EP1171584A1 - Magnetic dna extraction kit for plants - Google Patents

Magnetic dna extraction kit for plants

Info

Publication number
EP1171584A1
EP1171584A1 EP00923575A EP00923575A EP1171584A1 EP 1171584 A1 EP1171584 A1 EP 1171584A1 EP 00923575 A EP00923575 A EP 00923575A EP 00923575 A EP00923575 A EP 00923575A EP 1171584 A1 EP1171584 A1 EP 1171584A1
Authority
EP
European Patent Office
Prior art keywords
dna
kit
positively charged
charged groups
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00923575A
Other languages
German (de)
French (fr)
Inventor
Maria-Luisa Maccecchini
Mitchell T. Gore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Annovis Inc
Original Assignee
Annovis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Annovis Inc filed Critical Annovis Inc
Publication of EP1171584A1 publication Critical patent/EP1171584A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads

Definitions

  • the present invention generally relates to the field of methods and kits for the extraction of DNA and specifically to methods and kits for the extraction of DNA from plants.
  • Methods for extracting DNA from plants include:
  • the Dellaporta method Dellaporta. S.L., et al. 1983. A plant DNA minipreparation: Version II. Plan Mol Biol Rep 1 : 19-21 , where DNA is precipitated to produce a very crude preparation, with a lot of the ethanol insoluble contaminants present in the solution.
  • a variant of the Dellaporta method introduces an additional step of purifying the DNA via ultracentrifugation through a cesium chloride (CsCl) gradient for several hours or overnight.
  • CsCl cesium chloride
  • CTAB cetyltrimethylammonium bromide
  • CTAB is a cationic detergent, which will form an insoluble complex with the DNA in the presence of low concentrations of salt, such as a 0.5 M sodium chloride (NaCl) solution.
  • salt such as a 0.5 M sodium chloride (NaCl) solution.
  • NaCl sodium chloride
  • the original lysis solution contains about 1.4 M NaCl.
  • the DNA binds with the CTAB when the NaCl concentration is decreased to 0.5 M.
  • This method is also time consuming and. because the procedure does not use organic solvents, an additional step needs to be included to clean up the DNA: a final extraction with organic solvents to rid the preparation of polysaccharide and phenolic compounds.
  • U.S. Patent No. 5,705.628 to Hawkins discloses the use of magnetic microparticles with a coating including functional groups, specifically carboxyl or negatively charged groups, for the purification and isolation of DNA by binding and elution.
  • International Application WO 96/18731 by Deggerdal. et al. discloses a method for the isolation of nucleic acids by the binding to and elution from a solid support, preferably magnetic beads, in the presence of a detergent, preferably an anionic detergent such as SDS or SARCOSYLTM.
  • U.S. Patent No. 5,650,506 to Woodard, et al. discloses the use of glass fiber membranes bearing positive surface charges for DNA purification by binding to and elution from the glass fibers.
  • a commercially available method for the extraction of DNA from bacterial cells is marketed as ISOLATETM by Annovis, Inc. (catalog number 2- 0300-85).
  • the protocol includes the following steps: suspending bacterial cells in a buffer (pH 8.0), lysing the cells by mixing the suspension with an alkaline - detergent solution (0.2 M NaOH, 1% SDS).
  • a method and kit for the extraction of DNA from plants which quickly yields plant DNA with a high level of purity.
  • the method isolates DNA (genomic, chloroplast. and/or mitochondrial DNA) using immobilized anionic groups, preferably on a chromatographic substrate or more preferably magnetic beads derivatized with anionic groups such as diethylaminoethyl (DEAE) via an anion-exchange interaction.
  • the purified DNA is then eluted with ions (typically a salt solution).
  • RNA can be removed by digestion with RNAse.
  • the method described herein can be used with any plant material and has been demonstrated to be efficacious with the following representative types of plants: arabdopsis seedlings, barley embryos, tobacco leaves, tomato leaves, soybean hypocotylis and cultured cells, white beans hypocotylis and roots, young and old pine needles.
  • the process generally includes the steps of: grinding plant material to make a tissue extract, lysing the plant cells, removing cell debris, and binding the plant DNA to an immobilized or insoluble material such as magnetic beads, where it is separated into pure form.
  • plant material is first ground to a powder in liquid nitrogen and then incubated in lysis buffer (0.1 M Tris-HCl, pH 8.0, 0.1 M EDTA. pH 8.0, 0.25 M NaCl and 100 microgram/ml proteinase K) in the presence of a surfactant or nonionic detergent such as N-laurylsarcosine (SARKOSYLTM), TRITONTM or NONIDETTM P-40, which acts to solubilize cell components and lyse the cells. Representative detergents are listed in Table I.
  • Cell debris is then removed by centrifugation and the supernatant, which contains the DNA and other soluble cell components, is collected.
  • the DNA is then bound to an immobilized or insoluble material having anionic groups bound thereto, such as magnetic beads derivatized with DEAE. This material is mixed with the supernatant, bound to the DNA, and then removed from the supernatant using a magnetic separator.
  • the beads are subsequently washed and then the DNA is preferably eluted from the beads by adding NaCl to a final concentration of 1.0 M.
  • the DNA could be removed by binding to DEAE chromatographic material or filler material, which is separated by washing, centrifugation, or other methods known to those skilled in the art.
  • the method and kit produces DNA of equal purity to CsCl gradient methods at yields that are equal to, or better than, the prior art, Dellaporta and CTAB methods.
  • the specific problems of the Dellaporta method (use of a CsCl column), and CTAB method (use of cationic detergents), are avoided by this method.
  • the method and kit also extracts and purifies the DNA more quickly than the CsCl method.
  • the method including the precipitation step takes a total of approximately 2.5 hours; without the precipitation step it takes less than 2 hours (1 hour and 50 minutes) to extract and purify the plant DNA: approximately 1 hour to lyse the cells, 5 minutes to bind the DNA to the magnetic beads. 5 minutes to wash the beads, 5 minutes to separate the DNA from the beads.
  • the preferred method described herein produces a very pure DNA preparation via an anion-exchange interaction where DNA is replaced as the binding species on the anion-exchange matrix by chloride ions or other negatively charged ions derived from any of a variety of salts. If a traditional anion-exchange column were used at the point where the beads are introduced, the columns would likely clog, preventing collection of bound DNA, or if the elution was effected with strong acid or base, significant levels of contaminates would co-elute with the DNA.
  • the DNA bound to the beads can be thoroughly mixed with the wash solutions, contaminates are more easily removed than they are in traditional column formats, resulting in a more pure preparation. Moreover, because the DNA bound to the beads is not sheared or compressed, when pelleted, the attached DNA consists of longer and more intact strands.
  • the lysis methods for plant genomic DNA and bacterial plasmid DNA are different.
  • the lysis method for bacterial plasmid DNA uses alkaline conditions in the presence of anionic detergent in the form of SDS, while the lysis method for plant genomic DNA uses a nonionic detergent.
  • the type of detergent used affects the remaining steps in each method. Since SDS is anionic (negatively charged, like DNA), it must be removed from the solution in the plasmid procedure before the beads are introduced, otherwise the SDS would compete for binding with the plasmid DNA on the positively charged beads. In the ISOLATETM plasmid extraction system, the SDS is removed from the solution by adding potassium acetate to form an insoluble precipitate with the chromosomal DNA.
  • the aggregate of SDS with bacterial genomic DNA can be easily separated from the soluble plasmid DNA.
  • no precipitation is needed prior to the binding step, because the nonionic non-charged detergent used in the methods and kits described herein does not compete with the DNA for binding sites, since the genomic DNA is the desired binding species for the DEAE groups on the beads. Therefore, the nonionic detergent does not need to be removed, whereas SDS and other anionic detergents are negatively charged and do compete with DNA for anionic binding sites and therefore would need to be removed.
  • N-lauroylsarcosine at a final concentration of between 0.1 % and 10%. If desired, 25 - 200 ⁇ g of RNase A can be added at this point. Alternatively, the final resuspended pellet can be treated with RNase. Incubate 30 minutes to 1 hour at 50-60°C.

Abstract

A method and kit for the extraction of DNA from plants is provided, which quickly yields plant DNA with a high level of purity. The method isolates DNA (genomic, chloroplast, and/or mitochondrial DNA) using immobilized anionic groups, preferably on a chromatographic substrate or more preferably magnetic beads derivatized with anionic groups such as diethylaminoethyl (DEAE) via an anion-exchange interaction. The purified DNA is then eluted with ions (typically a salt solution). RNA can be removed by digestion with RNAse.

Description

MAGNETIC DNA EXTRACTION KIT FOR PLANTS
Background of the Invention
The present invention generally relates to the field of methods and kits for the extraction of DNA and specifically to methods and kits for the extraction of DNA from plants.
Methods for extracting DNA from plants include:
The Dellaporta method. Dellaporta. S.L., et al. 1983. A plant DNA minipreparation: Version II. Plan Mol Biol Rep 1 : 19-21 , where DNA is precipitated to produce a very crude preparation, with a lot of the ethanol insoluble contaminants present in the solution. A variant of the Dellaporta method introduces an additional step of purifying the DNA via ultracentrifugation through a cesium chloride (CsCl) gradient for several hours or overnight. Richards, E., et al. 1994. Current Protocols in Molecular Biology, Suppl. 27. 2.3.1-2.3.7. Purifying DNA through CsCl gradients is an old established technique that can give very pure DNA. but is time consuming, expensive and results in very low yields.
An alternative DNA extraction method is the cetyltrimethylammonium bromide (CTAB) method. Murry, M.G. et al. 1980. Nucleic Acids Res, 8:4321- 4325. CTAB is a cationic detergent, which will form an insoluble complex with the DNA in the presence of low concentrations of salt, such as a 0.5 M sodium chloride (NaCl) solution. In the CTAB method, the original lysis solution contains about 1.4 M NaCl. The DNA binds with the CTAB when the NaCl concentration is decreased to 0.5 M. This method is also time consuming and. because the procedure does not use organic solvents, an additional step needs to be included to clean up the DNA: a final extraction with organic solvents to rid the preparation of polysaccharide and phenolic compounds.
Methods for extraction of DNA from bacterial cells are more well established. Usually cells are lysed by placing the cells in an alkaline environment. Plasmid DNA is separated from bacterial chromosomal DNA by precipitating the chromosomal DNA and leaving the plasmid DNA in the supernatant solution. As described in U.S. Patent No. 5,665.544 to Reeve, et al. after the chromosomal DNA is separated from the plasmid DNA, magnetic beads are introduced into the plasmid containing supernatant. The plasmid DNA binds to the beads, and the plasmid DNA is separated from the contaminates in the supernatant. U.S. Patent No. 4,935,342 to Seligson. et al.. discloses a general method for the isolation and purification of nucleic acids, based on the binding to and elution from anion exchange columns, including the use of sequential columns containing weak and strong anion exchange materials. U.S. Patent No. 5,705.628 to Hawkins, discloses the use of magnetic microparticles with a coating including functional groups, specifically carboxyl or negatively charged groups, for the purification and isolation of DNA by binding and elution. International Application WO 96/18731 by Deggerdal. et al., discloses a method for the isolation of nucleic acids by the binding to and elution from a solid support, preferably magnetic beads, in the presence of a detergent, preferably an anionic detergent such as SDS or SARCOSYL™. U.S. Patent No. 5,650,506 to Woodard, et al.. discloses the use of glass fiber membranes bearing positive surface charges for DNA purification by binding to and elution from the glass fibers.
A commercially available method for the extraction of DNA from bacterial cells is marketed as ISOLATE™ by Annovis, Inc. (catalog number 2- 0300-85). The protocol includes the following steps: suspending bacterial cells in a buffer (pH 8.0), lysing the cells by mixing the suspension with an alkaline - detergent solution (0.2 M NaOH, 1% SDS). neutralizing the alkali and precipitating the chromosomal DNA with 3.0 M Potassium Acetate, pH 5.5, centrifuging the mixture to sediment the precipitated protein, cell debris and denatured chromosomal DNA, mixing the supernatant containing the plasmid DNA with a suspension containing magnetic beads, binding the DNA to the beads via an anionic interaction, eluting the DNA from the beads, and adjusting the salt concentration to 0.3. adding ethanol to render the plasmid DNA insoluble and effecting the precipitation of plasmid DNA from the liquid phase. This procedure does not work well with genomic plant DNA, however. It is therefore an object of the present invention to provide a method of extracting and purifying DNA from plants with a high degree of purity and integrity in a short period of time.
It is also an object of the present invention to provide a kit with reagents for rapidly and inexpensively extracting and purifying DNA from plants.
Brief Summary of the Invention
A method and kit for the extraction of DNA from plants is provided, which quickly yields plant DNA with a high level of purity. The method isolates DNA (genomic, chloroplast. and/or mitochondrial DNA) using immobilized anionic groups, preferably on a chromatographic substrate or more preferably magnetic beads derivatized with anionic groups such as diethylaminoethyl (DEAE) via an anion-exchange interaction. The purified DNA is then eluted with ions (typically a salt solution). RNA can be removed by digestion with RNAse.
Detailed Description of the Invention
The following terms are used herein: anionic - positively charged cationic - negatively charged nonionic - non charged
Zwitterionic - same number of positive and negative charges on opposite ends so total compound is neutral.
The method described herein can be used with any plant material and has been demonstrated to be efficacious with the following representative types of plants: arabdopsis seedlings, barley embryos, tobacco leaves, tomato leaves, soybean hypocotylis and cultured cells, white beans hypocotylis and roots, young and old pine needles.
The process generally includes the steps of: grinding plant material to make a tissue extract, lysing the plant cells, removing cell debris, and binding the plant DNA to an immobilized or insoluble material such as magnetic beads, where it is separated into pure form. In a preferred method, plant material is first ground to a powder in liquid nitrogen and then incubated in lysis buffer (0.1 M Tris-HCl, pH 8.0, 0.1 M EDTA. pH 8.0, 0.25 M NaCl and 100 microgram/ml proteinase K) in the presence of a surfactant or nonionic detergent such as N-laurylsarcosine (SARKOSYL™), TRITON™ or NONIDET™ P-40, which acts to solubilize cell components and lyse the cells. Representative detergents are listed in Table I.
Cell debris is then removed by centrifugation and the supernatant, which contains the DNA and other soluble cell components, is collected. The DNA is then bound to an immobilized or insoluble material having anionic groups bound thereto, such as magnetic beads derivatized with DEAE. This material is mixed with the supernatant, bound to the DNA, and then removed from the supernatant using a magnetic separator.
The beads are subsequently washed and then the DNA is preferably eluted from the beads by adding NaCl to a final concentration of 1.0 M. Alternatively, the DNA could be removed by binding to DEAE chromatographic material or filler material, which is separated by washing, centrifugation, or other methods known to those skilled in the art.
The method and kit produces DNA of equal purity to CsCl gradient methods at yields that are equal to, or better than, the prior art, Dellaporta and CTAB methods. The specific problems of the Dellaporta method (use of a CsCl column), and CTAB method (use of cationic detergents), are avoided by this method. The method and kit also extracts and purifies the DNA more quickly than the CsCl method. The method including the precipitation step takes a total of approximately 2.5 hours; without the precipitation step it takes less than 2 hours (1 hour and 50 minutes) to extract and purify the plant DNA: approximately 1 hour to lyse the cells, 5 minutes to bind the DNA to the magnetic beads. 5 minutes to wash the beads, 5 minutes to separate the DNA from the beads. 30 minutes to precipitate the DNA from solution, and 40 minutes to collect the DNA by centrifugation. In contrast, the CsCl centrifugation requires many hours to purify the DNA. The preferred method described herein produces a very pure DNA preparation via an anion-exchange interaction where DNA is replaced as the binding species on the anion-exchange matrix by chloride ions or other negatively charged ions derived from any of a variety of salts. If a traditional anion-exchange column were used at the point where the beads are introduced, the columns would likely clog, preventing collection of bound DNA, or if the elution was effected with strong acid or base, significant levels of contaminates would co-elute with the DNA. In contrast, since the DNA bound to the beads can be thoroughly mixed with the wash solutions, contaminates are more easily removed than they are in traditional column formats, resulting in a more pure preparation. Moreover, because the DNA bound to the beads is not sheared or compressed, when pelleted, the attached DNA consists of longer and more intact strands.
The lysis methods for plant genomic DNA and bacterial plasmid DNA are different. The lysis method for bacterial plasmid DNA uses alkaline conditions in the presence of anionic detergent in the form of SDS, while the lysis method for plant genomic DNA uses a nonionic detergent. The type of detergent used affects the remaining steps in each method. Since SDS is anionic (negatively charged, like DNA), it must be removed from the solution in the plasmid procedure before the beads are introduced, otherwise the SDS would compete for binding with the plasmid DNA on the positively charged beads. In the ISOLATE™ plasmid extraction system, the SDS is removed from the solution by adding potassium acetate to form an insoluble precipitate with the chromosomal DNA. The aggregate of SDS with bacterial genomic DNA can be easily separated from the soluble plasmid DNA. In contrast, in the plant system, no precipitation is needed prior to the binding step, because the nonionic non-charged detergent used in the methods and kits described herein does not compete with the DNA for binding sites, since the genomic DNA is the desired binding species for the DEAE groups on the beads. Therefore, the nonionic detergent does not need to be removed, whereas SDS and other anionic detergents are negatively charged and do compete with DNA for anionic binding sites and therefore would need to be removed.
Example 1: Purification of Plant Genomic DNA.
The following steps describe extraction and purification of DNA from plants.
1. Harvest approximately 0.5 grams fresh plant tissue. Rinse tissue with deionized (d.I). water to remove adhering debris and blot dry.
2. Freeze tissue with liquid nitrogen and grind to a fine powder in a mortar and pestle. Transfer to a 30 mL conical tube. Alternatively, fresh tissue may be mechanically homogenized in cold lysis buffer at 4°C.
3. Add 5-20 ml of lysis buffer/gram of starting material (0.5 to 0.01 M Tris-HCl, pH 7.0 - 8.0, 0.001 - 0.5 M EDTA, pH 7.0 - 8.0, 0.05 - 0.4 M NaCl and 50 - 500 μg/ml proteinase K) to the frozen powder and mix well.
4. Add N-lauroylsarcosine at a final concentration of between 0.1 % and 10%. If desired, 25 - 200 μg of RNase A can be added at this point. Alternatively, the final resuspended pellet can be treated with RNase. Incubate 30 minutes to 1 hour at 50-60°C.
5. Centrifuge lysate 10 min at greater than 5000x g at 4°C to pellet debris. Remove the supernatant to a fresh tube and filter, if necessary, to remove undigested debris.
6. Add from 1 - 30 mL of magnetic beads (40 % v/v suspension) to supernatant. Gently mix the bead-supernatant suspension by inversion or mechanical mixer at room temperature for at least 1 minute.
7. Immobilize the magnetic beads in the magnetic separator and remove supernatant.
8. Add between 5 and 20 ml of wash buffer, cap and remove the tube from the stand and gently mix for 5-10 minutes at room temperature.
9. Immobilize the magnetic beads in the magnetic separator and remove supernatant. Repeat wash, if supernatant is substantially pigmented. 10. Add between 5 and 10 ml of elution buffer (0.7 - 1.5 M NaCl, 0.5 to 0.01 M Tris-HCl. pH 7.0 - 8.0, 0.001-0.5 M EDTA. pH 7.0 - 8.0) to the magnetic beads and mix for 5 - 10 minutes at room temperature.
11. Immobilize the magnetic beads in the magnetic separator and transfer supernatant to a fresh tube.
12. Add 1.0 to 2.5 volumes of cold isopropanol. Mix well and incubate at -20°C for at least 10 min.
13. Collect DNA by centrifugation at 10.000 - 20,000 x g for at least 15 min at 4°C. Wash pellet with 70% cold ethanol and re-centrifuge at 10.000 - 20,000 x g for at least 2 min at 4°C. Allow the pellet to air-dry at room temperature and then dissolve in desired buffer.
It is understood that the disclosed method and kit is not limited to the particular methodology, protocols, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
Table I: Representative Detergents which can be used in the Plant
DNA Extraction Method (available from Sigma Chemical Co)
Anionic Detergents
Aerosol 22 Glycodeoxycholic Acid
Aerosol®-OT 1 -Heptanesulfonic Acid
Salts of: 1 -Hexanesulfonic Acid
Alginic Acid N-Lauroylsarcosine
Caprylic Acid Lauryl Sulfate (Dodecyl sulfate)
Cholic Acid 1 -Nonanesulfonic Acid
1 -Decanesulfonic Acid 1 -Octanesulfonic Acid
Dehydrocholic Acid 1 -Pentanesulfonic Acid
Deoxycholic Acid Taurocholic Acid
Dioctyl Sulfosuccinate Taurodeoxycholic Acid
1 -Dodecanesulfonic Acid Niaproof (formerly Tergitol) Glycocholic Acid
Cationic Detergents
Alkyltrimethylammonium Bromides
Benzalkonium Chloride
Benzothonium Chloride
Benzyldimethyldodecylammonium Bromide
Benzyldimethylhexadecylammonium Chloride
Benzyldimethyletetradecylammonium Chloride
Cetyldimethylethylammonium Bromide
Cetylpyridinium
Decamethonium Bromide
Dimethyldioctadecylammonium Bromide
Methylbenzethonium Chloride
Methyltrictylammonium Chloride
N, N',N,-Polyoxyethylene(10)-N-tallow-l . 3-diaminopropane
Zwitterionic Detergents
CHAPS
CHAPSO
N-Decyl-N,N-dimethyl-3-ammonio- 1 -propanesulfonate
N-Dodecyl-N, N-dimethyl-3-ammonio-l-propanesulfonate
N-Hexadecyl-N. N-dimethyl-3-amonio- 1 -propanesulfonate
N-Octadecyl-N, N-dimethyl-3-ammonio- 1 -propanesulfonate
N-Octyl-N, N-dimethyl-3-ammonio- 1 -propanesulfonate
Phosphatidylcholine
N-tetradecyl-N. N-dimethyl-3-ammonio-l -propanesulfonate Table I continued.
Nonionic Detergents
BIGCHAP n-Nonyl -D-Glucopyranoside
Decanoyl-N-methylglucamide n-Nonyl -D-Glucopyranoside n-Decyl -D-Glucopyranoside Octanoyl-N-methylglucamide n-Decyl -D-Glucopyranoside n-Octyl -D-Glucopyranoside n-Decyl -D-Maltopyranoside n-Octyl -D-Glucopyranoside
Deoxy-BIGCHAP Octyl -D-Thiogalactopyranoside n-Dodecyl -D-Glucopyranoside Polyoxyethylene Esters n-Dodecyl -D-Maltoside Polyoxyethylene Ethers n-Dodecyl -D-Maltoside Polyoxyethylenesorbitan Esters
Heptanoyl-N-methylglucamide Sorbitan Esters n-Heptyl -D-Glucopyranoside Tergitol
N-Heptyl -Thioglucopyranoside n-Tetradecyl -D-Maltoside n-Hexyl -D Glucopyranoside Tritons
Igepal'CA-630 Tyloxapol
1 -Monooleoyl-rac-glycerol n-Undecyl -D-Glucopyranoside
Nonanoyl-N-methylglucamide

Claims

We claim:
1. A method for extracting DNA from plant material comprising
(a) lysing the cells in the plant material.
(b) removing the plant cell material debris.
(c) binding the DNA to positively charged groups which are immobilized or insoluble.
(d) separating the bound DNA from the remaining cellular material, and
(e) separating the bound DNA from the positively charged groups.
2. The method of claim 1 wherein a nonionic detergent is used to lyse the cells.
3. The method of claim 1 wherein the positively charged groups are DEAE.
4. The method of claim 1 wherein the positively charged groups are on magnetic beads.
5. The method of claim 1 wherein the plant cell debris is removed by centrifugation.
6. The method of claim 1 wherein the bound DNA is separated by increasing salt ion concentration.
7. The method of claim 1 further comprising adding RNA to digest the RNA in the plant material or purified DNA.
8. A kit for use in a method for extracting DNA from plant material comprising
(a) a solution for lysing the cells in the plant material,
(b) positively charged groups which are immobilized or insoluble, and
(c) a salt solution for separating the bound DNA from the positively charged groups.
9. The kit of claim 8 wherein the solution to lyse the cells is a non-ionic solution.
10. The kit of claim 8 wherein the positively charged groups are DEAE immobilized on a chromatrographic substrate or magnetic beads.
1 1. The kit of claim 8 comprising:
(a) lysis buffer comprising 0.5 to 0.01 M Tris-HCl, pH 7.0 - 8.0, 0.001 - 0.5 M EDTA, pH 7.0 - 8.0, 0.05 - 0.4 M NaCl and 50 - 500 μg/ml proteinase K);
(b) N-lauroylsarcosine;
(c) magnetic beads having DEAE groups on the surface thereof; and
(d) elution buffer comprising 0.7 - 1.5 M NaCl, 0.5 to 0.01 M Tris-HCl. pH 7.0 - 8.0. 0.001-0.5 M EDTA, pH 7.0 - 8.0.
12. The kit of claim 8 further comprising RNA.
13. The kit of claim 11 further comprising RNA.
EP00923575A 1999-04-21 2000-04-21 Magnetic dna extraction kit for plants Withdrawn EP1171584A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13035399P 1999-04-21 1999-04-21
US130353P 1999-04-21
PCT/US2000/010834 WO2000063362A1 (en) 1999-04-21 2000-04-21 Magnetic dna extraction kit for plants

Publications (1)

Publication Number Publication Date
EP1171584A1 true EP1171584A1 (en) 2002-01-16

Family

ID=22444292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00923575A Withdrawn EP1171584A1 (en) 1999-04-21 2000-04-21 Magnetic dna extraction kit for plants

Country Status (5)

Country Link
EP (1) EP1171584A1 (en)
JP (1) JP2002541839A (en)
AU (1) AU4367500A (en)
CA (1) CA2370656A1 (en)
WO (1) WO2000063362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888397A (en) * 2012-09-25 2013-01-23 杭州硕航生物科技有限公司 Kit using magnetic bead to extract whole blood genomic DNA and use of kit

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US20040121335A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents associated with host versus graft and graft versus host rejections
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
DE60234464D1 (en) * 2001-11-28 2009-12-31 Applied Biosystems Llc Compositions and methods for selective nucleic acid isolation
EP1578399A4 (en) 2002-12-06 2007-11-28 Isis Pharmaceuticals Inc Methods for rapid identification of pathogens in humans and animals
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US7964343B2 (en) * 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US20050009036A1 (en) * 2003-07-11 2005-01-13 Applera Corporation Methods and kits for obtaining nucleic acid from biological samples
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8242254B2 (en) 2003-09-11 2012-08-14 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US7666592B2 (en) 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
WO2005117270A2 (en) 2004-05-24 2005-12-08 Isis Pharmaceuticals, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US20050266411A1 (en) 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
CA2579804C (en) 2004-09-16 2013-12-10 Cropdesign N.V. Root evaluation
KR100601972B1 (en) 2004-11-03 2006-07-18 삼성전자주식회사 Apparatus and method for the purification of nucleic acids by phase separation using Laser and beads
US20060205040A1 (en) 2005-03-03 2006-09-14 Rangarajan Sampath Compositions for use in identification of adventitious viruses
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
CA2616281C (en) 2005-07-21 2014-04-22 Isis Pharmaceuticals, Inc. Methods for rapid identification and quantitation of mitochondrial dna variants
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
WO2008151023A2 (en) 2007-06-01 2008-12-11 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
WO2010033625A1 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
WO2010033599A2 (en) 2008-09-16 2010-03-25 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US8991098B2 (en) 2008-09-16 2015-03-31 Basf Plant Science Gmbh Method for improved plant breeding
WO2010093943A1 (en) 2009-02-12 2010-08-19 Ibis Biosciences, Inc. Ionization probe assemblies
EP2454000A4 (en) 2009-07-17 2016-08-10 Ibis Biosciences Inc Systems for bioagent identification
WO2011008971A1 (en) 2009-07-17 2011-01-20 Ibis Biosciences, Inc. Lift and mount apparatus
EP2488656B1 (en) 2009-10-15 2015-06-03 Ibis Biosciences, Inc. Multiple displacement amplification
CN102533731A (en) * 2012-01-19 2012-07-04 西北农林科技大学 Extraction kit and extraction method for tomato genome total DNA (Deoxyribonucleic Acid)
CN102618532A (en) * 2012-05-02 2012-08-01 易春 Kit for extracting genome DNA (Deoxyribose Nucleic Acid) from plant leaves based on paramagnetic particle method and extracting method thereof
CN110452905B (en) * 2019-08-22 2023-06-02 云南省烟草农业科学研究院 Extraction method for improving tobacco DNA precipitation efficiency and application thereof
CN110669759A (en) * 2019-10-28 2020-01-10 北京百迈客生物科技有限公司 Method for extracting fungus high-purity long-fragment genome DNA (deoxyribonucleic acid) suitable for nanopore sequencing
CN112921028A (en) * 2019-12-06 2021-06-08 深圳华大基因科技服务有限公司 DNA purification method, genomic DNA extraction method, sequencing method and kit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997932A (en) * 1989-11-13 1991-03-05 Boehringer Mannheim Corporation Method and kit for purifying nucleic acids
GB9425138D0 (en) * 1994-12-12 1995-02-08 Dynal As Isolation of nucleic acid
US5981235A (en) * 1996-07-29 1999-11-09 Promega Corporation Methods for isolating nucleic acids using alkaline protease
WO1999029703A2 (en) * 1997-12-06 1999-06-17 Dna Research Instruments Limited Isolation of nucleic acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0063362A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888397A (en) * 2012-09-25 2013-01-23 杭州硕航生物科技有限公司 Kit using magnetic bead to extract whole blood genomic DNA and use of kit

Also Published As

Publication number Publication date
JP2002541839A (en) 2002-12-10
WO2000063362A1 (en) 2000-10-26
CA2370656A1 (en) 2000-10-26
AU4367500A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
WO2000063362A1 (en) Magnetic dna extraction kit for plants
US7931920B2 (en) Method for the isolation of nucleic acids from any starting material
US5783686A (en) Method for purifying nucleic acids from heterogenous mixtures
JP5390772B2 (en) Compositions and methods for purifying nucleic acids from stabilizing reagents
DE4321904B4 (en) Method for chromatographic purification and separation of nucleic acid mixtures
JP4369619B2 (en) Rapid and simple isolation method for circular nucleic acids
CA2983619C (en) Method and test kit for rapid isolation of nucleic acids using rough surfaces
US6797476B2 (en) Process for the scaleable purification of plasmid DNA
WO1999040098A1 (en) Method for isolating and purifying nucleic acids
US8029991B2 (en) Method and formulation for the extraction of nucleic acids from any complex starting materials
EP1560926B2 (en) Novel buffer formulations for isolating, purifying and recovering long-chain and short-chain nucleic acids
CA2393479C (en) Process for the scaleable purification of plasmid dna
WO2005045030A1 (en) A rapid and low cost method for isolating nucleic acid
CN113265395A (en) Thallus lysate clarifying reagent and application thereof in plasmid extraction process
CA2315257A1 (en) Method for isolating short and long-chain nucleic acids
CN114292841B (en) Nucleic acid extraction reagent and nucleic acid extraction method
KR100622606B1 (en) Composition for the purification of plasmid dna by one step and rapid purification method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021101