EP1158247B1 - Apparatus to reduce acoustic vibrations in a combustion chamber - Google Patents
Apparatus to reduce acoustic vibrations in a combustion chamber Download PDFInfo
- Publication number
- EP1158247B1 EP1158247B1 EP01110618A EP01110618A EP1158247B1 EP 1158247 B1 EP1158247 B1 EP 1158247B1 EP 01110618 A EP01110618 A EP 01110618A EP 01110618 A EP01110618 A EP 01110618A EP 1158247 B1 EP1158247 B1 EP 1158247B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hollow body
- helmholtz resonator
- volume
- combustion chamber
- supply line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 34
- 238000013016 damping Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 32
- 230000010355 oscillation Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical group [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/02—Silencing apparatus characterised by method of silencing by using resonance
- F01N1/023—Helmholtz resonators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/02—Silencing apparatus characterised by method of silencing by using resonance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2490/00—Structure, disposition or shape of gas-chambers
- F01N2490/12—Chambers having variable volumes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2210/00—Noise abatement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the present invention relates to a device for damping acoustic vibrations in a combustion chamber and a combustion chamber arrangement, in particular a gas or steam turbine, which includes the device.
- the main field of application of the present invention is in the field of industrial gas turbines.
- industrial gas turbines all over the world, especially in power plant applications, ever higher demands are placed on operational readiness, service life and exhaust gas quality.
- the increasing awareness of environmental protection and environmental compatibility requires compliance with the lowest possible pollutant emissions.
- thermoacoustic oscillations in the combustion chamber.
- a Helmholtz resonator behaves acoustically like an infinitely large opening, ie it prevents the formation of a standing wave at this frequency.
- thermoacoustic oscillations with the help of a Helmholtz resonator is also already used for damping the vibrations in combustion chambers of gas or steam turbines.
- the frequency to be damped is determined not by an intermittent combustion, but by the fulfillment of the Rayleigh criterion in the combustion chamber and the acoustic response of the surrounding system of inflow, burner, combustion chamber and acoustic termination condition.
- the frequency to be damped can therefore not be determined with the required accuracy in advance in these systems with the currently available computational tools. However, this is the prerequisite in order to take into account the exact dimensioning of the resonance volume in the construction of the gas turbine. Furthermore, the acoustic behavior of the system and thus the frequencies of the vibrations to be damped in a change in the operating point can change significantly, so that under certain circumstances additional resonators that are tuned to other frequencies must be used.
- Such an arrangement with several Helmholtz resonators is known for example from DE 33 24 805 A1.
- the document describes a device for preventing pressure oscillations in combustion chambers, in which a plurality of Helmholtz resonators with different resonance volumes along the gas line path to the burner are arranged. Due to the different resonance volumes, vibrations of different frequencies can be dampened with this system.
- the optimal However, dimensioning of the individual Helmholtz resonators here again requires knowledge of the frequencies occurring during operation of the system, which can not yet be specified exactly during the construction of the system. Furthermore, the arrangement of several Helmholtz resonators is unfavorable due to the required additional space.
- DE 196 40 980 A1 describes another known device for damping thermoacoustic oscillations in a combustion chamber.
- the lateral wall of the resonance volume of the Helmholtz resonator is designed as a mechanical spring.
- An additional mechanical mass is attached to the wall of the end face of the resonance volume which oscillates due to the spring action.
- the virtual volume of the Helmholtz resonator is influenced and a greater damping performance is achieved.
- a fine-tuning of the resonant frequency can be carried out subsequently.
- this also requires a subsequent intervention in the construction of the gas turbine plant.
- US 5 103 931 A describes a device for soundproofing of internal combustion engines, in which in one embodiment, a Helmholtz resonator is also used.
- the Helmholtz resonator is bounded on one side by an expandable membrane with which the resonator volume can be adjusted and which separates the resonator volume from a fluid chamber.
- the present invention has for its object to provide a device for damping thermoacoustic vibrations and a combustion chamber arrangement with this device, which allows continuous adaptation to the frequencies of the vibrations to be damped, even under high pressure conditions, such as those in gas turbines.
- the device is composed of a Helmholtz resonator with a connecting channel which is connected to the combustion chamber, for example the combustion chamber of a gas turbine.
- a fluid for example the combustion chamber of a gas turbine.
- the volume-variable hollow body in the Helmholtz resonator thus reduces the resonant volume when the hollow body is inflated via the feed line with the gas.
- the resonant volume of the Helmholtz resonator increases when a certain amount of the gas is discharged from the hollow body.
- the change in the resonance volume causes a change in the resonance frequency in a known manner.
- the resonant frequency of the Helmholtz resonator can be adjusted at any time by simply inflating or deflating the hollow body to the occurring in the chamber volume thermo-acoustic vibration frequencies.
- An exact knowledge of the frequencies occurring during operation in the construction of the corresponding system is therefore no longer necessary.
- the vibrations can be customized over a wide range adjustable frequencies are attenuated.
- the resonance frequency of the built-in resonators can be adjusted to match the respective operating point.
- a particular advantage results from the fact that the resonant volume of the Helmholtz resonator, which is usually arranged within the pressure housing of the gas turbine, can be changed without the need for moving parts have to be passed through the wall of the pressure vessel.
- the supply line to the hollow body can be designed as a rigid tube and therefore easily be performed with high density through the pressure housing through to the outside.
- the Helmholtz resonator has a position-variable wall, to which the hollow body adjoins.
- the position variable wall is pressed by a spring mechanism against the hollow body.
- the positionally variable wall is pressed inwards against the spring force and thus reduces the resonant volume of the Helmholtz resonator.
- the resonance volume increases by displacement of the wall due to the force acting in the direction of the hollow body spring force.
- the Helmholtz resonator can in this case be designed in the form of a bellows, as is known from the initially mentioned DE 196 40 980 A1. It goes without saying, however, that other possibilities of a corresponding embodiment the Helmholtz resonator are possible, in which the above effect is achieved.
- the volume-changeable hollow body must be fixed at one point relative to the Helmholtz resonator within the pressure housing in order to be able to exert the corresponding counterforce on the position-variable wall of the Helmholtz resonator.
- the volume-variable hollow body is preferably designed as an inflatable temperature-resistant balloon or as an inflatable metallic bellows.
- the supply line to the hollow body can be made flexible or rigid.
- the gas supply to the hollow body or the gas discharge from the hollow body is automatically carried out by a controller which is provided outside the pressure housing on the supply line.
- This controller alters the resonance volume of the Helmholtz resonator as a function of the frequency of the highest-amplitude thermoacoustic oscillations occurring in the combustion chamber in which it blows or discharges the gas into the hollow body.
- the respective vibration amplitudes and vibration frequencies are in this case measured with a corresponding sensor, as is known to the person skilled in the art.
- the controller controls the resonance volume or the volume of the hollow body by supplying or discharging compressor air, which he receives from the compressor outlet of the gas turbine. In this way, an optimal vibration damping can be achieved at any time during operation of the gas turbine, since the controller can adjust the resonance volume at any time exactly to the respective frequencies occurring.
- Figure 1 shows the basic structure of a Helmholtz resonator 4 with the resonance volume 3 and a connection channel 2, as it is known from the prior art. Details of this have already been set out in the introduction to the description.
- FIG. 1 A first exemplary embodiment of a device according to the invention on a combustion chamber 1 of a gas turbine is shown in FIG.
- the tunable Helmholtz resonator 4 can be seen, which is connected via a connecting channel 2 with the combustion chamber 1.
- a hollow body 6 is arranged, whose volume is variable by supplying or discharging gas via a supply line 5.
- the hollow body 6 consists in this example of a metallic bellows, which is inflated by air 10 from the compressor outlet of the gas turbine or by venting this air is relaxed.
- the interior of the Helmholtz resonator 4 filled with combustion gases, the so-called resonance volume 3, is enlarged or reduced starting from a central position, as indicated by the arrow in the figure.
- the design of the hollow body 6 as a metallic bellows is particularly suitable for use under high temperatures.
- the supply line 5 to the bellows 6 takes place through the pressure housing 8 of the gas turbine.
- This passage through the pressure housing 8 can be sealed well, since it contains no moving components. With the present device, it is therefore possible to change the resonance volume 3 of the Helmholtz resonator 4, which is mounted within the pressure housing 8, from outside the pressure housing, without increasing the risk of leakage of the pressure housing 8.
- FIG. 3 shows a further example of a possible embodiment of the device according to the invention.
- the hollow body 6 is not arranged inside the Helmholtz resonator 4, but adjoins a position-variable wall 11 of this resonator 4.
- the operating principle is the same as already explained in connection with FIG.
- the Helmholtz resonator 4 as well as the hollow body 6 - at least partially - designed as a bellows, wherein an end face of the Helmholtz resonator 4 adjacent to an end face of the hollow body 6.
- the opposite end face of the hollow body 6 is fixed to a corresponding anchoring 9 in the pressure housing 8.
- the positionally variable wall 11 of the Helmholtz resonator 4 shifts to the left in the figure, so that the resonance volume 3 is reduced.
- a spring mechanism it is necessary for a spring mechanism to press the position-variable wall 11 of the Helmholtz resonator 4 against the hollow body 6.
- This spring mechanism can be achieved for example by an elastic configuration of the wall material of the bellows.
- a spring may be provided within the Helmholtz resonator 4 for this purpose.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Vibration Prevention Devices (AREA)
Description
Die vorliegende Erfindung betrifft eine Vorrichtung zur Dämpfung akustischer Schwingungen in einer Brennkammer sowie eine Brennkammeranordnung, insbesondere einer Gas- oder Dampfturbine, die die Vorrichtung beinhaltet.The present invention relates to a device for damping acoustic vibrations in a combustion chamber and a combustion chamber arrangement, in particular a gas or steam turbine, which includes the device.
Das Hauptanwendungsgebiet der vorliegenden Erfindung liegt im Bereich der Industriegasturbinen. Weltweit werden an Industriegasturbinen, vor allem im Kraftwerkseinsatz, immer höhere Anforderungen an die Einsatzbereitschaft, Lebensdauer und Abgasqualität gestellt. Das zunehmende Bewusstsein für Umweltschutz und Umweltverträglichkeit erfordert die Einhaltung möglichst niedriger Schadstoffemissionen.The main field of application of the present invention is in the field of industrial gas turbines. On industrial gas turbines all over the world, especially in power plant applications, ever higher demands are placed on operational readiness, service life and exhaust gas quality. The increasing awareness of environmental protection and environmental compatibility requires compliance with the lowest possible pollutant emissions.
Niedrige Emissionen lassen sich bei Industriegasturbinen in wirtschaftlicher Weise nur durch den Einsatz von Vormischbrennern erreichen. Diese Art der Verbrennung neigt jedoch in geschlossenen Brennkammern durch die Ausbildung kohärenter Strukturen und daraus resultierender schwankender Wärmefreisetzung zur Generierung thermoakustischer Schwingungen in der Brennkammer. Diese thermoakustischen Schwingungen beeinflussen nicht nur die Verbrennungsqualität negativ, sondern können auch die Lebensdauer der hochbelasteten Bauelemente drastisch reduzieren.Low emissions can be achieved economically in industrial gas turbines only by the use of premix burners. However, this type of combustion tends in closed combustion chambers by the formation of coherent structures and resulting fluctuating heat release for generating thermoacoustic oscillations in the combustion chamber. These thermoacoustic vibrations not only negatively affect the quality of the combustion, but can also drastically reduce the life of the highly loaded components.
Zur Dämpfung derartiger thermoakustischer Schwingungen ist bereits seit langem die Anwendung des Prinzips des so genannten Helmholtz-Resonators bekannt. Dieses Prinzip wird im Folgenden anhand der Figur 1 näher erläutert. Die Figur zeigt den prinzipiellen Aufbau eines Helmholtz-Resonators 4, der aus einem Resonanzvolumen 3 und einem Verbindungskanal 2 zu der Kammer 1 besteht, in der die thermoakustischen Schwingungen auftreten. Eine derartige Vorrichtung kann analog einem mechanischen Feder-Masse-System betrachtet werden. Dabei wirkt das Volumen V des Helmholtz-Resonators 4 als Feder und das im Verbindungskanal 2 befindliche Gas als Masse. Mit Hilfe der Hohlraumabmessungen kann die Resonanzfrequenz f0 des Systems berechnet werden.
mit:
- V =
- Volumen des Helmholtz-
Resonators 4 - R =
- Radius des
Verbindungskanals 2 - l =
- Länge des
Verbindungskanals 2 - S =
- Fläche der Öffnung, durch die die Anregung erfolgt
With:
- V =
- Volume of the Helmholtz
resonator 4 - R =
- Radius of the
connection channel 2 - l =
- Length of the
connection channel 2 - S =
- Area of the opening through which the excitation takes place
Bei dieser Resonanzfrequenz f0 verhält sich ein Helmholtz-Resonator akustisch wie eine unendlich große Öffnung, d.h. er verhindert die Entstehung einer stehenden Welle bei dieser Frequenz.At this resonance frequency f 0 , a Helmholtz resonator behaves acoustically like an infinitely large opening, ie it prevents the formation of a standing wave at this frequency.
Diese Technik der Dämpfung thermoakustischer Schwingungen mit Hilfe eines Helmholtz-Resonators wird auch zur Dämpfung der Schwingungen in Brennkammern von Gas- oder Dampfturbinen bereits eingesetzt. Beim Einsatz in Gas- oder Dampfturbinen tritt jedoch das Problem auf, dass die zu dämpfende Frequenz nicht durch eine intermittierende Verbrennung bestimmt wird, sondern durch die Erfüllung des Rayleigh-Kriteriums in der Brennkammer und die akustische Antwort des umgebenden Systems aus Zuströmung, Brenner, Brennkammer und akustischer Abschlussbedingung.This technique of damping thermoacoustic oscillations with the help of a Helmholtz resonator is also already used for damping the vibrations in combustion chambers of gas or steam turbines. When used in gas or steam turbines, however, the problem arises that the frequency to be damped is determined not by an intermittent combustion, but by the fulfillment of the Rayleigh criterion in the combustion chamber and the acoustic response of the surrounding system of inflow, burner, combustion chamber and acoustic termination condition.
Die zu dämpfende Frequenz lässt sich daher bei diesen Systemen mit den zurzeit zur Verfügung stehenden rechnerischen Werkzeugen nicht mit der erforderlichen Genauigkeit im Voraus bestimmen. Dies ist jedoch die Voraussetzung, um die exakte Dimensionierung des Resonanzvolumens beim Bau der Gasturbine berücksichtigen zu können. Weiterhin können sich das akustische Verhalten des Systems und somit die Frequenzen der zu dämpfenden Schwingungen bei einer Änderung des Betriebspunktes entscheidend ändern, so dass unter Umständen zusätzliche Resonatoren, die auf weitere Frequenzen abgestimmt sind, zum Einsatz kommen müssen.The frequency to be damped can therefore not be determined with the required accuracy in advance in these systems with the currently available computational tools. However, this is the prerequisite in order to take into account the exact dimensioning of the resonance volume in the construction of the gas turbine. Furthermore, the acoustic behavior of the system and thus the frequencies of the vibrations to be damped in a change in the operating point can change significantly, so that under certain circumstances additional resonators that are tuned to other frequencies must be used.
Eine derartige Anordnung mit mehreren Helmholtz-Resonatoren ist beispielsweise aus der DE 33 24 805 A1 bekannt. Die Druckschrift beschreibt eine Einrichtung zur Vermeidung von Druckschwingungen in Brennkammern, bei der mehrere Helmholtz-Resonatoren mit unterschiedlichem Resonanzvolumen entlang des Gasleitungsweges zum Brenner angeordnet sind. Durch die unterschiedlichen Resonanzvolumina lassen sich mit diesem System Schwingungen unterschiedlicher Frequenzen dämpfen. Die optimale Dimensionierung der einzelnen Helmholtz-Resonatoren erfordert jedoch auch hier wiederum die Kenntnis über die beim Betrieb der Anlage auftretenden Frequenzen, die beim Bau der Anlage jedoch noch nicht exakt angegeben werden können. Weiterhin ist die Anordnung mehrerer Helmholtz-Resonatoren aufgrund des dafür erforderlichen zusätzlichen Platzbedarfs ungünstig.Such an arrangement with several Helmholtz resonators is known for example from DE 33 24 805 A1. The document describes a device for preventing pressure oscillations in combustion chambers, in which a plurality of Helmholtz resonators with different resonance volumes along the gas line path to the burner are arranged. Due to the different resonance volumes, vibrations of different frequencies can be dampened with this system. The optimal However, dimensioning of the individual Helmholtz resonators here again requires knowledge of the frequencies occurring during operation of the system, which can not yet be specified exactly during the construction of the system. Furthermore, the arrangement of several Helmholtz resonators is unfavorable due to the required additional space.
Die DE 196 40 980 A1 beschreibt eine weitere bekannte Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer. Bei dieser Vorrichtung ist die seitliche Wandung des Resonanzvolumens des Helmholtz-Resonators als mechanische Feder ausgebildet. An der aufgrund der Federwirkung schwingenden Wandung der Stirnfläche des Resonanzvolumens ist eine zusätzliche mechanische Masse befestigt. Mit dieser Anordnung wird das virtuelle Volumen des Helmholtz-Resonators beeinflusst und eine größere Dämpferleistung erzielt. Durch Veränderung der mechanischen Masse am Resonator kann nachträglich eine Feinabstimmung auf die Resonanzfrequenz durchgeführt werden. Auch dies erfordert jedoch einen nachträglichen Eingriff in den Aufbau der Gasturbinenanlage.DE 196 40 980 A1 describes another known device for damping thermoacoustic oscillations in a combustion chamber. In this device, the lateral wall of the resonance volume of the Helmholtz resonator is designed as a mechanical spring. An additional mechanical mass is attached to the wall of the end face of the resonance volume which oscillates due to the spring action. With this arrangement, the virtual volume of the Helmholtz resonator is influenced and a greater damping performance is achieved. By changing the mechanical mass on the resonator, a fine-tuning of the resonant frequency can be carried out subsequently. However, this also requires a subsequent intervention in the construction of the gas turbine plant.
In der Vergangenheit wurden auf dem Gebiet der Abgasanlagen von Verbrennungsmotoren ebenfalls Helmholtz-Resonatoren zur Schwingungsdämpfung eingesetzt. Aus diesem Bereich ist auch der Einsatz von verstellbaren Resonatoren zur Änderung der Resonanzfrequenz bekannt. So wurden beispielsweise schon während des ersten Weltkrieges die Zweitakt-Dieselmotoren für Zeppelin-Luftschiffe der Firma Maybach durch verstellbare Resonatoren im Abgasrohr dem jeweiligen Betriebspunkt angepasst. Zu diesem Zweck wurden durch mechanische Getriebe Zylinder ineinander verschoben und dadurch das Resonanzvolumen verändert. Diese Technik erweist sich bei den genannten Abgasanlagen aufgrund der guten Zugänglichkeit dieser Anlagen und dem dort herrschenden relativ niedrigen Druck- und Temperaturverhältnis als praktikabel. Für den Einsatz im Druckbereich moderner Industriegasturbinen scheidet eine derartige Lösung jedoch vollständig aus. Die Durchführung eines mechanischen Getriebes durch das Druckgehäuse einer Gasturbine würde unvermeidbare Leckagen herbeiführen und daher zu nicht tolerierbaren Verlusten führen. Außerdem könnten die bei Industriegasturbinen vorherrschenden Temperatureinflüsse nur durch ein sehr kompliziertes Getriebe kompensiert werden.In the past, Helmholtz resonators for vibration damping were also used in the field of exhaust systems of internal combustion engines. From this area, the use of adjustable resonators for changing the resonance frequency is known. For example, during the First World War, the two-stroke diesel engines for Zeppelin airships from Maybach were adapted to the respective operating point by means of adjustable resonators in the exhaust pipe. For this purpose, cylinders were shifted into one another by mechanical gears, thereby changing the resonance volume. This technique proves to be practicable in the aforementioned exhaust systems due to the good accessibility of these systems and the prevailing there relatively low pressure and temperature ratio. However, such a solution is completely eliminated for use in the printing sector of modern industrial gas turbines. The implementation of a mechanical transmission through the pressure housing of a gas turbine would cause unavoidable leaks and therefore lead to intolerable losses. In addition, the temperature effects prevailing in industrial gas turbines could only be compensated by a very complicated transmission.
Die US 5 103 931 A beschreibt eine Vorrichtung zur Schalldämpfung von Verbrennungsmotoren, bei der in einer Ausgestaltung ebenfalls ein Helmholtz-Resonator eingesetzt wird. Der Helmholtz-Resonator ist auf einer Seite von einer dehnbaren Membran begrenzt, mit der das Resonatorvolumen angepasst werden kann und die das Resonatorvolumen von einer Flüssigkeitskammer trennt.US 5 103 931 A describes a device for soundproofing of internal combustion engines, in which in one embodiment, a Helmholtz resonator is also used. The Helmholtz resonator is bounded on one side by an expandable membrane with which the resonator volume can be adjusted and which separates the resonator volume from a fluid chamber.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Dämpfung von thermoakustischen Schwingungen sowie eine Brennkammeranordnung mit dieser vorrichtung anzugeben, die eine kontinuierliche Anpassung an die Frequenzen der zu dämpfenden Schwingungen auch unter hohen Druckverhältnissen, wie sie beispielsweise bei Gasturbinen vorliegen, ermöglicht.The present invention has for its object to provide a device for damping thermoacoustic vibrations and a combustion chamber arrangement with this device, which allows continuous adaptation to the frequencies of the vibrations to be damped, even under high pressure conditions, such as those in gas turbines.
Die Aufgabe wird mit der Vorrichtung bzw. der Brennkammeranordnung nach den Ansprüchen 1 bzw. 7 gelöst. Vorteilhafte Ausgestaltungen der Vorrichtung sowie der Brennkammeranordnung sind Gegenstand der Unteransprüche.The object is achieved with the device or the combustion chamber arrangement according to
Die Vorrichtung setzt sich aus einem Helmholtz-Resonator mit einem Verbindungskanal zusammen, der mit der Brennkammer, beispielsweise der Brennkammer einer Gasturbine, verbunden wird. Im Gegensatz zu den bekannten Dämpfungsvorrichtungen ist bei der vorliegenden Vorrichtung ein durch Zuführen oder Ablassen eines Fluids über eine Zuleitung im Volumen veränderbarer Hohlkörper vorgesehen, der entweder innerhalb des Helmholtz-Resonators angeordnet ist oder derart an diesen angrenzt, dass sich das Resonanzvolumen des Helmholtz-Resonators bei einer Änderung des Volumens des Hohlkörpers verändert, wobei das Fluid ein Gas ist, dessen Zuführen bzw. Ablassen durch einen Regler gesteuert wird.The device is composed of a Helmholtz resonator with a connecting channel which is connected to the combustion chamber, for example the combustion chamber of a gas turbine. In contrast to the known damping devices in the present device is provided by supplying or discharging a fluid via a supply line variable in volume hollow body which is either disposed within the Helmholtz resonator or adjacent to such that the resonant volume of the Helmholtz resonator changed with a change in the volume of the hollow body, wherein the fluid is a gas, the supply or discharge is controlled by a regulator.
Bei einer Anordnung des im Volumen veränderbaren Hohlkörpers im Helmholtz-Resonator verkleinert sich somit das Resonanzvolumen, wenn der Hohlkörper über die Zuleitung mit dem Gas aufgeblasen wird. Im umgekehrten Fall vergrößert sich das Resonanzvolumen des Helmholtz-Resonators, wenn aus dem Hohlkörper eine bestimmte Menge des Gases abgelassen wird. Die Veränderung des Resonanzvolumens bewirkt in bekannter Weise eine Änderung der Resonanzfrequenz.With an arrangement of the volume-variable hollow body in the Helmholtz resonator thus reduces the resonant volume when the hollow body is inflated via the feed line with the gas. In the opposite case, the resonant volume of the Helmholtz resonator increases when a certain amount of the gas is discharged from the hollow body. The change in the resonance volume causes a change in the resonance frequency in a known manner.
Auf diese Weise kann die Resonanzfrequenz des Helmholtz-Resonators jederzeit durch einfaches Aufblasen oder Ablassen des Hohlkörpers an die im Kammervolumen auftretenden thermoakustischen Schwingungsfrequenzen angepasst werden. Eine genaue Kenntnis der im Betrieb auftretenden Frequenzen beim Bau der entsprechenden Anlage ist daher nicht mehr erforderlich. Die Schwingungen können über ein breites Spektrum individuell einstellbarer Frequenzen gedämpft werden. Im praktischen Einsatz lässt sich durch die Veränderung des Resonanzvolumens, die zu jeder Zeit während des Betriebs der Anlage möglich ist, die Resonanzfrequenz der eingebauten Resonatoren passend zum jeweiligen Betriebspunkt einstellen.In this way, the resonant frequency of the Helmholtz resonator can be adjusted at any time by simply inflating or deflating the hollow body to the occurring in the chamber volume thermo-acoustic vibration frequencies. An exact knowledge of the frequencies occurring during operation in the construction of the corresponding system is therefore no longer necessary. The vibrations can be customized over a wide range adjustable frequencies are attenuated. In practical use, by changing the resonance volume, which is possible at any time during the operation of the system, the resonance frequency of the built-in resonators can be adjusted to match the respective operating point.
Ein besonderer Vorteil ergibt sich dadurch, dass das Resonanzvolumen des Helmholtz-Resonators, der in der Regel innerhalb des Druckgehäuses der Gasturbine angeordnet ist, verändert werden kann, ohne dass hierfür bewegliche Teile durch die Wandung des Druckbehälters hindurchgeführt werden müssen. Die Zuleitung zum Hohlkörper kann als starres Rohr ausgeführt und daher problemlos mit hoher Dichtigkeit durch das Druckgehäuse hindurch zum Außenraum geführt werden.A particular advantage results from the fact that the resonant volume of the Helmholtz resonator, which is usually arranged within the pressure housing of the gas turbine, can be changed without the need for moving parts have to be passed through the wall of the pressure vessel. The supply line to the hollow body can be designed as a rigid tube and therefore easily be performed with high density through the pressure housing through to the outside.
In einer weiteren Ausführungsform der vorliegenden Vorrichtung weist der Helmholtz-Resonator eine positionsveränderbare Wandung auf, an die der Hohlkörper angrenzt. Die positionsveränderbare Wandung wird über einen Federmechanismus gegen den Hohlkörper gedrückt. Auf diese weise wird bei einem Aufblasen des Hohlkörpers die positionsveränderbare Wandung gegen die Federkraft nach Innen gedrückt und verringert auf diese Weise das Resonanzvolumen des Helmholtz-Resonators. Im umgekehrten Fall des Ablassens von Gas aus dem Hohlkörper vergrößert sich das Resonanzvolumen durch Verschiebung der Wandung aufgrund der in Richtung des Hohlkörpers wirkenden Federkraft. Der Helmholtz-Resonator kann hierbei in Form eines Faltenbalges ausgeführt sein, wie dies aus der eingangs angeführten DE 196 40 980 A1 bekannt ist. Es versteht sich jedoch von selbst, dass auch andere Möglichkeiten einer entsprechenden Ausgestaltung des Helmholtz-Resonators möglich sind, bei der der obige Effekt erzielt wird.In a further embodiment of the present device, the Helmholtz resonator has a position-variable wall, to which the hollow body adjoins. The position variable wall is pressed by a spring mechanism against the hollow body. In this way, when the hollow body is inflated, the positionally variable wall is pressed inwards against the spring force and thus reduces the resonant volume of the Helmholtz resonator. In the reverse case of the discharge of gas from the hollow body, the resonance volume increases by displacement of the wall due to the force acting in the direction of the hollow body spring force. The Helmholtz resonator can in this case be designed in the form of a bellows, as is known from the initially mentioned DE 196 40 980 A1. It goes without saying, however, that other possibilities of a corresponding embodiment the Helmholtz resonator are possible, in which the above effect is achieved.
Bei dieser Ausführungsform muss der volumenveränderbare Hohlkörper an einer Stelle relativ zum Helmholtz-Resonator innerhalb des Druckgehäuses fixiert werden, um die entsprechende Gegenkraft auf die positionsveränderbare Wandung des Helmholtz-Resonators ausüben zu können.In this embodiment, the volume-changeable hollow body must be fixed at one point relative to the Helmholtz resonator within the pressure housing in order to be able to exert the corresponding counterforce on the position-variable wall of the Helmholtz resonator.
Der im Volumen veränderbare Hohlkörper ist vorzugsweise als aufblasbarer temperaturfester Ballon oder als aufblasbarer metallischer Faltenbalg ausgeführt. Die Zuleitung zum Hohlkörper kann flexibel oder starr ausgeführt werden.The volume-variable hollow body is preferably designed as an inflatable temperature-resistant balloon or as an inflatable metallic bellows. The supply line to the hollow body can be made flexible or rigid.
Die Gaszufuhr zum Hohlkörper bzw. das Gasablassen aus dem Hohlkörper wird automatisch von einem Regler vorgenommen, der außerhalb des Druckgehäuses an der Zuleitung vorgesehen ist. Dieser Regler verändert das Resonanzvolumen des Helmholtz-Resonators in Abhängigkeit von der in der Brennkammer auftretenden Frequenz der thermoakustischen Schwingungen mit der höchsten Amplitude, in dem er das Gas in den Hohlkörper bläst oder aus diesem ablässt. Die jeweiligen Schwingungsamplituden und Schwingungsfrequenzen werden hierbei mit einem entsprechenden Sensor, wie er dem Fachmann bekannt ist, gemessen. Vorzugsweise steuert der Regler das Resonanzvolumen bzw. das Volumen des Hohlkörpers durch Zufuhr bzw. Ablassen von Verdichterluft, die er vom Verdichteraustritt der Gasturbine erhält. Auf diese Art kann jederzeit während des Betriebs der Gasturbine eine optimale Schwingungsdämpfung erreicht werden, da der Regler das Resonanzvolumen jederzeit exakt an die jeweiligen auftretenden Frequenzen anpassen kann.The gas supply to the hollow body or the gas discharge from the hollow body is automatically carried out by a controller which is provided outside the pressure housing on the supply line. This controller alters the resonance volume of the Helmholtz resonator as a function of the frequency of the highest-amplitude thermoacoustic oscillations occurring in the combustion chamber in which it blows or discharges the gas into the hollow body. The respective vibration amplitudes and vibration frequencies are in this case measured with a corresponding sensor, as is known to the person skilled in the art. Preferably, the controller controls the resonance volume or the volume of the hollow body by supplying or discharging compressor air, which he receives from the compressor outlet of the gas turbine. In this way, an optimal vibration damping can be achieved at any time during operation of the gas turbine, since the controller can adjust the resonance volume at any time exactly to the respective frequencies occurring.
Die vorliegende Vorrichtung bzw. Brennkammeranordnung wird nachfolgend anhand von Ausführungsbeispielen in Verbindung mit den Figuren nochmals kurz erläutert. Hierbei zeigen:
- Fig. 1
- den prinzipiellen Aufbau eines Helmholtz-Resonators;
- Fig. 2
- ein erstes Ausführungsbeispiel für den Aufbau der vorliegenden Vorrichtung; und
- Fig. 3
- ein zweites Ausführungsbeispiel für den Aufbau der vorliegenden Vorrichtung.
- Fig. 1
- the basic structure of a Helmholtz resonator;
- Fig. 2
- a first embodiment of the structure of the present device; and
- Fig. 3
- A second embodiment of the structure of the present device.
Figur 1 zeigt den prinzipiellen Aufbau eines Helmholtz-Resonators 4 mit dem Resonanzvolumen 3 und einem Verbindungskanal 2, wie er aus dem Stand der Technik bekannt ist. Einzelheiten hierzu wurden in der Beschreibungseinleitung bereits dargelegt.Figure 1 shows the basic structure of a
Ein erstes Ausführungsbeispiel für eine erfindungsgemäße Vorrichtung an einer Brennkammer 1 einer Gasturbine ist in Figur 2 dargestellt. In dieser Figur ist der abstimmbare Helmholtz-Resonator 4 zu erkennen, der über einen Verbindungskanal 2 mit der Brennkammer 1 verbunden ist. Innerhalb des Helmholtz-Resonators 4 ist ein Hohlkörper 6 angeordnet, dessen Volumen durch Zuführen oder Ablassen von Gas über eine Zuleitung 5 veränderbar ist. Der Hohlkörper 6 besteht in diesem Beispiel aus einem metallischen Faltenbalg, der durch Luft 10 vom Verdichteraustritt der Gasturbine aufgeblasen oder durch Ablassen dieser Luft entspannt wird. Hierdurch wird der von Verbrennungsgasen gefüllte Innenraum des Helmholtz-Resonators 4, das so genannte Resonanzvolumen 3, ausgehend von einer Mittellage vergrößert oder verkleinert, wie in der Figur durch den Pfeil angedeutet ist. Die Steuerung des Aufblasens oder Ablassens des Faltenbalges 6 erfolgt über einen entsprechenden Regler 7, der das Volumen in Abhängigkeit von den jeweils zu dämpfenden thermoakustischen Schwingungsfrequenzen einstellt. Die Ausgestaltung des Hohlkörpers 6 als metallischer Faltenbalg ist besonders für den Einsatz unter hohen Temperaturen geeignet.A first exemplary embodiment of a device according to the invention on a
Die Zuleitung 5 zum Faltenbalg 6 erfolgt durch das Druckgehäuse 8 der Gasturbine hindurch. Diese Durchführung durch das Druckgehäuse 8 kann gut abgedichtet werden, da sie keine beweglichen Bauteile enthält. Mit der vorliegenden Vorrichtung ist es daher möglich, das Resonanzvolumen 3 des Helmholtz-Resonators 4, der innerhalb des Druckgehäuses 8 montiert ist, von außerhalb des Druckgehäuses zu verändern, ohne die Gefahr einer Leckage des Druckgehäuses 8 zu erhöhen.The
Entscheidenden Einfluss auf die Resonanzfrequenz des abstimmbaren Helmholtz-Resonators 4 haben nicht nur die Größe des Resonanzvolumens 3 und die Länge des Verbindungskanals 2 zur Brennkammer 1, sondern auch die Länge der Zuleitung 5 zum Regler 7 sowie die Temperatur der Steuerluft, d.h. des für das Aufblasen des Hohlkörpers 6 eingesetzten Gases. Die Zusammenhänge sind jedoch relativ komplex. Als Leitlinie kann angegeben werden, dass der mit der Vorrichtung regelbare Frequenzbereich mit zunehmender Temperaturdifferenz der im Helmholtz-Resonator 4 aneinander grenzenden Gase - Verbrennungsluft im Resonanzvolumen 3 und Steuerluft im Hohlkörper 6 - vergrößert wird. Durch geeignete Wahl bzw. Anpassung der Temperatur der eingesetzten Steuerluft zum Aufblasen des Hohlkörpers 6 kann dieser Frequenzbereich somit vergrößert werden.Decisive influence on the resonant frequency of the
Die Abstimmung des Resonanzvolumens 3 erfolgt über den automatischen Regler 7, der, wie bereits angeführt, je nach Frequenzlage der höchsten Schwingungsamplitude in der Brennkammer den Faltenbalg 6 vergrößert oder verkleinert. Da sich die Lage dieser Amplitude auf der Frequenzachse beim Betrieb des Brenners nur innerhalb eines relativ schmalen Bandes ändert, ist keine besonders schnelle Regelung erforderlich, um eine optimale Anpassung zu erzielen.The tuning of the
Figur 3 zeigt schließlich ein weiteres Beispiel für eine mögliche Ausführungsform der erfindungsgemäßen Vorrichtung. In diesem Beispiel ist der Hohlkörper 6 nicht innerhalb des Helmholtz-Resonators 4 angeordnet, sondern grenzt an eine positionsveränderbare Wandung 11 dieses Resonators 4 an. Das Funktionsprinzip ist das Gleiche wie im Zusammenhang mit Figur 2 bereits erläutert. Bei dieser Ausführungsform ist der Helmholtz-Resonator 4 ebenso wie der Hohlkörper 6 - zumindest teilweise - als Faltenbalg ausgeführt, wobei eine Stirnfläche des Helmholtz-Resonators 4 an eine Stirnfläche des Hohlkörpers 6 angrenzt. Die gegenüberliegende Stirnfläche des Hohlkörpers 6 ist an einer entsprechenden Verankerung 9 im Druckgehäuse 8 fixiert.Finally, FIG. 3 shows a further example of a possible embodiment of the device according to the invention. In this example, the
Wird bei dieser Ausführungsform der Hohlkörper 6 über die Zuleitung 5 und den Regler 7 aufgeblasen, so verschiebt sich die positionsveränderliche Wandung 11 des Helmholtz-Resonators 4 in der Figur nach links, so dass das Resonanzvolumen 3 verkleinert wird. Im umgekehrten Fall ergibt sich eine Verschiebung nach rechts, wobei das Resonanzvolumen 3 vergrößert wird. Für diese Verschiebung ist es allerdings erforderlich, dass ein Federmechanismus die positionsveränderbare Wandung 11 des Helmholtz-Resonators 4 gegen den Hohlkörper 6 drückt. Dieser Federmechanismus kann beispielsweise durch eine elastische Ausgestaltung des Wandmaterials des Faltenbalges erreicht werden. Alternativ kann hierfür eine Feder innerhalb des Helmholtz-Resonators 4 vorgesehen sein.If, in this embodiment, the
- 11
- Brennkammercombustion chamber
- 22
- Verbindungskanalconnecting channel
- 33
- Resonanzvolumenresonance volume
- 44
- Helmholtz-ResonatorHelmholtz resonator
- 55
- Zuleitungsupply
- 66
- Hohlkörper; Faltenbalg.Hollow body; Bellows.
- 77
- Reglerregulator
- 88th
- Druckgehäusepressure housing
- 99
- Verankerunganchoring
- 1010
- Luft vom VerdichteraustrittAir from the compressor outlet
- 1111
- positionsveränderbare Wandungposition adjustable wall
Claims (8)
- Apparatus for damping acoustic vibrations in a combustion chamber (1), comprising a Helmholtz resonator (4) having a variable resonant volume (3) and a connecting duct (2), by means of which the combustion chamber (1) can be connected to the resonant volume (3),
characterized
in that a hollow body (6) whose volume can be varied by supplying or discharging a fluid via a supply line (5) is contained within the Helmholtz resonator (4) or is adjoined by the latter in such a way that the resonant volume (3) of the Helmholtz resonator (4) varies with a change in volume of the hollow body (6), the fluid being a gas which is supplied or discharged in a manner controlled by a closed-loop controller. - Apparatus according to Claim 1,
characterized
in that the variable-volume hollow body (6) is an inflatable, heat-resistant balloon. - Apparatus according to Claim 1,
characterized
in that the variable-volume hollow body (6) is an inflatable metallic bellows. - Apparatus according to one of Claims 1 to 3,
characterized
in that, when the hollow body (6) is arranged in the Helmholtz resonator (4), the supply line (5) runs through an aperture in a wall of the Helmholtz resonator (4). - Apparatus according to one of Claims 1 to 3,
characterized
in that the Helmholtz resonator (4) has at least one moveable wall (11), which is adjoined by the hollow body (6), and also a spring mechanism which presses the wall (11) against the hollow body (6). - Apparatus according to one of Claims 1 to 5,
characterized
in that the closed-loop controller (7) controls the supply or discharge of the fluid via the supply line (5) as a function of the frequency of the highest instantaneous vibration amplitude in the combustion chamber (1). - Combustion chamber arrangement having an apparatus according to one of the preceding claims, in which the combustion chamber (1) and the Helmholtz resonator (4) are arranged within a pressure casing (8) of a gas or steam turbine,
characterized
in that the supply line (5) to the hollow body (6) is passed out through the pressure casing (8). - Combustion chamber arrangement according to Claim 7,
characterized
in that the supply line (5) is arranged in such a way that compressor air from the gas or steam turbine can be supplied to it.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10026121A DE10026121A1 (en) | 2000-05-26 | 2000-05-26 | Device for damping acoustic vibrations in a combustion chamber |
DE10026121 | 2000-05-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1158247A2 EP1158247A2 (en) | 2001-11-28 |
EP1158247A3 EP1158247A3 (en) | 2002-01-02 |
EP1158247B1 true EP1158247B1 (en) | 2006-04-19 |
Family
ID=7643661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01110618A Expired - Lifetime EP1158247B1 (en) | 2000-05-26 | 2001-04-30 | Apparatus to reduce acoustic vibrations in a combustion chamber |
Country Status (4)
Country | Link |
---|---|
US (1) | US6634457B2 (en) |
EP (1) | EP1158247B1 (en) |
JP (1) | JP4880825B2 (en) |
DE (2) | DE10026121A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2848865A1 (en) | 2013-09-12 | 2015-03-18 | Alstom Technology Ltd | Thermoacoustic stabilization method |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003060381A1 (en) | 2002-01-16 | 2003-07-24 | Alstom Technology Ltd | Combustion chamber and damper arrangement for reduction of combustion chamber pulsations in a gas turbine plant |
EP1342953A1 (en) | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Gas turbine |
DE10247550A1 (en) * | 2002-10-11 | 2004-04-22 | Werner, Jürgen | Radial fan for leaf and waste vacuum, leaf blower or Laubladegeräte |
GB2396687A (en) * | 2002-12-23 | 2004-06-30 | Rolls Royce Plc | Helmholtz resonator for combustion chamber use |
US6792907B1 (en) | 2003-03-04 | 2004-09-21 | Visteon Global Technologies, Inc. | Helmholtz resonator |
US7272931B2 (en) * | 2003-09-16 | 2007-09-25 | General Electric Company | Method and apparatus to decrease combustor acoustics |
US20050194207A1 (en) * | 2004-03-04 | 2005-09-08 | York International Corporation | Apparatus and method of sound attenuation in a system employing a VSD and a quarter-wave resonator |
US7337877B2 (en) * | 2004-03-12 | 2008-03-04 | Visteon Global Technologies, Inc. | Variable geometry resonator for acoustic control |
EP1596130B1 (en) * | 2004-05-14 | 2014-12-31 | Siemens Aktiengesellschaft | Device for damping thermoacoustic oscillations in a combustion chamber with a variable resonator frequency |
US7117974B2 (en) * | 2004-05-14 | 2006-10-10 | Visteon Global Technologies, Inc. | Electronically controlled dual chamber variable resonator |
US7464552B2 (en) * | 2004-07-02 | 2008-12-16 | Siemens Energy, Inc. | Acoustically stiffened gas-turbine fuel nozzle |
JP2006125381A (en) * | 2004-09-29 | 2006-05-18 | Toyoda Gosei Co Ltd | Resonator |
US8024934B2 (en) * | 2005-08-22 | 2011-09-27 | Solar Turbines Inc. | System and method for attenuating combustion oscillations in a gas turbine engine |
US7441411B2 (en) * | 2005-09-16 | 2008-10-28 | General Electric Company | Method and apparatus to detect onset of combustor hardware damage |
US7819221B1 (en) * | 2005-09-27 | 2010-10-26 | The United States Of America As Represented By The Secretary Of The Air Force | Lightweight acoustic damping treatment |
US7866147B2 (en) * | 2005-09-30 | 2011-01-11 | Southwest Research Institute | Side branch absorber for exhaust manifold of two-stroke internal combustion engine |
DE102005062284B4 (en) * | 2005-12-24 | 2019-02-28 | Ansaldo Energia Ip Uk Limited | Combustion chamber for a gas turbine |
US7946382B2 (en) | 2006-05-23 | 2011-05-24 | Southwest Research Institute | Gas compressor with side branch absorber for pulsation control |
JP2008025472A (en) * | 2006-07-21 | 2008-02-07 | Denso Corp | Noise reducing device |
US7788926B2 (en) * | 2006-08-18 | 2010-09-07 | Siemens Energy, Inc. | Resonator device at junction of combustor and combustion chamber |
JP5054988B2 (en) * | 2007-01-24 | 2012-10-24 | 三菱重工業株式会社 | Combustor |
US20080253900A1 (en) * | 2007-04-11 | 2008-10-16 | Harris Ralph E | Gas compressor with pulsation absorber for reducing cylinder nozzle resonant pulsation |
EP1990579A1 (en) * | 2007-05-10 | 2008-11-12 | Siemens Aktiengesellschaft | Device and method for measuring acoustic oscillations in the fluid flow and gas turbine facility with such a device |
US8123498B2 (en) | 2008-01-24 | 2012-02-28 | Southern Gas Association Gas Machinery Research Council | Tunable choke tube for pulsation control device used with gas compressor |
JP4993755B2 (en) * | 2008-03-18 | 2012-08-08 | 日産自動車株式会社 | Intake sound generator |
US9275628B2 (en) * | 2008-05-05 | 2016-03-01 | Bonnie S. Schnitta | Tunable frequency acoustic structures |
CH699322A1 (en) * | 2008-08-14 | 2010-02-15 | Alstom Technology Ltd | METHOD FOR SETTING A Helmholtz resonator AND HELMHOLTZ RESONATOR FOR IMPLEMENTING THE PROCESS. |
US7757808B1 (en) * | 2009-02-04 | 2010-07-20 | Gm Global Technology Operations, Inc. | Noise reduction system |
US8030957B2 (en) | 2009-03-25 | 2011-10-04 | Aehr Test Systems | System for testing an integrated circuit of a device and its method of use |
US8408358B1 (en) * | 2009-06-12 | 2013-04-02 | Cornerstone Research Group, Inc. | Morphing resonators for adaptive noise reduction |
US8789372B2 (en) | 2009-07-08 | 2014-07-29 | General Electric Company | Injector with integrated resonator |
RU2508506C2 (en) * | 2009-09-01 | 2014-02-27 | Дженерал Электрик Компани | Method and unit for fluid feed in gas turbine engine combustion chamber |
US7896126B1 (en) * | 2009-12-18 | 2011-03-01 | Raytheon Company | Methods and apparatus for sound suppression |
KR101138360B1 (en) | 2010-04-23 | 2012-04-26 | 서울대학교산학협력단 | Method of semi-active combustion control and apparatus thereof. |
EP2397761B1 (en) | 2010-06-16 | 2021-10-06 | Ansaldo Energia Switzerland AG | Helmholtz Damper |
EP2397760B1 (en) | 2010-06-16 | 2020-11-18 | Ansaldo Energia IP UK Limited | Damper Arrangement and Method for Designing Same |
JP5639794B2 (en) * | 2010-06-23 | 2014-12-10 | 株式会社マーレ フィルターシステムズ | Intake sound generator for internal combustion engine |
JP5693293B2 (en) * | 2011-02-25 | 2015-04-01 | 三菱重工業株式会社 | Combustor |
DE202011004521U1 (en) | 2011-03-29 | 2011-06-09 | Alstom Technology Ltd. | Gas turbine and intake manifold |
ITMI20110902A1 (en) * | 2011-05-20 | 2012-11-21 | Consorzio Intellimech | DEVICE FOR FITTING PRESSURE WAVES |
GB201108917D0 (en) * | 2011-05-27 | 2011-07-13 | Rolls Royce Plc | A Hydraulic damping apparatus |
US9341375B2 (en) | 2011-07-22 | 2016-05-17 | General Electric Company | System for damping oscillations in a turbine combustor |
US8469141B2 (en) | 2011-08-10 | 2013-06-25 | General Electric Company | Acoustic damping device for use in gas turbine engine |
US8966903B2 (en) | 2011-08-17 | 2015-03-03 | General Electric Company | Combustor resonator with non-uniform resonator passages |
JP5834816B2 (en) * | 2011-11-22 | 2015-12-24 | ヤマハ株式会社 | Acoustic structure |
EP2623732A1 (en) * | 2012-02-02 | 2013-08-07 | Siemens Aktiengesellschaft | Assembly and method for dampening acoustic vibrations in such an assembly |
US9286882B1 (en) * | 2012-03-07 | 2016-03-15 | Great Lakes Sound & Vibration, Inc. | Systems and methods for active exhaust noise cancellation |
US10088165B2 (en) * | 2015-04-07 | 2018-10-02 | General Electric Company | System and method for tuning resonators |
US9400108B2 (en) | 2013-05-14 | 2016-07-26 | Siemens Aktiengesellschaft | Acoustic damping system for a combustor of a gas turbine engine |
EP2837782A1 (en) * | 2013-08-14 | 2015-02-18 | Alstom Technology Ltd | Damper for combustion oscillation damping in a gas turbine |
EP2865948B1 (en) * | 2013-10-25 | 2018-04-11 | Ansaldo Energia Switzerland AG | Gas turbine combustor having a quarter wave damper |
EP2963345B1 (en) * | 2014-06-30 | 2018-09-19 | Ansaldo Energia Switzerland AG | Damper for gas turbine |
CN104235987B (en) * | 2014-09-30 | 2017-02-15 | 长城汽车股份有限公司 | Air conditioner system and vehicle comprising same |
DE102014016448A1 (en) * | 2014-11-06 | 2016-05-12 | Man Diesel & Turbo Se | Exhaust gas aftertreatment device and method for exhaust aftertreatment |
EP3029376B1 (en) * | 2014-12-01 | 2018-10-03 | Ansaldo Energia IP UK Limited | Gas turbine with a helmholtz damper |
KR20160079277A (en) * | 2014-12-26 | 2016-07-06 | 삼성전자주식회사 | Vacuum cleaner and control method for the same |
CN104566477B (en) * | 2014-12-31 | 2019-02-01 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Frequency modulation device and term durability gas turbine flame barrel for term durability gas turbine flame barrel |
EP3153777B1 (en) | 2015-10-05 | 2021-03-03 | Ansaldo Energia Switzerland AG | Damper assembly for a combustion chamber |
EP3182008A1 (en) * | 2015-12-18 | 2017-06-21 | Ansaldo Energia IP UK Limited | Helmholtz damper for a gas turbine and gas turbine with such helmholtz damper |
JP6639219B2 (en) * | 2015-12-18 | 2020-02-05 | 株式会社マーレ フィルターシステムズ | Air intake noise reduction device for internal combustion engine |
US10415471B2 (en) | 2016-11-30 | 2019-09-17 | United Technologies Corporation | Variable volume acoustic damper |
US10539156B2 (en) * | 2017-03-07 | 2020-01-21 | United Technologies Corporation | Variable displacement flutter damper for a turbofan engine |
US10428685B2 (en) | 2017-03-07 | 2019-10-01 | United Technologies Corporation | Flutter inhibiting intake for gas turbine propulsion system |
US10619566B2 (en) | 2017-03-07 | 2020-04-14 | United Technologies Corporation | Flutter damper for a turbofan engine |
US10941708B2 (en) | 2017-03-07 | 2021-03-09 | Raytheon Technologies Corporation | Acoustically damped gas turbine engine |
US10612464B2 (en) | 2017-03-07 | 2020-04-07 | United Technologies Corporation | Flutter inhibiting intake for gas turbine propulsion system |
US10415506B2 (en) | 2017-03-07 | 2019-09-17 | United Technologies Corporation | Multi degree of freedom flutter damper |
US10422280B2 (en) | 2017-03-07 | 2019-09-24 | United Technologies Corporation | Fan flutter suppression system |
US10167780B2 (en) * | 2017-05-25 | 2019-01-01 | Pratt & Whitney Canada Corp. | Tunable resonator |
EP3434876A1 (en) * | 2017-07-25 | 2019-01-30 | Siemens Aktiengesellschaft | Combustor apparatus and method of operating combustor apparatus |
WO2019202640A1 (en) * | 2018-04-16 | 2019-10-24 | 川崎重工業株式会社 | Belt conveyor |
CN108757101A (en) * | 2018-05-15 | 2018-11-06 | 浙江吉利控股集团有限公司 | A kind of resonance exhaust silencer for vehicle air inlet system and exhaust system |
JP7257215B2 (en) * | 2019-03-27 | 2023-04-13 | 三菱重工業株式会社 | Acoustic dampers, combustors and gas turbines |
DE102021103187A1 (en) | 2021-02-11 | 2022-08-11 | Bayerische Motoren Werke Aktiengesellschaft | Helmholtz resonator for a motor vehicle and motor vehicle with a Helmholtz resonator |
CN113757720B (en) * | 2021-09-18 | 2023-01-31 | 北京航空航天大学 | Combustion oscillation control device and method and combustion chamber |
CN116293795A (en) * | 2021-12-06 | 2023-06-23 | 通用电气阿维奥有限责任公司 | Dome integrated acoustic damper for gas turbine combustor applications |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3748852A (en) * | 1969-12-05 | 1973-07-31 | L Cole | Self-stabilizing pressure compensated injector |
JPS5544404Y2 (en) * | 1974-05-09 | 1980-10-18 | ||
DE2851248C2 (en) * | 1978-11-27 | 1984-02-16 | Didier-Werke Ag, 6200 Wiesbaden | Device for the combustion of heating gases, liquid, dusty or lumpy fuels |
JPS5970868A (en) * | 1982-10-15 | 1984-04-21 | Nippon Denso Co Ltd | Variable volume resonant muffler system |
DE3324805A1 (en) | 1983-07-09 | 1985-01-17 | Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH, 4000 Düsseldorf | Device for the prevention of pressure fluctuations in combustion chambers |
JPS61129414A (en) * | 1984-11-27 | 1986-06-17 | Agency Of Ind Science & Technol | Silencer device of adaptable type |
JPS6424109A (en) * | 1987-07-20 | 1989-01-26 | Sanshin Kogyo Kk | Exhaust muffler structure of marine vessel propeller |
US5283398A (en) * | 1989-12-26 | 1994-02-01 | Tsuchiya Mfg. Co., Ltd. | Resonator type silencer |
JPH0476943A (en) * | 1990-07-18 | 1992-03-11 | Nec Corp | Semiconductor element |
US5205326A (en) * | 1991-08-23 | 1993-04-27 | Hydraulic Power Systems, Inc. | Pressure response type pulsation damper noise attenuator and accumulator |
EP0576717A1 (en) * | 1992-07-03 | 1994-01-05 | Abb Research Ltd. | Gas turbine combustor |
DE59208715D1 (en) * | 1992-11-09 | 1997-08-21 | Asea Brown Boveri | Gas turbine combustor |
US5475189A (en) * | 1992-11-16 | 1995-12-12 | Carrier Corporation | Condition responsive muffler for refrigerant compressors |
DE4336112A1 (en) * | 1993-10-22 | 1995-04-27 | Knecht Filterwerke Gmbh | Shunt resonator |
JPH07139738A (en) * | 1993-11-12 | 1995-05-30 | Hitachi Ltd | Gas turbine combustion device |
JP3206260B2 (en) * | 1993-11-25 | 2001-09-10 | トヨタ自動車株式会社 | Intake resonator |
JP3233798B2 (en) * | 1994-02-16 | 2001-11-26 | 三菱重工業株式会社 | Combustor combustion vibration / pressure fluctuation reduction device |
DE4414232A1 (en) * | 1994-04-23 | 1995-10-26 | Abb Management Ag | Device for damping thermoacoustic vibrations in a combustion chamber |
DE19640980B4 (en) | 1996-10-04 | 2008-06-19 | Alstom | Device for damping thermoacoustic oscillations in a combustion chamber |
JPH1144266A (en) * | 1997-07-29 | 1999-02-16 | Toyota Motor Corp | Resonator |
EP0974788B1 (en) * | 1998-07-23 | 2014-11-26 | Alstom Technology Ltd | Device for directed noise attenuation in a turbomachine |
JP3592092B2 (en) * | 1998-08-10 | 2004-11-24 | 株式会社日立製作所 | Combustor |
DE59810347D1 (en) * | 1998-09-10 | 2004-01-15 | Alstom Switzerland Ltd | Vibration damping in combustion chambers |
GB2357141A (en) * | 1999-12-09 | 2001-06-13 | Draftex Ind Ltd | Combined resonator and coolant store for an IC engine |
KR100364741B1 (en) * | 2000-09-28 | 2002-12-16 | 엘지전자 주식회사 | Suction muffler of compressor |
-
2000
- 2000-05-26 DE DE10026121A patent/DE10026121A1/en not_active Withdrawn
-
2001
- 2001-04-30 EP EP01110618A patent/EP1158247B1/en not_active Expired - Lifetime
- 2001-04-30 DE DE50109527T patent/DE50109527D1/en not_active Expired - Lifetime
- 2001-05-23 JP JP2001154567A patent/JP4880825B2/en not_active Expired - Fee Related
- 2001-05-25 US US09/864,395 patent/US6634457B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2848865A1 (en) | 2013-09-12 | 2015-03-18 | Alstom Technology Ltd | Thermoacoustic stabilization method |
Also Published As
Publication number | Publication date |
---|---|
US20020000343A1 (en) | 2002-01-03 |
JP2002129982A (en) | 2002-05-09 |
EP1158247A3 (en) | 2002-01-02 |
EP1158247A2 (en) | 2001-11-28 |
DE10026121A1 (en) | 2001-11-29 |
DE50109527D1 (en) | 2006-05-24 |
US6634457B2 (en) | 2003-10-21 |
JP4880825B2 (en) | 2012-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1158247B1 (en) | Apparatus to reduce acoustic vibrations in a combustion chamber | |
EP1423645B1 (en) | Damping arrangement for reducing combustion chamber pulsations in a gas turbine system | |
EP1476699B1 (en) | Combustion chamber and damper arrangement for reduction of combustion chamber pulsations in a gas turbine plant | |
DE102010037078B4 (en) | Acoustically stiffened gas turbine combustor duct | |
EP1924805A1 (en) | Method and apparatus for damping of thermo-acoustic oscillations, in particular in a gas turbine | |
DE102005062284B4 (en) | Combustion chamber for a gas turbine | |
DE19640980B4 (en) | Device for damping thermoacoustic oscillations in a combustion chamber | |
DE19851636A1 (en) | Damping device for reducing vibration amplitude of acoustic waves for burner for internal combustion engine operation is preferably for driving gas turbo-group, with mixture area for air and fuel | |
DE2712326A1 (en) | BURNER | |
EP2354659A1 (en) | Helmholtz damper for installing in the combustor of a gas turbine and also method for installing such a helmholtz damper | |
EP0133853A2 (en) | Pressurised gas spring | |
EP2394033A1 (en) | Sound absorber having helical fixtures | |
EP1507682B1 (en) | Device for sonic configuration in a motor vehicle | |
EP0974788B1 (en) | Device for directed noise attenuation in a turbomachine | |
EP1605209A1 (en) | Combustor with thermo-acoustic vibrations dampening device | |
EP1365120B1 (en) | Acoustic transducer for motor vehicle | |
DE1523515A1 (en) | Hydro-pneumatic resonator | |
DE3300499C2 (en) | ||
EP1624251B1 (en) | Apparatus for reducing thermoacoustic oscillations in combustion chambers with adjustable resonance frequency | |
EP1596130B1 (en) | Device for damping thermoacoustic oscillations in a combustion chamber with a variable resonator frequency | |
DE2402774A1 (en) | Noise absorber for high speed flow valves - is made from sintered ceramics as a cylindrical lining | |
DE4439704A1 (en) | Pressure pulsation reduction device for ic engine exhaust pipe | |
DE3324805A1 (en) | Device for the prevention of pressure fluctuations in combustion chambers | |
EP3388678A1 (en) | Pulsation sound damper for compressors | |
DE2554483C2 (en) | Burner nozzle for oil and / or fuel gas with a Hartmann sound vibration generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE GB Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7F 23R 3/16 A, 7F 23M 13/00 B, 7F 01N 1/02 B |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
17P | Request for examination filed |
Effective date: 20020524 |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
17Q | First examination report despatched |
Effective date: 20041202 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50109527 Country of ref document: DE Date of ref document: 20060524 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060607 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070122 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50109527 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50109527 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50109527 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170419 Year of fee payment: 17 Ref country code: DE Payment date: 20170419 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50109527 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50109527 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50109527 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |