EP1181950B1 - Système auditif implantable comportant des moyens de mesure de la qualité d'accouplement - Google Patents

Système auditif implantable comportant des moyens de mesure de la qualité d'accouplement Download PDF

Info

Publication number
EP1181950B1
EP1181950B1 EP01118060A EP01118060A EP1181950B1 EP 1181950 B1 EP1181950 B1 EP 1181950B1 EP 01118060 A EP01118060 A EP 01118060A EP 01118060 A EP01118060 A EP 01118060A EP 1181950 B1 EP1181950 B1 EP 1181950B1
Authority
EP
European Patent Office
Prior art keywords
impedance
measuring
transducer
coupling
hearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01118060A
Other languages
German (de)
English (en)
Other versions
EP1181950A2 (fr
EP1181950A3 (fr
Inventor
Hans Dr.-Ing. Leysieffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cochlear Ltd
Original Assignee
Cochlear Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cochlear Ltd filed Critical Cochlear Ltd
Publication of EP1181950A2 publication Critical patent/EP1181950A2/fr
Publication of EP1181950A3 publication Critical patent/EP1181950A3/fr
Application granted granted Critical
Publication of EP1181950B1 publication Critical patent/EP1181950B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/67Implantable hearing aids or parts thereof not covered by H04R25/606

Definitions

  • the present invention relates to an at least partially implantable hearing system for rehabilitation a hearing impairment with at least one sensor for recording sound signals and their conversion into corresponding electrical sensor signals, an electronic signal processing unit for audio signal processing and amplification of the sensor signals, a electrical power unit, the individual components of the system with electricity supplied, as well as with at least one electromechanical output transducer for mechanical Stimulation of the middle and / or inner ear.
  • hearing impairment in the present case, all types of inner ear damage, combined Inner and middle ear damage as well as occasional or permanent ear noises (Tinnitus) are understood.
  • Implantable hearing systems differ from conventional hearing aids: Although the sound signal with an adequate microphone is converted into an electrical signal and amplified in an electronic signal processing stage; this reinforced electrical signal is not supplied to an electro-acoustic transducer (speaker), but an implanted electromechanical transducer whose output side mechanical vibrations directly, so with direct mechanical contact, the Middle or inner ear are fed or indirectly by a frictional connection via an air gap in, for example, electromagnetic transducer systems.
  • the piezoelectric method is a mechanically direct coupling of the output side Transducer oscillations to the middle ossicles or directly to the oval window necessary;
  • the power coupling can be done on the one hand via an air gap ("contactless"), that is, only the permanent magnet is replaced by permanent fixation in brought direct mechanical contact with a Mittelohrossikel.
  • the Possibility to realize the converter completely in a housing coil and magnet are coupled with the smallest possible air gap
  • the output side vibrations over a mechanically rigid coupling element with direct contact to the Mittelohrossikel too Leysieffer, H., et al., 1997 (HNO 1997, Vol.45, pp. 792-800).
  • the semi-implantable, piezoelectric hearing system of the Japanese group around Suzuki and Yanigahara relies on the lack of mid-ossicles and implantation of the transducer free tympanic cavity ahead in order to connect the piezo element to the stapes (Yanigahara et al .: "Efficacy of the partially implantable middle ear implant in middle and Inner Ear Disorders ", Adv. Audiol., Vol. 4, Karger Basel (1988), pp. 149-159, Suzuki et al .: "Implantation of partially implantable middle ear implant and the indication", Adv. Audiol. Vol. 4, Karger Basel (1988), p. 160-166).
  • the electromagnetic ball transducer (“Floating Mass Transducer FMT”, among others US-A-5,624,376 (Ball et al.)), On the other hand, becomes direct with intact middle ear with titanium clips fixed on the long extension of the anvil.
  • the electromagnetic transducer of the partially implantable Fredrickson's system (Fredrickson et al .: "Ongoing investigations into an implantable electromagnetic hearing aid for moderate to severe sensorineural hearing loss ", Otolaryngologic Clinics Of North America, Vol. 28/1 (1995), pp. 107-121) is also incorporated intact ossicular chain of the middle ear mechanically coupled directly to the anvil body.
  • a certain disadvantage of the converter variants according to b) is the fact that the converter housing attached to the calvarium with implantable positioning and fixation systems Need to become.
  • Another disadvantage of the variants according to b) is that, preferably must be introduced into the Zielossikel by means of suitable lasers, wells, to apply the coupling element can. This is on the one hand technically complicated and expensive and, on the other hand, brings with it risks for the patient.
  • Both at the partially implantable Fredrickson's system ("Ongoing investigations into an implantable elektromagnetic hearing aid for moderate to severe sensorineural hearing loss ", Otolaryngologic Clinics Of North America, Vol. 28/1 (1995), pp.
  • the main advantage of these converter embodiments according to b), however, is that the middle ear remains largely free and the coupling access to the middle ear without larger Risk potential of the facial nerve can occur.
  • implantable electromechanical hearing aid transducers have been numerous coupling elements designed and described, which allows the mechanical vibration energy of the transducer as possible optimal and long-term stability to the coupling site of the middle or inner ear to transmit.
  • implantable hearing systems have been specified in which not only one, but several electromechanical transducers are used to stimulate the damaged hearing to optimally simulate the multichannel cochlear amplifier and thus to achieve a more extensive rehabilitation of the damaged hearing than with only one transducer.
  • the coupling quality of the mechanical stimulus is influenced by many parameters, and she contributes significantly to the rehabilitation of hearing loss and perceived hearing quality at. Intraoperatively, this quality of coupling is difficult or impossible to assess, because the movement amplitudes of the vibrating parts, even at the highest stimulation levels in a range around or far below 1 micron and therefore not by direct visual inspection are assessable. Even if this succeeds by other technical measuring methods, for example by intraoperative laser measurements (for example by laser Doppler vibrometry), there remains the uncertainty of a long-term stable, secure coupling, since this under by necrosis, tissue neoplasmosis, changes in air pressure and others External and internal influences can be negatively affected.
  • WO-A-98/36711 a method is proposed for this purpose, which with objective hearing test methods such as ERA (electric response audiometry), ABR (auditory brainstem response) or electrocochleography in partially and fully implantable systems with mechanical or electrical stimulation of the damaged or failed Hearing works.
  • objective hearing test methods such as ERA (electric response audiometry), ABR (auditory brainstem response) or electrocochleography
  • ERA electric response audiometry
  • ABR auditory brainstem response
  • electrocochleography electrocochleography
  • electrocochleography electrocochleography
  • By electrical discharge via external head electrodes or implanted Electrodes are objectively determined for stimulus responses by application suitable stimulating stimuli are evoked.
  • the advantage of this method is that Intraoperative with complete anesthesia objective data of the transmission quality determined can be.
  • the main disadvantage is, inter alia, that these objective auditing methods can only be of a qualitative nature, essentially data at the hearing threshold and not or only partially suprathreshold deliver and in particular have
  • the electromechanical output transducer The implanted hearing system is thus technically reproducible and quantified electrically controlled directly; In this way, distortions of the stimulation level become avoided, as for example by Köpf bioer- or in particular acoustic Freifelddarbietitch the audiometric test sound may occur because this is also the Sensor or microphone function with all associated variabilities in the psychoacoustic Measurement is included.
  • electromechanical transducer s
  • electromechanical transducer have the or the disadvantages that either a subjective evaluation of the patient flows into the result or physiological Interfaces are included in the measurement; both aspects make the measurement result uncertain and therefore, in particular with regard to the reproducibility, not optimal Solution.
  • the invention is based on the object, an at least partially implantable hearing to accomplish this in a particularly reliable way, even intraoperatively an objective Measurement of the coupling quality is possible.
  • an at least partially implantable Hearing system for the rehabilitation of a hearing impairment with at least one sensor for recording of sound signals and their conversion into corresponding electrical sensor signals, a electronic signal processing unit for audio signal processing and amplification of Sensor signals, an electrical power unit, the individual components of Powered system, as well as at least one electromechanical output transducer for mechanical stimulation of the middle and / or inner ear
  • the hearing system for the objective determination of the coupling quality of the output transducer with an impedance measuring arrangement for determining the mechanical impedance of the implanted in the Condition provided to the output transducer coupled biological load structure is.
  • the principle of the present invention has the particular advantage that the coupling quality of the transducer or intraoperatively immediately after coupling to the biological Hearing structure can be assessed and if necessary improved intraoperatively, before implantation is complete without proper knowledge of the coupling success because the patient is usually operated in total anesthesia and therefore psychoacoustic Measurements are not possible.
  • the present invention further has the advantage that in the postoperative state the Coupling quality of the converter or the long-term objectively observed without the patient having to undergo any special procedure.
  • the software interface with which the audiologist or The hearing care professional adapts the implant of the patient to the individual hearing damage contains a module with which automatically when software initialization or active Retrieve an implant-side impedance measurement is triggered and the corresponding data telemetrically transmitted to the software interface for further evaluation and evaluation.
  • the impedance measuring arrangement may include an arrangement for measuring the input electrical impedance of the or the coupled to the biological load structure electromechanical output transducer (s) have.
  • the amount and phase data of this electrical input impedance reflect the coupled load components, because they are connected via the electromechanical coupling of the converter (s) transformed appear on the electrical side and therefore are measurable.
  • each electromechanical output transducer a drive unit upstream, wherein the output transducer concerned to the driver unit connected via a measuring resistor and a measuring amplifier is provided on as the input signals to the measuring resistor falling, the transformer current proportional Measuring voltage and the converter terminal voltage applied.
  • the voltage drop across the measuring resistor is expediently high impedance and ground free tapped, and the measuring resistor is advantageously sized so that the Sum of the resistance value of the measuring resistor and the amount of the complex electrical input impedance of the coupled to the biological load structure electromechanical Output converter large compared to the internal resistance of the driver unit is.
  • the impedance measuring arrangement but also for direct Measurement of the mechanical impedance of the electromechanical output transducer coupled biological load structure designed and in the output transducer on the be integrated aktorischer output side, wherein preferably the impedance measuring arrangement is designed for generating measurement signals, the amount and phase of the biological Load structure acting force or the speed of the coupling element at least are approximately proportional.
  • a dual-channel measuring amplifier provided with multiplexer function, and there are - preferably digital - means for forming the quotient of the measurement signal accordingly the force acting on the biological load structure and the measurement signal accordingly the fast of the coupling element available.
  • the electromechanical output transducer and the impedance measuring arrangement may be housed in a common housing, optionally also picks up the measuring amplifier.
  • the described impedance measurements are in no way related to a measurement frequency or limited to a measuring level.
  • Both indirect and direct measurement of mechanical Impedance of the biological load structure are rather advantageous - preferably digital Means for determining the mechanical impedance of the implanted state at the Output transducer coupled biological load structure as a function of frequency and / or the level of the stimulation signal delivered by the output transducer intended.
  • a mechanical nonlinearity can be expected the coupling to a Mittelohrossikel ("rattle"), the transmitted sound quality can influence negatively, determined by electrical level variation of the impedance measurement can be.
  • a further embodiment of the invention can by - preferably digital - means for Determining the spectral position of resonance frequencies in the course of the measured impedance above the pacing rate and to determine the difference between the two be provided the impedance frequencies occurring impedance measured values. This difference provides information about the mechanical vibration qualities.
  • the explained procedure can be basically used in all known electromechanical Conversion principles such as electromagnetic, electrodynamic, magnetostrictive, dielectric and in particular use in piezoelectric transducers, so that in the System design of the hearing implant with respect to the converter form (s) in principle no restriction exists and thus with multi-channel actuatoric system design also mixed forms various transducer principles for optimal auditory stimulation are possible.
  • the electromechanical output transducer can in the implanted state with the biological Load structure via a passive coupling element and / or via a coupling rod in mechanical Connection stand, and the impedance measuring arrangement can be in the coupling rod be inserted.
  • the electronic signal processing unit is also for processing the signals designed the impedance measuring arrangement.
  • the signal processing unit a digital signal processor for processing the sound sensor signals and / or for generating of digital signals for tinnitus masking and for processing the signals the impedance measuring arrangement.
  • the signal processor can interrupt the audio signal of the hearing system for a short time, to feed the appropriate measurement signals, for example from the signal processor self-generated.
  • the electrical transducer impedance measurement even below the patient's resting threshold to Do not disturb the patient with the measuring signals.
  • These can be the individual, spectral Resting hearing threshold data of the patient concerned in a memory area of the system be stored, to which the measurement software of the signal processor then reference each takes.
  • the signal processor may be statically designed in such a way that corresponding software modules based on scientific findings unique in a program memory of the signal processor are stored and remain unchanged. But then lie later Example based on recent scientific findings improved algorithms for Speech signal preparation and processing before and should be used, must by an invasive, surgical patient intervention the entire implant or implant module, which contains the corresponding signal processing unit, against a new one with the changed Operating software to be replaced. This procedure involves renewed medical risks for the patient and is associated with great effort.
  • the signal processor for recording and playback of an operating program a repeatedly writable, implantable memory array is associated, and at least Parts of the operating program by an external unit via a telemetry device transmitted data can be changed or exchanged. That way after implantation of the implantable system, the operating software, including Software for controlling the above-described switchable coupling arrangement, as change or even completely exchange, as for otherwise known systems for the rehabilitation of hearing disorders in DE-C-199 15 846 is explained.
  • the design is such that beyond that in fully implantable systems also in a conventional manner operating parameters, that is patient-specific Data, such as audiological fitting data, or changeable implant system parameters (For example, as a variable in a software program for controlling the switchable coupling arrangement or for regulating a battery recharge) according to Implantation transcutaneously, ie wirelessly through the closed skin, into the implant can be transferred and thus changed.
  • patient-specific Data such as audiological fitting data, or changeable implant system parameters (For example, as a variable in a software program for controlling the switchable coupling arrangement or for regulating a battery recharge) according to Implantation transcutaneously, ie wirelessly through the closed skin, into the implant can be transferred and thus changed.
  • the software modules are preferred dynamic, or in other words adaptive, designed to be as optimal as possible Rehabilitation of the respective hearing impairment to come.
  • the software modules be designed adaptive, and a parameter adjustment can by "training" through the implant carrier and other aids are made.
  • the signal processing electronics may include a software module having a optimum stimulation on the basis of a learning neural network reached.
  • the training of this neural network can be done by the implant wearer and / or with the help of other external aids.
  • the memory device for storing operating parameters and the memory device to record and replay the operating program can be considered independent Memory to be implemented; however, it can also be a single memory, in Both operating parameters and operating programs can be stored.
  • the present solution allows an adaptation of the system to conditions that only after Implantation of the implantable system can be detected.
  • the sensory (sound sensor or microphone) and actuator (output stimulator) biological interfaces always dependent on the anatomical, biological and neurophysiological conditions, for example of the interindividual healing process.
  • These interface parameters can be individual and also time-variant, in particular.
  • Such differences in the interface parameters that occur at the devices known from the prior art, not even by the exchange can reduce or eliminate the implant can, in the present case by changing or improved signal processing of the implant optimized become.
  • the means a rechargeable accumulator system, but also in systems with primary battery supply assume that these electrical energy storage with progressive Technology ever greater lifetimes and thus increasing residence times in the patient enable. It can be assumed that the basic and application research makes rapid progress for signal processing algorithms. The need or the patient's request for an operating software customization or change is therefore expected to expire before the end of life of the implant's internal energy source enter.
  • the system described herein allows such adaptation of the Operating programs of the implant also in the already implanted state.
  • a buffer arrangement is further provided, in which of the external unit via the telemetry device before forwarding data the signal processor can be cached. In this way, the Complete the transfer process from the external unit to the implanted system, before the data transmitted via the telemetry device is forwarded to the signal processor become.
  • a verification logic may be provided which is in the buffer arrangement stored data before forwarding to the signal processor of a check subjects. It may be a microprocessor module, in particular a microcontroller, for implant-internal control of the signal processor to be provided via a data bus, wherein expedient the verification logic and the buffer arrangement in the microprocessor chip are implemented and being over the data bus and the telemetry device also program parts or entire software modules between the outside world, the microprocessor module and the signal processor can be transmitted.
  • the microprocessor module is preferably an implantable memory arrangement for Saving a work program associated with the microprocessor chip, and at least Parts of the work program for the microprocessor chip may be implemented by the changed or exchanged data transmitted to the external unit via the telemetry device become.
  • At least two memory areas for recording and reproducing at least the operating program of the signal processor be. This contributes to the failure safety of the system by eliminating the multiple presence the memory area containing the operating program (s), for example after transmission from external or when switching on the implant a check can be made for the correctness of the software.
  • the buffer arrangement can also have at least two memory areas for recording and reproducing from the external unit via the telemetry device transmitted data, so that after a data transmission from the external unit still in the area of the cache a check of the accuracy of the transmitted Data can be made.
  • the memory areas can be used for example complementary storage of the data transmitted by the external unit.
  • At least one of the memory areas of the buffer arrangement can also be used for Recording only part of the data transmitted by the external unit, in this case, checking the accuracy of the transmitted data in sections he follows.
  • the telemetry device is advantageously out of reception of operating programs from the external unit also for the transmission of operating parameters between the implantable part of the system and the external unit, so that on the one hand such parameters of a doctor, a hearing care professional or the Carrier of the system itself can be adjusted (for example, volume), on the other hand but the system can also transmit parameters to the external unit, for example to check the status of the system.
  • a completely implantable hearing system of the type described here can implant side in addition to the actuatoric stimulation arrangement and the signal processing unit at least have an implantable sound sensor and a rechargeable electric storage element, in which case, a wireless transcutaneous charging device for charging the memory element can be provided.
  • a wireless transcutaneous charging device for charging the memory element can be provided.
  • a primary cell or another power supply unit can be present, which does not require transcutaneous recharge.
  • the implant has the output side electromechanical Transducer and the switchable clutch assembly, but is energetically passive and receives its operating power and control data for the output-side converter and the switchable coupling assembly via the modulator / transmitter unit in the external Module.
  • a hearing disorder of both ears has two system units, each one of the associated with both ears. In this case, the two system units can each other substantially be equal. But it can also be the one system unit as the master unit and the be designed as a unit controlled by the master unit slave unit.
  • the Signal processing modules of the two system units can in any way, in particular via a wired implantable lead connection or via a wireless Connection, preferably a bidirectional high frequency link, a structure-borne sound Ultrasonic path or the electrical conductivity of the tissue of the implant carrier exploiting data transmission link, communicate with each other so that in both system units an optimized binaural signal processing and converter array control is reached.
  • the external sound signal is picked up via one or more sound sensors (microphones) 10a to 10n and converted into analog electrical signals.
  • the electrical sensor signals are passed to a unit 11 which is part of an implantable electronic module 12 and in which the sensor signal or signals are selected, preprocessed and converted into digital signals (A / D conversion).
  • the preprocessing may, for example, consist in an analogue linear or non-linear preamplification and filtering (for example antialiasing filtering).
  • the digitized sensor signal or signals are supplied to a digital signal processor (DSP) 13, which performs the intended function of the hearing implant, such as audio signal processing in a system for inner ear hearing impairments and / or signal generation in the case of a tinnitus masker or noise.
  • DSP digital signal processor
  • the signal processor 13 contains a non-rewritable read-only memory area S 0 , in which the instructions and parameters required for a "minimum operation" of the system are stored, and a memory area S 1 , in which the operating software of the intended function or functions of the implant system are stored. Preferably, this memory area will be duplicated (S 1 and S 2 ).
  • the rewritable program memory for holding the operating software may be based on EEPROM or RAM cells, in which case care should be taken to ensure that this RAM area is always "buffered" by the on-board power system.
  • the digital output signals of the signal processor 13 are in a digital-to-analog converter (D / A) 14 converted to analog signals.
  • This D / A converter may vary depending on the implant function be designed several times or completely eliminated if Example in the case of a hearing system with electromagnetic output transducer directly on for example, pulse width modulated, serial digital output signal of the signal processor 13 is transmitted directly to the output transducer.
  • the analog output signal of the digital-to-analogue converter 14 is then led to a driver unit 15, depending on the implant function an output-side electromechanical transducer 16 for stimulating the Mitteldividingmaschine Inner ear controls.
  • the signal processing components 11 and 13 to 15 are controlled by a microcontroller 17 (.mu.C) with one or two associated memories S 4 and S 5 via a bidirectional data bus 18.
  • the operating software portions of the implant management system may be stored in the memory area S 4 and S 5 , for example, administrative monitoring and telemetry functions.
  • the memories S 1 and / or S 2 also externally variable, patient-specific, such as audiological fitting parameters can be stored.
  • the microcontroller 17 has a repeatedly writable memory S 3 , in which a work program for the microcontroller 17 is stored.
  • the microcontroller 17 communicates via a data bus 19 with a telemetry system (TS) 20.
  • TS telemetry system
  • PS external programming system
  • the programming system 22 may advantageously be a PC-based system with appropriate programming, editing, presentation and management software.
  • the operating software of the implant system to be changed or exchanged completely is transmitted via this telemetry interface and initially stored temporarily in the memory area S 4 and / or S 5 of the microcontroller 17.
  • the memory area S 5 may be used for complementarily storing the data transmitted from the external system, and a simple verification of the software transmission by a telemetry read operation may be performed to determine the coincidence of the contents of the memory areas S 4 and S 5 before the content of the rewritable memory S 3 is changed or exchanged.
  • the operating software of the at least partially implantable hearing system should comprise both the operating software of the microcontroller 17 (for example housekeeping functions, such as energy management or telemetry functions) and the operating software of the digital signal processor 13.
  • the operating software of the microcontroller 17 for example housekeeping functions, such as energy management or telemetry functions
  • the operating software of the digital signal processor 13 for example, a simple verification of the software transmission can be performed by a read operation via the telemetry interface, before the operating software or the corresponding signal processing components of this software are transferred to the program memory area S 1 of the digital signal processor 13 via the data bus 18.
  • the work program for the microcontroller 17, which is stored, for example, in the repeatedly writable memory S 3 can be changed or replaced completely or partially via the telemetry interface 20 with the aid of the external unit 22.
  • IMS measuring system explained in more detail below
  • the of the measuring system 25 supplied analog measurement data via a measuring amplifier 26 and an associated A / D converter 27 amplified and converted into digital measurement data.
  • the digital measurement data will be to the digital signal processor 13 of the hearing system for further processing and / or storage transmitted.
  • This driver and impedance detection system with associated electromechanical Output transducer 16 is shown in FIG. 1 outlined in dashed lines as a unit 28 shown. Via the microcontroller 17 and the telemetry unit 20, the impedance measurement data to the Outside world to the programming and display system 22 (for example, a PC with appropriate Hardware interface).
  • the unit 28 is accordingly provided several times, as shown in FIG. 1 shown in dashed lines is.
  • the respective impedance measurement data are then transmitted to the digital signal processor 13 via a corresponding digital data bus structure provided (not shown in FIG. 1).
  • All electronic components of the implant system are replaced by a primary or secondary battery 30 is supplied with electrical operating energy.
  • FIG. 2 shows a possible, simple embodiment of the impedance measuring system 25 for a converter channel according to FIG. 1.
  • the coming from the digital signal processor 13 digital driver data for the electromechanical transducer 16 are converted by the D / A converter 14 into an analog signal and fed to the converter driver 15.
  • the output of the driver 15 is shown as a voltage source U o with the internal resistance R i .
  • the analogue output signal of this driver 15 is fed to the electromechanical transducer 16 having a complex electrical impedance Z L via a measuring resistor R m .
  • the respective basic functions of the driver and impedance measuring unit 28 are set by the microcontroller 17 via a digital control bus 31.
  • FIG. 3 shows in an equivalent electromechanical circuit diagram the approximation of a piezoelectric transducer with coupled biological load components.
  • the piezoelectric transducer is determined on the electrical impedance side Z EI essentially by a rest capacity C o and a loss conductance G.
  • An electromechanical unit converter 33 with an electromechanical conversion factor ⁇ is followed by the mechanical components of the converter itself, which represent the mechanical impedance Z W.
  • the mechanical impedance of the transducer Z W is well approximated by the mechanical components dynamic transducer mass m W , transducer stiffness s W and the Wandlerreibwiderstand (real share) W W determined.
  • the biological, mechanical load impedance Z B is in the present example by the three mechanical impedance components mass m B (for example, mass of a Mittelohrossikels), stiffness s B (for example, stiffness of the clamping ring band of Stirrbügelfußplatte in the oval window) and frictional resistance W B (for Example, connective tissue at the coupling site).
  • mass m B for example, mass of a Mittelohrossikels
  • stiffness s B for example, stiffness of the clamping ring band of Stirrbügelfußplatte in the oval window
  • frictional resistance W B for Example, connective tissue at the coupling site
  • FIG. 4 shows the equivalent circuit of the electrical transformer impedance Z L according to FIG. 3, the coil L M reflecting the sum of the masses mw and m B , the capacitance C M the mechanical parallel connection of the stiffnesses sw and s B and the resistance R M the mechanical parallel connection of the components W W and W B.
  • FIG. 5 shows the profile of the amount of the electrical transformer impedance / Z L / over the frequency f according to FIG. 4 in logarithmic representation.
  • the occurring series resonance at f 1 and the parallel resonance at f 2 are determined by the components L M and C M with C o .
  • the size ⁇ / Z L / provides information about the mechanical quality of the vibration.
  • very accurate information about the quality of the coupling and its temporal course can be obtained postoperatively from the spectral position of f1 and f2 and the quantity ⁇ / Z L /, in particular if the impedance measurements represent the entire spectral and level range of the hearing implant.
  • FIG. 6 shows a fully implantable hearing system largely in accordance with the system of FIG. 1, but with the variant of the direct mechanical impedance measurement.
  • a unit 35 accommodated in a housing 34 follows with an output-side electromechanical transducer 36 which has an electromechanically active element 37, for example a piezoelectric and / or electromagnetic system .
  • an electromechanically active element 37 for example a piezoelectric and / or electromagnetic system
  • a mechanical impedance measuring system 38 is integrated in the transducer 36, which measures the force F applied to the coupled biological load structure and the velocity v of a coupling element 39 in terms of magnitude and phase in the implanted state.
  • the biological load structure is not shown.
  • Impedance measurement system 38 provides electrical analog sensing signals S F and S v , which are respectively proportional to force F and velocity v . These analog measurement signals are converted into digital measurement data via a corresponding two-channel measurement amplifier 40 with multiplexer function and associated A / D converter 27 and transmitted to the digital signal processor 13 of the hearing system for further processing and / or storage.
  • This driver and impedance detection system with associated electromechanical transducer 36 is shown in dashed lines as a unit 41 shown. Via the microcontroller 17 and the telemetry unit 20, the impedance measurement data to the outside world to the programming and display system 22 (for example, a PC with corresponding hardware interface) can be transmitted.
  • the dashed fringed unit 41 is to be completed accordingly, as shown in FIG. 6 also shown in dashed lines.
  • the respective impedance measurement data become the digital one Signal processor 13 then via a corresponding digital data bus structure available provided (not shown in detail in FIG. 6).
  • FIG. 7 shows a fully implantable hearing system with the variant of direct mechanical Impedance measurement according to FIG. 6, where here the corresponding two-channel amplifier 40 with multiplexer function and the associated A / D converter 27 for the detection of the power and rapid signal are integrated into the housing 34 of the unit 35.
  • the electromechanical active element of the transducer 36 and the measuring system for determining the mechanical Load impedance are shown together as element 42 here.
  • the coupling element for biological load is again designated 39.
  • FIG. 8 shows by way of example the structure of the unit 35 according to FIG. 6 with a piezoelectric Converter system according to US-A 5 277 694 and an additional measuring system for determination the mechanical impedance.
  • the in FIG. 8 unit 35 has a biocompatible, cylindrical housing 34 made of electrically conductive material, for example Titan, on, which is filled with inert gas.
  • a vibratory, electric conductive diaphragm 46 of the output-side electromechanical transducer 36 is arranged.
  • the membrane 46 is preferably circular, and is at its outer edge with the Housing 34 firmly connected.
  • a thin Disk 47 of piezoelectric material for example lead zirconate titanate (PZT).
  • the the diaphragm 46 facing side of the piezoelectric disk 47 is connected to the membrane 46 in electrical conductive connection, and that suitably via an electrically conductive adhesive bond.
  • a contacted thin flexible wire On the side facing away from the membrane 46 side of the piezo disk 47 is a contacted thin flexible wire, which is part of a signal line 48 and in turn via a hermetic housing feedthrough 49 with an outside of the housing 34 lying Converter lead 50 is connected.
  • a ground connection 53 is provided from the transformer feed line 50 via the housing feedthrough 49 guided to the inside of the housing 34.
  • An output side electro-mechanical Transducer 36 of this type typically has a relatively high mechanical output impedance, in particular, a mechanical output impedance which is higher than the mechanical load impedance in the implanted state to the transducer coupled biological middle and / or inner ear structure.
  • a coupling rod 55 and a passive coupling element 56 provided on the of the transducer 36th remote end of the coupling rod 55 is attached or from this coupling rod end itself is formed.
  • the coupling of the output side of the transducer 36 to the biological Load structure, such as a Zielossikel, takes place via the mechanical impedance measuring system 38, which with the in FIG. 8 upper side of the membrane 46, preferably in the center the membrane is in mechanical communication.
  • the impedance measuring system 38 can with its membrane-side end directly to the membrane 46 and with its other end at the membrane-side end of the coupling rod 55 attack; but it can also be in the Coupling rod 55 inserted.
  • the coupling rod 55 extends at least approximately in the illustrated embodiment perpendicular to the membrane 46 by an elastically compliant polymeric seal 57 from the outside into the interior of the housing 34.
  • the polymer seal 57 is such, that it allows axial vibrations of the coupling rod 55 in the implanted state.
  • the impedance measuring system 38 is housed within the housing 34.
  • the analog measuring signals S F and S v are transmitted from the impedance measuring system 38 via measuring lines 59, 60, signal passages 61 in the housing and the housing bushing 49 to the converter lead 50.
  • the impedance measuring system 38 is further connected via a ground terminal 62 to the housing 34 and via this housing to the ground terminal 53 in electrically conductive connection.
  • the reference potential of the two measuring signals S F and S v for force and speed is thus the converter housing 34.
  • the impedance measuring system 38 is preferably constructed on the basis of piezoelectric transducers and therefore active electrical impedance transformers in the measuring system are necessary, these can be supplied via an electrical phantom power supply Electronic module 12 of the implantable hearing system from one of the two implant measuring leads 59, 60 are supplied with power for operation or fast with power.
  • FIG. 9 shows an example of a piezoelectric transducer system with measuring system for the determination the mechanical impedance according to FIG. 7, in which case the measuring amplifier 40 and associated A / D converter 27 in a connected via leads 63 separate electronic module 64 are housed in the converter housing 34 with.
  • the impedance measuring system 38 and the separate electronics module 64 can be connected via an electrical phantom power from Electronic module 12 of the implantable hearing from one of two active implant lines (Signal line 48 for the Aktreibreibersignal or a signal line 65 for the digital A / D output signal) are supplied with operating energy.
  • FIG. 10 schematically shows the structure of a fully implantable hearing system, referred to as Actuator stimulation arrangement an output-side electromechanical transducer 16th or 36, for example, the transducer of FIG. 8 or FIG. 9, has.
  • the output side Electromechanical transducers can generally be considered as any electromagnetic, electrodynamic, piezoelectric, magnetostrictive or dielectric (capacitive) transducer be educated.
  • the converter shown in Figures 8 and 9 also be modified in the manner explained in DE-C-198 40 211 that at the in Figures 8 and 9 lower side of the piezoelectric ceramic disc 47, a permanent magnet attached, which is like an electromagnetic transducer with an electromagnetic coil interacts.
  • the output-side electromechanical transducer may also be an electromagnetic Transducer arrangement as described in EP-A-0984 663.
  • the presently explained measuring system 25 or 38 is additionally provided.
  • the coupling element can be implanted with a Condition at the coupling point adjacent attenuator with entropy-elastic Be provided with properties to an optimal vibration form of the stirrup footplate or one the round window or an artificial window in the cochlea, in the vestibule or to reach the labyrinth-terminating membrane and the risk of damage the natural structures in the area of the coupling site during and after implantation To keep particularly low (DE-A-199 35 029).
  • the coupling element can according to DE-C-199 31 788 with an adjusting device for optionally adjusting the coupling element between an open position, in which the Coupling element in and out of engagement with the coupling point can be brought, and a closed position be provided, in which the coupling element in the implanted state with the coupling point is in force and / or positive connection.
  • a coupling arrangement is suitable on the ossicular chain (DE-A-199 48 336), one of the transducer into mechanical vibrations displaceable Coupling rod and one with the preselected Ankoppelstelle be brought into connection Coupling element, wherein the coupling rod and the coupling element via at least a coupling are connected together and at least one in the implanted state the Ankoppelstelle adjacent portion of the coupling element for low-loss oscillation initiation is designed in the Ankoppelstelle, wherein a first coupling half of the Clutch an outer contour with at least approximately the shape of a spherical cap has, in an outer contour at least partially complementary inner contour a second coupling half is receivable, and wherein the coupling against frictional forces reversible pivoted and / or rotatable, but occurring in the implanted state dynamic forces is essentially rigid.
  • Such a coupling arrangement has a first coupling half the coupling has an outer contour with at least approximately cylindrical, preferably circular cylindrical shape that in a to the outer contour at least partially complementary inner contour of a second coupling half is receivable, wherein a in implanted state at the coupling point abutting portion of the coupling element to low-loss oscillation initiation is designed in the Ankoppelstelle, wherein in the implanted Condition a transfer of dynamic forces between the two coupling halves the coupling substantially in the direction of the longitudinal axis of the first coupling half takes place, and wherein the coupling reversible on and uncoupled and reversible linear and / or rotationally adjustable with respect to a longitudinal axis of the first coupling half, but is rigid in the implanted state occurring dynamic forces.
  • the fully implantable hearing aid shown in FIG. 10 is also included implantable microphone (sound sensor) 10, a wireless remote control 69 for control the implant functions through the implant carrier and a wireless, transcutaneous charging system with a charger 70 and a charging coil 71 for reloading the implant secondary battery 30 ( Figures 1, 6 and 7) for powering the hearing system.
  • implantable microphone sound sensor
  • a wireless remote control 69 for control the implant functions through the implant carrier and a wireless, transcutaneous charging system with a charger 70 and a charging coil 71 for reloading the implant secondary battery 30 ( Figures 1, 6 and 7) for powering the hearing system.
  • the microphone 10 can advantageously be constructed in the manner known from EP-A-0 831 673 and with a microphone capsule housed in a housing hermetically sealed on all sides is, as well as with an electrical feedthrough assembly for performing at least one electrical connection provided by the interior of the housing to the outside thereof be, wherein the housing has at least two legs which at an angle with respect are aligned with one another, the microphone capsule receives and with a sound entry diaphragm is provided, wherein the other leg, the electrical feedthrough assembly contains and set back from the plane of the sound inlet membrane is, and wherein the geometry of the microphone housing is selected so that at implantation of the microphone in the mastoid cavity of the leg containing the sound inlet membrane from the mastoid into an artificial hole in the posterior, bony canal wall protrudes and the sound inlet membrane touches the skin of the ear canal wall.
  • a fixation of the Be provided US-A-5 999 632 known type having a sleeve, which with a cylindrical housing part enclosing the leg containing the sound inlet membrane and with the side of the auditory canal wall facing the auditory canal, projecting, elastic flange parts is provided.
  • the charging coil 71 connected to the output of the charging device 70 preferably forms in the type known from US-A-5 279 292 part of a transmission series resonant circuit, with a non-illustrated receive series resonant circuit are inductively coupled can.
  • the receive-series resonant circuit may be part of the implantable electronic module 12 ( Figures 1, 6 and 7) and according to US-A-5 279 292 a constant current source for form the battery 30.
  • the receive series resonant circuit lies in a battery charging circuit, the depending on the respective phase of flowing in the charging circuit Charging current over one or the other branch of a full-wave rectifier bridge is closed.
  • the electronic module 12 is in the arrangement of FIG. 10 via a microphone line 72 at the microphone 10 and the transducer lead 50 to the electromechanical transducer 16th or 36 and the measuring system 25 or 38 connected.
  • FIG. 11 shows schematically the structure of a partially implantable hearing system.
  • a microphone 10 an electronic module 74 for an electronic Signal processing largely according to FIG. 1, 6 or 7 (but without the telemetry system 20), the power supply (battery) 30 and a modulator / transmitter unit 75 in an externally on the body, preferably on the head above the implant to be worn external Module 76 included.
  • the implant is energetically passive as in known partial implants.
  • Its electronic module 77 (without battery 30) receives operating power and control signals for the transducer 16 or 36 and the measuring system 25 or 38 via the modulator / transmitter unit 75 in the external part 76.
  • the electronic module 77 and the modulator / transmitter unit 75 included the necessary telemetry unit for the transmission of the impedance measurement data to the Extracorporeal unit 76 for further evaluation
  • Both the fully implantable and the partially implantable hearing system can be monoaural (as shown in Figures 10 and 11) or be designed binaurally.
  • a binaural system for the rehabilitation of a hearing disorder in both ears has two system units, the each associated with one of the two ears.
  • the two system units be essentially the same. It can also be the one system unit as a master unit and the other system unit as a slave unit controlled by the master unit be designed.
  • the signal processing modules of the two system units can be used on any Manner, in particular via a wired implantable cable connection or via a wireless connection, preferably a bidirectional radio frequency link, a structure-borne ultrasound path or the electrical conductivity of the tissue the implant carrier exploiting data transmission path, communicate with each other, that optimized binaural signal processing is achieved in both system units becomes.
  • the signal processing unit is a driving signal processing electronics which electrically energizes each of the transducers such that on the basilar membrane of the damaged inner ear a traveling wave configuration arises, which is the type of traveling wave training a healthy, not damaged inner ear approximiert (older EP patent application 00 119 195.6) or in which as an actoric stimulation arrangement a dual intracochlear array is provided, which in combination a stimulator arrangement with at least one stimulator element for at least indirect mechanical stimulation of the inner ear and an electrically acting stimulation electrode arrangement with at least a cochlear implant electrode for electrical stimulation of the inner ear (older EP patent application 01 109 191.5).

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Neurosurgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Prostheses (AREA)

Claims (19)

  1. Système auditif au moins partiellement implantable pour la correction d'un défaut d'audition, avec au moins un capteur (10) pour capter des signaux acoustiques et pour les convertir en signaux électriques de capteurs correspondants, avec une unité électronique de traitement des signaux (12 ; 74, 77) pour le traitement et pour l'amplification des signaux audio du capteur, avec une unité d'alimentation électrique (30) qui alimente en courant différents composants du système ainsi qu'avec au moins un convertisseur électromécanique de sortie (16, 36) pour la stimulation mécanique de l'oreille moyenne et/ou de l'oreille interne, caractérisé en ce que, pour une détermination objective de la qualité d'accouplement du convertisseur de sortie (16, 36), le système auditif est muni d'un système de mesure d'impédance (25, 38) pour déterminer l'impédance mécanique de la structure de charge biologique qui, en état d'implantation, est couplée au convertisseur de sortie.
  2. Système selon la revendication 1, caractérisé en ce que le système de mesure d'impédance (25) comprend un dispositif pour la mesure de l'impédance électrique d'entrée du convertisseur électromécanique de sortie (16) couplé à la structure de charge biologique.
  3. Système selon la revendication 2, caractérisé en ce qu'une unité d'amplification (15) est placée en amont du convertisseur électromécanique de sortie (16), en ce que le convertisseur de sortie est raccordé à l'unité d'amplification par l'intermédiaire d'une résistance de mesure (Rm) et en ce qu'il est prévu un amplificateur de mesure (26) sur lequel sont présents en tant que signaux d'entrée la tension de mesure (U 1) qui chute à la résistance de mesure (Rm) et qui est proportionnelle au courant du convertisseur (Iw) ainsi que la tension aux bornes du convertisseur (U W).
  4. Système selon la revendication 3, caractérisé en ce que la chute de tension (U 1) est prélevée sous une impédance élevée et exempte de masse sur la résistance de mesure (Rm).
  5. Système selon la revendication 3 ou 4, caractérisé en ce que la résistance de mesure (Rm) est dimensionnée de telle façon que la somme de la valeur de la résistance (Rm) de la résistance de mesure et du montant de l'impédance d'entrée électrique complexe (ZL) du convertisseur électromécanique de sortie (16) couplé à la structure de charge biologique soit importante par rapport à la résistance intérieure (Ri) de l'unité d'amplification (15).
  6. Système selon l'une quelconque des revendications 3 à 5, caractérisé par des moyens (13) - de préférence digitaux - pour la formation du quotient entre la tension aux bornes du convertisseur (Uw) et le courant du convertisseur (Iw).
  7. Système selon la revendication 1, caractérisé en ce que le système de mesure d'impédance (38) est conçu pour la mesure directe de l'impédance mécanique de la structure de charge biologique couplée au convertisseur électromécanique de sortie (36) et est intégré dans le convertisseur de sortie sur le côté de sortie actionneur de celui-ci.
  8. Système selon la revendication 7, caractérisé en ce que le système de mesure d'impédance (38) est conçu pour générer des signaux de mesure (SF et SV) qui, en ce qui concerne la valeur et la phase de la force (F) agissant sur la structure de charge biologique ou en ce qui concerne la vélocité (v) de l'élément de couplage (55, 56), sont au moins approximativement proportionnels et en ce que, pour le traitement des signaux de mesure (SF et SV), il est prévu de préférence un amplificateur de mesure à deux canaux (40) avec une fonction de multiplexage.
  9. Système selon la revendication 8, caractérisé par des moyens (13) - de préférence digitaux - pour la formation du quotient entre le signal de mesure (SF), conformément à la force (F) agissant sur la structure de charge biologique, et le signal de mesure (Sv), conformément à la vélocité (v) de l'élément de couplage (55, 56).
  10. Système selon l'une quelconque des revendications précédentes, caractérisé par des moyens (13) - de préférence digitaux - pour, en fonction de la fréquence et/ou du niveau du signal de stimulation délivré par le convertisseur de sortie (16, 36), déterminer l'impédance mécanique de la structure de charge biologique qui, en état d'implantation, est couplée au convertisseur de sortie (16, 36) ainsi que de préférence pour déterminer dans le déroulement de l'impédance mesurée la position spectrale de fréquences de résonance (f1 et f2) au-dessus de la fréquence de stimulation (f) et de préférence pour déterminer la différence Δ/Z I/ entre les valeurs de mesure d'impédance apparaissant aux fréquences de résonance (f1 et f2).
  11. Système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une console de logiciel servant à l'adaptation du système auditif au défaut d'audition individuel comprend un module avec lequel une mesure d'impédance réalisée du côté implant est déclenchée automatiquement lors de l'initialisation du logiciel ou au moyen d'un appel actif et avec lequel les données correspondantes sont transmises par télémétrie à la console de logiciel pour une exploitation ou une évaluation ultérieures.
  12. Système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est conçu de telle façon que, sans ordre actif de mesure provenant de l'extérieur à des intervalles de temps déterminés ou en cas d'apparition d'un état de fonctionnement déterminé de l'implant, l'implant déclenche et réalise de lui-même des mesures d'impédance dont les résultats sont consignés en tant que données digitales dans une zone de mémoire de l'implant prévue pour cela, et ceci jusqu'à ce qu'ils soient appelés de l'extérieur.
  13. Système selon l'une quelconque des revendications 7 à 12, caractérisé en ce que le système de mesure d'impédance (38) est intégré dans une barre de couplage (55) par l'intermédiaire de laquelle, en état d'implantation, le convertisseur électromécanique de sortie (16, 36) est en liaison mécanique avec la structure de charge biologique.
  14. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité de traitement des signaux (12 ; 74, 77) comprend un processeur digital de signaux (13) pour traiter des signaux des capteurs acoustiques et/ou pour générer des signaux digitaux pour un masquage des acouphènes ainsi que pour le traitement des signaux du système de mesure d'impédance (38).
  15. Système selon la revendication 14, caractérisé en ce que, pour l'enregistrement et la reproduction d'un programme d'exploitation, un agencement de mémoires (S1, S2) pouvant être réécrit de manière répétitive et pouvant être implanté est attribué au processeur de signaux (13) et en ce qu'au moins des parties du programme d'exploitation peuvent être modifiées ou échangées par des données transmises par une unité externe (22) par l'intermédiaire d'un dispositif de télémétrie (20).
  16. Système selon la revendication 15, caractérisé en ce qu'il est prévu en outre un dispositif de mémorisation intermédiaire (S4, S5) dans lequel des données transmises par l'unité externe (22) par l'intermédiaire du dispositif de télémétrie (20) peuvent faire l'objet d'une mémorisation intermédiaire avant d'être retransmises au processeur de signaux (13) et en ce qu'il est de préférence prévu en outre une logique de contrôle (17) pour soumettre à un contrôle des données mémorisées dans le dispositif de mémorisation intermédiaire (S4, S5) avant qu'elles ne soient retransmises au processeur de signaux (13).
  17. Système selon l'une quelconque des revendications 14 à 16, caractérisé par un bloc fonctionnel de microprocesseur (17), en particulier un microcontrôleur, pour la commande interne à l'implant du processeur de signaux (13) par l'intermédiaire d'un bus de données (18).
  18. Système selon la revendication 17, caractérisé en ce que le bus de données (18) et le dispositif de télémétrie (20) permettent aussi de transmettre des parties de programmes ou des modules de logiciels complets entre l'extérieur, le bloc fonctionnel de microprocesseur (17) et le processeur de signaux (13).
  19. Système selon la revendication 17 ou 18, caractérisé en ce qu'au bloc fonctionnel de microprocesseur (17) est attribué un dispositif de mémoires (S3) implantable servant à la mémorisation d'un programme de travail pour le bloc fonctionnel de microprocesseur et en ce qu'au moins des parties du programme de travail pour le bloc fonctionnel de microprocesseur peuvent être modifiées ou échangées par des données transmises par l'unité externe (22) par l'intermédiaire du dispositif de télémétrie (20).
EP01118060A 2000-08-25 2001-07-25 Système auditif implantable comportant des moyens de mesure de la qualité d'accouplement Expired - Lifetime EP1181950B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10041726 2000-08-25
DE10041726A DE10041726C1 (de) 2000-08-25 2000-08-25 Implantierbares Hörsystem mit Mitteln zur Messung der Ankopplungsqualität

Publications (3)

Publication Number Publication Date
EP1181950A2 EP1181950A2 (fr) 2002-02-27
EP1181950A3 EP1181950A3 (fr) 2004-01-28
EP1181950B1 true EP1181950B1 (fr) 2005-10-05

Family

ID=7653734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01118060A Expired - Lifetime EP1181950B1 (fr) 2000-08-25 2001-07-25 Système auditif implantable comportant des moyens de mesure de la qualité d'accouplement

Country Status (5)

Country Link
US (1) US6554762B2 (fr)
EP (1) EP1181950B1 (fr)
AT (1) ATE305808T1 (fr)
AU (1) AU776528B2 (fr)
DE (2) DE10041726C1 (fr)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787647B2 (en) 1997-01-13 2010-08-31 Micro Ear Technology, Inc. Portable system for programming hearing aids
US8260430B2 (en) 2010-07-01 2012-09-04 Cochlear Limited Stimulation channel selection for a stimulating medical device
US6952483B2 (en) * 1999-05-10 2005-10-04 Genisus Systems, Inc. Voice transmission apparatus with UWB
US6904402B1 (en) * 1999-11-05 2005-06-07 Microsoft Corporation System and iterative method for lexicon, segmentation and language model joint optimization
WO2001054458A2 (fr) 2000-01-20 2001-07-26 Starkey Laboratories, Inc. Systemes pour protheses auditives
AU2002343700A1 (en) * 2001-11-15 2003-06-10 Etymotic Research, Inc. Improved dynamic range analog to digital converter suitable for hearing aid applications
US7197152B2 (en) * 2002-02-26 2007-03-27 Otologics Llc Frequency response equalization system for hearing aid microphones
AU2003213578A1 (en) * 2002-02-26 2003-09-09 Otologics Llc Method and system for external assessment and positioning of hearing aids that include implanted actuators
US6712754B2 (en) 2002-02-26 2004-03-30 Otologics Llc Method and system for positioning implanted hearing aid actuators
US20030161481A1 (en) * 2002-02-26 2003-08-28 Miller Douglas Alan Method and system for external assessment of hearing aids that include implanted actuators
US20030163021A1 (en) * 2002-02-26 2003-08-28 Miller Douglas Alan Method and system for external assessment of hearing aids that include implanted actuators
US6879693B2 (en) * 2002-02-26 2005-04-12 Otologics, Llc. Method and system for external assessment of hearing aids that include implanted actuators
US6978171B2 (en) * 2002-03-15 2005-12-20 Medtronic, Inc. Automated impedance measurement of an implantable medical device
US20070135730A1 (en) * 2005-08-31 2007-06-14 Tympany, Inc. Interpretive Report in Automated Diagnostic Hearing Test
AUPS318202A0 (en) * 2002-06-26 2002-07-18 Cochlear Limited Parametric fitting of a cochlear implant
US20040017921A1 (en) * 2002-07-26 2004-01-29 Mantovani Jose Ricardo Baddini Electrical impedance based audio compensation in audio devices and methods therefor
US7596408B2 (en) * 2002-12-09 2009-09-29 Medtronic, Inc. Implantable medical device with anti-infection agent
WO2004052457A1 (fr) * 2002-12-09 2004-06-24 Medtronic, Inc. Module de connexion de fil de dispositif medical implantable modulaire
US20050003268A1 (en) * 2003-05-16 2005-01-06 Scott Erik R. Battery housing configuration
US7263401B2 (en) * 2003-05-16 2007-08-28 Medtronic, Inc. Implantable medical device with a nonhermetic battery
US7317947B2 (en) * 2003-05-16 2008-01-08 Medtronic, Inc. Headset recharger for cranially implantable medical devices
US20050004637A1 (en) * 2003-05-16 2005-01-06 Ruchika Singhal Explantation of implantable medical device
US7252090B2 (en) * 2003-09-15 2007-08-07 Medtronic, Inc. Selection of neurostimulator parameter configurations using neural network
US7617002B2 (en) * 2003-09-15 2009-11-10 Medtronic, Inc. Selection of neurostimulator parameter configurations using decision trees
US7239926B2 (en) * 2003-09-15 2007-07-03 Medtronic, Inc. Selection of neurostimulator parameter configurations using genetic algorithms
US7184837B2 (en) * 2003-09-15 2007-02-27 Medtronic, Inc. Selection of neurostimulator parameter configurations using bayesian networks
DE10343291B3 (de) 2003-09-18 2005-04-21 Siemens Audiologische Technik Gmbh Hörgerät und Verfahren zur Anpassung eines Hörgeräts
US20070213788A1 (en) * 2003-09-19 2007-09-13 Osberger Mary J Electrical stimulation of the inner ear in patients with unilateral hearing loss
US6997864B2 (en) * 2003-11-03 2006-02-14 Otologics, Llc Method for obtaining diagnostic information relating to a patient having an implanted transducer
US7137946B2 (en) * 2003-12-11 2006-11-21 Otologics Llc Electrophysiological measurement method and system for positioning an implantable, hearing instrument transducer
US7596399B2 (en) * 2004-04-29 2009-09-29 Medtronic, Inc Implantation of implantable medical device
US20050245984A1 (en) * 2004-04-30 2005-11-03 Medtronic, Inc. Implantable medical device with lubricious material
EP1765459B1 (fr) 2004-06-15 2018-11-28 Cochlear Limited Détermination automatique du seuil d'une réponse neuronale évoquée
US7801617B2 (en) * 2005-10-31 2010-09-21 Cochlear Limited Automatic measurement of neural response concurrent with psychophysics measurement of stimulating device recipient
US8190268B2 (en) * 2004-06-15 2012-05-29 Cochlear Limited Automatic measurement of an evoked neural response concurrent with an indication of a psychophysics reaction
JP4864901B2 (ja) * 2004-11-30 2012-02-01 アドバンスド・バイオニクス・アクチエンゲゼルシャフト 補聴器用の埋込式アクチュエータ
WO2006062525A2 (fr) * 2004-12-11 2006-06-15 Otologics, Llc Procede et systeme de mesure electrophysiologique pour le positionnement d'un transducteur implantable de prothese auditive
DE102005008318B4 (de) * 2005-02-23 2013-07-04 Siemens Audiologische Technik Gmbh Hörhilfegerät mit benutzergesteuerter Einmessautomatik
US7582052B2 (en) * 2005-04-27 2009-09-01 Otologics, Llc Implantable hearing aid actuator positioning
DE602005014863D1 (de) * 2005-08-10 2009-07-23 Emma Mixed Signal Cv Analog/Digital - Wandler mit dynamischer Bereichserweiterung
DE102005041353A1 (de) * 2005-08-31 2007-03-01 Siemens Audiologische Technik Gmbh Hörvorrichtung mit Statusmeldeeinrichtung und entsprechendes Verfahren
US8014871B2 (en) * 2006-01-09 2011-09-06 Cochlear Limited Implantable interferometer microphone
US7715571B2 (en) * 2006-03-23 2010-05-11 Phonak Ag Method for individually fitting a hearing instrument
EP2278827A1 (fr) 2006-03-23 2011-01-26 Phonak Ag Procedé pour l'adaptation individuelle d'un appareil auditif
US8571675B2 (en) * 2006-04-21 2013-10-29 Cochlear Limited Determining operating parameters for a stimulating medical device
US8380300B2 (en) * 2006-04-28 2013-02-19 Medtronic, Inc. Efficacy visualization
US8306624B2 (en) 2006-04-28 2012-11-06 Medtronic, Inc. Patient-individualized efficacy rating
US9084901B2 (en) 2006-04-28 2015-07-21 Medtronic, Inc. Cranial implant
US7715920B2 (en) 2006-04-28 2010-05-11 Medtronic, Inc. Tree-based electrical stimulator programming
US7876906B2 (en) * 2006-05-30 2011-01-25 Sonitus Medical, Inc. Methods and apparatus for processing audio signals
US20120243714A9 (en) * 2006-05-30 2012-09-27 Sonitus Medical, Inc. Microphone placement for oral applications
US8103354B2 (en) * 2006-07-17 2012-01-24 Advanced Bionics, Llc Systems and methods for determining a threshold current level required to evoke a stapedial muscle reflex
US7925355B2 (en) * 2006-07-17 2011-04-12 Advanced Bionics, Llc Systems and methods for determining a threshold current level required to evoke a stapedial muscle reflex
US8291912B2 (en) * 2006-08-22 2012-10-23 Sonitus Medical, Inc. Systems for manufacturing oral-based hearing aid appliances
HUE043135T2 (hu) * 2006-09-08 2019-07-29 Soundmed Llc Fülzúgás kezelésére szolgáló módszerek és készülékek
US20120195448A9 (en) * 2006-09-08 2012-08-02 Sonitus Medical, Inc. Tinnitus masking systems
CA2601662A1 (fr) 2006-09-18 2008-03-18 Matthias Mullenborn Interface sans fil pour programmer des dispositifs d'aide auditive
US8270638B2 (en) * 2007-05-29 2012-09-18 Sonitus Medical, Inc. Systems and methods to provide communication, positioning and monitoring of user status
US20080304677A1 (en) * 2007-06-08 2008-12-11 Sonitus Medical Inc. System and method for noise cancellation with motion tracking capability
US20090028352A1 (en) * 2007-07-24 2009-01-29 Petroff Michael L Signal process for the derivation of improved dtm dynamic tinnitus mitigation sound
US20120235632A9 (en) * 2007-08-20 2012-09-20 Sonitus Medical, Inc. Intra-oral charging systems and methods
US8433080B2 (en) * 2007-08-22 2013-04-30 Sonitus Medical, Inc. Bone conduction hearing device with open-ear microphone
US8224013B2 (en) * 2007-08-27 2012-07-17 Sonitus Medical, Inc. Headset systems and methods
US7682303B2 (en) 2007-10-02 2010-03-23 Sonitus Medical, Inc. Methods and apparatus for transmitting vibrations
US20090105523A1 (en) * 2007-10-18 2009-04-23 Sonitus Medical, Inc. Systems and methods for compliance monitoring
EP2061274A1 (fr) * 2007-11-19 2009-05-20 Oticon A/S Instrument d'aide auditive utilisant des récepteurs dotés de propriétés de performance différents
US8795172B2 (en) * 2007-12-07 2014-08-05 Sonitus Medical, Inc. Systems and methods to provide two-way communications
US7974845B2 (en) 2008-02-15 2011-07-05 Sonitus Medical, Inc. Stuttering treatment methods and apparatus
US8270637B2 (en) 2008-02-15 2012-09-18 Sonitus Medical, Inc. Headset systems and methods
US8023676B2 (en) 2008-03-03 2011-09-20 Sonitus Medical, Inc. Systems and methods to provide communication and monitoring of user status
US8150075B2 (en) 2008-03-04 2012-04-03 Sonitus Medical, Inc. Dental bone conduction hearing appliance
US20090226020A1 (en) 2008-03-04 2009-09-10 Sonitus Medical, Inc. Dental bone conduction hearing appliance
US20090248085A1 (en) * 2008-03-31 2009-10-01 Cochlear Limited Tissue injection fixation system for a prosthetic device
US9386962B2 (en) * 2008-04-21 2016-07-12 University Of Washington Method and apparatus for evaluating osteointegration of medical implants
US20090270673A1 (en) * 2008-04-25 2009-10-29 Sonitus Medical, Inc. Methods and systems for tinnitus treatment
US20090281623A1 (en) * 2008-05-12 2009-11-12 Medtronic, Inc. Customization of implantable medical devices
WO2009152528A1 (fr) * 2008-06-13 2009-12-17 Cochlear Americas Capteur de son implantable pour prothèses auditives
US9393432B2 (en) 2008-10-31 2016-07-19 Medtronic, Inc. Non-hermetic direct current interconnect
EP2405871B1 (fr) 2009-03-13 2018-01-10 Cochlear Limited Système de compensation pour un actionneur implantable
DK2280560T3 (en) * 2009-07-03 2015-12-14 Bernafon Ag Hearing aid system comprising a receiver in the ear and a system for identifying the receiver type
WO2011041078A1 (fr) 2009-10-02 2011-04-07 Sonitus Medical, Inc. Appareil intra-oral pour transmission sonore par l'intermédiaire de conduction osseuse
US9215537B2 (en) 2010-03-15 2015-12-15 Advanced Bionics Ag Hearing aid and method of implanting a hearing aid
US8376967B2 (en) 2010-04-13 2013-02-19 Audiodontics, Llc System and method for measuring and recording skull vibration in situ
US8594806B2 (en) 2010-04-30 2013-11-26 Cyberonics, Inc. Recharging and communication lead for an implantable device
AU2011295787B2 (en) 2010-09-03 2015-11-19 Med-El Elektromedizinische Geraete Gmbh Middle ear implantable microphone
RU2013120992A (ru) 2010-10-08 2014-11-20 Золидаго С.А.Р.Л. Имплантируемый привод для слуховых устройств
US9155887B2 (en) 2010-10-19 2015-10-13 Cochlear Limited Relay interface for connecting an implanted medical device to an external electronics device
US9729981B2 (en) * 2011-05-12 2017-08-08 Cochlear Limited Identifying hearing prosthesis actuator resonance peak(s)
US9313589B2 (en) 2011-07-01 2016-04-12 Cochlear Limited Method and system for configuration of a medical device that stimulates a human physiological system
EP2637423A1 (fr) 2012-03-06 2013-09-11 Oticon A/S Dispositif de test pour module de haut-parleur d'un dispositif d'écoute
US9343923B2 (en) 2012-08-23 2016-05-17 Cyberonics, Inc. Implantable medical device with backscatter signal based communication
US9935498B2 (en) 2012-09-25 2018-04-03 Cyberonics, Inc. Communication efficiency with an implantable medical device using a circulator and a backscatter signal
US9525949B1 (en) * 2012-10-11 2016-12-20 Envoy Medical Corporation Implantable middle ear transducer having diagnostic detection sensor
DK3101917T3 (en) 2015-06-03 2018-01-02 Gn Resound As Detection of hearing aid configuration
US10348891B2 (en) 2015-09-06 2019-07-09 Deborah M. Manchester System for real time, remote access to and adjustment of patient hearing aid with patient in normal life environment
FR3046323B1 (fr) * 2015-12-24 2018-02-02 Universite D'aix Marseille Microphone implantable pour une prothese d’oreille implantable
WO2017182931A1 (fr) * 2016-04-22 2017-10-26 Cochlear Limited Essais d'électrocochléographie dans les prothèses auditives
US10357656B2 (en) * 2016-07-12 2019-07-23 Cochlear Limited Hearing prosthesis programming
US20180352348A1 (en) * 2017-06-06 2018-12-06 Sonitus Technologies Inc. Bone conduction device
EP3753265A4 (fr) * 2018-02-13 2021-10-27 Cochlear Limited Détermination peropératoire de l'efficacité de l'accouplement vibratoire
CN109591658B (zh) * 2018-10-23 2022-05-27 大唐恩智浦半导体有限公司 电池管理装置、方法及芯片
BR112022024349A2 (pt) 2020-06-10 2022-12-27 Qualcomm Inc Seleção de ganho de áudio
CN113507681B (zh) * 2021-07-01 2022-03-08 中国科学院声学研究所 一种用于骨导听觉装置的状态监测装置及监测方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712962A (en) 1971-04-05 1973-01-23 J Epley Implantable piezoelectric hearing aid
GB1440724A (en) 1972-07-18 1976-06-23 Fredrickson J M Implantable electromagnetic hearing aid
US3882285A (en) 1973-10-09 1975-05-06 Vicon Instr Company Implantable hearing aid and method of improving hearing
US4850962A (en) 1984-12-04 1989-07-25 Medical Devices Group, Inc. Implantable hearing aid and method of improving hearing
US5015225A (en) 1985-05-22 1991-05-14 Xomed, Inc. Implantable electromagnetic middle-ear bone-conduction hearing aid device
US5015224A (en) 1988-10-17 1991-05-14 Maniglia Anthony J Partially implantable hearing aid device
DE4104358A1 (de) 1991-02-13 1992-08-20 Implex Gmbh Implantierbares hoergeraet zur anregung des innenohres
DE4104359A1 (de) * 1991-02-13 1992-08-20 Implex Gmbh Ladesystem fuer implantierbare hoerhilfen und tinnitus-maskierer
US5624376A (en) 1993-07-01 1997-04-29 Symphonix Devices, Inc. Implantable and external hearing systems having a floating mass transducer
US5554096A (en) 1993-07-01 1996-09-10 Symphonix Implantable electromagnetic hearing transducer
KR19990082641A (ko) * 1996-02-15 1999-11-25 알만드 피. 뉴커만스 개량된 생체교합적인 트랜스듀서
DE19618964C2 (de) 1996-05-10 1999-12-16 Implex Hear Tech Ag Implantierbares Positionier- und Fixiersystem für aktorische und sensorische Implantate
US5762583A (en) 1996-08-07 1998-06-09 St. Croix Medical, Inc. Piezoelectric film transducer
US6005955A (en) 1996-08-07 1999-12-21 St. Croix Medical, Inc. Middle ear transducer
US5707338A (en) 1996-08-07 1998-01-13 St. Croix Medical, Inc. Stapes vibrator
US5997466A (en) 1996-08-07 1999-12-07 St. Croix Medical, Inc. Implantable hearing system having multiple transducers
US5836863A (en) 1996-08-07 1998-11-17 St. Croix Medical, Inc. Hearing aid transducer support
DE19638158C2 (de) * 1996-09-18 2000-08-31 Implex Hear Tech Ag Implantierbares Mikrofon
US5814095A (en) * 1996-09-18 1998-09-29 Implex Gmbh Spezialhorgerate Implantable microphone and implantable hearing aids utilizing same
US5999856A (en) * 1997-02-21 1999-12-07 St. Croix Medical, Inc. Implantable hearing assistance system with calibration and auditory response testing
DE19738587C1 (de) * 1997-09-03 1999-05-27 Implex Gmbh Anordnung zum Einstellen und Fixieren der Relativlage zweier Elemente eines aktiven oder passiven Hör-Implantats
DE19758573C2 (de) 1997-11-26 2001-03-01 Implex Hear Tech Ag Fixationselement für ein implantierbares Mikrofon
DE19752447C2 (de) * 1997-11-26 1999-12-30 Implex Hear Tech Ag Fixationselement für ein implantierbares Mikrofon
EP0936840A1 (fr) * 1998-02-16 1999-08-18 Daniel F. àWengen Prothèse auditive implantable
DE19827898C1 (de) 1998-06-23 1999-11-11 Hans Leysieffer Verfahren und Vorrichtung zur Versorgung eines teil- oder vollimplantierten aktiven Gerätes mit elektrischer Energie
DE19840212C2 (de) 1998-09-03 2001-08-02 Implex Hear Tech Ag Wandleranordnung für teil- oder vollimplantierbare Hörgeräte
DE19840211C1 (de) * 1998-09-03 1999-12-30 Implex Hear Tech Ag Wandler für teil- oder vollimplantierbare Hörgeräte
US6077215A (en) 1998-10-08 2000-06-20 Implex Gmbh Spezialhorgerate Method for coupling an electromechanical transducer of an implantable hearing aid or tinnitus masker to a middle ear ossicle
DE19914993C1 (de) * 1999-04-01 2000-07-20 Implex Hear Tech Ag Vollimplantierbares Hörsystem mit telemetrischer Sensorprüfung
DE19914992A1 (de) 1999-04-01 2000-12-07 Implex Hear Tech Ag Implantierbares Hörsystem mit Audiometer
DE19915846C1 (de) 1999-04-08 2000-08-31 Implex Hear Tech Ag Mindestens teilweise implantierbares System zur Rehabilitation einer Hörstörung

Also Published As

Publication number Publication date
ATE305808T1 (de) 2005-10-15
EP1181950A2 (fr) 2002-02-27
DE50107599D1 (de) 2006-02-16
US6554762B2 (en) 2003-04-29
DE10041726C1 (de) 2002-05-23
US20020026091A1 (en) 2002-02-28
EP1181950A3 (fr) 2004-01-28
AU776528B2 (en) 2004-09-16
AU6360901A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
EP1181950B1 (fr) Système auditif implantable comportant des moyens de mesure de la qualité d'accouplement
EP1179969B1 (fr) Système auditif au moins partiellement implantable
EP1246503B1 (fr) Système auditif entièrement implantable
EP1145734B1 (fr) Système au moins partiellement implantable de réhabilitation d'un trouble auditif
EP1173044B1 (fr) Système implantable de réhabilitation d'un trouble auditif
DE10018361C2 (de) Mindestens teilimplantierbares Cochlea-Implantat-System zur Rehabilitation einer Hörstörung
EP1191815B1 (fr) Système auditif au moins partiellement implantable avec stimulation mécanique d'un espace lymphatique de l'oreille interne
DE10018360C2 (de) Mindestens teilimplantierbares System zur Rehabilitation einer Hörstörung
EP1041857B1 (fr) Système auditif implantable avec audiomètre
DE19915846C1 (de) Mindestens teilweise implantierbares System zur Rehabilitation einer Hörstörung
EP1054573B1 (fr) Dispositif pour le couplage mécanique d'un transducteur électromécanique de prothèse auditive implantable dans une cavité dans la mastoidite
DE19859171C2 (de) Implantierbares Hörgerät mit Tinnitusmaskierer oder Noiser
DE19914993C1 (de) Vollimplantierbares Hörsystem mit telemetrischer Sensorprüfung
US6315710B1 (en) Hearing system with middle ear transducer mount
EP0831673B1 (fr) Microphone implantable
DE10047388C1 (de) Mindestens teilweise implantierbares Hörsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 04R 25/00 B

Ipc: 7A 61N 1/36 A

17P Request for examination filed

Effective date: 20040719

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051005

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060116

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060118

REF Corresponds to:

Ref document number: 50107599

Country of ref document: DE

Date of ref document: 20060216

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060306

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: COCHLEAR LTD

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060725

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170628

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170719

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180725

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190709

Year of fee payment: 19

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 305808

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200725