffines monobranchées (39) en provenance de la section de séparation (4), puis le mélange est envoyé à la deuxième section d'hydroisomérisation (3) et l'effluent (37) issu de cette dernière section est envoyé à la section séparation (4).
  13. Procédé selon la revendication 11, caractérisé en ce que la section séparation (4) est située en amont des sections d'hydroisomérisation (2, 3), la charge (1) est mélangée au flux (14) issu de la deuxième section d'hydroisomérisation (3), puis le mélange (23) résultant est envoyé dans la section de séparation (4), l'effluent riche en paraffines linéaires (11) est envoyé à la première section d'hydroisomérisation (2), on ajoute le flux riche en paraffines monobranchées (12) en provenance de la section de séparation (4) à l'effluent (13) issu de la première section d'hydroisomérisation (2), et l'ensemble est envoyé à la deuxième section d'hydro-isomérisation (3).
  14. Procédé selon la revendication 10, caractérisé en ce que les effluents des sections d'hydroisomérisation sont envoyés vers au moins une section de séparation.
  15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'au moins une fraction légère est séparée par distillation en amont ou en aval des sections d'hydroisomérisation (2, 3) et/ou de séparation (4, 5).
  16. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la charge contient la coupe C5 et au moins un déisopentaniseur et/ou au moins un dépentaniseur sont disposés en amont ou en aval des sections d'hydro-isomérisation (2, 3) et/ou de séparation (4, 5).
  17. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la charge contient la coupe C6 mais ne contient pas de C5, et au moins un déisohexaniseur est disposé en amont ou en aval des sections d'hydro-isomérisation (2, 3) et/ou de séparation (4, 5).
  18. Procédé selon l'une quelconque des revendications 15 à 17, caractérisé en ce que la fraction légère, ou l'isopentane et/ou le pentane et/ou le mélange de ces deux corps, ou l'hexane, servent d'éluant pour la section séparation par adsorption.
  19. Procédé selon l'une quelconque des revendications 1 à 18, caractérisé en ce qu'on utilise le butane et/ou l'isobutane comme éluant pour la section séparation par adsorption.
  20. Procédé selon la revendication 16, caractérisé en ce que l'isopentane est envoyé au pool essence.
  21. Procédé selon quelconque l'une des revendications 1 à 20 caractérisé en ce que l'hydro-isomérisation est effectuée à des températures comprises entre 25°C et 450°C, à une pression comprise entre 0,01 et 0,7 MPa, à une vitesse spatiale, mesurée en kg de charge par kg de catalyseur et par heure, comprise entre 0,5 et 2, et avec un rapport molaire H2/hydrocarbures compris entre 0,01 et 50.
  22. Procédé selon l'une quelconque des revendications 1 à 21 caractérisé en ce que la séparation est effectuée à des températures comprises entre 50°C et 450°C et à une pression comprise entre 0,01 et 7 MPa.
EP01402163A 2000-08-25 2001-08-13 Procédé associant hydroisomerisation et separation avec un adsorbant zeolithique a structure mixte pour la production d'essences a haut indice d'octane Expired - Lifetime EP1182247B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0010973A FR2813311B1 (fr) 2000-08-25 2000-08-25 Procede associant hydroisomerisation et separation avec un absorbant zeolithique a structure mixte pour la production d'essences a haut indices d'octane
FR0010973 2000-08-25

Publications (2)

Publication Number Publication Date
EP1182247A1 EP1182247A1 (fr) 2002-02-27
EP1182247B1 true EP1182247B1 (fr) 2004-11-17

Family

ID=8853752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01402163A Expired - Lifetime EP1182247B1 (fr) 2000-08-25 2001-08-13 Procédé associant hydroisomerisation et separation avec un adsorbant zeolithique a structure mixte pour la production d'essences a haut indice d'octane

Country Status (7)

Country Link
US (1) US6809228B2 (fr)
EP (1) EP1182247B1 (fr)
JP (1) JP5124070B2 (fr)
CA (1) CA2355490C (fr)
DE (1) DE60107166T2 (fr)
ES (1) ES2233581T3 (fr)
FR (1) FR2813311B1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771419B1 (fr) * 1997-11-25 1999-12-31 Inst Francais Du Petrole Essences a haut indice d'octane et leur production par un procede associant hydro-isomerisation et separation
US7540284B2 (en) * 2001-06-20 2009-06-02 Novartis Pharma Ag Powder aerosolization apparatus and method
FR2862299B1 (fr) 2003-11-14 2005-12-30 Inst Francais Du Petrole Zeolithe de type structural euo contenant le structurant alkylquinuclidinium, procede de preparation et utilisation en tant que catalyseur
FR2875507B1 (fr) * 2004-09-22 2008-10-31 Inst Francais Du Petrole Procede ameliore d'isomerisation d'une coupe c7 avec coproduction d'une coupe riche en molecules cycliques
US20060194998A1 (en) * 2005-02-28 2006-08-31 Umansky Benjamin S Process for making high octane gasoline with reduced benzene content
JP4953275B2 (ja) * 2006-02-17 2012-06-13 Jx日鉱日石エネルギー株式会社 ガソリン基材の製造方法及びガソリン組成物
US8349754B2 (en) * 2008-03-26 2013-01-08 Council Of Scientific & Industrial Research Modified zeolite catalyst useful for the conversion of paraffins, olefins and aromatics in a mixed feedstock into isoparaffins and a process thereof
US8395006B2 (en) * 2009-03-13 2013-03-12 Exxonmobil Research And Engineering Company Process for making high octane gasoline with reduced benzene content by benzene alkylation at high benzene conversion
EP2243814A1 (fr) * 2009-04-23 2010-10-27 Total Petrochemicals Research Feluy Amélioration de naphte léger pour améliorer la production d'oléfines
US8153548B2 (en) 2010-04-19 2012-04-10 King Fahd University Of Petroleum & Minerals Isomerization catalyst
ES2888923A1 (es) 2020-06-29 2022-01-10 Consejo Superior Investigacion Uso del material cristalino microporoso de naturaleza zeolitica con estructura stw en procesos de adsorcion y separacion de hidrocarburos

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25980E (en) * 1956-02-13 1966-03-08 Hydrocarbon desorption process
US2935467A (en) * 1956-07-27 1960-05-03 Union Oil Co Fractionation process using zeolitic molecular sieves
US3020322A (en) * 1959-10-19 1962-02-06 Phillips Petroleum Co Isomerization of hydrocarbons
US3227647A (en) * 1960-08-08 1966-01-04 Standard Oil Co Separation process
US3150205A (en) * 1960-09-07 1964-09-22 Standard Oil Co Paraffin isomerization process
US4176053A (en) * 1978-03-31 1979-11-27 Union Carbide Corporation n-Paraffin - isoparaffin separation process
GB8628839D0 (en) * 1986-12-02 1987-01-07 Shell Int Research Apparatus for hydrocracking conversion
US4855529A (en) * 1988-04-25 1989-08-08 Shell Oil Company Isomerization process with preliminary normal paraffin and mono-methyl paraffin feed capture step
US4956521A (en) * 1988-10-06 1990-09-11 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US4982048A (en) * 1989-02-24 1991-01-01 Shell Oil Company Isomerization process with preliminary normal paraffin and mono-methyl paraffin feed capture step
FR2688213B1 (fr) * 1992-03-06 1995-05-24 Inst Francais Du Petrole Procede d'isomerisation de paraffines normales en c5/c6 avec recyclage de paraffines normales et methyl-pentanes.
US5744684A (en) * 1994-11-03 1998-04-28 Uop Process for alkane isomerization using reactive chromatography and reactive desorbent
FR2771419B1 (fr) * 1997-11-25 1999-12-31 Inst Francais Du Petrole Essences a haut indice d'octane et leur production par un procede associant hydro-isomerisation et separation
FR2771418B1 (fr) * 1997-11-25 2001-02-02 Inst Francais Du Petrole Procede de separation d'une charge c5-c8 ou d'une charge intermediaire, en trois effluents respectivement riches en paraffines lineaires, monobranchees et multibranchees
FR2774386B1 (fr) * 1998-02-04 2000-03-24 Inst Francais Du Petrole Procede de separation chromatographique d'une charge c5-c8 ou d'une charge intermediaire en trois effluents, respectivement riches en paraffines lineaires, monobranchees et multibranchees
US6069289A (en) * 1998-08-31 2000-05-30 Uop Llc Process for separating and recovering multimethyl-branched alkanes
FR2799202B1 (fr) * 1999-09-30 2002-04-26 Inst Francais Du Petrole Procede de production d'essences a indice d'octane ameliore

Also Published As

Publication number Publication date
JP2002080862A (ja) 2002-03-22
CA2355490A1 (fr) 2002-02-25
FR2813311B1 (fr) 2002-11-29
EP1182247A1 (fr) 2002-02-27
JP5124070B2 (ja) 2013-01-23
US6809228B2 (en) 2004-10-26
US20020043480A1 (en) 2002-04-18
FR2813311A1 (fr) 2002-03-01
DE60107166T2 (de) 2005-04-14
DE60107166D1 (de) 2004-12-23
CA2355490C (fr) 2010-02-23
ES2233581T3 (es) 2005-06-16

Similar Documents

Publication Publication Date Title
CA2252068C (fr) Essences a haut indice d&#39;octane et leur production par un procede associant hydro-isomerisation et separation
EP0922748B1 (fr) Procédé de séparation d&#39;une charge C5-C8 ou d&#39;une charge intermédiaire, en trois effluents respectivement riches en paraffines linéaires, monobranchées et multibranchées
EP1640436B1 (fr) Procédé d&#39;isomérisation d&#39;une coupe C7 avec coproduction d&#39;une coupe cycliques riche en méthylcyclohexane
EP1182247B1 (fr) Procédé associant hydroisomerisation et separation avec un adsorbant zeolithique a structure mixte pour la production d&#39;essences a haut indice d&#39;octane
EP1685212A1 (fr) Procede de production d&#39;essences a haut indice d&#39;octane a partir d&#39;une coupe c5/c6 utilisant une unite de separation par membrane
EP1088879A1 (fr) Procédé de production d&#39;essences à indice d&#39;octane amélioré
EP1640435A1 (fr) Procédé d&#39;isomérisation d&#39;une coupe C7 avec coproduction d&#39;une coupe aromatique riche en toluène
EP0934996B1 (fr) Procédé de séparation chromatographique d&#39;une charge C5-C8 ou d&#39;une charge intermédiaire en trois effluents, respectivement riches en paraffines linéaires, monobranchées et multibranchées
EP1182246A1 (fr) Procédé de séparation de paraffines multibranches utilisant un adsorbant zeolithique de structure mixte
MXPA98009775A (en) Gasolinas of high index of octopan and its production by a procedure that associates the hydroisomerization and the separac
MXPA98009777A (en) Procedure for the separation of a c5-c8 load or an intermediary load, in three respectively rich effluents in linear, monorramified and multi-graphic paraffines
MXPA98009877A (en) Sleeves and crank roll bushings for laser coating for galvaniz baths

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES IT NL

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020827

AKX Designation fees paid

Free format text: DE ES IT NL

17Q First examination report despatched

Effective date: 20031216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES IT NL

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60107166

Country of ref document: DE

Date of ref document: 20041223

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2233581

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60107166

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150824

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150824

Year of fee payment: 15

Ref country code: ES

Payment date: 20150819

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150831

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60107166

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160814

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180628