EP1161237A1 - Inhibiteurs de protease - Google Patents
Inhibiteurs de proteaseInfo
- Publication number
- EP1161237A1 EP1161237A1 EP00917997A EP00917997A EP1161237A1 EP 1161237 A1 EP1161237 A1 EP 1161237A1 EP 00917997 A EP00917997 A EP 00917997A EP 00917997 A EP00917997 A EP 00917997A EP 1161237 A1 EP1161237 A1 EP 1161237A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- disease
- protease
- het
- group
- dioxepin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D321/00—Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups C07D317/00 - C07D319/00
- C07D321/02—Seven-membered rings
- C07D321/04—Seven-membered rings not condensed with other rings
- C07D321/06—1,3-Dioxepines; Hydrogenated 1,3-dioxepines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- This invention relates in general to 7-membered ring 1 ,3-dioxepin-5-one protease inhibitors, particularly such inhibitors of cysteine and serine proteases, more particularly compounds which inhibit cysteine proteases, even more particularly compounds which inhibit cysteine proteases of the papain superfamily, yet more particularly compounds which inhibit cysteine proteases of the cathepsin family, most particularly compounds which inhibit cathepsin K.
- Such compounds are particularly useful for treating diseases in which cysteine proteases are implicated, especially diseases of excessive bone or cartilage loss, e.g., osteoporosis, periodontitis, and arthritis.
- Cathepsins are a family of enzymes which are part of the papain superfamily of cysteine proteases. Cathepsins B, H, L, N and S have been described in the literature. Recently, cathepsin K polypeptide and the cDNA encoding such polypeptide were disclosed in U.S. Patent No. 5,501,969 (called cathepsin O therein). Cathepsin K has been recently expressed, purified, and characterized. Bossard, M. J., et al., (1996) J. Biol. Chem. Ill, 12517-12524; Drake, F.H., et al., (1996) J. Biol. Chem. 271, 12511-12516; Bromme, D., et al., (1996) J. Biol. Chem. 271, 2126-2132.
- Cathepsin K has been variously denoted as cathepsin O or cathepsin 02 in the literature.
- the designation cathepsin K is considered to be the more appropriate one.
- Cathepsins function in the normal physiological process of protein degradation in animals, including humans, e.g., in the degradation of connective tissue. However, elevated levels of these enzymes in the body can result in pathological conditions leading to disease. Thus, cathepsins have been implicated as causative agents in various disease states, including but not limited to, infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and the like.
- Bone is composed of a protein matrix in which spindle- or plate-shaped crystals of hydroxyapatite are incorporated.
- Type I collagen represents the major structural protein of bone comprising approximately 90% of the protein matrix. The remaining 10% of matrix is composed of a number of non-collagenous proteins, including osteocalcin, proteoglycans, osteopontin, osteonectin, thrombospondin, fibronectin, and bone sialoprotein.
- Skeletal bone undergoes remodelling at discrete foci throughout life. These foci, or remodelling units, undergo a cycle consisting of a bone resorption phase followed by a phase of bone replacement.
- Bone resorption is carried out by osteoclasts, which are multinuclear cells of hematopoietic lineage.
- the osteoclasts adhere to the bone surface and form a tight sealing zone, followed by extensive membrane ruffling on their apical (i.e., resorbing) surface.
- the low pH of the compartment dissolves hydroxyapatite crystals at the bone surface, while the proteolytic enzymes digest the protein matrix. In this way, a resorption lacuna, or pit, is formed.
- osteoblasts lay down a new protein matrix that is subsequently mineralized.
- disease states such as osteoporosis and Paget's disease
- the normal balance between bone resorption and formation is disrupted, and there is a net loss of bone at each cycle.
- this leads to weakening of the bone and may result in increased fracture risk with minimal trauma.
- inhibitors of cysteine proteases are effective at inhibiting osteoclast-mediated bone resorption, and indicate an essential role for a cysteine proteases in bone resorption. For example, Delaisse, et al., Biochem.
- cystatin an endogenous cysteine protease inhibitor
- cystatin an endogenous cysteine protease inhibitor
- Other studies such as by Delaisse, et al., Bone, 1987, 8, 305, Hill, et al., J. Cell. Biochem., 1994, 56, 118, and Everts, et al., J. Cell. Physioi, 1992, 750, 221, also report a correlation between inhibition of cysteine protease activity and bone resorption. Tezuka, et al., J. Biol. Chem., 1994, 269, 1106, Inaoka, et al, Biochem. Biophys. Res.
- cathepsin K may provide an effective treatment for diseases of excessive bone loss, including, but not limited to, osteoporosis, gingival diseases such as gingivitis and periodontitis, Paget's disease, hypercalcemia of malignancy, and metabolic bone disease.
- Cathepsin K levels have also been demonstrated to be elevated in chondroclasts of osteoarthritic synovium.
- selective inhibition of cathepsin K may also be useful for treating diseases of excessive cartilage or matrix degradation, including, but not limited to, osteoarthritis and rheumatoid arthritis.
- Metastatic neoplastic cells also typically express high levels of proteolytic enzymes that degrade the surrounding matrix.
- selective inhibition of cathepsin K may also be useful for treating certain neoplastic diseases.
- cysteine protease inhibitors are known. Palmer, (1995) J. Med. Chem., 38, 3193, disclose certain vinyl sulfones which irreversibly inhibit cysteine proteases, such as the cathepsins B, L, S, 02 and cruzain. Other classes of compounds, such as aldehydes, nitriles, -ketocarbonyl compounds, halomethyl ketones, diazomethyl ketones, (acyloxy)methyl ketones, ketomethylsulfonium salts and epoxy succinyl compounds have also been reported to inhibit cysteine proteases. See Palmer, id, and references cited therein.
- U.S. Patent No. 4,518,528 discloses peptidyl fluoromethyl ketones as irreversible inhibitors of cysteine protease.
- Published International Patent Application No. WO 94/04172, and European Patent Application Nos. EP 0 525 420 Al, EP 0 603 873 Al, and EP 0 611 756 A2 describe alkoxymethyl and mercapto ethyl ketones which inhibit the cysteine proteases cathepsins B, H and L.
- Azapeptides which are designed to deliver the azaamino acid to the active site of serine proteases, and which possess a good leaving group, are disclosed by Elmore et al., Biochem. J., 1968, 707, 103, Garker et al., Biochem. J., 1974, 139, 555, Gray et al.,
- cysteine protease inhibitors are not considered suitable for use as therapeutic agents in animals, especially humans, because they suffer from various shortcomings. These shortcomings include lack of selectivity, cytotoxicity, poor solubility, and overly rapid plasma clearance. A need therefore exists for methods of treating diseases caused by pathological levels of cysteine proteases, including cathepsins, especially cathepsin K, and for novel inhibitor compounds useful in such methods.
- An object of the present invention is to provide 7-membered ring l,3-dioxepin-5- one protease inhibitors, particularly such inhibitors of cysteine and serine proteases, more particularly such compounds which inhibit cysteine proteases, even more particularly such compounds which inhibit cysteine proteases of the papain superfamily, yet more particularly such compounds which inhibit cysteine proteases of the cathepsin family, most particularly such compounds which inhibit cathepsin K, and which are useful for treating diseases which may be therapeutically modified by altering the activity of such proteases. Accordingly, in the first aspect, this invention provides a compound according to Formula I.
- this invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound according to Formula I and a pharmaceutically acceptable carrier, diluent or excipient.
- this invention provides intermediates useful in the preparation of the compounds of Formula I.
- this invention provides a method of treating diseases in which the disease pathology may be therapeutically modified by inhibiting proteases, particularly cysteine and serine proteases, more particularly cysteine proteases, even more particularly cysteine proteases of the papain superfamily, yet more particularly cysteine proteases of the cathepsin family, most particularly cathepsin K.
- proteases particularly cysteine and serine proteases, more particularly cysteine proteases, even more particularly cysteine proteases of the papain superfamily, yet more particularly cysteine proteases of the cathepsin family, most particularly cathepsin K.
- the compounds of this invention are especially useful for treating diseases characterized by bone loss, such as osteoporosis and gingival diseases, such as gingivitis and periodontitis, or by excessive cartilage or matrix degradation, such as osteoarthritis and rheumatoid arthritis.
- the present invention provides compounds of Formula I:
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 1 !, R 16 , and R 17 , and R' are independently selected from the group consisting of: H, Cj.galkyl, C2-6alkenyl, C2-6alkynyl, A ⁇ -CQ- galkyl, and Het-Co_6alkyl; R 9 is selected from the group consisting of: C 3 .
- R l O is selected from the group consisting of: H, C ⁇ galkenyl, C 2 _6alkynyl,
- R 12 is selected from the group consisting of: R 15 , R 15 C(0), R 15 C(S), R 15 OC(0), and R 15 OC(0)NR J ⁇ (R ⁇ KCO);
- R and R 4 are independently selected from the group consisting of: H, Cj.galkyl, C 2 _ galkenyl, Ar-C 0 _6alkyl, or Het-Co-6 a lkyl, and R 16 R 17 NC2-6alkyl;
- R ⁇ 5 is selected from the group consisting of: C j .galkyl, C j .galkenyl, Ar-Co-6al yl, or Het-C 0 . 6 alkyl;
- Ar is selected from the group consisting of: phenyl and naphthyl, optionally substituted by one or more of Ph-CQ- ⁇ alkyl, Het-Co-6 alkyl, Cj.galkyl, C galkoxy, Ph-C.3-- 6 alkoxy, Het-C 0 -- 6 alkoxy, OH, NR 1 R 14 , Het-S-C 0 _6alkyl, (CH ⁇ - ⁇ OH, (CH 2 ) ⁇ - 6 NR 13 Rl 4 , 0(CH 2 )!. 6 NR 13 R 14 , (CH 2 ) 0 . 6 CO 2 R', 0(CH 2 )I .6C0 2 R', (CH 2 )!.
- Ph may be optionally substituted with one or more of C galkyl, C j ⁇ alkoxy, OH, (CH 2 )!_ 6 NR 13 R 14 , O ⁇ H ⁇ j ⁇ NR ⁇ R 14 , C0 2 R', CF3, or halogen; two Ci.galkyl or Cj.galkoxy groups may be combined to form a 5-7 membered ring, saturated or unsaturated, fused onto the Ar ring;
- Het can be optionally substituted (including on the nitrogens) by one or more of Ph-Cg. 6 alkyl, C _6 lkyl, C ⁇ _ 6 alkoxy , Ph-C 0 -6alkoxy , OH, NR 3 R 4 , (CH 2 ) 1. 6 OH, 0(CH 2 ) ⁇ .
- the present invention includes all hydrates, solvates, complexes and prodrugs of the compounds of this invention.
- Prodrugs are any covalently bonded compounds which release the active parent drug according to Formula I in vivo. If a chiral center or another form of an isomeric center is present in a compound of the present invention, all forms of such isomer or isomers, including enantiomers and diastereomers, are intended to be covered herein.
- Inventive compounds containing a chiral center may be used as a racemic mixture, an enantiomerically enriched mixture, or the racemic mixture may be separated using well-known techniques and an individual enantiomer may be used alone.
- proteases refers to enzymes that catalyze the cleavage of amide bonds of peptides and proteins by nucleophilic substitution at the amide bond, ultimately resulting in hydrolysis.
- proteases include: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases.
- the compounds of the present invention are capable of binding more strongly to the enzyme than the substrate and in general are not subject to cleavage after enzyme catalyzed attack by the nucleophile. They therefore competitively prevent proteases from recognizing and hydrolyzing natural substrates and thereby act as inhibitors.
- amino acid refers to the D- or L- isomers of alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine.
- C ⁇ _6alkyl as applied herein is meant to include substituted and unsubstituted methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and t-butyl, pentyl, n-pentyl, isopentyl, neopentyl and hexyl and the simple aliphatic isomers thereof.
- C 0 alkyl means that no alkyl group is present in the moiety.
- Ar-Cgalkyl is equivalent to Ar.
- C3_6cycloalkyl as applied herein is meant to include substituted and unsubstituted cyclopropane, cyclobutane, cyclopentane and cyclohexane.
- C 2 -6 alkenyl as applied herein means an alkyl group of 2 to 6 carbons wherein a carbon-carbon single bond is replaced by a carbon-carbon double bond.
- C 2 -6alkenyl includes ethylene, 1-propene, 2-propene, 1-butene, 2-butene, isobutene and the several isomeric pentenes and hexenes. Both cis and trans isomers are included.
- C 2 _6alkynyl means an alkyl group of 2 to 6 carbons wherein one carbon-carbon single bond is replaced by a carbon-carbon triple bond.
- C 2 -6 alkynyl includes acetylene, 1- propyne, 2-propyne, 1-butyne, 2-butyne, 3-butyne and the simple isomers of pentyne and hexyne.
- Halogen means F, Cl, Br, and I.
- Ar or “aryl” means phenyl or naphthyl, optionally substituted by one or more of Ph-C()-6 a lkyl, Het-C ⁇ -6 alkyl, Cj.galkyl, C ⁇ galkoxy, Ph-C ⁇ - ⁇ alkoxy, Het-Co-6 lkoxy, OH, NR 13 R 14 , Het-S-Co_ 6 alkyl, (CH ⁇ j ⁇ OH, (CH ⁇ .gNR ⁇ R 14 0(CH 2 ) ⁇ 6 NR 13 R 14 , (CH 2 )o_6C0 2 R', 0(CH 2 ) 1 . 6 C0 2 R', (CH ) 1 .
- Ph may be optionally substituted with one or more of Cj.galkyl, C j .galkoxy, OH, (CH ) ] _ 6 NR 13 R 14 0(CH 2 ) ⁇ ---6NR 13 R 14 , C0 2 R', CF 3 , or halogen; two Cj.galkyl or C ⁇ alkoxy groups may be combined to form a 5-7 membered ring, saturated or unsaturated, fused onto the Ar ring.
- Het represents a stable 5- to 7-membered monocyclic, a stable 7- to 10-membered bicyclic, or a stable 1 1- to 18-membered tricyclic heterocyclic ring which is either saturated or unsaturated, and which consists of carbon atoms and from one to three heteroatoms selected from the group consisting of N, O and S, and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring.
- the heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure, and may optionally be substituted with one or more moieties selected from Ph-C 0 _6 lkyl, Ci- ⁇ alkyl, C ⁇ galkoxy, Ph-C 0 _6 a lkoxy, OH, NR 13 R 14 , 0(CH 2 ) ⁇ 6 NRl 3 Rl 4 , (CH 2 ) 0 _6CO 2 R', 0(CH 2 ) ⁇ 6C0 2 R', (CH 2 ) ⁇ --gS0 2 , CF3, OCF3 or halogen; Ph may be optionally substituted with one or more of C ⁇ alkyl, Cj- ⁇ alkoxy, OH, (CH ⁇ j.gNR ⁇ R 14 , ⁇ (CH ⁇ j.gNR ⁇ R 14 , C0 2 R ⁇ CF3, or halogen; two C j .galkyl or Ci.galkoxy groups may be
- heterocycles include, but are not limited to piperidinyl, piperazinyl, 2-oxopiperazinyl, 2- oxopiperidinyl, 2-oxopyrrolodinyl, 2-oxoazepinyl, azepinyl, pyrrolyl, 4-piperidonyl, pyrrolidinyl, pyrazolyl, pyrazolidinyl, imidazolyl, pyridinyl, pyrazinyl, oxazolidinyl, oxazolinyl, oxazolyl, isoxazolyl, morpholinyl, thiazolidinyl, thiazolinyl, thiazolyl, quinuclidinyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl, benzoxazolyl, furyl, pyranyl, tetrahydrofuryl,
- heteroatom refers to oxygen, nitrogen and sulfur.
- CQ denotes the absence of the substituent group immediately following; for instance, in the moiety ArCo--6 a "kyl, when C is 0, the substituent is Ar, e.g., phenyl. Conversely, when the moiety ArCo_6 a lkyl is identified as a specific aromatic group, e.g., phenyl, it is understood that C is 0. Certain radical groups are abbreviated herein.
- t-Bu refers to the tertiary butyl radical
- Boc refers to the t-butyloxycarbonyl radical
- Fmoc refers to the fluorenylmethoxycarbonyl radical
- Ph refers to the phenyl radical
- Cbz refers to the benzyloxycarbonyl radical.
- m-CPBA refers to meta-chloroperbenzoic acid
- EDC refers to N-ethyl-N'(dimethylaminopropyl)-carbodiimide
- 1-HOBT refers to 1- hydroxybenzotriazole
- DMF refers to dimethyl formamide
- DMSO refers to dimethyl sulfoxide
- TEA triethylamine
- TFA trifluoroacetic acid
- THF tetrahydrofuran.
- 3-Scheme 1 can be converted to 4-Scheme 1 by treatment with a catalytic amount of platinum (II) oxide in methanol under an atomsphere of hydrogen.
- Treatment of 5-Scheme 1 with trifluoroacetic acid in dichloromethane provided 6-Scheme 1, which was treated with a carboxylic acid (such as benzofuran-2-carboxylic acid, 5,6- dimethoxybenzofuran-2-carboxylic acid or benzothiophene-2-carboxylic acid) and a peptide coupling reagent (such as EDC-HCl/1-HOBT) in an aprotic solvent (such as DMF) to give 7-Scheme 1.
- Treatment of 7-Scheme 1 with Dess-Martin periodinane in methylene chloride provided 8-Scheme 1.
- Coupling methods to form amide bonds herein are generally well known to the art.
- the methods of peptide synthesis generally set forth by Bodansky et al., THE PRACTICE OF PEPTIDE SYNTHESIS, Springer- Veriag, Berlin, 1984; E. Gross and J. Meienhofer, THE PEPTIDES, Vol. 1, 1-284 (1979); and J.M. Stewart and J.D. Young, SOLID PHASE PEPTIDE SYNTHESIS, 2d Ed., Pierce Chemical Co., Rockford, 111., 1984. are generally illustrative of the technique and are incorporated herein by reference.
- Synthetic methods to prepare the compounds of this invention frequently employ protective groups to mask a reactive functionality or minimize unwanted side reactions.
- amino protecting groups generally refers to the Boc, acetyl, benzoyl, Fmoc and Cbz groups and derivatives thereof as known to the art. Methods for protection and deprotection, and replacement of an amino protecting group with another moiety are well known.
- Acid addition salts of the compounds of Formula I are prepared in a standard manner in a suitable solvent from the parent compound and an excess of an acid, such as hydrochloric, hydrobromic, hydrofluoric, sulfuric, phosphoric, acetic, trifluoroacetic, maleic, succinic or methanesulfonic. Certain of the compounds form inner salts or zwitterions which may be acceptable.
- Cationic salts are prepared by treating the parent compound with an excess of an alkaline reagent, such as a hydroxide, carbonate or alkoxide, containing the appropriate cation; or with an appropriate organic amine.
- Cations such as Li + , Na + , K + , Ca ++ , Mg ++ and NH- + are specific examples of cations present in pharmaceutically acceptable salts.
- Halides, sulfate, phosphate, alkanoates (such as acetate and trifluoroacetate), benzoates, and sulfonates (such as mesylate) are examples of anions present in pharmaceutically acceptable salts.
- compositions of the compounds of Formula I may be used in the manufacture of a medicament.
- Pharmaceutical compositions of the compounds of Formula I prepared as hereinbefore described may be formulated as solutions or lyophilized powders for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use.
- the liquid formulation may be a buffered, isotonic, aqueous solution. Examples of suitable diluents are normal isotonic saline solution, standard 5% dextrose in water or buffered sodium or ammonium acetate solution.
- Such formulation is especially suitable for parenteral administration, but may also be used for oral administration or contained in a metered dose inhaler or nebulizer for insufflation. It may be desirable to add excipients such as polyvinylpyrrolidone, gelatin, hydroxy cellulose, acacia, polyethylene glycol, mannitol, sodium chloride or sodium citrate.
- excipients such as polyvinylpyrrolidone, gelatin, hydroxy cellulose, acacia, polyethylene glycol, mannitol, sodium chloride or sodium citrate.
- these compounds may be encapsulated, tableted or prepared in an emulsion or syrup for oral administration.
- Pharmaceutically acceptable solid or liquid carriers may be added to enhance or stabilize the composition, or to facilitate preparation of the composition.
- Solid carriers include starch, lactose, calcium sulfate dihydrate, terra alba, magnesium stearate or stearic acid, talc, pectin, acacia, agar or gelatin.
- Liquid carriers include syrup, peanut oil, olive oil, saline and water.
- the carrier may also include a sustained release material such as glyceryl monostearate or glyceryl distearate, alone or with a wax.
- the amount of solid carrier varies but, preferably, will be between about 20 mg to about 1 g per dosage unit.
- the pharmaceutical preparations are made following the conventional techniques of pharmacy involving milling, mixing, granulating, and compressing, when necessary, for tablet forms; or milling, mixing and filling for hard gelatin capsule forms.
- a liquid carrier When a liquid carrier is used, the preparation will be in the form of a syrup, elixir, emulsion or an aqueous or non-aqueous suspension.
- Such a liquid formulation may be administered directly p.o. or filled into a soft gelatin capsule.
- the compounds of this invention may also be combined with excipients such as cocoa butter, glycerin, gelatin or polyethylene glycols and molded into a suppository.
- excipients such as cocoa butter, glycerin, gelatin or polyethylene glycols
- the compounds of Formula I are useful as protease inhibitors, particularly as inhibitors of cysteine and serine proteases, more particularly as inhibitors of cysteine proteases, even more particularly as inhibitors of cysteine proteases of the papain superfamily, yet more particularly as inhibitors of cysteine proteases of the cathepsin family, most particularly as inhibitors of cathepsin K.
- the present invention also provides useful compositions and formulations of said compounds, including pharmaceutical compositions and formulations of said compounds.
- the present compounds are useful for treating diseases in which proteases, especially cysteine proteases, are implicated, including infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy; and especially diseases in which cathepsin K is implicated, most particularly diseases of excessive bone or cartilage loss, including osteoporosis, gingival disease including gingivitis and periodontitis, arthritis, more specifically, osteoarthritis and rheumatoid arthritis, Paget's disease; hypercalcemia of malignancy, and metabolic bone disease.
- proteases especially cysteine proteases
- Metastatic neoplastic cells also typically express high levels of proteolytic enzymes that degrade the surrounding matrix, and certain tumors and metastatic neoplasias may be effectively treated with the compounds of this invention.
- the present invention also provides methods of treatment of diseases caused by pathological levels of proteases, particularly cysteine and serine proteases, more particularly cysteine proteases, even more particularly as inhibitors of cysteine proteases of the papain superfamily, yet more particularly cysteine proteases of the cathepsin family, which methods comprise administering to an animal, particularly a mammal, most particularly a human in need thereof a compound of the present invention.
- the present invention especially provides methods of treatment of diseases caused by pathological levels of cathepsin K, which methods comprise administering to an animal, particularly a mammal, most particularly a human in need thereof an inhibitor of cathepsin K, including a compound of the present invention.
- the present invention particularly provides methods for treating diseases in which proteases, especially cysteine proteases, are implicated, including infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and especially diseases in which cathepsin K is implicated, most particularly diseases of excessive bone or cartilage loss, including osteoporosis, gingival disease including gingivitis and periodontitis, arthritis, more specifically, osteoarthritis and rheumatoid arthritis, Paget's disease, hypercalcemia of malignancy, and metabolic bone disease.
- diseases in which proteases, especially cysteine proteases are implicated, including infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei
- This invention further provides a method for treating osteoporosis or inhibiting bone loss which comprises internal administration to a patient of an effective amount of a compound of Formula I, alone or in combination with other inhibitors of bone resorption, such as bisphosphonates (i.e., allendronate), hormone replacement therapy, anti-estrogens, or calcitonin.
- a compound of Formula I alone or in combination with other inhibitors of bone resorption, such as bisphosphonates (i.e., allendronate), hormone replacement therapy, anti-estrogens, or calcitonin.
- treatment with a compound of this invention and an anabolic agent, such as bone morphogenic protein, iproflavone may be used to prevent bone loss or to increase bone mass.
- parenteral administration of a compound of Formula I is preferred.
- the parenteral dose will be about 0.01 to about 100 mg/kg; preferably between 0.1 and 20 mg/kg, in a manner to maintain the concentration of drug in the plasma at a concentration effective to inhibit cathepsin K.
- the compounds are administered one to four times daily at a level to achieve a total daily dose of about 0.4 to about 400 mg/kg/day.
- the precise amount of an inventive compound which is therapeutically effective, and the route by which such compound is best administered, is readily determined by one of ordinary skill in the art by comparing the blood level of the agent to the concentration required to have a therapeutic effect.
- the compounds of this invention may also be administered orally to the patient, in a manner such that the concentration of drug is sufficient to inhibit bone resorption or to achieve any other therapeutic indication as disclosed herein.
- a pharmaceutical composition containing the compound is administered at an oral dose of between about 0.1 to about 50 mg/kg in a manner consistent with the condition of the patient.
- the oral dose would be about 0.5 to about 20 mg/kg. No unacceptable toxicological effects are expected when compounds of the present invention are administered in accordance with the present invention.
- the compounds of this invention may be tested in one of several biological assays to determine the concentration of compound which is required to have a given pharmacological effect.
- [ AMC] v ss t + (vo - v ss ) [1 - exp (-kobs*)l / k obs ( )
- Sufficient magnetic beads (5 / mononuclear cell), coated with goat anti-mouse IgG, were removed from their stock bottle and placed into 5 mL of fresh medium (this washes away the toxic azide preservative). The medium was removed by immobilizing the beads on a magnet and is replaced with fresh medium.
- the beads were mixed with the cells and the suspension was incubated for 30 min on ice. The suspension was mixed frequently. The bead-coated cells were immobilized on a magnet and the remaining cells (osteoclast-rich fraction) were decanted into a sterile 50 mL centrifuge tube. Fresh medium was added to the bead-coated cells to dislodge any trapped osteoclasts. This wash process was repeated xlO. The bead-coated cells were discarded. The osteoclasts were enumerated in a counting chamber, using a large-bore disposable plastic pasteur pipette to charge the chamber with the sample.
- the cells were pelleted by centrifugation and the density of osteoclasts adjusted to 1.5xl0 4 /mL in EMEM medium, supplemented with 10% fetal calf serum and 1 Jg/litre of sodium bicarbonate. 3 mL aliquots of the cell suspension ( per treatment) were decanted into 15 mL centrifuge tubes. These cells were pelleted by centrifugation. To each tube 3 mL of the appropriate treatment was added (diluted to 50 uM in the EMEM medium). Also included were appropriate vehicle controls, a positive control (87MEM1 diluted to 100 ug/mL) and an isotype control (IgG2a diluted to 100 ug/mL).
- the tubes were incubate at 37°C for 30 min. 0.5 mL aliquots of the cells were seeded onto sterile dentine slices in a 48- well plate and incubated at 37°C for 2 h. Each treatment was screened in quadruplicate. The slices were washed in six changes of warm PBS (10 mL / well in a 6- well plate) and then placed into fresh treatment or control and incubated at 37°C for 48 h. The slices were then washed in phosphate buffered saline and fixed in 2% glutaraldehyde (in 0.2M sodium cacodylate) for 5 min., following which they were washed in water and incubated in buffer for 5 min at 37°C. The slices were then washed in cold water and incubated in cold acetate buffer / fast red garnet for 5 min at 4°C. Excess buffer was aspirated, and the slices were air dried following a wash in water.
- the TRAP positive osteoclasts were enumerated by bright-field microscopy and were then removed from the surface of the dentine by sonication. Pit volumes were determined using the Nikon/Lasertec ILM21W confocal microscope.
- Nuclear magnetic resonance spectra were recorded at either 250 or 400 MHz using, respectively, a Bruker AM 250 or Bruker AC 400 spectrometer.
- CDCI3 is deuteriochloroform
- DMSO-d ⁇ is hexadeuteriodimethylsulfoxide
- CD3OD is tetradeuteriomethanol. Chemical shifts are reported in parts per million (d) downfield from the internal standard tetramethylsilane.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Physical Education & Sports Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pain & Pain Management (AREA)
- Immunology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12465999P | 1999-03-16 | 1999-03-16 | |
US124659P | 1999-03-16 | ||
PCT/US2000/006888 WO2000054769A1 (fr) | 1999-03-16 | 2000-03-16 | Inhibiteurs de protease |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1161237A1 true EP1161237A1 (fr) | 2001-12-12 |
EP1161237A4 EP1161237A4 (fr) | 2002-03-27 |
Family
ID=22416114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00917997A Withdrawn EP1161237A4 (fr) | 1999-03-16 | 2000-03-16 | Inhibiteurs de protease |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP1161237A4 (fr) |
JP (1) | JP2002539160A (fr) |
AR (1) | AR022927A1 (fr) |
AU (1) | AU3888200A (fr) |
CO (1) | CO5180542A1 (fr) |
HK (1) | HK1043534A1 (fr) |
PE (1) | PE20001564A1 (fr) |
UY (1) | UY26026A1 (fr) |
WO (1) | WO2000054769A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030144175A1 (en) | 1998-12-23 | 2003-07-31 | Smithkline Beecham Corporation | Protease inhibitors |
JP2003513924A (ja) | 1999-11-10 | 2003-04-15 | スミスクライン・ビーチャム・コーポレイション | プロテア−ゼ阻害剤 |
US6596715B1 (en) | 1999-11-10 | 2003-07-22 | Smithkline Beecham Corporation | Protease inhibitors |
JP2003513972A (ja) | 1999-11-10 | 2003-04-15 | スミスクライン・ビーチャム・コーポレイション | プロテアーゼ阻害剤 |
HUP0300068A2 (en) | 2000-03-21 | 2003-05-28 | Smithkline Beecham Corp | Protease inhibitors, their preparation, their use and pharmaceutical compositions containing them |
EP1465862A1 (fr) | 2002-01-17 | 2004-10-13 | SmithKline Beecham Corporation | Derives de cetoamides a substitution cycloalkyle, utiles comme inhibiteurs de cathepsine k |
JP2004196696A (ja) * | 2002-12-18 | 2004-07-15 | Kyowa Hakko Kogyo Co Ltd | 関節炎の予防剤または治療剤 |
AU2012262748B2 (en) * | 2011-05-27 | 2017-03-02 | Lexicon Pharmaceuticals, Inc. | 4H-thieno[3,2-c]chromene-based inhibitors of Notum Pectinacetylesterase and methods of their use |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994004172A1 (fr) * | 1992-08-20 | 1994-03-03 | Prototek, Inc. | Inhibiteurs cetoniques actives par peptidyle et contenant des sequences peptidiques naturelles et non naturelles |
EP0603769A1 (fr) * | 1992-12-25 | 1994-06-29 | Mitsubishi Chemical Corporation | Dérivés d'alpha-aminocétones |
-
2000
- 2000-02-23 UY UY26026A patent/UY26026A1/es unknown
- 2000-03-14 AR ARP000101121A patent/AR022927A1/es unknown
- 2000-03-16 AU AU38882/00A patent/AU3888200A/en not_active Abandoned
- 2000-03-16 PE PE2000000226A patent/PE20001564A1/es not_active Application Discontinuation
- 2000-03-16 EP EP00917997A patent/EP1161237A4/fr not_active Withdrawn
- 2000-03-16 JP JP2000604845A patent/JP2002539160A/ja not_active Withdrawn
- 2000-03-16 CO CO00019250A patent/CO5180542A1/es not_active Application Discontinuation
- 2000-03-16 WO PCT/US2000/006888 patent/WO2000054769A1/fr not_active Application Discontinuation
-
2002
- 2002-05-13 HK HK02103606.8A patent/HK1043534A1/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994004172A1 (fr) * | 1992-08-20 | 1994-03-03 | Prototek, Inc. | Inhibiteurs cetoniques actives par peptidyle et contenant des sequences peptidiques naturelles et non naturelles |
EP0603769A1 (fr) * | 1992-12-25 | 1994-06-29 | Mitsubishi Chemical Corporation | Dérivés d'alpha-aminocétones |
Non-Patent Citations (1)
Title |
---|
See also references of WO0054769A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2000054769A1 (fr) | 2000-09-21 |
AR022927A1 (es) | 2002-09-04 |
PE20001564A1 (es) | 2001-02-08 |
AU3888200A (en) | 2000-10-04 |
CO5180542A1 (es) | 2002-07-30 |
HK1043534A1 (zh) | 2002-09-20 |
EP1161237A4 (fr) | 2002-03-27 |
UY26026A1 (es) | 2000-10-31 |
JP2002539160A (ja) | 2002-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7563784B2 (en) | Protease inhibitors | |
AU2001243441A1 (en) | Protease inhibitors | |
WO1998008802A1 (fr) | Inhibiteurs de cysteine protease | |
WO2000054769A1 (fr) | Inhibiteurs de protease | |
WO1999059570A1 (fr) | Inhibiteurs de la protease | |
WO2000049011A1 (fr) | Inhibiteurs de protease | |
EP1140897A1 (fr) | Inhibiteurs de proteases | |
WO2000058296A1 (fr) | Inhibiteurs de protease | |
US20040157828A1 (en) | Protease inhibitors | |
US20050256100A1 (en) | Protease inhibitors | |
EP1384713B1 (fr) | Derives de 4-amino-azepan-3-one comme inhibiteurs de protease | |
CZ20031403A3 (cs) | Inhibitor proteasy | |
US20020165222A1 (en) | Protease inhibitors | |
US7109233B2 (en) | Protease inhibitors | |
US20050203084A1 (en) | Protease inhibitors | |
US20050256105A1 (en) | Protease inhibitors | |
US20040192674A1 (en) | Cathepsin L inhibitors | |
WO2003103574A2 (fr) | Inhibiteurs de protease | |
US20040038965A1 (en) | Protease inhibitors | |
ZA200207872B (en) | Protease inhibitors. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010914 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20020212 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7A 61K 31/357 A, 7C 07D 321/06 B, 7C 07D 407/12 B, 7C 07D 409/12 B, 7C 07D 495/14 B |
|
17Q | First examination report despatched |
Effective date: 20020523 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20021003 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1043534 Country of ref document: HK |