EP1158247A2 - Apparatus to reduce acoustic vibrations in a combustion chamber - Google Patents

Apparatus to reduce acoustic vibrations in a combustion chamber Download PDF

Info

Publication number
EP1158247A2
EP1158247A2 EP01110618A EP01110618A EP1158247A2 EP 1158247 A2 EP1158247 A2 EP 1158247A2 EP 01110618 A EP01110618 A EP 01110618A EP 01110618 A EP01110618 A EP 01110618A EP 1158247 A2 EP1158247 A2 EP 1158247A2
Authority
EP
European Patent Office
Prior art keywords
hollow body
volume
helmholtz resonator
combustion chamber
feed line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01110618A
Other languages
German (de)
French (fr)
Other versions
EP1158247B1 (en
EP1158247A3 (en
Inventor
Christian Oliver Dr. Paschereit
Wolfgang Weisenstein
Peter Dr. Flohr
Wolfgang Dr. Prof. Polifke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Schweiz AG
Alstom Power NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG, Alstom Power NV filed Critical Alstom Schweiz AG
Publication of EP1158247A2 publication Critical patent/EP1158247A2/en
Publication of EP1158247A3 publication Critical patent/EP1158247A3/en
Application granted granted Critical
Publication of EP1158247B1 publication Critical patent/EP1158247B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/023Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/12Chambers having variable volumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to a device for damping acoustic vibrations in one Combustion chamber and a combustion chamber arrangement, in particular a gas or steam turbine holding the device includes.
  • the main field of application of the present invention lies in the field of industrial gas turbines.
  • the increasing awareness of environmental protection and Environmental compatibility requires compliance if possible lower pollutant emissions.
  • thermoacoustic vibrations affect not only the combustion quality negative, but can also affect the life of highly stressed components reduce drastically.
  • a Helmholtz resonator behaves acoustically like an infinitely large opening, ie it prevents the formation of a standing wave at this frequency.
  • thermoacoustic Vibrations with the help of a Helmholtz resonator also for damping the vibrations in combustion chambers of Gas or steam turbines already in use.
  • the problem occurs in gas or steam turbines on that the frequency to be attenuated is not through an intermittent combustion is determined, but by meeting the Rayleigh criterion in the Combustion chamber and the acoustic response of the surrounding Systems from inflow, burner, combustion chamber and acoustic Completion condition.
  • the frequency to be damped can therefore be these systems with those currently available computational tools not with the required Determine accuracy in advance.
  • this is the Prerequisite for the exact dimensioning of the resonance volume take into account when building the gas turbine can.
  • the acoustic behavior of the system and thus the frequencies of the attenuated Vibrations when the operating point changes change decisively, so that under certain circumstances additional Resonators tuned to other frequencies are used.
  • Such an arrangement with several Helmholtz resonators is for example from DE 33 24 805 A1 known.
  • the publication describes a facility to avoid pressure fluctuations in combustion chambers, where several Helmholtz resonators with different Resonance volume along the gas pipeline path to Burners are arranged. Because of the different Resonance volumes can be vibrated with this system attenuate different frequencies.
  • the optimal one Dimensioning of the individual Helmholtz resonators again requires that Knowledge of those that occur during the operation of the system Frequencies that are not yet in the construction of the system can be specified exactly.
  • the arrangement several Helmholtz resonators because of that required additional space requirements unfavorable.
  • DE 196 40 980 A1 describes another known one Device for damping thermoacoustic Vibrations in a combustion chamber.
  • this device is the side wall of the resonance volume of the Helmholtz resonator designed as a mechanical spring. On the wall vibrating due to the spring effect the end face of the resonance volume is an additional one mechanical mass attached. With this arrangement the virtual volume of the Helmholtz resonator is influenced and achieved greater damper performance. By changing the mechanical mass on the resonator can subsequently fine-tune the resonance frequency be performed. However, this also requires a subsequent intervention in the structure of the Gas turbine plant.
  • the present invention is based on the object a device for damping thermoacoustic Vibrations as well as a combustion chamber arrangement specify this device which is a continuous Adaptation to the frequencies of the vibrations to be damped even under high pressure conditions, like them for example in gas turbines.
  • the device consists of a Helmholtz resonator together with a connecting channel that with the combustion chamber, for example the combustion chamber one Gas turbine, is connected.
  • Dampers are in the present Device by feeding or draining a Fluids changeable in volume via a feed line Hollow body provided either inside the Helmholtz resonator is arranged or so on this borders that the resonance volume of the Helmholtz resonator with a change in the volume of the hollow body changed.
  • Hollow body in the Helmholtz resonator is thus reduced in size the resonance volume when the hollow body over the Lead inflated, for example, with a gas becomes.
  • the resonance volume increases of the Helmholtz resonator when out of the hollow body a certain amount of the gas is released.
  • the Changing the resonance volume causes in known Way a change in resonance frequency.
  • the resonance frequency of the Helmholtz resonators at any time by simply inflating them or draining the hollow body to the in the chamber volume occurring thermoacoustic oscillation frequencies be adjusted.
  • a precise knowledge of the operation frequencies occurring when building the corresponding System is therefore no longer required.
  • the Vibrations can be customized across a wide range adjustable frequencies can be damped. In practical terms Use can be done by changing the Resonance volume at all times during operation the system is possible, the resonance frequency of the built-in resonators suitable for the respective operating point to adjust.
  • a particular advantage results from the fact that the resonance volume of the Helmholtz resonator, which in usually within the pressure casing of the gas turbine is arranged, can be changed without this moving parts through the wall of the pressure vessel must be passed through.
  • the supply line to Hollow body can be designed as a rigid tube and therefore easily with high tightness through the pressure housing be led through to the outside.
  • the Helmholtz resonator has a position-changeable device Wall on which the hollow body adjoins.
  • the position-changeable wall is over a Spring mechanism pressed against the hollow body.
  • the position-changeable wall against the spring force pressed inwards and in this way reduces that Resonance volume of the Helmholtz resonator.
  • the resonance volume by shifting the Wall due to the acting in the direction of the hollow body Spring force.
  • the Helmholtz resonator can do this be in the form of a bellows like this known from DE 196 40 980 A1 is.
  • DE 196 40 980 A1 is.
  • the volume-changeable hollow body is preferred as an inflatable temperature-resistant balloon or designed as an inflatable metallic bellows.
  • the supply line to the hollow body can be flexible or rigid be carried out.
  • the gas supply to the hollow body or the gas release from the Hollow body made automatically by a controller, provided outside of the pressure housing on the supply line is.
  • This control changes the resonance volume of the Helmholtz resonator as a function of that in the Combustion chamber frequency of the thermoacoustic Vibrations with the highest amplitude, in which he Blows or releases gas into the hollow body.
  • the respective vibration amplitudes and vibration frequencies with an appropriate sensor, as known to those skilled in the art.
  • the controller controls the resonance volume or the volume of the hollow body by feeding or draining of compressor air that it exits from the compressor Receives gas turbine. This way you can at any time during optimal vibration damping during operation of the gas turbine can be achieved because the controller's resonance volume at any time exactly to the respective occurring Can adjust frequencies.
  • Figure 1 shows the basic structure of a Helmholtz resonator 4 with the resonance volume 3 and one Connection channel 2, as it is from the prior art is known. Details on this were given in the introduction to the description already set out.
  • FIG. 2 A first embodiment for an inventive Device on a combustion chamber 1 a Gas turbine is shown in Figure 2.
  • the tunable Helmholtz resonator 4 can be seen, the via a connecting channel 2 with the combustion chamber 1st connected is.
  • a hollow body 6 Inside the Helmholtz resonator 4 a hollow body 6 is arranged, the volume of which by feeding or draining gas via a feed line 5 changeable is.
  • the hollow body 6 is in this example from a metallic bellows that is exposed to air 10 inflated from the compressor outlet of the gas turbine or is released by venting this air.
  • the so-called resonance volume 3 enlarged from a central position or reduced, as indicated by the arrow in the figure is.
  • the control of inflation or deflation the bellows 6 takes place via a corresponding Regulator 7, the volume depending on each damping thermoacoustic oscillation frequencies sets.
  • the configuration of the hollow body 6 as a metallic bellows is particularly suitable for use suitable under high temperatures.
  • the supply line 5 to the bellows 6 takes place through the Pressure housing 8 of the gas turbine.
  • This implementation can be sealed well by the pressure housing 8, since it contains no moving parts. With the present device, it is therefore possible to adjust the resonance volume 3 of the Helmholtz resonator 4, the inside of the pressure housing 8 is mounted from the outside to change the pressure housing without the risk of To increase leakage of the pressure housing 8.
  • the resonance volume 3 is tuned via the automatic controller 7, which, as already mentioned, depending on the frequency of the highest vibration amplitude in the combustion chamber the bellows 6 enlarged or downsized. Since the location of this amplitude on the Frequency axis when operating the burner only within of a relatively narrow band is not special fast regulation required to get an optimal To achieve adjustment.
  • Figure 3 finally shows another example for a possible embodiment of the invention Contraption.
  • the hollow body is 6 not arranged within the Helmholtz resonator 4, but borders on a position-changeable wall 11 of this resonator 4.
  • the principle of operation is that The same as already explained in connection with Figure 2.
  • the Helmholtz resonator 4 as well as the hollow body 6 - at least partially - designed as a bellows, one End face of the Helmholtz resonator 4 to an end face of the hollow body 6 adjoins.
  • the opposite End face of the hollow body 6 is on a corresponding Anchor 9 fixed in the pressure housing 8.
  • the resonance volume 3 is reduced.
  • Spring mechanism the position-changeable wall 11 of the Helmholtz resonator 4 against the hollow body 6 presses.
  • This spring mechanism can, for example through an elastic design of the wall material of the bellows can be reached. Alternatively, you can do this a spring inside the Helmholtz resonator 4 be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

The acoustic oscillation damping device has a Helmholtz resonator (4) having a resonance volume (3), a coupling channel (2), connecting the combustion chamber (1) to the resonance volume and a hollow body (6) with a volume which is varied by supplying or venting a fluid, used for varying the volume of the resonance volume. An Independent claim for a combustion chamber device provided with an acoustic oscillation damping device is also included.

Description

Technisches AnwendungsgebietTechnical application area

Die vorliegende Erfindung betrifft eine Vorrichtung zur Dämpfung akustischer Schwingungen in einer Brennkammer sowie eine Brennkammeranordnung, insbesondere einer Gas- oder Dampfturbine, die die Vorrichtung beinhaltet.The present invention relates to a device for damping acoustic vibrations in one Combustion chamber and a combustion chamber arrangement, in particular a gas or steam turbine holding the device includes.

Das Hauptanwendungsgebiet der vorliegenden Erfindung liegt im Bereich der Industriegasturbinen. Weltweit werden an Industriegasturbinen, vor allem im Kraftwerkseinsatz, immer höhere Anforderungen an die Einsatzbereitschaft, Lebensdauer und Abgasqualität gestellt. Das zunehmende Bewusstsein für Umweltschutz und Umweltverträglichkeit erfordert die Einhaltung möglichst niedriger Schadstoffemissionen.The main field of application of the present invention lies in the field of industrial gas turbines. Worldwide are used on industrial gas turbines, especially in Power plant use, ever increasing demands on the Ready for use, durability and exhaust gas quality. The increasing awareness of environmental protection and Environmental compatibility requires compliance if possible lower pollutant emissions.

Niedrige Emissionen lassen sich bei Industriegasturbinen in wirtschaftlicher Weise nur durch den Einsatz von Vormischbrennern erreichen. Diese Art der Verbrennung neigt jedoch in geschlossenen Brennkammern durch die Ausbildung kohärenter Strukturen und daraus resultierender schwankender Wärmefreisetzung zur Generierung thermoakustischer Schwingungen in der Brennkammer. Diese thermoakustischen Schwingungen beeinflussen nicht nur die Verbrennungsqualität negativ, sondern können auch die Lebensdauer der hochbelasteten Bauelemente drastisch reduzieren. Low emissions can be seen in industrial gas turbines in an economical manner only through use from premix burners. That kind of combustion tends, however, in closed combustion chambers through the formation of and from coherent structures resulting fluctuating heat release for generation thermoacoustic vibrations in the combustion chamber. These thermoacoustic vibrations affect not only the combustion quality negative, but can also affect the life of highly stressed components reduce drastically.

Stand der TechnikState of the art

Zur Dämpfung derartiger thermoakustischer Schwingungen ist bereits seit langem die Anwendung des Prinzips des so genannten Helmholtz-Resonators bekannt. Dieses Prinzip wird im Folgenden anhand der Figur 1 näher erläutert. Die Figur zeigt den prinzipiellen Aufbau eines Helmholtz-Resonators 4, der aus einem Resonanzvolumen 3 und einem Verbindungskanal 2 zu der Kammer 1 besteht, in der die thermoakustischen Schwingungen auftreten. Eine derartige Vorrichtung kann analog einem mechanischen Feder-Masse-System betrachtet werden. Dabei wirkt das Volumen V des Helmholtz-Resonators 4 als Feder und das im Verbindungskanal 2 befindliche Gas als Masse. Mit Hilfe der Hohlraumabmessungen kann die Resonanzfrequenz f0 des Systems berechnet werden.

Figure 00020001
   mit:

  • V = Volumen des Helmholtz-Resonators 4
  • R = Radius des Verbindungskanals 2
  • l = Länge des Verbindungskanals 2
  • S = Fläche der Öffnung, durch die die Anregung erfolgt
  • The use of the principle of the so-called Helmholtz resonator has long been known for damping such thermoacoustic vibrations. This principle is explained in more detail below with reference to FIG. 1. The figure shows the basic structure of a Helmholtz resonator 4, which consists of a resonance volume 3 and a connecting channel 2 to the chamber 1, in which the thermoacoustic vibrations occur. Such a device can be viewed analogously to a mechanical spring-mass system. The volume V of the Helmholtz resonator 4 acts as a spring and the gas in the connecting channel 2 acts as a mass. The resonance frequency f 0 of the system can be calculated with the aid of the cavity dimensions.
    Figure 00020001
    With:
  • V = volume of the Helmholtz resonator 4
  • R = radius of the connecting channel 2
  • l = length of the connecting channel 2
  • S = area of the opening through which the excitation takes place
  • Bei dieser Resonanzfrequenz f0 verhält sich ein Helmholtz-Resonator akustisch wie eine unendlich große Öffnung, d.h. er verhindert die Entstehung einer stehenden Welle bei dieser Frequenz. At this resonance frequency f 0 , a Helmholtz resonator behaves acoustically like an infinitely large opening, ie it prevents the formation of a standing wave at this frequency.

    Diese Technik der Dämpfung thermoakustischer Schwingungen mit Hilfe eines Helmholtz-Resonators wird auch zur Dämpfung der Schwingungen in Brennkammern von Gas- oder Dampfturbinen bereits eingesetzt. Beim Einsatz in Gas- oder Dampfturbinen tritt jedoch das Problem auf, dass die zu dämpfende Frequenz nicht durch eine intermittierende Verbrennung bestimmt wird, sondern durch die Erfüllung des Rayleigh-Kriteriums in der Brennkammer und die akustische Antwort des umgebenden Systems aus Zuströmung, Brenner, Brennkammer und akustischer Abschlussbedingung.This technique of damping thermoacoustic Vibrations with the help of a Helmholtz resonator also for damping the vibrations in combustion chambers of Gas or steam turbines already in use. When using however, the problem occurs in gas or steam turbines on that the frequency to be attenuated is not through an intermittent combustion is determined, but by meeting the Rayleigh criterion in the Combustion chamber and the acoustic response of the surrounding Systems from inflow, burner, combustion chamber and acoustic Completion condition.

    Die zu dämpfende Frequenz lässt sich daher bei diesen Systemen mit den zurzeit zur Verfügung stehenden rechnerischen Werkzeugen nicht mit der erforderlichen Genauigkeit im Voraus bestimmen. Dies ist jedoch die Voraussetzung, um die exakte Dimensionierung des Resonanzvolumens beim Bau der Gasturbine berücksichtigen zu können. Weiterhin können sich das akustische Verhalten des Systems und somit die Frequenzen der zu dämpfenden Schwingungen bei einer Änderung des Betriebspunktes entscheidend ändern, so dass unter Umständen zusätzliche Resonatoren, die auf weitere Frequenzen abgestimmt sind, zum Einsatz kommen müssen.The frequency to be damped can therefore be these systems with those currently available computational tools not with the required Determine accuracy in advance. However, this is the Prerequisite for the exact dimensioning of the resonance volume take into account when building the gas turbine can. Furthermore, the acoustic behavior of the system and thus the frequencies of the attenuated Vibrations when the operating point changes change decisively, so that under certain circumstances additional Resonators tuned to other frequencies are used.

    Eine derartige Anordnung mit mehreren Helmholtz-Resonatoren ist beispielsweise aus der DE 33 24 805 A1 bekannt. Die Druckschrift beschreibt eine Einrichtung zur Vermeidung von Druckschwingungen in Brennkammern, bei der mehrere Helmholtz-Resonatoren mit unterschiedlichem Resonanzvolumen entlang des Gasleitungsweges zum Brenner angeordnet sind. Durch die unterschiedlichen Resonanzvolumina lassen sich mit diesem System Schwingungen unterschiedlicher Frequenzen dämpfen. Die optimale Dimensionierung der einzelnen Helmholtz-Resonatoren erfordert jedoch auch hier wiederum die Kenntnis über die beim Betrieb der Anlage auftretenden Frequenzen, die beim Bau der Anlage jedoch noch nicht exakt angegeben werden können. Weiterhin ist die Anordnung mehrerer Helmholtz-Resonatoren aufgrund des dafür erforderlichen zusätzlichen Platzbedarfs ungünstig.Such an arrangement with several Helmholtz resonators is for example from DE 33 24 805 A1 known. The publication describes a facility to avoid pressure fluctuations in combustion chambers, where several Helmholtz resonators with different Resonance volume along the gas pipeline path to Burners are arranged. Because of the different Resonance volumes can be vibrated with this system attenuate different frequencies. The optimal one Dimensioning of the individual Helmholtz resonators however, again requires that Knowledge of those that occur during the operation of the system Frequencies that are not yet in the construction of the system can be specified exactly. Furthermore, the arrangement several Helmholtz resonators because of that required additional space requirements unfavorable.

    Die DE 196 40 980 A1 beschreibt eine weitere bekannte Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer. Bei dieser Vorrichtung ist die seitliche Wandung des Resonanzvolumens des Helmholtz-Resonators als mechanische Feder ausgebildet. An der aufgrund der Federwirkung schwingenden Wandung der Stirnfläche des Resonanzvolumens ist eine zusätzliche mechanische Masse befestigt. Mit dieser Anordnung wird das virtuelle Volumen des Helmholtz-Resonators beeinflusst und eine größere Dämpferleistung erzielt. Durch Veränderung der mechanischen Masse am Resonator kann nachträglich eine Feinabstimmung auf die Resonanzfrequenz durchgeführt werden. Auch dies erfordert jedoch einen nachträglichen Eingriff in den Aufbau der Gasturbinenanlage.DE 196 40 980 A1 describes another known one Device for damping thermoacoustic Vibrations in a combustion chamber. With this device is the side wall of the resonance volume of the Helmholtz resonator designed as a mechanical spring. On the wall vibrating due to the spring effect the end face of the resonance volume is an additional one mechanical mass attached. With this arrangement the virtual volume of the Helmholtz resonator is influenced and achieved greater damper performance. By changing the mechanical mass on the resonator can subsequently fine-tune the resonance frequency be performed. However, this also requires a subsequent intervention in the structure of the Gas turbine plant.

    In der Vergangenheit wurden auf dem Gebiet der Abgasanlagen von Verbrennungsmotoren ebenfalls Helmholtz-Resonatoren zur Schwingungsdämpfung eingesetzt. Aus diesem Bereich ist auch der Einsatz von verstellbaren Resonatoren zur Änderung der Resonanzfrequenz bekannt. So wurden beispielsweise schon während des ersten Weltkrieges die Zweitakt-Dieselmotoren für Zeppelin-Luftschiffe der Firma Maybach durch verstellbare Resonatoren im Abgasrohr dem jeweiligen Betriebspunkt angepasst. Zu diesem Zweck wurden durch mechanische Getriebe Zylinder ineinander verschoben und dadurch das Resonanzvolumen verändert. Diese Technik erweist sich bei den genannten Abgasanlagen aufgrund der guten Zugänglichkeit dieser Anlagen und dem dort herrschenden relativ niedrigen Druck- und Temperaturverhältnis als praktikabel. Für den Einsatz im Druckbereich moderner Industriegasturbinen scheidet eine derartige Lösung jedoch vollständig aus. Die Durchführung eines mechanischen Getriebes durch das Druckgehäuse einer Gasturbine würde unvermeidbare Leckagen herbeiführen und daher zu nicht tolerierbaren Verlusten führen. Außerdem könnten die bei Industriegasturbinen vorherrschenden Temperatureinflüsse nur durch ein sehr kompliziertes Getriebe kompensiert werden.In the past have been in the field of exhaust systems of internal combustion engines also Helmholtz resonators used for vibration damping. Out this area is also the use of adjustable Resonators known to change the resonance frequency. For example, during the First World War the two-stroke diesel engines for Zeppelin airships from Maybach through adjustable resonators adapted to the respective operating point in the exhaust pipe. For this purpose, through mechanical gears Cylinder shifted into each other and thereby the resonance volume changed. This technique proves itself with the exhaust systems mentioned due to the good accessibility of these systems and the prevailing relative low pressure and temperature ratio as practical. For use in the pressure range of modern industrial gas turbines such a solution, however completely out. Implementation of a mechanical Transmission through the pressure housing of a gas turbine would cause unavoidable leaks and therefore not tolerable losses. They could also prevailing temperature influences in industrial gas turbines only compensated by a very complicated gear become.

    Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Dämpfung von thermoakustischen Schwingungen sowie eine Brennkammeranordnung mit dieser Vorrichtung anzugeben, die eine kontinuierliche Anpassung an die Frequenzen der zu dämpfenden Schwingungen auch unter hohen Druckverhältnissen, wie sie beispielsweise bei Gasturbinen vorliegen, ermöglicht.The present invention is based on the object a device for damping thermoacoustic Vibrations as well as a combustion chamber arrangement specify this device which is a continuous Adaptation to the frequencies of the vibrations to be damped even under high pressure conditions, like them for example in gas turbines.

    Darstellung der ErfindungPresentation of the invention

    Die Aufgabe wird mit der Vorrichtung bzw. der Brennkammeranordnung nach den Ansprüchen 1 bzw. 7 gelöst. Vorteilhafte Ausgestaltungen der Vorrichtung sowie der Brennkammeranordnung sind Gegenstand der Unteransprüche. The task is done with the device or Combustion chamber arrangement according to claims 1 and 7 solved. Advantageous embodiments of the device as well the combustion chamber arrangement are the subject of the dependent claims.

    Die Vorrichtung setzt sich aus einem Helmholtz-Resonator mit einem Verbindungskanal zusammen, der mit der Brennkammer, beispielsweise der Brennkammer einer Gasturbine, verbunden wird. Im Gegensatz zu den bekannten Dämpfungsvorrichtungen ist bei der vorliegenden Vorrichtung ein durch Zuführen oder Ablassen eines Fluids über eine Zuleitung im Volumen veränderbarer Hohlkörper vorgesehen, der entweder innerhalb des Helmholtz-Resonators angeordnet ist oder derart an diesen angrenzt, dass sich das Resonanzvolumen des Helmholtz-Resonators bei einer Änderung des Volumens des Hohlkörpers verändert.The device consists of a Helmholtz resonator together with a connecting channel that with the combustion chamber, for example the combustion chamber one Gas turbine, is connected. In contrast to the known ones Dampers are in the present Device by feeding or draining a Fluids changeable in volume via a feed line Hollow body provided either inside the Helmholtz resonator is arranged or so on this borders that the resonance volume of the Helmholtz resonator with a change in the volume of the hollow body changed.

    Bei einer Anordnung des im Volumen veränderbaren Hohlkörpers im Helmholtz-Resonator verkleinert sich somit das Resonanzvolumen, wenn der Hohlkörper über die Zuleitung beispielsweise mit einem Gas aufgeblasen wird. Im umgekehrten Fall vergrößert sich das Resonanzvolumen des Helmholtz-Resonators, wenn aus dem Hohlkörper eine bestimmte Menge des Gases abgelassen wird. Die Veränderung des Resonanzvolumens bewirkt in bekannter Weise eine Änderung der Resonanzfrequenz.With an arrangement of the changeable in volume Hollow body in the Helmholtz resonator is thus reduced in size the resonance volume when the hollow body over the Lead inflated, for example, with a gas becomes. In the opposite case, the resonance volume increases of the Helmholtz resonator when out of the hollow body a certain amount of the gas is released. The Changing the resonance volume causes in known Way a change in resonance frequency.

    Auf diese Weise kann die Resonanzfrequenz des Helmholtz-Resonators jederzeit durch einfaches Aufblasen oder Ablassen des Hohlkörpers an die im Kammervolumen auftretenden thermoakustischen Schwingungsfrequenzen angepasst werden. Eine genaue Kenntnis der im Betrieb auftretenden Frequenzen beim Bau der entsprechenden Anlage ist daher nicht mehr erforderlich. Die Schwingungen können über ein breites Spektrum individuell einstellbarer Frequenzen gedämpft werden. Im praktischen Einsatz lässt sich durch die Veränderung des Resonanzvolumens, die zu jeder Zeit während des Betriebs der Anlage möglich ist, die Resonanzfrequenz der eingebauten Resonatoren passend zum jeweiligen Betriebspunkt einstellen.In this way, the resonance frequency of the Helmholtz resonators at any time by simply inflating them or draining the hollow body to the in the chamber volume occurring thermoacoustic oscillation frequencies be adjusted. A precise knowledge of the operation frequencies occurring when building the corresponding System is therefore no longer required. The Vibrations can be customized across a wide range adjustable frequencies can be damped. In practical terms Use can be done by changing the Resonance volume at all times during operation the system is possible, the resonance frequency of the built-in resonators suitable for the respective operating point to adjust.

    Ein besonderer Vorteil ergibt sich dadurch, dass das Resonanzvolumen des Helmholtz-Resonators, der in der Regel innerhalb des Druckgehäuses der Gasturbine angeordnet ist, verändert werden kann, ohne dass hierfür bewegliche Teile durch die Wandung des Druckbehälters hindurchgeführt werden müssen. Die Zuleitung zum Hohlkörper kann als starres Rohr ausgeführt und daher problemlos mit hoher Dichtigkeit durch das Druckgehäuse hindurch zum Außenraum geführt werden.A particular advantage results from the fact that the resonance volume of the Helmholtz resonator, which in usually within the pressure casing of the gas turbine is arranged, can be changed without this moving parts through the wall of the pressure vessel must be passed through. The supply line to Hollow body can be designed as a rigid tube and therefore easily with high tightness through the pressure housing be led through to the outside.

    In einer weiteren Ausführungsform der vorliegenden Vorrichtung weist der Helmholtz-Resonator eine positionsveränderbare Wandung auf, an die der Hohlkörper angrenzt. Die positionsveränderbare Wandung wird über einen Federmechanismus gegen den Hohlkörper gedrückt. Auf diese Weise wird bei einem Aufblasen des Hohlkörpers die positionsveränderbare Wandung gegen die Federkraft nach Innen gedrückt und verringert auf diese Weise das Resonanzvolumen des Helmholtz-Resonators. Im umgekehrten Fall des Ablassens von Gas aus dem Hohlkörper vergrößert sich das Resonanzvolumen durch Verschiebung der Wandung aufgrund der in Richtung des Hohlkörpers wirkenden Federkraft. Der Helmholtz-Resonator kann hierbei in Form eines Faltenbalges ausgeführt sein, wie dies aus der eingangs angeführten DE 196 40 980 A1 bekannt ist. Es versteht sich jedoch von selbst, dass auch andere Möglichkeiten einer entsprechenden Ausgestaltung des Helmholtz-Resonators möglich sind, bei der der obige Effekt erzielt wird. In another embodiment of the present The Helmholtz resonator has a position-changeable device Wall on which the hollow body adjoins. The position-changeable wall is over a Spring mechanism pressed against the hollow body. On this way when the hollow body is inflated the position-changeable wall against the spring force pressed inwards and in this way reduces that Resonance volume of the Helmholtz resonator. In reverse Increased case of gas discharge from the hollow body the resonance volume by shifting the Wall due to the acting in the direction of the hollow body Spring force. The Helmholtz resonator can do this be in the form of a bellows like this known from DE 196 40 980 A1 is. However, it goes without saying that others too Possibilities for an appropriate configuration of the Helmholtz resonator are possible, in which the above Effect is achieved.

    Bei dieser Ausführungsform muss der volumenveränderbare Hohlkörper an einer Stelle relativ zum Helmholtz-Resonator innerhalb des Druckgehäuses fixiert werden, um die entsprechende Gegenkraft auf die positionsveränderbare Wandung des Helmholtz-Resonators ausüben zu können.In this embodiment, the volume changeable Hollow body at one point relative to the Helmholtz resonator fixed within the pressure housing to the corresponding counterforce on the position changeable Exercise the wall of the Helmholtz resonator to be able to.

    Der im Volumen veränderbare Hohlkörper ist vorzugsweise als aufblasbarer temperaturfester Ballon oder als aufblasbarer metallischer Faltenbalg ausgeführt. Die Zuleitung zum Hohlkörper kann flexibel oder starr ausgeführt werden.The volume-changeable hollow body is preferred as an inflatable temperature-resistant balloon or designed as an inflatable metallic bellows. The supply line to the hollow body can be flexible or rigid be carried out.

    In einer bevorzugten Ausführungsform wird die Gaszufuhr zum Hohlkörper bzw. das Gasablassen aus dem Hohlkörper automatisch von einem Regler vorgenommen, der außerhalb des Druckgehäuses an der Zuleitung vorgesehen ist. Dieser Regler verändert das Resonanzvolumen des Helmholtz-Resonators in Abhängigkeit von der in der Brennkammer auftretenden Frequenz der thermoakustischen Schwingungen mit der höchsten Amplitude, in dem er das Gas in den Hohlkörper bläst oder aus diesem ablässt. Die jeweiligen Schwingungsamplituden und Schwingungsfrequenzen werden hierbei mit einem entsprechenden Sensor, wie er dem Fachmann bekannt ist, gemessen. Vorzugsweise steuert der Regler das Resonanzvolumen bzw. das Volumen des Hohlkörpers durch Zufuhr bzw. Ablassen von Verdichterluft, die er vom Verdichteraustritt der Gasturbine erhält. Auf diese Art kann jederzeit während des Betriebs der Gasturbine eine optimale Schwingungsdämpfung erreicht werden, da der Regler das Resonanzvolumen jederzeit exakt an die jeweiligen auftretenden Frequenzen anpassen kann. In a preferred embodiment, the gas supply to the hollow body or the gas release from the Hollow body made automatically by a controller, provided outside of the pressure housing on the supply line is. This control changes the resonance volume of the Helmholtz resonator as a function of that in the Combustion chamber frequency of the thermoacoustic Vibrations with the highest amplitude, in which he Blows or releases gas into the hollow body. The respective vibration amplitudes and vibration frequencies with an appropriate sensor, as known to those skilled in the art. Preferably the controller controls the resonance volume or the volume of the hollow body by feeding or draining of compressor air that it exits from the compressor Receives gas turbine. This way you can at any time during optimal vibration damping during operation of the gas turbine can be achieved because the controller's resonance volume at any time exactly to the respective occurring Can adjust frequencies.

    Die vorliegende Vorrichtung bzw. Brennkammeranordnung wird nachfolgend anhand von Ausführungsbeispielen in Verbindung mit den Figuren nochmals kurz erläutert. Hierbei zeigen:

    Fig. 1
    den prinzipiellen Aufbau eines Helmholtz-Resonators;
    Fig. 2
    ein erstes Ausführungsbeispiel für den Aufbau der vorliegenden Vorrichtung; und
    Fig. 3
    ein zweites Ausführungsbeispiel für den Aufbau der vorliegenden Vorrichtung.
    The present device or combustion chamber arrangement is briefly explained again below using exemplary embodiments in conjunction with the figures. Here show:
    Fig. 1
    the basic structure of a Helmholtz resonator;
    Fig. 2
    a first embodiment for the construction of the present device; and
    Fig. 3
    a second embodiment for the construction of the present device.

    Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

    Figur 1 zeigt den prinzipiellen Aufbau eines Helmholtz-Resonators 4 mit dem Resonanzvolumen 3 und einem Verbindungskanal 2, wie er aus dem Stand der Technik bekannt ist. Einzelheiten hierzu wurden in der Beschreibungseinleitung bereits dargelegt.Figure 1 shows the basic structure of a Helmholtz resonator 4 with the resonance volume 3 and one Connection channel 2, as it is from the prior art is known. Details on this were given in the introduction to the description already set out.

    Ein erstes Ausführungsbeispiel für eine erfindungsgemäße Vorrichtung an einer Brennkammer 1 einer Gasturbine ist in Figur 2 dargestellt. In dieser Figur ist der abstimmbare Helmholtz-Resonator 4 zu erkennen, der über einen Verbindungskanal 2 mit der Brennkammer 1 verbunden ist. Innerhalb des Helmholtz-Resonators 4 ist ein Hohlkörper 6 angeordnet, dessen Volumen durch Zuführen oder Ablassen von Gas über eine Zuleitung 5 veränderbar ist. Der Hohlkörper 6 besteht in diesem Beispiel aus einem metallischen Faltenbalg, der durch Luft 10 vom Verdichteraustritt der Gasturbine aufgeblasen oder durch Ablassen dieser Luft entspannt wird. Hierdurch wird der von Verbrennungsgasen gefüllte Innenraum des Helmholtz-Resonators 4, das so genannte Resonanzvolumen 3, ausgehend von einer Mittellage vergrößert oder verkleinert, wie in der Figur durch den Pfeil angedeutet ist. Die Steuerung des Aufblasens oder Ablassens des Faltenbalges 6 erfolgt über einen entsprechenden Regler 7, der das Volumen in Abhängigkeit von den jeweils zu dämpfenden thermoakustischen Schwingungsfrequenzen einstellt. Die Ausgestaltung des Hohlkörpers 6 als metallischer Faltenbalg ist besonders für den Einsatz unter hohen Temperaturen geeignet.A first embodiment for an inventive Device on a combustion chamber 1 a Gas turbine is shown in Figure 2. In this figure the tunable Helmholtz resonator 4 can be seen, the via a connecting channel 2 with the combustion chamber 1st connected is. Inside the Helmholtz resonator 4 a hollow body 6 is arranged, the volume of which by feeding or draining gas via a feed line 5 changeable is. The hollow body 6 is in this example from a metallic bellows that is exposed to air 10 inflated from the compressor outlet of the gas turbine or is released by venting this air. Hereby becomes the interior filled with combustion gases of the Helmholtz resonator 4, the so-called resonance volume 3, enlarged from a central position or reduced, as indicated by the arrow in the figure is. The control of inflation or deflation the bellows 6 takes place via a corresponding Regulator 7, the volume depending on each damping thermoacoustic oscillation frequencies sets. The configuration of the hollow body 6 as a metallic bellows is particularly suitable for use suitable under high temperatures.

    Die Zuleitung 5 zum Faltenbalg 6 erfolgt durch das Druckgehäuse 8 der Gasturbine hindurch. Diese Durchführung durch das Druckgehäuse 8 kann gut abgedichtet werden, da sie keine beweglichen Bauteile enthält. Mit der vorliegenden Vorrichtung ist es daher möglich, das Resonanzvolumen 3 des Helmholtz-Resonators 4, der innerhalb des Druckgehäuses 8 montiert ist, von außerhalb des Druckgehäuses zu verändern, ohne die Gefahr einer Leckage des Druckgehäuses 8 zu erhöhen.The supply line 5 to the bellows 6 takes place through the Pressure housing 8 of the gas turbine. This implementation can be sealed well by the pressure housing 8, since it contains no moving parts. With the present device, it is therefore possible to adjust the resonance volume 3 of the Helmholtz resonator 4, the inside of the pressure housing 8 is mounted from the outside to change the pressure housing without the risk of To increase leakage of the pressure housing 8.

    Entscheidenden Einfluss auf die Resonanzfrequenz des abstimmbaren Helmholtz-Resonators 4 haben nicht nur die Größe des Resonanzvolumens 3 und die Länge des Verbindungskanals 2 zur Brennkammer 1, sondern auch die Länge der Zuleitung 5 zum Regler 7 sowie die Temperatur der Steuerluft, d.h. des für das Aufblasen des Hohlkörpers 6 eingesetzten Gases. Die Zusammenhänge sind jedoch relativ komplex. Als Leitlinie kann angegeben werden, dass der mit der Vorrichtung regelbare Frequenzbereich mit zunehmender Temperaturdifferenz der im Helmholtz-Resonator 4 aneinander grenzenden Gase - Verbrennungsluft im Resonanzvolumen 3 und Steuerluft im Hohlkörper 6 - vergrößert wird. Durch geeignete Wahl bzw. Anpassung der Temperatur der eingesetzten Steuerluft zum Aufblasen des Hohlkörpers 6 kann dieser Frequenzbereich somit vergrößert werden.Crucial influence on the resonance frequency of the tunable Helmholtz resonator 4 not only have the size of the resonance volume 3 and the length of the connecting channel 2 to the combustion chamber 1, but also the Length of the supply line 5 to the controller 7 and the temperature the control air, i.e. for inflating the hollow body 6 gas used. The connections are however relatively complex. As a guideline it can be stated that the frequency range adjustable with the device with increasing temperature difference in the Helmholtz resonator 4 adjacent gases - combustion air in the resonance volume 3 and control air in the hollow body 6 - is enlarged. By suitable choice or Adjustment of the temperature of the control air used this frequency range can be used to inflate the hollow body 6 thus be enlarged.

    Die Abstimmung des Resonanzvolumens 3 erfolgt über den automatischen Regler 7, der, wie bereits angeführt, je nach Frequenzlage der höchsten Schwingungsamplitude in der Brennkammer den Faltenbalg 6 vergrößert oder verkleinert. Da sich die Lage dieser Amplitude auf der Frequenzachse beim Betrieb des Brenners nur innerhalb eines relativ schmalen Bandes ändert, ist keine besonders schnelle Regelung erforderlich, um eine optimale Anpassung zu erzielen.The resonance volume 3 is tuned via the automatic controller 7, which, as already mentioned, depending on the frequency of the highest vibration amplitude in the combustion chamber the bellows 6 enlarged or downsized. Since the location of this amplitude on the Frequency axis when operating the burner only within of a relatively narrow band is not special fast regulation required to get an optimal To achieve adjustment.

    Figur 3 zeigt schließlich ein weiteres Beispiel für eine mögliche Ausführungsform der erfindungsgemäßen Vorrichtung. In diesem Beispiel ist der Hohlkörper 6 nicht innerhalb des Helmholtz-Resonators 4 angeordnet, sondern grenzt an eine positionsveränderbare Wandung 11 dieses Resonators 4 an. Das Funktionsprinzip ist das Gleiche wie im Zusammenhang mit Figur 2 bereits erläutert. Bei dieser Ausführungsform ist der Helmholtz-Resonator 4 ebenso wie der Hohlkörper 6 - zumindest teilweise - als Faltenbalg ausgeführt, wobei eine Stirnfläche des Helmholtz-Resonators 4 an eine Stirnfläche des Hohlkörpers 6 angrenzt. Die gegenüberliegende Stirnfläche des Hohlkörpers 6 ist an einer entsprechenden Verankerung 9 im Druckgehäuse 8 fixiert. Figure 3 finally shows another example for a possible embodiment of the invention Contraption. In this example, the hollow body is 6 not arranged within the Helmholtz resonator 4, but borders on a position-changeable wall 11 of this resonator 4. The principle of operation is that The same as already explained in connection with Figure 2. In this embodiment, the Helmholtz resonator 4 as well as the hollow body 6 - at least partially - designed as a bellows, one End face of the Helmholtz resonator 4 to an end face of the hollow body 6 adjoins. The opposite End face of the hollow body 6 is on a corresponding Anchor 9 fixed in the pressure housing 8.

    Wird bei dieser Ausführungsform der Hohlkörper 6 über die Zuleitung 5 und den Regler 7 aufgeblasen, so verschiebt sich die positionsveränderliche Wandung 11 des Helmholtz-Resonators 4 in der Figur nach links, so dass das Resonanzvolumen 3 verkleinert wird. Im umgekehrten Fall ergibt sich eine Verschiebung nach rechts, wobei das Resonanzvolumen 3 vergrößert wird. Für diese Verschiebung ist es allerdings erforderlich, dass ein Federmechanismus die positionsveränderbare Wandung 11 des Helmholtz-Resonators 4 gegen den Hohlkörper 6 drückt. Dieser Federmechanismus kann beispielsweise durch eine elastische Ausgestaltung des Wandmaterials des Faltenbalges erreicht werden. Alternativ kann hierfür eine Feder innerhalb des Helmholtz-Resonators 4 vorgesehen sein.In this embodiment, the hollow body 6 inflated via the feed line 5 and the regulator 7, see above shifts the position-changeable wall 11 of the Helmholtz resonator 4 in the figure to the left, see above that the resonance volume 3 is reduced. In reverse Case there is a shift to the right, wherein the resonance volume 3 is increased. For this However, a shift is required Spring mechanism the position-changeable wall 11 of the Helmholtz resonator 4 against the hollow body 6 presses. This spring mechanism can, for example through an elastic design of the wall material of the bellows can be reached. Alternatively, you can do this a spring inside the Helmholtz resonator 4 be provided.

    BezugszeichenlisteReference list

    11
    BrennkammerCombustion chamber
    22nd
    VerbindungskanalConnecting channel
    33rd
    ResonanzvolumenResonance volume
    44th
    Helmholtz-ResonatorHelmholtz resonator
    55
    ZuleitungSupply
    66
    Hohlkörper; FaltenbalgHollow body; Bellows
    77
    ReglerRegulator
    88th
    DruckgehäusePressure housing
    99
    Verankerunganchoring
    1010th
    Luft vom VerdichteraustrittAir from the compressor outlet
    1111
    positionsveränderbare Wandungposition-changeable wall

    Claims (8)

    Vorrichtung zur Dämpfung akustischer Schwingungen in einer Brennkammer (1), bestehend aus einem Helmholtz-Resonator (4) mit einem Resonanzvolumen (3) und einem Verbindungskanal (2), über den die Brennkammer (1) mit dem Resonanzvolumen (3) verbunden werden kann,
    dadurch gekennzeichnet, dass der Helmholtz-Resonator (4) einen durch Zuführen oder Ablassen eines Fluids über eine Zuleitung (5) im Volumen veränderbaren Hohlkörper (6) beinhaltet oder derart an diesen angrenzt, dass sich das Resonanzvolumen (3) des Helmholtz-Resonators (4) bei einer Änderung des Volumens des Hohlkörpers (6) verändert.
    Device for damping acoustic vibrations in a combustion chamber (1), consisting of a Helmholtz resonator (4) with a resonance volume (3) and a connecting channel (2) via which the combustion chamber (1) can be connected to the resonance volume (3) ,
    characterized in that the Helmholtz resonator (4) contains or adjoins a hollow body (6) which can be changed in volume by supplying or discharging a fluid via a feed line (5) such that the resonance volume (3) of the Helmholtz resonator ( 4) changed when the volume of the hollow body (6) changes.
    Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass der im Volumen veränderbare Hohlkörper (6) ein aufblasbarer temperaturfester Ballon ist.
    Device according to claim 1,
    characterized in that the volume-changeable hollow body (6) is an inflatable temperature-resistant balloon.
    Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass der im Volumen veränderbare Hohlkörper (6) ein aufblasbarer metallischer Faltenbalg ist.
    Device according to claim 1,
    characterized in that the volume-changeable hollow body (6) is an inflatable metallic bellows.
    Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass bei einer Anordnung des Hohlkörpers (6) im Helmholtz-Resonator (4) die Zuleitung (5) durch eine Durchführung in einer Wandung des Helmholtz-Resonators (4) verläuft.
    Device according to one of claims 1 to 3,
    characterized in that when the hollow body (6) is arranged in the Helmholtz resonator (4), the feed line (5) runs through a bushing in a wall of the Helmholtz resonator (4).
    Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass der Helmholtz-Resonator (4) zumindest eine positionsveränderbare Wandung (11) aufweist, an die der Hohlkörper (6) angrenzt, sowie einen Federmechanismus, mit der die Wandung (11) gegen den Hohlkörper (6) gedrückt wird.
    Device according to one of claims 1 to 3,
    characterized in that the Helmholtz resonator (4) has at least one position-changeable wall (11) to which the hollow body (6) adjoins, and a spring mechanism with which the wall (11) is pressed against the hollow body (6).
    Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass an der Zuleitung (5) ein Regler (7) angeordnet ist, der das Zuführen oder Ablassen des Fluids über die Zuleitung (5) in Abhängigkeit von der Frequenz der jeweils höchsten Schwingungsamplitude in der Brennkammer (1) regelt.
    Device according to one of claims 1 to 5,
    characterized in that a regulator (7) is arranged on the feed line (5) and regulates the supply or drainage of the fluid via the feed line (5) as a function of the frequency of the highest vibration amplitude in the combustion chamber (1).
    Brennkammeranordnung mit einer Vorrichtung nach einem der vorangehenden Ansprüche, bei der die Brennkammer (1) und der Helmholtz-Resonator (4) innerhalb eines Druckgehäuses (8) einer Gas- oder Dampfturbine angeordnet sind,
    dadurch gekennzeichnet, dass die Zuleitung (5) zum Hohlkörper (6) durch das Druckgehäuse (8) nach außen geführt ist.
    Combustion chamber arrangement with a device according to one of the preceding claims, in which the combustion chamber (1) and the Helmholtz resonator (4) are arranged within a pressure housing (8) of a gas or steam turbine,
    characterized in that the feed line (5) to the hollow body (6) is led to the outside through the pressure housing (8).
    Brennkammeranordnung nach Anspruch 7,
    dadurch gekennzeichnet, dass die Zuleitung (5) derart angeordnet ist, dass ihr Verdichterluft der Gas- oder Dampfturbine zuführbar ist.
    Combustion chamber arrangement according to claim 7,
    characterized in that the feed line (5) is arranged such that its compressor air can be fed to the gas or steam turbine.
    EP01110618A 2000-05-26 2001-04-30 Apparatus to reduce acoustic vibrations in a combustion chamber Expired - Lifetime EP1158247B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10026121 2000-05-26
    DE10026121A DE10026121A1 (en) 2000-05-26 2000-05-26 Device for damping acoustic vibrations in a combustion chamber

    Publications (3)

    Publication Number Publication Date
    EP1158247A2 true EP1158247A2 (en) 2001-11-28
    EP1158247A3 EP1158247A3 (en) 2002-01-02
    EP1158247B1 EP1158247B1 (en) 2006-04-19

    Family

    ID=7643661

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01110618A Expired - Lifetime EP1158247B1 (en) 2000-05-26 2001-04-30 Apparatus to reduce acoustic vibrations in a combustion chamber

    Country Status (4)

    Country Link
    US (1) US6634457B2 (en)
    EP (1) EP1158247B1 (en)
    JP (1) JP4880825B2 (en)
    DE (2) DE10026121A1 (en)

    Cited By (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1342953A1 (en) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Gas turbine
    US7331182B2 (en) 2002-01-16 2008-02-19 Alstom Technology Ltd Combustion chamber for a gas turbine
    EP1962018A1 (en) * 2002-12-23 2008-08-27 Rolls-Royce plc Combustion chamber for gas turbine engine
    EP1990579A1 (en) * 2007-05-10 2008-11-12 Siemens Aktiengesellschaft Device and method for measuring acoustic oscillations in the fluid flow and gas turbine facility with such a device
    DE202011004521U1 (en) 2011-03-29 2011-06-09 Alstom Technology Ltd. Gas turbine and intake manifold
    EP2397761A1 (en) 2010-06-16 2011-12-21 Alstom Technology Ltd Helmholtz Damper and Method for Regulating the Resonance Frequency of a Helmholtz Damper
    EP2397760A1 (en) 2010-06-16 2011-12-21 Alstom Technology Ltd Damper Arrangement and Method for Designing Same
    EP2400142A1 (en) * 2010-06-23 2011-12-28 MAHLE Filter Systems Japan Corporation Intake sound generation apparatus for internal combustion engine
    ITMI20110902A1 (en) * 2011-05-20 2012-11-21 Consorzio Intellimech DEVICE FOR FITTING PRESSURE WAVES
    EP2837782A1 (en) * 2013-08-14 2015-02-18 Alstom Technology Ltd Damper for combustion oscillation damping in a gas turbine
    CN105202576A (en) * 2014-06-30 2015-12-30 阿尔斯通技术有限公司 Damper for gas turbine
    WO2016071112A1 (en) * 2014-11-06 2016-05-12 Man Diesel & Turbo Se Exhaust gas aftertreatment device and exhaust gas aftertreatment method
    CN104235987B (en) * 2014-09-30 2017-02-15 长城汽车股份有限公司 Air conditioner system and vehicle comprising same
    EP3153777A1 (en) * 2015-10-05 2017-04-12 General Electric Technology GmbH Damper assembly for a combustion chamber
    CN108757101A (en) * 2018-05-15 2018-11-06 浙江吉利控股集团有限公司 A kind of resonance exhaust silencer for vehicle air inlet system and exhaust system
    RU214084U1 (en) * 2022-04-03 2022-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) NOISE SUPPRESSION DEVICE

    Families Citing this family (62)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10247550A1 (en) * 2002-10-11 2004-04-22 Werner, Jürgen Radial fan for leaf and waste vacuum, leaf blower or Laubladegeräte
    US6792907B1 (en) 2003-03-04 2004-09-21 Visteon Global Technologies, Inc. Helmholtz resonator
    US7272931B2 (en) * 2003-09-16 2007-09-25 General Electric Company Method and apparatus to decrease combustor acoustics
    US20050194207A1 (en) * 2004-03-04 2005-09-08 York International Corporation Apparatus and method of sound attenuation in a system employing a VSD and a quarter-wave resonator
    US7337877B2 (en) * 2004-03-12 2008-03-04 Visteon Global Technologies, Inc. Variable geometry resonator for acoustic control
    EP1596130B1 (en) * 2004-05-14 2014-12-31 Siemens Aktiengesellschaft Device for damping thermoacoustic oscillations in a combustion chamber with a variable resonator frequency
    US7117974B2 (en) * 2004-05-14 2006-10-10 Visteon Global Technologies, Inc. Electronically controlled dual chamber variable resonator
    US7464552B2 (en) * 2004-07-02 2008-12-16 Siemens Energy, Inc. Acoustically stiffened gas-turbine fuel nozzle
    JP2006125381A (en) * 2004-09-29 2006-05-18 Toyoda Gosei Co Ltd Resonator
    US8024934B2 (en) * 2005-08-22 2011-09-27 Solar Turbines Inc. System and method for attenuating combustion oscillations in a gas turbine engine
    US7441411B2 (en) * 2005-09-16 2008-10-28 General Electric Company Method and apparatus to detect onset of combustor hardware damage
    US7819221B1 (en) * 2005-09-27 2010-10-26 The United States Of America As Represented By The Secretary Of The Air Force Lightweight acoustic damping treatment
    US7866147B2 (en) * 2005-09-30 2011-01-11 Southwest Research Institute Side branch absorber for exhaust manifold of two-stroke internal combustion engine
    DE102005062284B4 (en) * 2005-12-24 2019-02-28 Ansaldo Energia Ip Uk Limited Combustion chamber for a gas turbine
    US7946382B2 (en) 2006-05-23 2011-05-24 Southwest Research Institute Gas compressor with side branch absorber for pulsation control
    JP2008025472A (en) * 2006-07-21 2008-02-07 Denso Corp Noise reducing device
    US7788926B2 (en) * 2006-08-18 2010-09-07 Siemens Energy, Inc. Resonator device at junction of combustor and combustion chamber
    JP5054988B2 (en) * 2007-01-24 2012-10-24 三菱重工業株式会社 Combustor
    US20080253900A1 (en) * 2007-04-11 2008-10-16 Harris Ralph E Gas compressor with pulsation absorber for reducing cylinder nozzle resonant pulsation
    US8123498B2 (en) 2008-01-24 2012-02-28 Southern Gas Association Gas Machinery Research Council Tunable choke tube for pulsation control device used with gas compressor
    JP4993755B2 (en) * 2008-03-18 2012-08-08 日産自動車株式会社 Intake sound generator
    US9275628B2 (en) * 2008-05-05 2016-03-01 Bonnie S. Schnitta Tunable frequency acoustic structures
    CH699322A1 (en) * 2008-08-14 2010-02-15 Alstom Technology Ltd METHOD FOR SETTING A Helmholtz resonator AND HELMHOLTZ RESONATOR FOR IMPLEMENTING THE PROCESS.
    US7757808B1 (en) * 2009-02-04 2010-07-20 Gm Global Technology Operations, Inc. Noise reduction system
    US8030957B2 (en) 2009-03-25 2011-10-04 Aehr Test Systems System for testing an integrated circuit of a device and its method of use
    US8408358B1 (en) * 2009-06-12 2013-04-02 Cornerstone Research Group, Inc. Morphing resonators for adaptive noise reduction
    US8789372B2 (en) 2009-07-08 2014-07-29 General Electric Company Injector with integrated resonator
    RU2508506C2 (en) * 2009-09-01 2014-02-27 Дженерал Электрик Компани Method and unit for fluid feed in gas turbine engine combustion chamber
    US7896126B1 (en) * 2009-12-18 2011-03-01 Raytheon Company Methods and apparatus for sound suppression
    KR101138360B1 (en) 2010-04-23 2012-04-26 서울대학교산학협력단 Method of semi-active combustion control and apparatus thereof.
    JP5693293B2 (en) * 2011-02-25 2015-04-01 三菱重工業株式会社 Combustor
    GB201108917D0 (en) * 2011-05-27 2011-07-13 Rolls Royce Plc A Hydraulic damping apparatus
    US9341375B2 (en) 2011-07-22 2016-05-17 General Electric Company System for damping oscillations in a turbine combustor
    US8469141B2 (en) 2011-08-10 2013-06-25 General Electric Company Acoustic damping device for use in gas turbine engine
    US8966903B2 (en) 2011-08-17 2015-03-03 General Electric Company Combustor resonator with non-uniform resonator passages
    JP5834816B2 (en) * 2011-11-22 2015-12-24 ヤマハ株式会社 Acoustic structure
    EP2623732A1 (en) * 2012-02-02 2013-08-07 Siemens Aktiengesellschaft Assembly and method for dampening acoustic vibrations in such an assembly
    US9286882B1 (en) * 2012-03-07 2016-03-15 Great Lakes Sound & Vibration, Inc. Systems and methods for active exhaust noise cancellation
    US10088165B2 (en) * 2015-04-07 2018-10-02 General Electric Company System and method for tuning resonators
    US9400108B2 (en) 2013-05-14 2016-07-26 Siemens Aktiengesellschaft Acoustic damping system for a combustor of a gas turbine engine
    EP2848865A1 (en) 2013-09-12 2015-03-18 Alstom Technology Ltd Thermoacoustic stabilization method
    CN104676646B (en) * 2013-10-25 2019-08-13 安萨尔多能源瑞士股份公司 The damping unit of burner for gas turbine
    EP3029376B1 (en) * 2014-12-01 2018-10-03 Ansaldo Energia IP UK Limited Gas turbine with a helmholtz damper
    KR20160079277A (en) * 2014-12-26 2016-07-06 삼성전자주식회사 Vacuum cleaner and control method for the same
    CN104566477B (en) * 2014-12-31 2019-02-01 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Frequency modulation device and term durability gas turbine flame barrel for term durability gas turbine flame barrel
    JP6639219B2 (en) * 2015-12-18 2020-02-05 株式会社マーレ フィルターシステムズ Air intake noise reduction device for internal combustion engine
    EP3182008A1 (en) * 2015-12-18 2017-06-21 Ansaldo Energia IP UK Limited Helmholtz damper for a gas turbine and gas turbine with such helmholtz damper
    US10415471B2 (en) 2016-11-30 2019-09-17 United Technologies Corporation Variable volume acoustic damper
    US10415506B2 (en) 2017-03-07 2019-09-17 United Technologies Corporation Multi degree of freedom flutter damper
    US10612464B2 (en) 2017-03-07 2020-04-07 United Technologies Corporation Flutter inhibiting intake for gas turbine propulsion system
    US10941708B2 (en) 2017-03-07 2021-03-09 Raytheon Technologies Corporation Acoustically damped gas turbine engine
    US10619566B2 (en) 2017-03-07 2020-04-14 United Technologies Corporation Flutter damper for a turbofan engine
    US10428685B2 (en) 2017-03-07 2019-10-01 United Technologies Corporation Flutter inhibiting intake for gas turbine propulsion system
    US10539156B2 (en) * 2017-03-07 2020-01-21 United Technologies Corporation Variable displacement flutter damper for a turbofan engine
    US10422280B2 (en) 2017-03-07 2019-09-24 United Technologies Corporation Fan flutter suppression system
    US10167780B2 (en) * 2017-05-25 2019-01-01 Pratt & Whitney Canada Corp. Tunable resonator
    EP3434876A1 (en) * 2017-07-25 2019-01-30 Siemens Aktiengesellschaft Combustor apparatus and method of operating combustor apparatus
    EP3782937B1 (en) * 2018-04-16 2022-08-24 Kawasaki Jukogyo Kabushiki Kaisha Belt conveyor
    JP7257215B2 (en) * 2019-03-27 2023-04-13 三菱重工業株式会社 Acoustic dampers, combustors and gas turbines
    DE102021103187A1 (en) 2021-02-11 2022-08-11 Bayerische Motoren Werke Aktiengesellschaft Helmholtz resonator for a motor vehicle and motor vehicle with a Helmholtz resonator
    CN113757720B (en) * 2021-09-18 2023-01-31 北京航空航天大学 Combustion oscillation control device and method and combustion chamber
    CN116293795A (en) * 2021-12-06 2023-06-23 通用电气阿维奥有限责任公司 Dome integrated acoustic damper for gas turbine combustor applications

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3324805A1 (en) 1983-07-09 1985-01-17 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH, 4000 Düsseldorf Device for the prevention of pressure fluctuations in combustion chambers
    DE19640980A1 (en) 1996-10-04 1998-04-16 Asea Brown Boveri Device for damping thermo-acoustic vibrations in combustion chamber of gas turbine

    Family Cites Families (23)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3748852A (en) * 1969-12-05 1973-07-31 L Cole Self-stabilizing pressure compensated injector
    JPS5544404Y2 (en) * 1974-05-09 1980-10-18
    DE2851248C2 (en) * 1978-11-27 1984-02-16 Didier-Werke Ag, 6200 Wiesbaden Device for the combustion of heating gases, liquid, dusty or lumpy fuels
    JPS5970868A (en) * 1982-10-15 1984-04-21 Nippon Denso Co Ltd Variable volume resonant muffler system
    JPS61129414A (en) * 1984-11-27 1986-06-17 Agency Of Ind Science & Technol Silencer device of adaptable type
    JPS6424109A (en) * 1987-07-20 1989-01-26 Sanshin Kogyo Kk Exhaust muffler structure of marine vessel propeller
    US5283398A (en) * 1989-12-26 1994-02-01 Tsuchiya Mfg. Co., Ltd. Resonator type silencer
    JPH0476943A (en) * 1990-07-18 1992-03-11 Nec Corp Semiconductor element
    US5205326A (en) * 1991-08-23 1993-04-27 Hydraulic Power Systems, Inc. Pressure response type pulsation damper noise attenuator and accumulator
    EP0576717A1 (en) * 1992-07-03 1994-01-05 Abb Research Ltd. Gas turbine combustor
    DE59208715D1 (en) * 1992-11-09 1997-08-21 Asea Brown Boveri Gas turbine combustor
    US5475189A (en) * 1992-11-16 1995-12-12 Carrier Corporation Condition responsive muffler for refrigerant compressors
    DE4336112A1 (en) * 1993-10-22 1995-04-27 Knecht Filterwerke Gmbh Shunt resonator
    JPH07139738A (en) * 1993-11-12 1995-05-30 Hitachi Ltd Gas turbine combustion device
    JP3206260B2 (en) * 1993-11-25 2001-09-10 トヨタ自動車株式会社 Intake resonator
    JP3233798B2 (en) * 1994-02-16 2001-11-26 三菱重工業株式会社 Combustor combustion vibration / pressure fluctuation reduction device
    DE4414232A1 (en) * 1994-04-23 1995-10-26 Abb Management Ag Device for damping thermoacoustic vibrations in a combustion chamber
    JPH1144266A (en) * 1997-07-29 1999-02-16 Toyota Motor Corp Resonator
    EP0974788B1 (en) * 1998-07-23 2014-11-26 Alstom Technology Ltd Device for directed noise attenuation in a turbomachine
    JP3592092B2 (en) * 1998-08-10 2004-11-24 株式会社日立製作所 Combustor
    EP0985882B1 (en) * 1998-09-10 2003-12-03 ALSTOM (Switzerland) Ltd Vibration damping in combustors
    GB2357141A (en) * 1999-12-09 2001-06-13 Draftex Ind Ltd Combined resonator and coolant store for an IC engine
    KR100364741B1 (en) * 2000-09-28 2002-12-16 엘지전자 주식회사 Suction muffler of compressor

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3324805A1 (en) 1983-07-09 1985-01-17 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH, 4000 Düsseldorf Device for the prevention of pressure fluctuations in combustion chambers
    DE19640980A1 (en) 1996-10-04 1998-04-16 Asea Brown Boveri Device for damping thermo-acoustic vibrations in combustion chamber of gas turbine

    Cited By (27)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7331182B2 (en) 2002-01-16 2008-02-19 Alstom Technology Ltd Combustion chamber for a gas turbine
    EP1342953A1 (en) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Gas turbine
    WO2003074936A1 (en) * 2002-03-07 2003-09-12 Siemens Aktiengesellschaft Gas turbine
    CN1320314C (en) * 2002-03-07 2007-06-06 西门子公司 Gas turbine
    US7246493B2 (en) 2002-03-07 2007-07-24 Siemens Aktiengesellschaft Gas turbine
    EP1962018A1 (en) * 2002-12-23 2008-08-27 Rolls-Royce plc Combustion chamber for gas turbine engine
    EP1990579A1 (en) * 2007-05-10 2008-11-12 Siemens Aktiengesellschaft Device and method for measuring acoustic oscillations in the fluid flow and gas turbine facility with such a device
    WO2008138828A1 (en) * 2007-05-10 2008-11-20 Siemens Aktiengesellschaft Device and method for measuring acoustic vibrations in a fluid flow and a gas turbine installation with such a device
    EP2397761A1 (en) 2010-06-16 2011-12-21 Alstom Technology Ltd Helmholtz Damper and Method for Regulating the Resonance Frequency of a Helmholtz Damper
    EP2397760A1 (en) 2010-06-16 2011-12-21 Alstom Technology Ltd Damper Arrangement and Method for Designing Same
    US8931589B2 (en) 2010-06-16 2015-01-13 Alstom Technology Ltd. Damper arrangement and method for designing same
    US8727070B2 (en) 2010-06-16 2014-05-20 Alstom Technology Ltd Helmholtz damper and method for regulating the resonance frequency of a Helmholtz damper
    EP2400142A1 (en) * 2010-06-23 2011-12-28 MAHLE Filter Systems Japan Corporation Intake sound generation apparatus for internal combustion engine
    US8322486B2 (en) 2010-06-23 2012-12-04 Mahle Filter Systems Japan Corporation Intake sound generation apparatus for internal combustion engine
    DE202011004521U1 (en) 2011-03-29 2011-06-09 Alstom Technology Ltd. Gas turbine and intake manifold
    ITMI20110902A1 (en) * 2011-05-20 2012-11-21 Consorzio Intellimech DEVICE FOR FITTING PRESSURE WAVES
    EP2837782A1 (en) * 2013-08-14 2015-02-18 Alstom Technology Ltd Damper for combustion oscillation damping in a gas turbine
    EP2837783A1 (en) * 2013-08-14 2015-02-18 Alstom Technology Ltd Damper for combustion oscillation damping in a gas turbine
    US9970659B2 (en) 2013-08-14 2018-05-15 Ansaldo Energia Ip Uk Limited Damper for combustion oscillation damping in a gas turbine
    CN105202576A (en) * 2014-06-30 2015-12-30 阿尔斯通技术有限公司 Damper for gas turbine
    CN105202576B (en) * 2014-06-30 2021-04-27 安萨尔多能源瑞士股份公司 Damper for gas turbine
    CN104235987B (en) * 2014-09-30 2017-02-15 长城汽车股份有限公司 Air conditioner system and vehicle comprising same
    WO2016071112A1 (en) * 2014-11-06 2016-05-12 Man Diesel & Turbo Se Exhaust gas aftertreatment device and exhaust gas aftertreatment method
    EP3153777A1 (en) * 2015-10-05 2017-04-12 General Electric Technology GmbH Damper assembly for a combustion chamber
    US10100688B2 (en) 2015-10-05 2018-10-16 Ansaldo Energia Switzerland AG Damper assembly for a combustion chamber
    CN108757101A (en) * 2018-05-15 2018-11-06 浙江吉利控股集团有限公司 A kind of resonance exhaust silencer for vehicle air inlet system and exhaust system
    RU214084U1 (en) * 2022-04-03 2022-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) NOISE SUPPRESSION DEVICE

    Also Published As

    Publication number Publication date
    US20020000343A1 (en) 2002-01-03
    JP2002129982A (en) 2002-05-09
    EP1158247B1 (en) 2006-04-19
    DE50109527D1 (en) 2006-05-24
    US6634457B2 (en) 2003-10-21
    EP1158247A3 (en) 2002-01-02
    JP4880825B2 (en) 2012-02-22
    DE10026121A1 (en) 2001-11-29

    Similar Documents

    Publication Publication Date Title
    EP1158247A2 (en) Apparatus to reduce acoustic vibrations in a combustion chamber
    DE102010037078B4 (en) Acoustically stiffened gas turbine combustor duct
    DE10058688B4 (en) Damper arrangement for the reduction of combustion chamber pulsations
    EP1423645B1 (en) Damping arrangement for reducing combustion chamber pulsations in a gas turbine system
    EP1476699B1 (en) Combustion chamber and damper arrangement for reduction of combustion chamber pulsations in a gas turbine plant
    EP1924805A1 (en) Method and apparatus for damping of thermo-acoustic oscillations, in particular in a gas turbine
    DE19640980B4 (en) Device for damping thermoacoustic oscillations in a combustion chamber
    EP1483536B1 (en) Gas turbine
    DE19851636A1 (en) Damping device for reducing vibration amplitude of acoustic waves for burner for internal combustion engine operation is preferably for driving gas turbo-group, with mixture area for air and fuel
    EP2354659A1 (en) Helmholtz damper for installing in the combustor of a gas turbine and also method for installing such a helmholtz damper
    WO1993010401A1 (en) Arrangement for suppressing combustion-caused vibrations in the combustion chamber of a gas turbine system
    DE2712326A1 (en) BURNER
    EP0011189A1 (en) Device with a membrane for damping oscillations in flowing liquids
    DE4131501A1 (en) Damper for pressure waves in IC- engine fuel feed pipe - reduces tension in fluid in fluid chamber fluid-tightly sepd. from damper chamber by membrane
    DE1523515A1 (en) Hydro-pneumatic resonator
    DE3300499A1 (en) Sound absorber for passages through which liquids flow
    EP1596130B1 (en) Device for damping thermoacoustic oscillations in a combustion chamber with a variable resonator frequency
    EP1624251B1 (en) Apparatus for reducing thermoacoustic oscillations in combustion chambers with adjustable resonance frequency
    DE4439704A1 (en) Pressure pulsation reduction device for ic engine exhaust pipe
    DE102007025051A1 (en) Cabin gas burner
    DE19956166B4 (en) Annular chamber damper
    EP0065076A2 (en) Resonance charging with variable intake system
    DE3025794C2 (en) Device for suppressing vibrations that occur in fired industrial furnaces, in particular wind heaters
    EP1624250A1 (en) Apparatus for reducing thermoacoustic oscillations in combustion chambers
    EP1724527A1 (en) Combustion chamber and method of suppressing combustion vibrations

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE GB

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 7F 23R 3/16 A, 7F 23M 13/00 B, 7F 01N 1/02 B

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    17P Request for examination filed

    Effective date: 20020524

    AKX Designation fees paid

    Free format text: DE GB

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM TECHNOLOGY LTD

    17Q First examination report despatched

    Effective date: 20041202

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50109527

    Country of ref document: DE

    Date of ref document: 20060524

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060607

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070122

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50109527

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50109527

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50109527

    Country of ref document: DE

    Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20170419

    Year of fee payment: 17

    Ref country code: DE

    Payment date: 20170419

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50109527

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50109527

    Country of ref document: DE

    Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

    Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20170824 AND 20170830

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50109527

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20180430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180430