EP1163442A1 - Fuel injection nozzle - Google Patents

Fuel injection nozzle

Info

Publication number
EP1163442A1
EP1163442A1 EP01903592A EP01903592A EP1163442A1 EP 1163442 A1 EP1163442 A1 EP 1163442A1 EP 01903592 A EP01903592 A EP 01903592A EP 01903592 A EP01903592 A EP 01903592A EP 1163442 A1 EP1163442 A1 EP 1163442A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
sealing seat
injection
injection nozzle
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01903592A
Other languages
German (de)
French (fr)
Other versions
EP1163442B1 (en
Inventor
Katsuoki Itoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1163442A1 publication Critical patent/EP1163442A1/en
Application granted granted Critical
Publication of EP1163442B1 publication Critical patent/EP1163442B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the invention relates to a fuel injector with a nozzle body which is provided with at least one spray hole and a conical contact surface, and a nozzle needle which is displaceable in the nozzle body and has an inlet surface and downstream of the inlet surface a radial shoulder, so that on Transition to the inlet surface, a sealing seat is formed, which can interact with the contact surface.
  • Such a fuel injector is known from DE 195 47 423 A1.
  • the radial shoulder which has a depth of the order of 0.01 to 0.06 mm, serves to produce a cross-section transition in the area of the sealing seat that is as sharp as possible, so that the flow cross-section that results when the nozzle needle is open is defined as precisely as possible .
  • the areas of the nozzle needle adjoining the step downstream with a small opening stroke, such as is used for a pre-injection form a comparatively long flow channel, which acts as a throttle and in which the inevitable manufacturing tolerances have a large impact on the flow.
  • a temperature-dependent laminar flow is formed in the gap geometry used, which additionally impairs the flow behavior.
  • the object of the invention is to further develop an injection nozzle of the type mentioned at the outset such that reliable metering of the amount of fuel to be injected is possible even with the smallest opening strokes, as is necessary for a pre-injection.
  • a fuel injection nozzle of the type mentioned which has the features of the characterizing part of claim 1, has the advantage that such a large flow cross-section is formed downstream of the sealing seat due to the circumferential groove that the resulting flow in the open state of the nozzle needle, such as it corresponds to a pre-injection, is determined exclusively by the cross-section in the area of the sealing seat. Since the radial shoulder is also very sharp-edged, manufacturing tolerances at this point have negligible effects on the flow cross-section that results when the nozzle needle is open.
  • FIG. 1 shows a cross section through the front end of an injection nozzle
  • FIG. 2 is a diagram of the opening cross section between the nozzle needle and the nozzle body as a function of the stroke of the nozzle needle.
  • FIG. 1 shows the front section of an injection nozzle, that is, the section that connects a combustion chamber of a combustion force to be supplied.
  • the injection nozzle has a nozzle body 10 which is provided with several spray holes 12 in the area of its front end. On the inside, the nozzle body 10 is provided with a conical contact surface 14 which has a cone angle of approximately 60 °
  • a nozzle needle 16 Arranged inside the nozzle body 10 is a nozzle needle 16 which is adjustable between a closed position in which no fuel can flow from a fuel supply (not shown) to the spray holes 12 and an open position in which the injection of fuel is possible
  • the opening stroke carried out by the nozzle needle 16 between the closed position and the open position can be controlled in such a way that the amount of fuel injected is adapted to the respective requirements.
  • a small opening stroke is possible, so that only a small amount of fuel is injected for a pre-injection to achieve, as well as the actual opening stroke, which leads to the fact that a larger amount of fuel is injected so that a main combustion takes place
  • the nozzle needle 16 has an inlet surface 18, which is formed as a conical surface in the embodiment shown.
  • the outer contour of the inlet surface closes an angle ⁇ of approximately 22.5 ° with the central axis M of the injection nozzle, which could differ from the embodiment shown deviating values between 0 ° and 45 ° can also be selected for the angle ß
  • the radial shoulder 20 is designed on its downstream side in such a way that a tangent to its contour (viewed again in section from FIG. 1) is parallel to the central axis M.
  • the radial shoulder has a cylindrical surface at its downstream end, the central axis of which coincides with the central axis M of the nozzle needle.
  • circumferential groove 24 which forms a flow gap towards the spray holes 12.
  • the circumferential groove 24 extends exactly to the point where it enters the spray holes.
  • the circumferential groove 24 extends to the center of the spray holes 12, and in the contour designated C in FIG. 1, the circumferential groove 24 extends completely over the spray holes.
  • the extent of the circumferential groove 24 in the axial direction that is, for example, corresponding to one of the contours A, B or C, represents a compromise between the flow cross-section in the region of the circumferential groove, which should be as large as possible, and that with regard to the HC values of the supplied Combustion engine harmful volume, which is formed by the circumferential groove and should be as small as possible.
  • the sealing seat 22 is lifted off the contact surface 14 If the sealing seat 22 connects the radial shoulder 20 and the circumferential groove 24, the narrowest flow cross-section is formed by the sealing seat 22, the flow cross-section downstream of the sealing seat 22 are all larger. Because of the sharp-edged geometry used for the sealing seat 22, the inevitable manufacturing tolerances have a comparative nature little impact on the resulting flow area
  • FIG. 2 shows the resulting flow cross-section A as a function of the needle stroke s.
  • Reference number 22 denotes the course of the flow cross-section that results from the sealing seat 22.
  • Reference number 14 denotes the flow cross-section that results from the downstream of the sealing seat 22 ending areas of the nozzle needle and the contact surface,
  • reference numeral 12 finally denotes the flow cross-section which is determined by the spray holes 12
  • the nozzle needle only performs a small opening stroke V, as used for a pre-injection, the resulting flow cross-section is determined exclusively by the sealing seat 22. Only when a larger opening stroke is carried out does a flow cross-section first result, which is no longer from the sealing seat 22, but instead is determined by the contact surface 14 and the inlet to the spray holes. Subsequently, with an even greater opening stroke of the nozzle needle, there is an area in which the flow cross section is constant and is determined exclusively by the cross section of the spray holes 12. This area continues up to the maximum Opening stroke s max of the nozzle needle, which is of the order of magnitude of 0.2 to 0.3 mm. However, the geometry of the nozzle needle according to the invention is of no influence for the latter two areas, since it only affects opening openings as are used for the pre-injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to a fuel injection nozzle comprising a nozzle body which is provided with at least one nozzle hole (12) and a conical bearing surface (14). The inventive nozzle also comprises a nozzle needle (16) which can be displaced in the nozzle body and is provided with an inlet surface (18) as well as a radial step (20) arranged downstream in relation to and adjacent to the inlet surface. A sealing seat is thus formed in the transitional area with the inlet surface. Said sealing seat can engage with the bearing surface. The aim of the invention is to meter fuel for the pre-injection in a more accurate manner. According to the invention, an angle that is enclosed between the centre line of the injection nozzle and a tangent which is adjacent to the radial step in the area of the sealing seat amounts to more than 45 DEG . A circumference groove (24) is formed downstream in relation to and adjacent to the radial step. Said groove extends at least to the nozzle hole (12) in such a way that the narrowest cross-section is produced between the nozzle needle and the nozzle body in the region of the sealing seat for pre-injection purposes when the nozzle needle performs an opening lift movement.

Description

Kraftstoff-Einspritzdüse Fuel injector
Stand der TechnikState of the art
Die Erfindung betrifft eine Kraftstoff-Einspritzdüse mit einem Düsenkörper, der mit mindestens einem Spritzloch sowie einer kegeligen Anlagefläche versehen ist, und einer Düsennadel, die in dem Düsenkörper verschiebbar ist und eine Einlauffläche aufweist sowie stromabwärts anschließend an die Einlauffläche einen radialen Absatz, so daß am Übergang zur Einlauffläche ein Dichtsitz gebildet ist, der mit der Anlagefläche zusammenwirken kann.The invention relates to a fuel injector with a nozzle body which is provided with at least one spray hole and a conical contact surface, and a nozzle needle which is displaceable in the nozzle body and has an inlet surface and downstream of the inlet surface a radial shoulder, so that on Transition to the inlet surface, a sealing seat is formed, which can interact with the contact surface.
Eine solche Kraftstoff-Einspritzdüse ist aus der DE 195 47 423 A1 bekannt. Der radiale Absatz, der mit einer Tiefe in der Größenordnung von 0,01 bis 0,06 mm ausgeführt ist, dient dazu, einen möglichst scharfkantigen Querschnittsübergang im Bereich des Dichtsitzes zu erzeugen, so daß der sich bei geöffneter Düsennadel ergebende Durchflußquerschnitt möglichst präzise definiert ist. Jedoch bilden die sich stromabwärts an den Absatz anschließenden Bereiche der Düsennadel bei einem geringen Öffnungshub, wie er für eine Voreinspritzung vorgenommen wird, einen vergleichsweise langen Durchflußkanal, der als Drossel wirkt und bei dem die unvermeidlichen Herstellungstoleraπzen große Auswirkungen auf die Strömung haben. Außerdem bildet sich bei der verwendeten Spaltgeometrie eine temperaturabhängige Lamiπarströmung aus, was das Durchflußverhalten zusätzlich beeinträchtigt. Die Aufgabe der Erfindung besteht darin, eine Einspritzdüse der eingangs genannten Art dahingehend weiterzuentwickeln, daß auch bei kleinsten Öffnuπgs- hübeπ eine zuverlässige Dosierung der Menge des einzuspritzenden Kraftstoffs möglich ist, wie dies für eine Voreinspritzung erforderlich ist.Such a fuel injector is known from DE 195 47 423 A1. The radial shoulder, which has a depth of the order of 0.01 to 0.06 mm, serves to produce a cross-section transition in the area of the sealing seat that is as sharp as possible, so that the flow cross-section that results when the nozzle needle is open is defined as precisely as possible , However, the areas of the nozzle needle adjoining the step downstream with a small opening stroke, such as is used for a pre-injection, form a comparatively long flow channel, which acts as a throttle and in which the inevitable manufacturing tolerances have a large impact on the flow. In addition, a temperature-dependent laminar flow is formed in the gap geometry used, which additionally impairs the flow behavior. The object of the invention is to further develop an injection nozzle of the type mentioned at the outset such that reliable metering of the amount of fuel to be injected is possible even with the smallest opening strokes, as is necessary for a pre-injection.
Vorteile der ErfindungAdvantages of the invention
Eine Kraftstoff-Einspritzdüse der eingangs genannten Art, welche die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 aufweist, hat den Vorteil, daß aufgrund der Umfangsnut ein derart großer Durchflußquerschnitt stromabwärts des Dichtsitzes gebildet ist, daß die sich einstellende Strömung im geöffneten Zustand der Düsennadel, wie er einer Voreinspritzung entspricht, ausschließlich vom Querschnitt im Bereich des Dichtsitzes bestimmt wird. Da außerdem der radiale Absatz sehr scharfkantig ausgebildet ist, haben Herstellungstoleranzen an dieser Stelle vernachlässigbare Auswirkungen auf den sich im geöffneten Zustand der Düsennadel ergebenden Durchflußquerschnitt.A fuel injection nozzle of the type mentioned, which has the features of the characterizing part of claim 1, has the advantage that such a large flow cross-section is formed downstream of the sealing seat due to the circumferential groove that the resulting flow in the open state of the nozzle needle, such as it corresponds to a pre-injection, is determined exclusively by the cross-section in the area of the sealing seat. Since the radial shoulder is also very sharp-edged, manufacturing tolerances at this point have negligible effects on the flow cross-section that results when the nozzle needle is open.
Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.Advantageous refinements of the invention result from the subclaims.
Zeichnungendrawings
Die Erfindung wird nachfolgend anhand einer bevorzugten Ausführungsform beschrieben, die in den beigefügten Zeichnungen dargestellt ist. In diesen zeigen:The invention is described below with reference to a preferred embodiment, which is illustrated in the accompanying drawings. In these show:
- Figur 1 einen Querschnitt durch das vordere Ende einer Einspritzdüse; und- Figure 1 shows a cross section through the front end of an injection nozzle; and
- Figur 2 ein Diagramm des Öffnungsquerschnittes zwischen Düsennadel und Düsenkörper in Abhängigkeit vom Hub der Düsennadel.- Figure 2 is a diagram of the opening cross section between the nozzle needle and the nozzle body as a function of the stroke of the nozzle needle.
In Figur 1 ist der vordere Abschnitt einer Einspritzdüse gezeigt, also der Abschnitt, der einem Verbrennungsraum einer zu versorgenden Verbrenπuπgskraft- maschine zugewandt ist Die Einspritzdüse weist einen Duseπkorper 10 auf, der im Bereich seines vorderen Endes mit mehreren Spritzlochern 12 versehen ist Auf der Innenseite ist der Dusenkorper 10 mit einer kegeligen Anlageflache 14 versehen, die einen Kegelwinkel von etwa 60° aufweistFIG. 1 shows the front section of an injection nozzle, that is, the section that connects a combustion chamber of a combustion force to be supplied. The injection nozzle has a nozzle body 10 which is provided with several spray holes 12 in the area of its front end. On the inside, the nozzle body 10 is provided with a conical contact surface 14 which has a cone angle of approximately 60 °
Im Inneren des Dusenkorpers 10 ist eine Dusennadel 16 angeordnet, die zwischen einer geschlossenen Stellung, in der kein Kraftstoff von einer (nicht dargestellten) Kraftstoffzufuhr zu den Spritzlochern 12 fließen kann, und einer geöffneten Stellung verstellbar ist, in der das Einspritzen von Kraftstoff möglich ist Der von der Dusennadel 16 zwischen der geschlossenen Stellung und der geöffneten Stellung ausgeführte Offnungshub kann dabei so gesteuert werden, daß die eingespritzte Kraftstoffmenge an die jeweiligen Anforderungen angepaßt wird Insbesondere ist ein kleiner Offnungshub möglich, so daß nur eine geringe Kraftstoffmenge eingespritzt wird, um eine Voreinspritzung zu erzielen, sowie der eigenth- ehe Offnungshub, der dazu fuhrt, daß eine größere Kraftstoffmenge eingespritzt wird, so daß eine Hauptverbrennung stattfindetArranged inside the nozzle body 10 is a nozzle needle 16 which is adjustable between a closed position in which no fuel can flow from a fuel supply (not shown) to the spray holes 12 and an open position in which the injection of fuel is possible The opening stroke carried out by the nozzle needle 16 between the closed position and the open position can be controlled in such a way that the amount of fuel injected is adapted to the respective requirements. In particular, a small opening stroke is possible, so that only a small amount of fuel is injected for a pre-injection to achieve, as well as the actual opening stroke, which leads to the fact that a larger amount of fuel is injected so that a main combustion takes place
Die Dusennadel 16 weist eine Einlaufflache 18 auf die bei der gezeigten Ausfuhrungsform als Kegelflache ausgebildet ist Die Außenkontur der Einlaufflache schließt im Schnitt von Figur 1 betrachtet einen Winkel ß von etwa 22,5° mit der Mittelachse M der Einspritzdüse ein Abweichend von der gezeigten Ausfuhrungsform konnten für den Winkel ß auch abweichende Werte zwischen 0° und 45° gewählt werdenThe nozzle needle 16 has an inlet surface 18, which is formed as a conical surface in the embodiment shown. The outer contour of the inlet surface, viewed in section in FIG. 1, closes an angle β of approximately 22.5 ° with the central axis M of the injection nozzle, which could differ from the embodiment shown deviating values between 0 ° and 45 ° can also be selected for the angle ß
An die Einlaufflache 18 schließt sich stromabwärts, also zu den Spritzlochern 12 hin, ein radialer Absatz 20 an, so daß ein scharfkantiger Dichtsitz 22 gebildet ist Der Absatz 20 ist dabei so ausgeführt, daß eine Tangente an seine Kontur (betrachtet im Schnitt von Figur 1 ) im Bereich des Übergangs zur Einlaufflache 18, also im Bereich des Dichts-tzes 22 bei der gezeigten Ausfuhrungsform senk- recht zur Mittelachse M der Einspritzdüse ist Wenn der Dichtsitz 22 weniger scharfkantig ausgebildet sein soll, also mit einem eingeschlossenen Winkel zwischen der Tangente an den radialen Absatz im Bereich des Dichtsitzes und der Einlauffläche 18 von weniger als 112, 5°, oder wenn der Neigungswinkel ß der Einlauffläche 18 kleiner als die gezeigten 22,5° ist, kann die Tangente an den radialen Absatz angrenzend an den Dichtsitz 22 auch einen kleineren Winkel als 90° mit der Mittelachse M einschließen, also schräg nach unten zur Mittelachse M hin verlaufen. Um den gewünschten scharfkantigen Dichtsitz zu gewährleisten, sollte der Winkel, der zwischen der Tangente an den Absatz angrenzend an den Dichtsitz 22 und der Mittelachse M eingeschlossen ist, nicht kleiner sein als 45°.A radial shoulder 20 adjoins the inlet surface 18 downstream, that is to say toward the spray holes 12, so that a sharp-edged sealing seat 22 is formed. The shoulder 20 is designed such that a tangent to its contour (viewed in section in FIG. 1 ) is perpendicular to the central axis M of the injection nozzle in the area of the transition to the inlet surface 18, that is to say in the area of the seal 22 in the embodiment shown If the sealing seat 22 is to be made less sharp-edged, that is, with an included angle between the tangent to the radial shoulder in the area of the sealing seat and the inlet surface 18 of less than 112.5 °, or if the angle of inclination β of the inlet surface 18 is smaller than that shown 22.5 °, the tangent to the radial shoulder adjacent to the sealing seat 22 can also include a smaller angle than 90 ° with the central axis M, that is to say it runs obliquely downwards towards the central axis M. In order to ensure the desired sharp-edged sealing seat, the angle enclosed between the tangent to the shoulder adjacent to the sealing seat 22 and the central axis M should not be less than 45 °.
Der radiale Absatz 20 ist auf seiner stromabwärtigen Seite so ausgeführt, daß eine Tangente an seine Kontur (betrachtet wieder im Schnitt von Figur 1 ) parallel zur Mittelachse M ist. Anders ausgedrückt weist der radiale Absatz an seinem stromabwärtigen Ende eine Zylinderfläche auf, deren Mittelachse mit der Mittelachse M der Düsennadel zusammenfällt.The radial shoulder 20 is designed on its downstream side in such a way that a tangent to its contour (viewed again in section from FIG. 1) is parallel to the central axis M. In other words, the radial shoulder has a cylindrical surface at its downstream end, the central axis of which coincides with the central axis M of the nozzle needle.
An das stromabwärtige Ende des radialen Absatzes 20 schließt sich eine Umfangsnut 24 an, die einen Durchflußspalt hin zu den Spritzlöchern 12 bildet. Bei der in Figur 1 mit A bezeichneten Kontur erstreckt sich die Umfangsnut 24 genau bis zum Einlauf in die Spritzlöcher. Bei der in Figur 1 mit B bezeichneten Kontur erstreckt sich die Umfangsnut 24 bis zur Mitte der Spritzlöcher 12, und bei der in Figur 1 mit C bezeichneten Kontur erstreckt sich die Umfangsnut 24 vollständig über die Spritzlöcher.At the downstream end of the radial shoulder 20 there is a circumferential groove 24 which forms a flow gap towards the spray holes 12. In the contour designated A in FIG. 1, the circumferential groove 24 extends exactly to the point where it enters the spray holes. In the contour designated B in FIG. 1, the circumferential groove 24 extends to the center of the spray holes 12, and in the contour designated C in FIG. 1, the circumferential groove 24 extends completely over the spray holes.
Die Erstreckuπg der Umfangsnut 24 in axialer Richtung, also beispielsweise entsprechend einer der Konturen A, B oder C, stellt einen Kompromiß dar zwischen dem Durchflußquerschnitt im Bereich der Umfangsnut, der möglichst groß sein soll, und dem im Hinblick auf die HC-Werte der versorgten Verbrennungskraftma- schine schädlichen Volumen, das von der Umfangsnut gebildet ist und möglichst klein sein soll. Wenn die Dusennadel 12 einen kleinen Offnungshub in der Größenordnung von 0,02 bis 0,03 mm durchfuhrt, um eine Voreinspπtzuπg zu erzielen, bei der etwa 1 mm3 Kraftstoff eingespritzt wird, wird der Dichtsitz 22 von der Anlageflache 14 abgehoben Da sich an den Dichtsitz 22 der radiale Absatz 20 und die Umfangs- nut 24 anschließen, wird der engste Durchflußquerschnitt vom Dichtsitz 22 gebildet, die sich stromabwärts an den Dichtsitz 22 anschließenden Durchflußquerschnitt sind alle größer Aufgrund der verwendeten scharfkantigen Geometrie für den Dichtsitz 22 haben die unvermeidbaren Herstellungstoleranzen eine vergleichsweise geringe Auswirkung auf den sich ergebenden DurchflußquerschnittThe extent of the circumferential groove 24 in the axial direction, that is, for example, corresponding to one of the contours A, B or C, represents a compromise between the flow cross-section in the region of the circumferential groove, which should be as large as possible, and that with regard to the HC values of the supplied Combustion engine harmful volume, which is formed by the circumferential groove and should be as small as possible. If the nozzle needle 12 performs a small opening stroke of the order of 0.02 to 0.03 mm in order to achieve a pre-injection in which approximately 1 mm 3 of fuel is injected, the sealing seat 22 is lifted off the contact surface 14 If the sealing seat 22 connects the radial shoulder 20 and the circumferential groove 24, the narrowest flow cross-section is formed by the sealing seat 22, the flow cross-section downstream of the sealing seat 22 are all larger. Because of the sharp-edged geometry used for the sealing seat 22, the inevitable manufacturing tolerances have a comparative nature little impact on the resulting flow area
In Figur 2 ist der sich ergebende Durchflußquerschnitt A in Abhängigkeit vom Nadelhub s gezeigt Mit dem Bezugszeichen 22 ist der Verlauf des Durchflußquerschnittes bezeichnet, der sich aufgrund des Dichtsitzes 22 ergibt Mit dem Bezugszeichen 14 ist der Durchflußquerschnitt bezeichnet, der sich aufgrund der stromabwärts des Dichtsitzes 22 egenden Bereichen der Dusennadel und der Anlageflache ergibt Mit dem Bezugszeichen 12 ist schließlich der Durchflußquerschnitt bezeichnet, der von den Spritzlochern 12 bestimmt wirdFIG. 2 shows the resulting flow cross-section A as a function of the needle stroke s. Reference number 22 denotes the course of the flow cross-section that results from the sealing seat 22. Reference number 14 denotes the flow cross-section that results from the downstream of the sealing seat 22 ending areas of the nozzle needle and the contact surface, reference numeral 12 finally denotes the flow cross-section which is determined by the spray holes 12
Wenn die Dusennadel nur einen geringen Offnungshub V durchfuhrt, wie er für eine Voreinspritzung verwendet wird, wird der sich ergebende Durchflußquerschnitt ausschließlich vom Dichtsitz 22 bestimmt Erst wenn ein größerer Offnungshub durchgeführt wird, ergibt sich zunächst ein Durchflußquerschnitt, der nicht mehr vom Dichtsitz 22, sondern von der Anlageflache 14 und dem Einlauf zu den Spritzlochern bestimmt wird Daran anschließend ergibt sich bei noch große- rem Offnungshub der Dusennadel ein Bereich, bei dem der Durchflußquerschnitt konstant ist und ausschließlich vom Querschnitt der Spritzlocher 12 bestimmt wird Dieser Bereich setzt sich fort bis zum maximalen Offnungshub smax der Dusennadel, der in der Größenordnung von 0,2 bis 0,3 mm liegt Für die beiden letztgenannten Bereiche ist die erfindungsgemaße Geometrie der Dusennadel jedoch ohne Einfluß, da sie sich nur bei Offπungshuben auswirkt wie sie für die Voreinspritzung verwendet werden If the nozzle needle only performs a small opening stroke V, as used for a pre-injection, the resulting flow cross-section is determined exclusively by the sealing seat 22. Only when a larger opening stroke is carried out does a flow cross-section first result, which is no longer from the sealing seat 22, but instead is determined by the contact surface 14 and the inlet to the spray holes. Subsequently, with an even greater opening stroke of the nozzle needle, there is an area in which the flow cross section is constant and is determined exclusively by the cross section of the spray holes 12. This area continues up to the maximum Opening stroke s max of the nozzle needle, which is of the order of magnitude of 0.2 to 0.3 mm. However, the geometry of the nozzle needle according to the invention is of no influence for the latter two areas, since it only affects opening openings as are used for the pre-injection

Claims

Patentanspruche Patent claims
1 Kraftstoff-Einspritzdüse mit einem Duseπkorper (10), der mit mindestens einem Spritzloch (12) sowie einer kegeligen Aπlageflache (14) versehen ist, und einer Dusennadel (16), die in dem Duseπkorper verschiebbar ist und eine Einlaufflache (18) aufweist sowie stromabwärts anschließend an die Einlaufflache einen radia- len Absatz (20), so daß am Übergang zur Einlauffläche ein Dichtsitz gebildet ist, der mit der Aπlageflache zusammenwirken kann, dadurch gekennzeichnet, daß ein Winkel, der von einer Tangente an den radialen Absatz im Bereich des Dichtsitzes und der Mittelachse der Einspritzdüse eingeschlossen ist mehr als 45° betragt und daß stromabwärts anschließend an den radialen Absatz eine Umfangsnut (24) gebildet ist, die sich bis mindestens zu dem Spritzloch (12) erstreckt, so daß bei einem Offnungshub der Dusennadel zum Zwecke der Voreinspritzung der engste Querschnitt zwischen der Dusennadel und dem Duseπkorper im Bereich des Dichtsitzes gebildet ist1 fuel injection nozzle with a nozzle body (10), which is provided with at least one spray hole (12) and a conical bearing surface (14), and a nozzle needle (16) which is displaceable in the nozzle body and has an inlet surface (18) and downstream of the inlet surface a radial shoulder (20), so that a sealing seat is formed at the transition to the inlet surface, which can cooperate with the bearing surface, characterized in that an angle that extends from a tangent to the radial shoulder in the region of the Sealing seat and the central axis of the injection nozzle is more than 45 ° and that downstream of the radial shoulder a circumferential groove (24) is formed, which extends to at least the spray hole (12), so that during an opening stroke of the nozzle needle for the purpose the narrowest cross-section between the nozzle needle and the nozzle body is formed in the region of the sealing seat
2 Einspritzdüse nach Anspruch 1 dadurch gekennzeichnet daß sich die Umfangsnut (24) bis zur Mitte des Spritzloches (12) erstreckt2 Injection nozzle according to claim 1, characterized in that the circumferential groove (24) extends to the center of the spray hole (12)
3 Einspritzdüse nach Anspruch 1 dadurch gekennzeichnet, daß sich die Umfangsnut (24) über das gesamte Spritzloch (12) erstreckt3 Injection nozzle according to claim 1, characterized in that the circumferential groove (24) extends over the entire spray hole (12)
4 Einspritzdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der zwischen der Tangente an den radialen Absatz (20) und der Mittelachse M der Einspritzdüse eingeschlossene Winkel etwa 90° betragt 4 Injection nozzle according to one of the preceding claims, characterized in that the angle between the tangent to the radial shoulder (20) and the central axis M of the injection nozzle is approximately 90 °
EP01903592A 2000-01-10 2001-01-05 Fuel injection nozzle Expired - Lifetime EP1163442B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10000574 2000-01-10
DE10000574A DE10000574A1 (en) 2000-01-10 2000-01-10 Fuel injector
PCT/DE2001/000016 WO2001051806A1 (en) 2000-01-10 2001-01-05 Fuel injection nozzle

Publications (2)

Publication Number Publication Date
EP1163442A1 true EP1163442A1 (en) 2001-12-19
EP1163442B1 EP1163442B1 (en) 2005-07-06

Family

ID=7627024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01903592A Expired - Lifetime EP1163442B1 (en) 2000-01-10 2001-01-05 Fuel injection nozzle

Country Status (9)

Country Link
US (1) US20030057299A1 (en)
EP (1) EP1163442B1 (en)
JP (1) JP2003519758A (en)
KR (1) KR20010102515A (en)
CN (1) CN1188591C (en)
BR (1) BR0103895A (en)
DE (2) DE10000574A1 (en)
PL (1) PL349996A1 (en)
WO (1) WO2001051806A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245573A1 (en) 2002-09-27 2004-04-08 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE10246693A1 (en) * 2002-10-07 2004-04-15 Siemens Ag Injector for injecting fuel
KR20040038080A (en) * 2002-10-31 2004-05-08 현대자동차주식회사 injector for a common rail direct injection engine
DE10251014A1 (en) * 2002-11-02 2004-05-19 Robert Bosch Gmbh Fuel dispensing unit for fuel injection system for internal combustion engine has shutoff sleeve in interior of valve piston and valve piston and shutoff sleeve form shutoff device
DE10305303A1 (en) * 2003-02-10 2004-08-19 Robert Bosch Gmbh Fuel injection device, in particular for internal combustion engines with direct fuel injection
DE102005025135A1 (en) * 2005-06-01 2006-12-07 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
US7360722B2 (en) * 2005-08-25 2008-04-22 Caterpillar Inc. Fuel injector with grooved check member
US7578450B2 (en) * 2005-08-25 2009-08-25 Caterpillar Inc. Fuel injector with grooved check member
US20070200011A1 (en) * 2006-02-28 2007-08-30 Caterpillar Inc. Fuel injector having nozzle member with annular groove
GB0625770D0 (en) * 2006-12-22 2007-02-07 Delphi Tech Inc Fuel injector for an internal combustion engine
DE102009042155A1 (en) * 2009-09-21 2011-04-07 Continental Automotive Gmbh Fuel injection valve for an internal combustion engine
EP2439447A1 (en) * 2010-10-05 2012-04-11 Siemens Aktiengesellschaft Fuel nozzle, gas turbine combustion chamber and burner with such a fuel nozzle
WO2012085901A2 (en) 2011-05-09 2012-06-28 Lietuvietis Vilis I Valve covered orifice pressure equalizing channel
DE102012218016A1 (en) * 2012-10-02 2014-04-03 Continental Automotive Gmbh Nozzle assembly for injection valve, has sealing seat formed in wall of nozzle body recess, nozzle needle movably arranged in body recess, and nozzle whose inlet opening is formed in axial direction of region of cone shaped region
CN103277225A (en) * 2013-06-07 2013-09-04 苏州柏德纳科技有限公司 Oil injection nozzle
CN103742778B (en) * 2014-01-09 2016-08-24 四川宁江山川机械有限责任公司 A kind of improved structure of oiling machine pump nozzle
JP6354519B2 (en) * 2014-10-23 2018-07-11 株式会社デンソー Fuel injection valve
CN104612875A (en) * 2014-12-02 2015-05-13 中国第一汽车股份有限公司无锡油泵油嘴研究所 Novel high flow injector nozzle matching parts of common rail injector
DE102016215637A1 (en) * 2016-08-19 2018-02-22 Robert Bosch Gmbh fuel Injector
CN106762303B (en) * 2016-12-15 2019-08-27 江苏大学 Jetting stability hole type nozzle when a kind of commercial diesel engine for automobile of control small oil mass
DE102019210551A1 (en) * 2019-07-17 2021-01-21 Robert Bosch Gmbh Fuel injector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54901Y2 (en) * 1975-05-22 1979-01-17
DE2710217A1 (en) * 1977-03-09 1978-09-14 Bosch Gmbh Robert FUEL INJECTOR
JP2765178B2 (en) * 1990-04-11 1998-06-11 株式会社デンソー Fuel injection nozzle
JP2841768B2 (en) * 1990-07-23 1998-12-24 日産自動車株式会社 Fuel injection nozzle for diesel engine
JP2841770B2 (en) * 1990-07-26 1998-12-24 日産自動車株式会社 Fuel injection nozzle for diesel engine
JPH04318277A (en) * 1991-04-17 1992-11-09 Nissan Motor Co Ltd Fuel injection nozzle
JPH0583369U (en) * 1992-04-20 1993-11-12 日産ディーゼル工業株式会社 Fuel injection nozzle
GB9425652D0 (en) * 1994-12-20 1995-02-22 Lucas Ind Plc Fuel injection nozzle
DE19547423B4 (en) 1995-12-19 2008-09-18 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
JPH10196492A (en) * 1997-01-13 1998-07-28 Isuzu Motors Ltd Diesel engine
DE19820513A1 (en) * 1998-05-08 1999-11-11 Mtu Friedrichshafen Gmbh Fuel injection nozzle for internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0151806A1 *

Also Published As

Publication number Publication date
US20030057299A1 (en) 2003-03-27
BR0103895A (en) 2001-12-18
JP2003519758A (en) 2003-06-24
DE10000574A1 (en) 2001-07-19
KR20010102515A (en) 2001-11-15
EP1163442B1 (en) 2005-07-06
PL349996A1 (en) 2002-10-21
CN1358256A (en) 2002-07-10
WO2001051806A1 (en) 2001-07-19
DE50106669D1 (en) 2005-08-11
CN1188591C (en) 2005-02-09

Similar Documents

Publication Publication Date Title
EP1163442A1 (en) Fuel injection nozzle
DE663301C (en) Injection nozzle for internal combustion engines with self-ignition
DE4039520B4 (en) Fuel injection valve
EP1076772B1 (en) Fuel injection nozzle for an internal combustion engine
DE4440182C2 (en) Fuel injection valve for internal combustion engines
DE2750929A1 (en) FUEL INJECTION NOZZLE FOR COMBUSTION MACHINES
DE3502642A1 (en) FUEL INJECTION VALVE FOR AN AIR-COMPRESSING INJECTION COMBUSTION ENGINE
DD142739A1 (en) FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINES
WO2011023467A1 (en) Fuel injection valve
EP1117928B1 (en) Fuel injection nozzle
WO2002048536A1 (en) Fuel injection valve for internal combustion engines
WO2001051805A2 (en) Injector
DE2746010C2 (en) Fuel injector for internal combustion engines
EP0413173B1 (en) Fuel injection nozzle for internal combustion engines
DE3117665C2 (en) Fuel injection valve for internal combustion engines
EP1526274B1 (en) Fuel injection device, especially for a direct injection internal combustion engine
DE3141850C2 (en) Pressure valve for a fuel injection pump of an internal combustion engine
DE19843912B4 (en) fuel Injector
DE3118485C2 (en) Fuel injector for internal combustion engines
WO2014206610A1 (en) Nozzle assembly for a fuel injector, and fuel injector
AT394761B (en) FUEL INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES
AT394760B (en) Fuel injection nozzle for internal combustion engines
EP0293371A1 (en) Fuel injection nozzle for internal combustion engines.
WO2003046368A1 (en) Fuel injection valve for internal combustion engines
DE1947673C (en) Multi-hole nozzle for internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20020121

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050706

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50106669

Country of ref document: DE

Date of ref document: 20050811

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050706

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060407

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190122

Year of fee payment: 19

Ref country code: DE

Payment date: 20190326

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50106669

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801