EP1176545B1 - Laser imaging with variable dot size - Google Patents

Laser imaging with variable dot size Download PDF

Info

Publication number
EP1176545B1
EP1176545B1 EP01114875A EP01114875A EP1176545B1 EP 1176545 B1 EP1176545 B1 EP 1176545B1 EP 01114875 A EP01114875 A EP 01114875A EP 01114875 A EP01114875 A EP 01114875A EP 1176545 B1 EP1176545 B1 EP 1176545B1
Authority
EP
European Patent Office
Prior art keywords
laser
printing
light source
distance
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01114875A
Other languages
German (de)
French (fr)
Other versions
EP1176545A2 (en
EP1176545A3 (en
Inventor
Bernd Vosseler
Bernard Dr. Beier
Uwe Ernst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberger Druckmaschinen AG
Original Assignee
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heidelberger Druckmaschinen AG filed Critical Heidelberger Druckmaschinen AG
Publication of EP1176545A2 publication Critical patent/EP1176545A2/en
Publication of EP1176545A3 publication Critical patent/EP1176545A3/en
Application granted granted Critical
Publication of EP1176545B1 publication Critical patent/EP1176545B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1075Mechanical aspects of on-press plate preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/44Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements
    • B41J2/442Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light

Definitions

  • the invention relates to a device and a method for pointwise imaging of printing surfaces by means of at least one laser beam which is moved relative to the printing surface.
  • Imaging plates using CtP (Computer-to-Plate) or Direct Imaging Printing machines must be the distance between the printing surface and the optical system the imaging device are maintained very accurately in order to achieve an optimal result receive. For example, by vibrations of the machine in operation, but it comes to Deviations from the nominal distance between printing surface and imaging laser. How strong the quality of the Besselungsommees depends on the deviation from the nominal distance is among other things, by the beam quality of the laser and the selected beam parameters founded. In general, results from a deviation from the desired distance deformed pressure point, which depending on the beam parameters either larger or smaller than the predetermined target size is. For very strong deviations even no pressure point generated more on the printing surface, since the laser beam is so much expanded that on no position of the printing area more the imaging threshold is reached.
  • CtP Computer-to-Plate
  • Direct Imaging Printing machines must be the distance between the printing surface and the optical system the imaging device are maintained very accurately in order to achieve an optimal result receive. For example, by vibrations of the machine in operation, but it comes
  • US 5,764,272 describes an autofocus system for a laser imaging device disclosed.
  • This system has a laser and corresponding optics for forming a Light beam, which is focused on an image plane on.
  • a photodiode if a signal characteristic of the light reflected from the image surface is produced, then that the focus of the laser beam on the image surface the characteristic signal can be adjusted accordingly.
  • Shifting the focus of the imaging device may be the laser, the corresponding Optics or the image area are moved.
  • Such autofocus systems can work only limitedly fast.
  • the Laser optics procedure a non-negligible mass must be accelerated quickly, exactly be positioned and quickly braked again.
  • high-frequency interference like her for example, by contamination under the pressure surface, dust grains or by Kinks occur in the printing surface, the regular times that such a system requires too long. It therefore often comes to Bereciungshoun.
  • An imaging device with multiple parallel laser beams may typically not every single beam can be focused, because the entire imaging optics is moved. In other words, a compromise must be found so that the deviation from the nominal distance of all the simultaneous beams altogether becomes minimal. in the general is the construction of a mechanical, by movement of the Viewing optics autofocus system technically complex, needed corresponding space and causes relatively high costs.
  • WO97 / 27065 is a device for pointwise imaging of Printing surfaces on a drum known, with a variety of infrared laser diodes whose Input currents are variable, allowing the light intensity during imaging is selectively variable to affect the size of pressure points to be generated.
  • the Selective change is based on pre-calibration of the laser diode intensity by for this one correction function depending on the variations of the position of the Drum surface is defined relative to the device.
  • the correction function becomes the Determining a correction of the laser diode intensity used during the imaging, so that the currently used input currents can be determined in real time.
  • Object of the present invention is therefore an apparatus for pointwise Imaging of printing surfaces by means of at least one laser beam, which relative to Pressure surface is moved to provide, with which a variable Imaging can be performed without removing parts of the device, such as For example, the imaging optics, must be mechanically moved to Compensate for variations in the distance between imaging optics and printing surface.
  • the imaging optics of a imaging device are set in such a way that that at the desired distance the focus, i. H. the plane in which the laser beam its smallest diameter has, exactly on the surface of the printing surface comes to rest.
  • a deviation from the nominal distance between laser and printing surface results in a Magnification of the beam diameter on the printing surface and thus depending on how the Laser parameters of power and focus diameter are set in one Increase or decrease the pressure point.
  • the Light output is increased or decreased.
  • Another way to vary the size of the pressure point is to use the Exposure time to extend or shorten specifically. A combination of Changes in performance and exposure time are also possible.
  • the enlargement or reduction of the Pressure point due to a distance deviation are compensated:
  • the provided variable laser power can be an adjustment of the pressure point size done so that an acceptable Becouungs hamper is achieved.
  • the pressure point size is variable.
  • the value of the required light output or Exposure time can be calculated from the measured distance.
  • This feature can z. B. in the raster generator, the pattern of pressure points to be imaged in a temporal Sequence of pulses for the laser imaging implements to be met. advantageously, is in advance by the functional context a table, a so-called Lookup-Table, created and saved, so that in situ the required value immediately Available.
  • the device for pointwise Imaging of printing surfaces on multiple laser beams, with which simultaneously exposed becomes.
  • Particular preference is given to individually controllable diode laser arrays.
  • the power or imaging time can be varied be so that it is possible to achieve an acceptable Bercisungswoven, as the Size of each printed by a laser pressure point variable and the size of the independent of other pressure points.
  • the present invention requires significantly fewer moving parts than the known ones Autofokussysteme and can react much faster to disturbances. she at the same time achieves a much better imaging result than a device without Autofocus.
  • the realization of compact imaging device in integrated form is much easier. It is associated with lower costs.
  • Such a device can be inside or outside of a printing unit or a Printing machine can be used for point-by-point imaging.
  • Fig. 1 the variation of the spot size of a laser for spotwise imaging is shown by pressure surfaces.
  • the laser beam propagates along the optical axis 10, on which also its intensity maximum is.
  • focus 12 the Laser beam at its lowest waist.
  • the focus 12 defines the target distance of the laser to the printing surface.
  • the lines 18 indicate the variation of the Limiting the light spot as a function of position along the propagation direction. In focus 12, in a region 110, a greater intensity than the threshold intensity reached for imaging.
  • the area in which the intensity is above the threshold intensity becomes smaller, because the transported energy flows through a larger cross-sectional area.
  • At detained Laser intensity thus results in the area 112, in which the imaging threshold is exceeded.
  • the Area to be imaged 116 greater than the area reached at a fixed intensity 112. Consequently, according to the invention, the intensity of the laser is increased so that the region, in which the threshold intensity for imaging is exceeded becomes larger.
  • the Threshold intensity is then exceeded in the entire area 118. In actual distance 114 then the threshold intensity is reached in the entire area 116.
  • Fig. 2 shows the generation of a pressure point by relative movement of a laser beam against a printing surface.
  • a laser beam with a spot 22 falls onto a printing surface 20.
  • the laser is scanned over the printing surface 20 in such a way that the threshold intensity for imaging is exceeded in the entire region 24.
  • it is an elliptical Gaussian laser beam which has two different semi-axes.
  • the longer spot diameter w x 26 is perpendicular to the direction of movement.
  • the shorter spot diameter w y 28 lies in the direction of movement.
  • FIGS. 3a, 3b and 3c Examples of boundary lines of written pressure points of different laser parameters are shown in FIGS. 3a, 3b and 3c. In other words, that area is shown on which the threshold intensity for imaging is exceeded.
  • 3a shows the boundary line f of a pressure point with widths d x 9.3 microns and d y 10.6 microns.
  • Its width d is 8.5 microns, and its height d y is 9.8 microns.
  • the laser wavelength is 830 nanometers, and the diffraction factor M 2 is 1.1.
  • the spots w x and w y are 8.8 microns and 7.7 microns, respectively.
  • the power of the laser is increased by 10%.
  • the pressure point size can be made variable.
  • FIG. 3 b shows by way of example how a power adjustment can lead to a reduced pressure point.
  • reduced power which is optimized for writing a line
  • the boundary line 1 of a pressure point of width d x of 8.1 microns and the height d y of 9.5 microns is generated.
  • the actual distance deviates again by 100 micrometers from the nominal distance in the focus of the laser.
  • FIG. 3 c shows by way of example how an extension of the exposure time, in other words of the duration of the load beam, leads to an increase in the pressure point both in the x direction and in the y direction.
  • a boundary line v of a pressure point is seen, which is generated at a time line extension of the exposure from 10 microseconds to 11 microseconds.
  • the point thus created has the widths d x 9.5 microns and d y 10.8 microns.
  • the parameters of the generating beam are the same as for the beam, which produces a pressure point with the boundary line u, as also shown in Fig. 3a.
  • FIGS. 3 a, 3 b and 3 c exemplifies how a pointwise imaging of printing surfaces with the help of at least one laser beam Variable pressure point size achieved by variable laser power or exposure time becomes. Changes in distance between the printing surface and laser focus are instead of a Movement of the imaging optics, the laser itself or the printing surface, as in Autofocus systems is common, balanced by adjusting the laser power.
  • a preferred embodiment of the invention for imaging a Pressure surface which is located on a rotatable cylinder shown.
  • the laser light source 40 generates a laser beam 42 which mediates an imaging optics 44 on the located on a cylinder 46 pressure surface 48 in Item 410 is mapped.
  • the cylinder 46 is rotatable about its axis of symmetry. These Rotation is indicated by the double arrow B.
  • the laser light source 40 may be parallel to Symmetryeachse of the cylinder 46 are moved in a linear manner, which by the Double arrow A is marked.
  • the cylinder 46 rotates with the Pressure surface 48 according to the rotational movement B, and the laser light source 40 moves along the cylinder according to the translation direction A.
  • the result is an image, which rotates in helical ways the axis of symmetry of the cylinder 46.
  • the rangefinder 414 emits a light beam 416 which reaches the printing surface 48 at the pixel 418.
  • the necessary information about the distance of the laser light source 40 with the pixel 410, which is used for imaging are obtained to the printing surface 48.
  • a connection for the exchange of data and / or control signals 420 is the rangefinder 414 with a device for calculating the necessary Laser power 422 linked.
  • Via connection 424 is the means for calculation the necessary laser power or exposure time 422 with the laser control 426 linked, which in particular can determine the laser power.
  • Data and / or Control signals between laser control 426 and laser light source 40 are on the Transfer connection 428.
  • the laser controller 426 may be above Be linked via a connection 430 with the machine control 432.
  • the laser light source 40 is made a laser diode array whose individual lasers can be controlled separately. It can then take place a simultaneous imaging of multiple pressure points whose Size is variable. For each individual pressure point, the deviation of the actual position of the desired position of the printing surface to the laser focus by the variable laser power or Exposure time be compensated.

Abstract

A laser controller (426) varies the laser power or illumination intensity as a function of the spacing between laser source (40) and image point (410).

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur punktweisen Bebilderung von Druckflächen mit Hilfe wenigstens eines Laserstrahls, welcher relativ zur Druckfläche bewegt wird.The invention relates to a device and a method for pointwise imaging of printing surfaces by means of at least one laser beam which is moved relative to the printing surface.

Bei der Bebilderung von Druckplatten in CtP-(Computer-to-plate) oder Direct-Imaging Druckmaschinen muß der Abstand zwischen der Druckfläche und dem optischen System der Bebilderungseinrichtung sehr genau eingehalten werden, um ein optimales Ergebnis zu erhalten. Beispielsweise durch Schwingungen der Maschine im Betrieb kommt es aber zu Abweichungen vom Sollabstand zwischen Druckfläche und Bebilderungslaser. Wie stark die Qualität des Bebilderungsergebnises von der Abweichung vom Sollabstand abhängt, ist unter anderem durch die Strahlqualität des Lasers und die gewählten Strahlparameter begründet. Im allgemeinen resultiert aus einer Abweichungen vom Sollabstand ein verformter Druckpunkt, welcher je nach Strahlparameter entweder größer oder kleiner als die vorgegebene Sollgröße ist. Bei sehr starken Abweichungen wird sogar kein Druckpunkt mehr auf der Druckfläche erzeugt, da der Laserstrahl so stark aufgeweitet ist, dass an keiner Stelle der Druckfläche mehr die Bebilderungsschwelle erreicht wird.When imaging plates using CtP (Computer-to-Plate) or Direct Imaging Printing machines must be the distance between the printing surface and the optical system the imaging device are maintained very accurately in order to achieve an optimal result receive. For example, by vibrations of the machine in operation, but it comes to Deviations from the nominal distance between printing surface and imaging laser. How strong the quality of the Bebilderungsergebnises depends on the deviation from the nominal distance is among other things, by the beam quality of the laser and the selected beam parameters founded. In general, results from a deviation from the desired distance deformed pressure point, which depending on the beam parameters either larger or smaller than the predetermined target size is. For very strong deviations even no pressure point generated more on the printing surface, since the laser beam is so much expanded that on no position of the printing area more the imaging threshold is reached.

In der US 5,764,272 wird ein Autofokussystem für eine Laserbebilderungseinrichtung offenbart. Dieses System weist einen Laser und entsprechende Optik zur Formung eines Lichtstrahls, welcher auf eine Bildebene fokusiert wird auf. Vermittels einer Fotodiode wird ein für das von der Bildfläche reflektierte Licht charakteristische Signal produziert, so dass der Fokus des Laserstrahls auf der Bildfläche dem charakteristischen Signal entsprechend angepasst werden kann. Damit wird ein enger Zusammenhang der Bildfläche und der Bildebene des Lasers mit seiner entsprechenden Optik hergestellt. Zur Verschiebung des Fokus der Bebilderungseinrichtung kann der Laser, die entsprechende Optik oder die Bildfläche bewegt werden.US 5,764,272 describes an autofocus system for a laser imaging device disclosed. This system has a laser and corresponding optics for forming a Light beam, which is focused on an image plane on. By means of a photodiode if a signal characteristic of the light reflected from the image surface is produced, then that the focus of the laser beam on the image surface the characteristic signal can be adjusted accordingly. This creates a close connection between the picture surface and the image plane of the laser manufactured with its corresponding optics. to Shifting the focus of the imaging device may be the laser, the corresponding Optics or the image area are moved.

Derartige Autofokussysteme können nur begrenzt schnell arbeiten. Wird beispielsweise die Laseroptik verfahren, muss eine nicht vernachlässigbare Masse schnell beschleunigt, genau positioniert und schnell wieder abgebremst werden. Für hochfrequente Störungen wie sie beispielsweise durch Verschmutzungen unter der Druckfläche, Staubkörner oder durch Knicke in der Druckfläche auftreten, sind die Regelzeiten, die ein solches System benötigt, zu lang. Es kommt daher häufig zu Bebilderungsfehlern. In einem Vielkanalsystem, d. h., einer Bebilderungseinrichtung mit mehreren parallelen Laserstrahlen, kann typischerweise nicht jeder einzelne Strahl scharf gestellt werden, da die gesamte Abbildungsoptik verschoben wird. Mit anderen Worten es muss ein Kompromiss gefunden werden, so dass die Abweichung vom Sollabstand aller simultaner Strahlen insgesamt minimal wird. Im allgemeinen ist die Konstruktion eines mechanischen, durch Bewegung der Abbildungsoptik wirkenden Autofokussystems technisch aufwendig, benötigt entsprechenden Bauraum und verursacht relativ hohe Kosten.Such autofocus systems can work only limitedly fast. For example, the Laser optics procedure, a non-negligible mass must be accelerated quickly, exactly be positioned and quickly braked again. For high-frequency interference like her for example, by contamination under the pressure surface, dust grains or by Kinks occur in the printing surface, the regular times that such a system requires too long. It therefore often comes to Bebilderungsfehlern. In a multi-channel system, i. H., An imaging device with multiple parallel laser beams may typically not every single beam can be focused, because the entire imaging optics is moved. In other words, a compromise must be found so that the deviation from the nominal distance of all the simultaneous beams altogether becomes minimal. in the general is the construction of a mechanical, by movement of the Viewing optics autofocus system technically complex, needed corresponding space and causes relatively high costs.

Aus dem Dokument WO97/27065 ist eine Vorrichtung zur punktweisen Bebilderung von Druckflächen auf einer Trommel bekannt, mit einer Vielzahl von Infrarotlaserdioden, deren Eingangsströme variierbar sind, so dass die Lichtintensität während der Bebilderung selektiv veränderbar ist, um die Größe zu erzeugender Druckpunkte zu beeinflussen. Die selektive Veränderung basiert auf einer Vor-Kalibrierung der Laserdiodenintensität, indem für diese eine Korrekturfunktion in Abhängigkeit der Variationen der Position der Trommeloberfläche relativ zur Vorrichtung definiert wird. Die Korrekturfunktion wird zur Bestimmung einer Korrektur der Laserdiodenintensität während der Bebilderung benutzt, so dass die aktuell zu verwendenden Eingangsströme in Echtzeit bestimmbar sind.From the document WO97 / 27065 is a device for pointwise imaging of Printing surfaces on a drum known, with a variety of infrared laser diodes whose Input currents are variable, allowing the light intensity during imaging is selectively variable to affect the size of pressure points to be generated. The Selective change is based on pre-calibration of the laser diode intensity by for this one correction function depending on the variations of the position of the Drum surface is defined relative to the device. The correction function becomes the Determining a correction of the laser diode intensity used during the imaging, so that the currently used input currents can be determined in real time.

Des weiteren ist im Dokument EP 0 922 573 A2 offenbart, dass die durch eine Exzentrizität einer Trommel, die eine zu bebildernde Druckfläche aufnimmt, bedingten periodischen Schwankungen des Abstandes einer Vorrichtung zur punktweisen Bebilderung von Druckflächen und der zur bebildernden Druckfläche dadurch kompensiert werden, dass eine elektronische Kompensation vorgenommen wird. Die Ausgangslichtintensität der Vorrichtung zur Bebilderung wird variiert, indem die Eingangsleistung adäquat verändert wird: Ein mit gleicher Periode wie die Schwankungen sich verändernder Korrekturfaktor wird in einem Anpassungsschaltkreis erzeugt. Furthermore, it is disclosed in the document EP 0 922 573 A2 that by a Eccentricity of a drum, which receives a pressure surface to be imaged, conditional periodic variations in the distance of a device for pointwise Imaging of printing surfaces and compensated for the imaged printing surface be that an electronic compensation is made. The Output light intensity of the imaging device is varied by the Input power is adequately changed: one with the same period as the fluctuations changing correction factor is generated in a matching circuit.

Aufgabe der vorliegenden Erfindung ist es daher, eine Vorrichtung zur punktweisen Bebilderung von Druckflächen mit Hilfe wenigstens eines Laserstrahls, welcher relativ zur Druckfläche bewegt wird, zur Verfügung zu stellen, mit welchem eine variable Bebilderung durchgeführt werden kann, ohne dass Teile der Vorrichtung, wie beispielsweise die Abbildungsoptik, mechnanisch bewegt werden müssen, um Schwankungen im Abstand zwischen Abbildungsoptik und Druckfläche auszugleichen.Object of the present invention is therefore an apparatus for pointwise Imaging of printing surfaces by means of at least one laser beam, which relative to Pressure surface is moved to provide, with which a variable Imaging can be performed without removing parts of the device, such as For example, the imaging optics, must be mechanically moved to Compensate for variations in the distance between imaging optics and printing surface.

Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen gemäß Anspruch 1 und durch ein Verfahren gemäß Anspruch 5 zur Bebilderung von Druckflächen mit Hilfe wenigstens eines Laserstrahls gelöst.This object is achieved by a device having the features according to claim 1 and by a method according to claim 5 for imaging printing surfaces by means of at least one Laser beam solved.

Typischerweise ist die Abbildungsoptik einer Bebilderungseinrichtung derart eingestellt, dass im Sollabstand der Fokus, d. h. die Ebene, in welcher der Laserstrahl seinen geringsten Durchmesser hat, genau auf der Oberfläche der Druckfläche zu liegen kommt. Eine Abweichung vom Sollabstand zwischen Laser und Druckfläche resultiert in einer Vergrößerung des Strahldurchmessers auf der Druckfläche und damit je nachdem wie die Laserparameter der Leistung und des Fokusdurchmessers eingestellt sind, in einer Vergrößerung oder Verkleinerung des Druckpunktes. Vermittels eines Detektors wird der Istabstand zwischen Druckfläche und Laser erfasst, so dass er mit einem Sollwert verglichen werden kann. In Abhängigkeit von der Abweichung vom Sollwert wird die Lichtleistung, mit welcher bebildert wird, erhöht oder erniedrigt. Eine Erhöhung der Laserleistung geht mit einer Vergrößerung des Druckpunktes einher, da die Fleckgröße, auf welcher Energie auf der Druckfläche deponiert wird, die die Bebilderungsschwelle überschreitet, zunimmt. Entsprechend geht eine Verringerung der Laserleistung mit einer Verkleinerung des Druckpunktes einher, da die Fleckgröße, auf welcher Energie auf der Druckfläche deponiert wird, welche die Bebilderungsschwelle überschreitet, abnimmt.Typically, the imaging optics of a imaging device are set in such a way that that at the desired distance the focus, i. H. the plane in which the laser beam its smallest diameter has, exactly on the surface of the printing surface comes to rest. A deviation from the nominal distance between laser and printing surface results in a Magnification of the beam diameter on the printing surface and thus depending on how the Laser parameters of power and focus diameter are set in one Increase or decrease the pressure point. By means of a detector is the Actual distance between pressure surface and laser detected, so that he with a setpoint can be compared. Depending on the deviation from the setpoint, the Light output, with which is imaged, increased or decreased. An increase in the Laser power is associated with an increase in the pressure point, since the spot size, on which energy is deposited on the printing surface which is the imaging threshold exceeds, increases. Accordingly, a reduction in laser power goes with a Reduction of the pressure point associated because the spot size, on which energy on the Pressure surface is deposited, which exceeds the Bebilderungsschwelle decreases.

Eine weitere Möglichkeit, die Größe des Druckpunktes zu variieren, besteht darin, die Belichtungszeit gezielt zu verlängern oder zu verkürzen. Eine Kombination der Veränderungen der Leistung und der Belichtungszeit ist ebenso möglich.Another way to vary the size of the pressure point is to use the Exposure time to extend or shorten specifically. A combination of Changes in performance and exposure time are also possible.

Mit der erfindungsgemäßen Vorrichtung kann die Vergrößerung bzw. Verkleinerung des Druckpunktes aufgrund einer Abstandsabweichung ausgeglichen werden: Durch die vorgesehene veränderbare Laserleistung kann eine Anpassung der Druckpunktgröße erfolgen, so dass ein akzeptables Bebilderungsergebnis erzielt wird. Mit anderen Worten die Druckpunktgröße ist variabel. Der Wert der erforderlichen Lichtleistung oder Belichtungszeit kann aus dem gemessenen Abstand errechnet werden. Diese Funktion kann z. B. im Rastergenerator, der das zu bebildernde Muster von Druckpunkten in eine zeitliche Folge von Impulsen für die Laserbebilderung umsetzt, erfüllt werden. Vorteilhafterweise wird im Vorfeld durch den funktionellen Zusammenhang eine Tabelle, ein sogenannter Lookup-Table, erstellt und gespeichert, so dass in situ der erforderliche Wert sofort zur Verfügung steht.With the device according to the invention, the enlargement or reduction of the Pressure point due to a distance deviation are compensated: By the provided variable laser power can be an adjustment of the pressure point size done so that an acceptable Bebilderungsergebnis is achieved. In other words the pressure point size is variable. The value of the required light output or Exposure time can be calculated from the measured distance. This feature can z. B. in the raster generator, the pattern of pressure points to be imaged in a temporal Sequence of pulses for the laser imaging implements to be met. advantageously, is in advance by the functional context a table, a so-called Lookup-Table, created and saved, so that in situ the required value immediately Available.

In einer vorteilhaften Weiterbildung der Erfindung weist die Vorrichtung zur punktweisen Bebilderung von Druckflächen mehrere Laserstrahlen auf, mit welchen simultan belichtet wird. Dabei wird insbesondere einzeln ansteuerbaren Diodenlaserarrays Vorzug gegeben. Für jeden einzelnen Laser des Arrays kann die Leistung oder Bebilderungszeit variiert werden, so dass es möglich ist, ein akzeptables Bebilderungsergebnis zu erzielen, da die Größe jedes von einem Laser geschriebenen Druckpunktes variabel und von der Größe der anderen Druckpunkte unabhängig ist. In an advantageous embodiment of the invention, the device for pointwise Imaging of printing surfaces on multiple laser beams, with which simultaneously exposed becomes. Particular preference is given to individually controllable diode laser arrays. For each individual laser of the array, the power or imaging time can be varied be so that it is possible to achieve an acceptable Bebilderungsergebnis, as the Size of each printed by a laser pressure point variable and the size of the independent of other pressure points.

Die vorliegende Erfindung benötigt wesentlich weniger bewegte Teile als die bekannten Autofokussysteme und kann dadurch sehr viel schneller auf Störungen reagieren. Sie erzielt zugleich ein deutlich besseres Bebilderungsergebnis als eine Einrichtung ohne Autofokus. Die Realisierung von kompakten Bebilderungseinrichtung in integrierter Form ist deutlich einfacher. Sie ist mit geringeren Kosten verbunden.The present invention requires significantly fewer moving parts than the known ones Autofokussysteme and can react much faster to disturbances. she at the same time achieves a much better imaging result than a device without Autofocus. The realization of compact imaging device in integrated form is much easier. It is associated with lower costs.

Eine derartige Einrichtung kann innerhalb oder außerhalb eines Druckwerks bzw. einer Druckmaschine zur punktweisen Bebilderung verwendet werden.Such a device can be inside or outside of a printing unit or a Printing machine can be used for point-by-point imaging.

Weitere Vorteile und vorteilhafte Ausführungsformen der Erfindung werden anhand der nachfolgenden Figuren sowie deren Beschreibungen dargestellt.Further advantages and advantageous embodiments of the invention will be described with reference to FIG following figures and their descriptions shown.

Es zeigen im einzelnen:

Fig. 1
Variation der Fleckgröße eines Laserstrahls
Fig. 2
Erzeugung eines Druckpunktes auf einer Druckfläche durch relative Bewegung eines Laserstrahls gegen die Druckfläche
Fig. 3
Beispiele für geschriebene Druckpunkte mit unterschiedlichen Laserparametern
Fig. 4
Schematische Ansicht der Bebilderung einer Druckfläche durch eine erfindungsgemäße Einrichtung
They show in detail:
Fig. 1
Variation of the spot size of a laser beam
Fig. 2
Generation of a pressure point on a pressure surface by relative movement of a laser beam against the pressure surface
Fig. 3
Examples of written pressure points with different laser parameters
Fig. 4
Schematic view of the illustration of a printing surface by a device according to the invention

In der Fig. 1 wird die Variation der Fleckgröße eines Lasers zur punktweisen Bebilderung von Druckflächen gezeigt. Der Laserstrahl breitet sich entlang der optischen Achse 10 aus, auf welchem sich auch sein Intensitätsmaximum befindet. Im Fokus 12 weist der Laserstrahl seine geringste Taille auf. An diesem Punkt wird vorteilhafterweise eine Bebilderung vorgenommen. Mit anderen Worten der Fokus 12 definiert den Sollabstand des Lasers zur Druckfläche. Sowohl an einem Punkt 14 vor dem Fokus als auch an einem Punkt 16 nach dem Fokus ist der Strahl aufgeweitet. Die Linien 18 deuten die Variation der Begrenzung des Lichtflecks als Funktion der Position entlang der Ausbreitungsrichtung an. Im Fokus 12 wird in einem Bereich 110 eine größere Intensität als die Schwellenintensität zur Bebilderung erreicht. Durch die Aufweitung des Laserstrahls vor und hinter dem Fokus 12 wird der Bereich, in welchem die Intensität über die Schwellenintensität liegt, kleiner, da die transportierte Energie eine größere Querschnittsfläche durchfließt. Bei festgehaltener Laserintensität ergibt sich damit der Bereich 112, in welchem die Bebilderungsschwelle überschritten wird. Bei einem verkürzten Istabstand 114 vom Laser zur Druckfläche ist der zu bebildernde Bereich 116 größer als der bei festgehaltener Intensität erreichte Bereich 112. Folglich wird erfindungsgemäß die Intensität des Lasers erhöht, so dass der Bereich, in welchem die Schwellenintensität zur Bebilderung überschritten wird größer wird. Die Schwellenintensität wird dann im gesamten Bereich 118 überschritten. Im Istabstand 114 wird dann die Schwellenintensität im gesamten Bereich 116 erreicht.In Fig. 1, the variation of the spot size of a laser for spotwise imaging is shown shown by pressure surfaces. The laser beam propagates along the optical axis 10, on which also its intensity maximum is. In focus 12, the Laser beam at its lowest waist. At this point, advantageously one Imaging done. In other words, the focus 12 defines the target distance of the laser to the printing surface. Both at a point 14 before the focus and at one Point 16 after the focus, the beam is widened. The lines 18 indicate the variation of the Limiting the light spot as a function of position along the propagation direction. In focus 12, in a region 110, a greater intensity than the threshold intensity reached for imaging. By the widening of the laser beam in front of and behind the focus 12, the area in which the intensity is above the threshold intensity becomes smaller, because the transported energy flows through a larger cross-sectional area. At detained Laser intensity thus results in the area 112, in which the imaging threshold is exceeded. At a reduced actual distance 114 from the laser to the printing surface is the Area to be imaged 116 greater than the area reached at a fixed intensity 112. Consequently, according to the invention, the intensity of the laser is increased so that the region, in which the threshold intensity for imaging is exceeded becomes larger. The Threshold intensity is then exceeded in the entire area 118. In actual distance 114 then the threshold intensity is reached in the entire area 116.

Die Fig. 2 zeigt die Erzeugung eines Druckpunktes durch relative Bewegung eines Laserstrahls gegen eine Druckfläche. Auf eine Druckfläche 20 fällt ein Laserstrahl mit einem Fleck 22. Der Laser wird derart über die Druckfläche 20 gescannt, dass im gesamten Bereich 24 die Schwellenintensität zur Bebilderung überschritten wird. In bevorzugter Ausführungsform handelt es sich um einen elliptischen Gaußschen Laserstrahl, welcher zwei unterschiedlich Halbachsen aufweist. Typischerweise liegt dabei der längere Fleckdurchmesser wx 26 senkrecht Bewegungsrichtung. Der kürzere Fleckdurchmesser wy 28 liegt in Bewegungsrichtung. Mit einer derartigen Einrichtung können sowohl Linien als auch Punkte geschrieben werden, da die Druckpunktweite dx 210 und die Druckpunkthöhe dy 212 entsprechend vorgegeben werden kann.Fig. 2 shows the generation of a pressure point by relative movement of a laser beam against a printing surface. A laser beam with a spot 22 falls onto a printing surface 20. The laser is scanned over the printing surface 20 in such a way that the threshold intensity for imaging is exceeded in the entire region 24. In a preferred embodiment, it is an elliptical Gaussian laser beam which has two different semi-axes. Typically, the longer spot diameter w x 26 is perpendicular to the direction of movement. The shorter spot diameter w y 28 lies in the direction of movement. With such a device, both lines and points can be written, since the pressure point width d x 210 and the pressure point height d y 212 can be preset accordingly.

In den Fig. 3a, 3b und 3c sind Beispiele für Begrenzungslinien geschriebener Druckpunkte unterschiedlicher Laserparametern gezeigt. Mit anderen Worten es ist diejenige Fläche gezeigt, auf welcher die Schwellenintensität zur Bebilderung überschritten wird. In der Fig. 3a ist die Begrenzungslinie f eines Druckpunkts mit Weiten dx 9,3 Mikrometern und dy 10,6 Mikrometern dargestellt.Der gezeigte Druckpunkt mit Begrenzungslinie f ist durch einen elliptischen Laserstrahl im Fokus mit den Fleckdurchmessern wx = 8,0 Mikrometern und wy = 6,0 Mikrometern erzeugt. Es ist ebenfalls die Begrenzungslinie u eines Druckpunktes zu sehen, wie er bei Auslenkung um 100 Mikrometern vom Sollabstand bei gleichgehaltener Laserleistung entsteht. Seine Weite d, beträgt 8,5 Mikrometer, und seine Höhe dy ist 9,8 Mikrometer. Die Laserwellenlänge liegt bei 830 Nanometern, und die Beugungsmaßzahl M2 ist 1,1. In diesem Abstand zum Fokus betragen die Fleck wx und wy 8,8 Mikrometer respektive 7,7 Mikrometer. Es ist in der Fig. 3 a die Begrenzungslinie a eines Druckpunkts gezeigt, wie er mit Hilfe der erfindungsgemäßen Einrichtung erreicht werden kann. Um im gegebenen Istabstand, 100 Mikrometer vom Fokus entfernt, einen Druckpunkt der Weite d, 9,4 Mikrometern und der Höhe dy von 10,7 Mikometern zu erzeugen, wird die Leistung des Lasers um 10 % erhöht. Die Laserwellenlänge 830 Nanometer und die Beugungsmaßzahl M2 = 1,1 sind wie in den zwei anderen Fällen gewählt.Examples of boundary lines of written pressure points of different laser parameters are shown in FIGS. 3a, 3b and 3c. In other words, that area is shown on which the threshold intensity for imaging is exceeded. 3a shows the boundary line f of a pressure point with widths d x 9.3 microns and d y 10.6 microns. The pressure point with boundary line f shown by an elliptical laser beam in focus with the spot diameters w x = 8.0 Microns and w y = 6.0 microns produced. It is also to see the boundary line u of a pressure point, as it arises at deflection of 100 microns from the nominal distance at the same held laser power. Its width d, is 8.5 microns, and its height d y is 9.8 microns. The laser wavelength is 830 nanometers, and the diffraction factor M 2 is 1.1. At this distance from the focus, the spots w x and w y are 8.8 microns and 7.7 microns, respectively. It is shown in Fig. 3a the boundary line a of a pressure point, as it can be achieved with the aid of the device according to the invention. To produce a pressure point of width d, 9.4 microns and height d y of 10.7 microns at the given effective distance, 100 microns from the focus, the power of the laser is increased by 10%. The laser wavelength 830 nanometers and the diffraction index M 2 = 1.1 are selected as in the other two cases.

Mit der erfindungsgemäßen Einrichtung kann die Druckpunktgröße variabel gestaltet werden. In der Fig. 3 b ist beispielhaft gezeigt, wie eine Leistungsanpassung zu einem verkleinerten Druckpunkt führen kann. Mit verringerter Leistung, welche zum Schreiben einer Linie optimiert ist, ist die Begrenzungslinie 1 eines Druckpunkts der Weite dx von 8,1 Mikrometern und der Höhe dy von 9,5 Mikrometern erzeugt. Der Istabstand weicht wiederum um 100 Mikrometern vom Sollabstand im Fokus des Lasers ab. Dort betragen die Fleckdurchmesser wx 8,8 Mikrometer und wy 7,7 Mikrometer.With the device according to the invention, the pressure point size can be made variable. FIG. 3 b shows by way of example how a power adjustment can lead to a reduced pressure point. With reduced power, which is optimized for writing a line, the boundary line 1 of a pressure point of width d x of 8.1 microns and the height d y of 9.5 microns is generated. The actual distance deviates again by 100 micrometers from the nominal distance in the focus of the laser. There, the spot diameter w x 8.8 microns and w y 7.7 microns.

In der Figur 3 c ist beispielhaft dargestellt, wie eine Verlängerung der Belichtungszeit, mit anderen Worten der zeitlichen Dauer des Lasterstrahls, zu einer Vergrößerung des Druckpunktes sowohl in x-Richtung als auch in y-Richtung führt. Neben den Begrenzungslinien f und u (Belichtung im Fokus und 100 Mikrometer außerhalb des Fokus Respektive) ist eine Begrenzungslinie v eines Druckpunktes zu sehen, welcher bei einer Zeitlinien Verlängerung der Belichtung von 10 Mikrosekunden auf 11 Mikrosekunden erzeugt wird. Der so erzeugte Punkt hat die Weiten dx 9,5 Mikrometer und dy 10,8 Mikrometer. Die Parameter des erzeugenden Strahls sind die gleichen wie für den Strahl, welcher einen Druckpunkt mit der Begrenzungslinie u erzeugt, wie er auch in Fig. 3a gezeigt ist.FIG. 3 c shows by way of example how an extension of the exposure time, in other words of the duration of the load beam, leads to an increase in the pressure point both in the x direction and in the y direction. In addition to the boundary lines f and u (exposure in focus and 100 microns out of focus respective), a boundary line v of a pressure point is seen, which is generated at a time line extension of the exposure from 10 microseconds to 11 microseconds. The point thus created has the widths d x 9.5 microns and d y 10.8 microns. The parameters of the generating beam are the same as for the beam, which produces a pressure point with the boundary line u, as also shown in Fig. 3a.

Die gezeigte Serie von Bildern in Fig. 3 a, 3 b und 3c stellt beispielhaft dar, wie eine punktweise Bebilderung von Druckflächen mit Hilfe wenigstens eines Laserstrahls mit variabler Druckpunktgröße durch veränderbare Laserleistung oder Belichtungszeit erreicht wird. Abstandsänderungen zwischen Druckfläche und Laserfokus werden anstatt mit einer Bewegung der Abbildungsoptik, des Lasers selbst oder der Druckfläche, wie es in Autofokussystemen üblich ist, durch Anpassung der Laserleistung ausgeglichen.The shown series of images in FIGS. 3 a, 3 b and 3 c exemplifies how a pointwise imaging of printing surfaces with the help of at least one laser beam Variable pressure point size achieved by variable laser power or exposure time becomes. Changes in distance between the printing surface and laser focus are instead of a Movement of the imaging optics, the laser itself or the printing surface, as in Autofocus systems is common, balanced by adjusting the laser power.

In der Fig. 4 wird eine bevorzugte Ausführungsform der Erfindung zur Bebilderung einer Druckfläche, welche sich auf einem rotierbaren Zylinder befindet, gezeigt. Eine derartige Ausführungsform kann insbesondere in einem Druckwerk oder einer Druckmaschine verwirklicht sein. Die Laserlichtquelle 40 erzeugt einen Laserstrahl 42, welcher vermittelt einer Abbildungsoptik 44 auf die auf einem Zylinder 46 befindliche Druckfläche 48 im Punkt 410 abgebildet wird. Der Zylinder 46 ist um seine Symmetrieachse drehbar. Diese Drehung ist durch den Doppelpfeil B bezeichnet. Die Laserlichtquelle 40 kann parallel zur Symmetrieachse des Zylinders 46 auf linearem Wege bewegt werden, welches durch den Doppelpfeil A gekennzeichnet ist. Zur Bebilderung rotiert der Zylinder 46 mit der Druckfläche 48 gemäß der Rotationsbewegung B, und die Laserlichtquelle 40 bewegt sich längs des Zylinders gemäß der Translationsrichtung A. Es ergibt sich eine Bebilderung, welche auf schraubenförmigen Wege die Symmetrieachse des Zylinders 46 umläuft. Der Weg des Bildpunktes 410 ist durch die Linie 412 angegeben. Der Entfernungsmesser 414 sendet einen Lichtstrahl 416 aus, welcher die Druckfläche 48 im Bildpunkt 418 erreicht. Dadurch kann die notwendige Information über den Abstand der Laserlichtquelle 40 mit dem Bildpunkt 410, welche zur Bebilderung dient, zur Druckfläche 48 gewonnen werden. Vermittels einer Verbindung zum Austausch von Daten und/oder Steuersignalen 420 ist der Entfernungsmesser 414 mit einer Einrichtung zur Berechnung der notwendigen Laserleistung 422 verknüpft. Über die Verbindung 424 ist die Einrichtung zur Berechnung der notwendigen Laserleistung oder Belichtungszeit 422 mit der Lasersteuerung 426 verknüpft, welche insbesondere die Laserleistung bestimmen kann. Daten und/oder Steuersignale zwischen Lasersteuerung 426 und Laserlichtquelle 40 werden über die Verbindung 428 übertragen.In Fig. 4, a preferred embodiment of the invention for imaging a Pressure surface, which is located on a rotatable cylinder shown. Such Embodiment may in particular in a printing unit or a printing press be realized. The laser light source 40 generates a laser beam 42 which mediates an imaging optics 44 on the located on a cylinder 46 pressure surface 48 in Item 410 is mapped. The cylinder 46 is rotatable about its axis of symmetry. These Rotation is indicated by the double arrow B. The laser light source 40 may be parallel to Symmetryeachse of the cylinder 46 are moved in a linear manner, which by the Double arrow A is marked. To illustrate the cylinder 46 rotates with the Pressure surface 48 according to the rotational movement B, and the laser light source 40 moves along the cylinder according to the translation direction A. The result is an image, which rotates in helical ways the axis of symmetry of the cylinder 46. Of the Path of the pixel 410 is indicated by line 412. The rangefinder 414 emits a light beam 416 which reaches the printing surface 48 at the pixel 418. As a result, the necessary information about the distance of the laser light source 40 with the pixel 410, which is used for imaging, are obtained to the printing surface 48. By means of a connection for the exchange of data and / or control signals 420 is the rangefinder 414 with a device for calculating the necessary Laser power 422 linked. Via connection 424 is the means for calculation the necessary laser power or exposure time 422 with the laser control 426 linked, which in particular can determine the laser power. Data and / or Control signals between laser control 426 and laser light source 40 are on the Transfer connection 428.

In einer bevorzugten Ausführungsform der Erfindung kann die Lasersteuerung 426 darüber hinaus über eine Verbindung 430 mit der Maschinensteuerung 432 verknüpft sein. In a preferred embodiment of the invention, the laser controller 426 may be above Be linked via a connection 430 with the machine control 432.

In einer vorteilhaften Weiterbildung der Erfindung besteht die Laserlichtquelle 40 aus einem Laserdiodenarray, dessen einzelne Laser separat angesteuert werden können. Es kann dann eine simultane Bebilderung von mehreren Druckpunkten stattfinden, deren Größe variabel ist. Für jeden einzelnen Druckpunkt kann die Abweichung der Istlage von der Solllage der Druckfläche zum Laserfokus durch die veränderbare Laserleistung oder Belichtungszeit ausgeglichen werden. In an advantageous embodiment of the invention, the laser light source 40 is made a laser diode array whose individual lasers can be controlled separately. It can then take place a simultaneous imaging of multiple pressure points whose Size is variable. For each individual pressure point, the deviation of the actual position of the desired position of the printing surface to the laser focus by the variable laser power or Exposure time be compensated.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Optische AchseOptical axis
1212
Strahlfokusbeam focus
1414
Aufgeweiteter Strahl vor FokusExploded beam in front of focus
1616
Aufgeweiteter Strahl nach FokusExploded beam after focus
1818
Variable Begrenzung des Laserfleckens als Funktion der PositionVariable limitation of laser spot as a function of position
110110
Bebilderungsbereichimaging area
112112
Intensität über Schwelle bei SollabstandIntensity above threshold at nominal distance
114114
Istabstandactual distance
116116
Gewünschter BebilderungsbereichDesired imaging area
118118
Intensität über Schwelle bei IstabstandIntensity above threshold at actual distance
2020
Druckflächeprint area
2222
Fleck des BebilderungslasersStain of the imaging laser
2424
zu schreibender Druckpunktto be written pressure point
2626
Fokusdurchmesser in x-Richtung wx Focus diameter in x-direction w x
2828
Fokusdurchmesser in y-Richtung wy Focus diameter in y-direction w y
210210
Weite des Druckpunktes dx Width of the pressure point d x
212212
Höhe des Druckpunktes dy Height of the pressure point d y
AA
Translationsbewegungtranslational motion
BB
Rotationsbewegungrotational motion
ff
Begrenzungslinie des Druckpunktes bei Belichtung im FokusBoundary line of the pressure point during exposure in focus
uu
Begrenzungslinie des Druckpunktes bei Belichtung 100 Mikrometer außerhalb des FokusLimit line of the pressure point at exposure 100 microns outside the focus
aa
Begrenzungslinie des Druckpunktes bei Belichtung mit angepasster LeistungBoundary line of the pressure point during exposure to adjusted power
ll
Begrenzungslinie des Druckpunktes bei Belichtung 100 Mikrometer außerhalb des FokusLimit line of the pressure point at exposure 100 microns outside the focus
uu
Begrenzungslinie des Druckpunktes bei verlängerter BelichtungszeitLimit line of the pressure point with extended exposure time
4040
LaserlichtquelleLaser light source
4242
Laserstrahllaser beam
4444
Abbildungsoptik imaging optics
4646
Zylindercylinder
4848
Druckflächeprint area
410410
Bildpunktpixel
412412
Weg der BildpunktePath of the pixels
414414
Entfernungsmesserrangefinder
416416
Strahl zur EntfernungsmessungBeam for distance measurement
418418
Bildpunkt des Strahls zur EntfernungsmessungPixel of the beam for distance measurement
420420
Verbindung zum Austausch von Daten und/oder SteuersignalenConnection for exchanging data and / or control signals
422422
Einrichtung zur Berechnung der notwendigen Laserleistung oder BelichtungszeitDevice for calculating the necessary laser power or exposure time
424424
Verbindung zum Austausch von Daten und/oder SteuersignalenConnection for exchanging data and / or control signals
426426
Lasersteuerung, insbesondere Steuerung der Laserleistung oder BelichtungszeitLaser control, in particular control of the laser power or exposure time
428428
Verbindung zum Austausch von Daten und/oder SteuersignalenConnection for exchanging data and / or control signals
430430
Verbindung zur MaschinensteuerungConnection to the machine control
432432
Maschinensteuerungmachine control

Claims (8)

  1. Device for the spot-wise imaging of printing surfaces with the aid of at least one laser beam (42) that is moved relative to a printing surface (48), the device including a laser light source (40) and a laser control (426) for varying the laser power or the exposure time as a function of the distance between the laser light source (40) and an image spot (410),
    characterized in that the device includes a distance meter (414) for determining the distance between the laser light source (40) and the image spot (410), the distance meter (414) being connected to the laser control.
  2. Device for the spot-wise imaging of printing surfaces according to claim 1,
    characterized in that the laser light source (40) is a laser diode.
  3. Device for the spot-wise imaging of printing surfaces according to claim 1 or 2,
    characterized in that the laser light source (40) includes a plurality of light beams (42) to simultaneously image a plurality of printing spots, the light beams (42) being separate from each other in space.
  4. Device according to one of the preceding claims,
    characterized in that the laser light source (40) is an individually addressable laser diode array.
  5. Method of imaging printing surfaces in a spot-wise manner with the aid of at least one laser beam (42), the method including the steps of
    providing a laser light source (40) for generating a laser beam (42) with location-dependent intensity distribution in the two spatial directions perpendicular to the axis of expansion and a given divergence,
    providing a printing surface (48) at a distance to the laser light source (40),
    exposing the printing surface (48) located at the given distance to the laser light source (48),
    varying the laser power or exposure time by means of a laser control (426) as a function of the distance between the laser light source (40) and the image spot (410) on the printing surface (48) to modify the spot size of the image spot (410) on the printing surface (48),
    characterized by
    determining the distance between the laser light source (40) and the image spot (410) by means of a distance meter (414) connected to the laser control.
  6. Method according to claim 5,
    characterized by
    an adjustment of the spot size on the printing surface (48) to a predetermined value by varying the laser power or the exposure time.
  7. Printing unit,
    characterized in that the printing unit includes at least one device according to one of claims 1 to 4.
  8. Printing machine,
    characterized in that the printing machine includes at least one printing unit according to claim 7.
EP01114875A 2000-07-24 2001-06-29 Laser imaging with variable dot size Expired - Lifetime EP1176545B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10035848 2000-07-24
DE10035848A DE10035848A1 (en) 2000-07-24 2000-07-24 Laser imaging with variable print spot size

Publications (3)

Publication Number Publication Date
EP1176545A2 EP1176545A2 (en) 2002-01-30
EP1176545A3 EP1176545A3 (en) 2003-08-06
EP1176545B1 true EP1176545B1 (en) 2005-12-28

Family

ID=7649933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01114875A Expired - Lifetime EP1176545B1 (en) 2000-07-24 2001-06-29 Laser imaging with variable dot size

Country Status (10)

Country Link
US (1) US6836282B2 (en)
EP (1) EP1176545B1 (en)
JP (1) JP4933001B2 (en)
CN (1) CN1199802C (en)
AT (1) ATE314697T1 (en)
CA (1) CA2350448C (en)
CZ (1) CZ297292B6 (en)
DE (2) DE10035848A1 (en)
HK (1) HK1043090B (en)
IL (1) IL144484A0 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10212937B4 (en) * 2002-03-22 2009-12-17 Heidelberger Druckmaschinen Ag Method for adjusting the image line width in an imagesetter
CA2448193A1 (en) 2002-12-09 2004-06-09 Heidelberger Druckmaschinen Aktiengesellschaft Method and device for imaging a printing form
US7219453B2 (en) * 2003-01-24 2007-05-22 Baker Robert E Floatdown implement for small vehicles
CN1824499A (en) * 2005-02-24 2006-08-30 海德堡印刷机械股份公司 Method of producing a printing form
JP6051535B2 (en) 2011-02-28 2016-12-27 株式会社リコー Image processing method and image processing apparatus
CN103331988B (en) * 2013-06-19 2015-02-18 汪海洋 Plate-making method of flexible printing plate and main exposure device
DE102016208479A1 (en) * 2016-05-18 2017-11-23 Roth + Weber Gmbh Electrophotographic large format color printer
CN114734636B (en) * 2022-04-20 2023-12-19 浙江正向增材制造有限公司 Photo-curing printing device and printing method
CN114710628B (en) * 2022-04-21 2023-12-05 深圳市先地图像科技有限公司 Image exposure method, computer equipment and storage medium

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146068A (en) * 1983-02-08 1984-08-21 Nippon Telegr & Teleph Corp <Ntt> Recording method
JPS6016058A (en) * 1983-07-08 1985-01-26 Hitachi Ltd Optical beam scanning device
JP3181050B2 (en) * 1990-04-20 2001-07-03 株式会社日立製作所 Projection exposure method and apparatus
US5278581A (en) * 1990-09-17 1994-01-11 Kabushiki Kaisha Toshiba Printer for printing and image formed of 2-dimensionally arranged pixels, and method of printing the same
DK69492D0 (en) * 1992-05-26 1992-05-26 Purup Prepress As DEVICE FOR EXPOSURE OF A MEDIUM, DEVICE FOR POINT EXPOSURE OF A MEDIA, AND A DEVICE FOR HOLDING A MEDIA
EP0679510B1 (en) * 1994-04-26 1997-03-19 Schablonentechnik Kufstein Aktiengesellschaft Method and device for fabricating a screener
US5819661A (en) * 1995-01-23 1998-10-13 Presstek, Inc. Method and apparatus for laser imaging of lithographic printing members by thermal non-ablative transfer
US5666577A (en) * 1995-08-31 1997-09-09 Eastman Kodak Company System for switching pointing indices in laser aimed cameras
US5764272A (en) 1995-09-12 1998-06-09 Eastman Kodak Company Autofocus mechanism for laser imager
IL116885A0 (en) * 1996-01-24 1996-05-14 Scitex Corp Ltd An imaging apparatus for exposing a printing member
US5822345A (en) * 1996-07-08 1998-10-13 Presstek, Inc. Diode-pumped laser system and method
JPH1024546A (en) * 1996-07-10 1998-01-27 Sony Corp Laser plate making apparatus and laser plate making method
JPH1034866A (en) * 1996-07-24 1998-02-10 Sony Corp Laser plate making apparatus with autofocus function and method for removing disturbance of autofocus-detecting laser
US6072511A (en) * 1997-12-12 2000-06-06 Presstek, Inc. Method and apparatus for diode-laser imaging with compensation for output variations
DE19848455A1 (en) * 1998-10-21 2000-04-27 Heidelberger Druckmasch Ag Device for adjusting the position of a cylindrical image carrier in relation to a scanning head

Also Published As

Publication number Publication date
DE50108510D1 (en) 2006-02-02
HK1043090A1 (en) 2002-09-06
DE10035848A1 (en) 2002-02-07
ATE314697T1 (en) 2006-01-15
CA2350448C (en) 2007-01-09
HK1043090B (en) 2005-12-09
US20020044196A1 (en) 2002-04-18
CZ20012612A3 (en) 2002-03-13
EP1176545A2 (en) 2002-01-30
JP2002127355A (en) 2002-05-08
IL144484A0 (en) 2002-05-23
JP4933001B2 (en) 2012-05-16
EP1176545A3 (en) 2003-08-06
US6836282B2 (en) 2004-12-28
CZ297292B6 (en) 2006-10-11
CN1334199A (en) 2002-02-06
CA2350448A1 (en) 2002-01-24
CN1199802C (en) 2005-05-04

Similar Documents

Publication Publication Date Title
EP1168813B1 (en) Compact multibeam laser light source and raster scan line interleaving method for exposing printing plates
DE60036587T2 (en) Multi-beam optical scanner and imaging device using the same
DE60119612T2 (en) More ray exposure device
DE10116059B4 (en) Moving lens lithograph and method of making digital holograms in a storage medium
EP1176545B1 (en) Laser imaging with variable dot size
DE4313111C2 (en) Method for producing a printing template, in particular a printing form of a printing press
DE102008016011A1 (en) Correction of optical elements by means of flatly irradiated correction light
EP1235111A2 (en) Imaging of a printing element with reduced banding
EP1373983B1 (en) Lithograph with a trigger mask, method of production of digital holograms in a storage medium and microscope
DE10196379B3 (en) Multi-beam pattern generator
DE69830897T2 (en) Method and apparatus for interleaving raster scanned lines in a multi-beam laser imager
EP1385057B1 (en) Compact device for exposing a printing form
EP0635968B1 (en) Device for converting light signals to video signals
DE19615050A1 (en) Method and device for recording on a thermal medium
DE60026428T2 (en) Multibeam light source
DE4127919C2 (en) Light recording device
DE69629894T2 (en) Change the dot size for laser printers
DE60021017T2 (en) Method for correcting the position of a light beam in a scanning device
EP1211066B1 (en) Imaging apparatus
WO2022074094A1 (en) Apparatus and method for generating a defined laser line on a working plane
DE60031496T2 (en) LED head, image forming apparatus, method of measuring the amount of light emitted by a light emitting diode array
DE10105978B4 (en) Multi-beam scanning device for scanning a photosensitive material with a multi-spot array and method for correcting the position of pixels of the multi-spot array
DE10353869A1 (en) Illustrating print form involves controlling intensity of light acting at one or more image point positions depending on measure of number of image points to be generated in position&#39;s surroundings
DE102017210098B4 (en) Scanning device with a scanning head device for reflecting or transmitting beams for a scanner and method for reflecting or transmitting beams for a scanner
DE19703048B4 (en) Fuzzy-controlled lens system of a particle-optical column and method for its operation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 41C 1/10 B

Ipc: 7B 41J 2/455 B

Ipc: 7H 04N 1/401 B

Ipc: 7G 06K 15/12 A

Ipc: 7B 41J 2/475 B

Ipc: 7H 04N 1/40 B

Ipc: 7G 02B 7/28 B

17P Request for examination filed

Effective date: 20030627

17Q First examination report despatched

Effective date: 20040316

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50108510

Country of ref document: DE

Date of ref document: 20060202

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060408

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060529

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060929

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060629

BERE Be: lapsed

Owner name: HEIDELBERGER DRUCKMASCHINEN A.G.

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060629

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120630

Year of fee payment: 12

Ref country code: CH

Payment date: 20120626

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120626

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108510

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130629

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101