EP1158247B1 - Apparatus to reduce acoustic vibrations in a combustion chamber - Google Patents

Apparatus to reduce acoustic vibrations in a combustion chamber Download PDF

Info

Publication number
EP1158247B1
EP1158247B1 EP01110618A EP01110618A EP1158247B1 EP 1158247 B1 EP1158247 B1 EP 1158247B1 EP 01110618 A EP01110618 A EP 01110618A EP 01110618 A EP01110618 A EP 01110618A EP 1158247 B1 EP1158247 B1 EP 1158247B1
Authority
EP
European Patent Office
Prior art keywords
hollow body
helmholtz resonator
volume
combustion chamber
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01110618A
Other languages
German (de)
French (fr)
Other versions
EP1158247A3 (en
EP1158247A2 (en
Inventor
Christian Oliver Dr. Paschereit
Wolfgang Weisenstein
Peter Dr. Flohr
Wolfgang Dr. Prof. Polifke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1158247A2 publication Critical patent/EP1158247A2/en
Publication of EP1158247A3 publication Critical patent/EP1158247A3/en
Application granted granted Critical
Publication of EP1158247B1 publication Critical patent/EP1158247B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/023Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/12Chambers having variable volumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to a device for damping acoustic vibrations in a combustion chamber and a combustion chamber arrangement, in particular a gas or steam turbine, which includes the device.
  • the main field of application of the present invention is in the field of industrial gas turbines.
  • industrial gas turbines all over the world, especially in power plant applications, ever higher demands are placed on operational readiness, service life and exhaust gas quality.
  • the increasing awareness of environmental protection and environmental compatibility requires compliance with the lowest possible pollutant emissions.
  • thermoacoustic oscillations in the combustion chamber.
  • a Helmholtz resonator behaves acoustically like an infinitely large opening, ie it prevents the formation of a standing wave at this frequency.
  • thermoacoustic oscillations with the help of a Helmholtz resonator is also already used for damping the vibrations in combustion chambers of gas or steam turbines.
  • the frequency to be damped is determined not by an intermittent combustion, but by the fulfillment of the Rayleigh criterion in the combustion chamber and the acoustic response of the surrounding system of inflow, burner, combustion chamber and acoustic termination condition.
  • the frequency to be damped can therefore not be determined with the required accuracy in advance in these systems with the currently available computational tools. However, this is the prerequisite in order to take into account the exact dimensioning of the resonance volume in the construction of the gas turbine. Furthermore, the acoustic behavior of the system and thus the frequencies of the vibrations to be damped in a change in the operating point can change significantly, so that under certain circumstances additional resonators that are tuned to other frequencies must be used.
  • Such an arrangement with several Helmholtz resonators is known for example from DE 33 24 805 A1.
  • the document describes a device for preventing pressure oscillations in combustion chambers, in which a plurality of Helmholtz resonators with different resonance volumes along the gas line path to the burner are arranged. Due to the different resonance volumes, vibrations of different frequencies can be dampened with this system.
  • the optimal However, dimensioning of the individual Helmholtz resonators here again requires knowledge of the frequencies occurring during operation of the system, which can not yet be specified exactly during the construction of the system. Furthermore, the arrangement of several Helmholtz resonators is unfavorable due to the required additional space.
  • DE 196 40 980 A1 describes another known device for damping thermoacoustic oscillations in a combustion chamber.
  • the lateral wall of the resonance volume of the Helmholtz resonator is designed as a mechanical spring.
  • An additional mechanical mass is attached to the wall of the end face of the resonance volume which oscillates due to the spring action.
  • the virtual volume of the Helmholtz resonator is influenced and a greater damping performance is achieved.
  • a fine-tuning of the resonant frequency can be carried out subsequently.
  • this also requires a subsequent intervention in the construction of the gas turbine plant.
  • US 5 103 931 A describes a device for soundproofing of internal combustion engines, in which in one embodiment, a Helmholtz resonator is also used.
  • the Helmholtz resonator is bounded on one side by an expandable membrane with which the resonator volume can be adjusted and which separates the resonator volume from a fluid chamber.
  • the present invention has for its object to provide a device for damping thermoacoustic vibrations and a combustion chamber arrangement with this device, which allows continuous adaptation to the frequencies of the vibrations to be damped, even under high pressure conditions, such as those in gas turbines.
  • the device is composed of a Helmholtz resonator with a connecting channel which is connected to the combustion chamber, for example the combustion chamber of a gas turbine.
  • a fluid for example the combustion chamber of a gas turbine.
  • the volume-variable hollow body in the Helmholtz resonator thus reduces the resonant volume when the hollow body is inflated via the feed line with the gas.
  • the resonant volume of the Helmholtz resonator increases when a certain amount of the gas is discharged from the hollow body.
  • the change in the resonance volume causes a change in the resonance frequency in a known manner.
  • the resonant frequency of the Helmholtz resonator can be adjusted at any time by simply inflating or deflating the hollow body to the occurring in the chamber volume thermo-acoustic vibration frequencies.
  • An exact knowledge of the frequencies occurring during operation in the construction of the corresponding system is therefore no longer necessary.
  • the vibrations can be customized over a wide range adjustable frequencies are attenuated.
  • the resonance frequency of the built-in resonators can be adjusted to match the respective operating point.
  • a particular advantage results from the fact that the resonant volume of the Helmholtz resonator, which is usually arranged within the pressure housing of the gas turbine, can be changed without the need for moving parts have to be passed through the wall of the pressure vessel.
  • the supply line to the hollow body can be designed as a rigid tube and therefore easily be performed with high density through the pressure housing through to the outside.
  • the Helmholtz resonator has a position-variable wall, to which the hollow body adjoins.
  • the position variable wall is pressed by a spring mechanism against the hollow body.
  • the positionally variable wall is pressed inwards against the spring force and thus reduces the resonant volume of the Helmholtz resonator.
  • the resonance volume increases by displacement of the wall due to the force acting in the direction of the hollow body spring force.
  • the Helmholtz resonator can in this case be designed in the form of a bellows, as is known from the initially mentioned DE 196 40 980 A1. It goes without saying, however, that other possibilities of a corresponding embodiment the Helmholtz resonator are possible, in which the above effect is achieved.
  • the volume-changeable hollow body must be fixed at one point relative to the Helmholtz resonator within the pressure housing in order to be able to exert the corresponding counterforce on the position-variable wall of the Helmholtz resonator.
  • the volume-variable hollow body is preferably designed as an inflatable temperature-resistant balloon or as an inflatable metallic bellows.
  • the supply line to the hollow body can be made flexible or rigid.
  • the gas supply to the hollow body or the gas discharge from the hollow body is automatically carried out by a controller which is provided outside the pressure housing on the supply line.
  • This controller alters the resonance volume of the Helmholtz resonator as a function of the frequency of the highest-amplitude thermoacoustic oscillations occurring in the combustion chamber in which it blows or discharges the gas into the hollow body.
  • the respective vibration amplitudes and vibration frequencies are in this case measured with a corresponding sensor, as is known to the person skilled in the art.
  • the controller controls the resonance volume or the volume of the hollow body by supplying or discharging compressor air, which he receives from the compressor outlet of the gas turbine. In this way, an optimal vibration damping can be achieved at any time during operation of the gas turbine, since the controller can adjust the resonance volume at any time exactly to the respective frequencies occurring.
  • Figure 1 shows the basic structure of a Helmholtz resonator 4 with the resonance volume 3 and a connection channel 2, as it is known from the prior art. Details of this have already been set out in the introduction to the description.
  • FIG. 1 A first exemplary embodiment of a device according to the invention on a combustion chamber 1 of a gas turbine is shown in FIG.
  • the tunable Helmholtz resonator 4 can be seen, which is connected via a connecting channel 2 with the combustion chamber 1.
  • a hollow body 6 is arranged, whose volume is variable by supplying or discharging gas via a supply line 5.
  • the hollow body 6 consists in this example of a metallic bellows, which is inflated by air 10 from the compressor outlet of the gas turbine or by venting this air is relaxed.
  • the interior of the Helmholtz resonator 4 filled with combustion gases, the so-called resonance volume 3, is enlarged or reduced starting from a central position, as indicated by the arrow in the figure.
  • the design of the hollow body 6 as a metallic bellows is particularly suitable for use under high temperatures.
  • the supply line 5 to the bellows 6 takes place through the pressure housing 8 of the gas turbine.
  • This passage through the pressure housing 8 can be sealed well, since it contains no moving components. With the present device, it is therefore possible to change the resonance volume 3 of the Helmholtz resonator 4, which is mounted within the pressure housing 8, from outside the pressure housing, without increasing the risk of leakage of the pressure housing 8.
  • FIG. 3 shows a further example of a possible embodiment of the device according to the invention.
  • the hollow body 6 is not arranged inside the Helmholtz resonator 4, but adjoins a position-variable wall 11 of this resonator 4.
  • the operating principle is the same as already explained in connection with FIG.
  • the Helmholtz resonator 4 as well as the hollow body 6 - at least partially - designed as a bellows, wherein an end face of the Helmholtz resonator 4 adjacent to an end face of the hollow body 6.
  • the opposite end face of the hollow body 6 is fixed to a corresponding anchoring 9 in the pressure housing 8.
  • the positionally variable wall 11 of the Helmholtz resonator 4 shifts to the left in the figure, so that the resonance volume 3 is reduced.
  • a spring mechanism it is necessary for a spring mechanism to press the position-variable wall 11 of the Helmholtz resonator 4 against the hollow body 6.
  • This spring mechanism can be achieved for example by an elastic configuration of the wall material of the bellows.
  • a spring may be provided within the Helmholtz resonator 4 for this purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Vibration Prevention Devices (AREA)

Description

Technisches AnwendungsgebietTechnical application

Die vorliegende Erfindung betrifft eine Vorrichtung zur Dämpfung akustischer Schwingungen in einer Brennkammer sowie eine Brennkammeranordnung, insbesondere einer Gas- oder Dampfturbine, die die Vorrichtung beinhaltet.The present invention relates to a device for damping acoustic vibrations in a combustion chamber and a combustion chamber arrangement, in particular a gas or steam turbine, which includes the device.

Das Hauptanwendungsgebiet der vorliegenden Erfindung liegt im Bereich der Industriegasturbinen. Weltweit werden an Industriegasturbinen, vor allem im Kraftwerkseinsatz, immer höhere Anforderungen an die Einsatzbereitschaft, Lebensdauer und Abgasqualität gestellt. Das zunehmende Bewusstsein für Umweltschutz und Umweltverträglichkeit erfordert die Einhaltung möglichst niedriger Schadstoffemissionen.The main field of application of the present invention is in the field of industrial gas turbines. On industrial gas turbines all over the world, especially in power plant applications, ever higher demands are placed on operational readiness, service life and exhaust gas quality. The increasing awareness of environmental protection and environmental compatibility requires compliance with the lowest possible pollutant emissions.

Niedrige Emissionen lassen sich bei Industriegasturbinen in wirtschaftlicher Weise nur durch den Einsatz von Vormischbrennern erreichen. Diese Art der Verbrennung neigt jedoch in geschlossenen Brennkammern durch die Ausbildung kohärenter Strukturen und daraus resultierender schwankender Wärmefreisetzung zur Generierung thermoakustischer Schwingungen in der Brennkammer. Diese thermoakustischen Schwingungen beeinflussen nicht nur die Verbrennungsqualität negativ, sondern können auch die Lebensdauer der hochbelasteten Bauelemente drastisch reduzieren.Low emissions can be achieved economically in industrial gas turbines only by the use of premix burners. However, this type of combustion tends in closed combustion chambers by the formation of coherent structures and resulting fluctuating heat release for generating thermoacoustic oscillations in the combustion chamber. These thermoacoustic vibrations not only negatively affect the quality of the combustion, but can also drastically reduce the life of the highly loaded components.

Stand der TechnikState of the art

Zur Dämpfung derartiger thermoakustischer Schwingungen ist bereits seit langem die Anwendung des Prinzips des so genannten Helmholtz-Resonators bekannt. Dieses Prinzip wird im Folgenden anhand der Figur 1 näher erläutert. Die Figur zeigt den prinzipiellen Aufbau eines Helmholtz-Resonators 4, der aus einem Resonanzvolumen 3 und einem Verbindungskanal 2 zu der Kammer 1 besteht, in der die thermoakustischen Schwingungen auftreten. Eine derartige Vorrichtung kann analog einem mechanischen Feder-Masse-System betrachtet werden. Dabei wirkt das Volumen V des Helmholtz-Resonators 4 als Feder und das im Verbindungskanal 2 befindliche Gas als Masse. Mit Hilfe der Hohlraumabmessungen kann die Resonanzfrequenz f0 des Systems berechnet werden. f 0 = c 2 π S V [ I + π 2 R ]

Figure imgb0001

mit:

V =
Volumen des Helmholtz-Resonators 4
R =
Radius des Verbindungskanals 2
l =
Länge des Verbindungskanals 2
S =
Fläche der Öffnung, durch die die Anregung erfolgt
For damping such thermoacoustic oscillations, the use of the principle of the so-called Helmholtz resonator has long been known. This principle will be explained in more detail below with reference to FIG. The figure shows the basic structure of a Helmholtz resonator 4, which consists of a resonant volume 3 and a connecting channel 2 to the chamber 1, in which the thermoacoustic oscillations occur. Such a device can be considered analogous to a mechanical spring-mass system. The volume V of the Helmholtz resonator 4 acts as a spring and the gas in the connecting channel 2 acts as a mass. With the help of the cavity dimensions, the resonance frequency f 0 of the system can be calculated. f 0 = c 2 π * S V [ I + π 2 R ]
Figure imgb0001

With:
V =
Volume of the Helmholtz resonator 4
R =
Radius of the connection channel 2
l =
Length of the connection channel 2
S =
Area of the opening through which the excitation takes place

Bei dieser Resonanzfrequenz f0 verhält sich ein Helmholtz-Resonator akustisch wie eine unendlich große Öffnung, d.h. er verhindert die Entstehung einer stehenden Welle bei dieser Frequenz.At this resonance frequency f 0 , a Helmholtz resonator behaves acoustically like an infinitely large opening, ie it prevents the formation of a standing wave at this frequency.

Diese Technik der Dämpfung thermoakustischer Schwingungen mit Hilfe eines Helmholtz-Resonators wird auch zur Dämpfung der Schwingungen in Brennkammern von Gas- oder Dampfturbinen bereits eingesetzt. Beim Einsatz in Gas- oder Dampfturbinen tritt jedoch das Problem auf, dass die zu dämpfende Frequenz nicht durch eine intermittierende Verbrennung bestimmt wird, sondern durch die Erfüllung des Rayleigh-Kriteriums in der Brennkammer und die akustische Antwort des umgebenden Systems aus Zuströmung, Brenner, Brennkammer und akustischer Abschlussbedingung.This technique of damping thermoacoustic oscillations with the help of a Helmholtz resonator is also already used for damping the vibrations in combustion chambers of gas or steam turbines. When used in gas or steam turbines, however, the problem arises that the frequency to be damped is determined not by an intermittent combustion, but by the fulfillment of the Rayleigh criterion in the combustion chamber and the acoustic response of the surrounding system of inflow, burner, combustion chamber and acoustic termination condition.

Die zu dämpfende Frequenz lässt sich daher bei diesen Systemen mit den zurzeit zur Verfügung stehenden rechnerischen Werkzeugen nicht mit der erforderlichen Genauigkeit im Voraus bestimmen. Dies ist jedoch die Voraussetzung, um die exakte Dimensionierung des Resonanzvolumens beim Bau der Gasturbine berücksichtigen zu können. Weiterhin können sich das akustische Verhalten des Systems und somit die Frequenzen der zu dämpfenden Schwingungen bei einer Änderung des Betriebspunktes entscheidend ändern, so dass unter Umständen zusätzliche Resonatoren, die auf weitere Frequenzen abgestimmt sind, zum Einsatz kommen müssen.The frequency to be damped can therefore not be determined with the required accuracy in advance in these systems with the currently available computational tools. However, this is the prerequisite in order to take into account the exact dimensioning of the resonance volume in the construction of the gas turbine. Furthermore, the acoustic behavior of the system and thus the frequencies of the vibrations to be damped in a change in the operating point can change significantly, so that under certain circumstances additional resonators that are tuned to other frequencies must be used.

Eine derartige Anordnung mit mehreren Helmholtz-Resonatoren ist beispielsweise aus der DE 33 24 805 A1 bekannt. Die Druckschrift beschreibt eine Einrichtung zur Vermeidung von Druckschwingungen in Brennkammern, bei der mehrere Helmholtz-Resonatoren mit unterschiedlichem Resonanzvolumen entlang des Gasleitungsweges zum Brenner angeordnet sind. Durch die unterschiedlichen Resonanzvolumina lassen sich mit diesem System Schwingungen unterschiedlicher Frequenzen dämpfen. Die optimale Dimensionierung der einzelnen Helmholtz-Resonatoren erfordert jedoch auch hier wiederum die Kenntnis über die beim Betrieb der Anlage auftretenden Frequenzen, die beim Bau der Anlage jedoch noch nicht exakt angegeben werden können. Weiterhin ist die Anordnung mehrerer Helmholtz-Resonatoren aufgrund des dafür erforderlichen zusätzlichen Platzbedarfs ungünstig.Such an arrangement with several Helmholtz resonators is known for example from DE 33 24 805 A1. The document describes a device for preventing pressure oscillations in combustion chambers, in which a plurality of Helmholtz resonators with different resonance volumes along the gas line path to the burner are arranged. Due to the different resonance volumes, vibrations of different frequencies can be dampened with this system. The optimal However, dimensioning of the individual Helmholtz resonators here again requires knowledge of the frequencies occurring during operation of the system, which can not yet be specified exactly during the construction of the system. Furthermore, the arrangement of several Helmholtz resonators is unfavorable due to the required additional space.

Die DE 196 40 980 A1 beschreibt eine weitere bekannte Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer. Bei dieser Vorrichtung ist die seitliche Wandung des Resonanzvolumens des Helmholtz-Resonators als mechanische Feder ausgebildet. An der aufgrund der Federwirkung schwingenden Wandung der Stirnfläche des Resonanzvolumens ist eine zusätzliche mechanische Masse befestigt. Mit dieser Anordnung wird das virtuelle Volumen des Helmholtz-Resonators beeinflusst und eine größere Dämpferleistung erzielt. Durch Veränderung der mechanischen Masse am Resonator kann nachträglich eine Feinabstimmung auf die Resonanzfrequenz durchgeführt werden. Auch dies erfordert jedoch einen nachträglichen Eingriff in den Aufbau der Gasturbinenanlage.DE 196 40 980 A1 describes another known device for damping thermoacoustic oscillations in a combustion chamber. In this device, the lateral wall of the resonance volume of the Helmholtz resonator is designed as a mechanical spring. An additional mechanical mass is attached to the wall of the end face of the resonance volume which oscillates due to the spring action. With this arrangement, the virtual volume of the Helmholtz resonator is influenced and a greater damping performance is achieved. By changing the mechanical mass on the resonator, a fine-tuning of the resonant frequency can be carried out subsequently. However, this also requires a subsequent intervention in the construction of the gas turbine plant.

In der Vergangenheit wurden auf dem Gebiet der Abgasanlagen von Verbrennungsmotoren ebenfalls Helmholtz-Resonatoren zur Schwingungsdämpfung eingesetzt. Aus diesem Bereich ist auch der Einsatz von verstellbaren Resonatoren zur Änderung der Resonanzfrequenz bekannt. So wurden beispielsweise schon während des ersten Weltkrieges die Zweitakt-Dieselmotoren für Zeppelin-Luftschiffe der Firma Maybach durch verstellbare Resonatoren im Abgasrohr dem jeweiligen Betriebspunkt angepasst. Zu diesem Zweck wurden durch mechanische Getriebe Zylinder ineinander verschoben und dadurch das Resonanzvolumen verändert. Diese Technik erweist sich bei den genannten Abgasanlagen aufgrund der guten Zugänglichkeit dieser Anlagen und dem dort herrschenden relativ niedrigen Druck- und Temperaturverhältnis als praktikabel. Für den Einsatz im Druckbereich moderner Industriegasturbinen scheidet eine derartige Lösung jedoch vollständig aus. Die Durchführung eines mechanischen Getriebes durch das Druckgehäuse einer Gasturbine würde unvermeidbare Leckagen herbeiführen und daher zu nicht tolerierbaren Verlusten führen. Außerdem könnten die bei Industriegasturbinen vorherrschenden Temperatureinflüsse nur durch ein sehr kompliziertes Getriebe kompensiert werden.In the past, Helmholtz resonators for vibration damping were also used in the field of exhaust systems of internal combustion engines. From this area, the use of adjustable resonators for changing the resonance frequency is known. For example, during the First World War, the two-stroke diesel engines for Zeppelin airships from Maybach were adapted to the respective operating point by means of adjustable resonators in the exhaust pipe. For this purpose, cylinders were shifted into one another by mechanical gears, thereby changing the resonance volume. This technique proves to be practicable in the aforementioned exhaust systems due to the good accessibility of these systems and the prevailing there relatively low pressure and temperature ratio. However, such a solution is completely eliminated for use in the printing sector of modern industrial gas turbines. The implementation of a mechanical transmission through the pressure housing of a gas turbine would cause unavoidable leaks and therefore lead to intolerable losses. In addition, the temperature effects prevailing in industrial gas turbines could only be compensated by a very complicated transmission.

Die US 5 103 931 A beschreibt eine Vorrichtung zur Schalldämpfung von Verbrennungsmotoren, bei der in einer Ausgestaltung ebenfalls ein Helmholtz-Resonator eingesetzt wird. Der Helmholtz-Resonator ist auf einer Seite von einer dehnbaren Membran begrenzt, mit der das Resonatorvolumen angepasst werden kann und die das Resonatorvolumen von einer Flüssigkeitskammer trennt.US 5 103 931 A describes a device for soundproofing of internal combustion engines, in which in one embodiment, a Helmholtz resonator is also used. The Helmholtz resonator is bounded on one side by an expandable membrane with which the resonator volume can be adjusted and which separates the resonator volume from a fluid chamber.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Dämpfung von thermoakustischen Schwingungen sowie eine Brennkammeranordnung mit dieser vorrichtung anzugeben, die eine kontinuierliche Anpassung an die Frequenzen der zu dämpfenden Schwingungen auch unter hohen Druckverhältnissen, wie sie beispielsweise bei Gasturbinen vorliegen, ermöglicht.The present invention has for its object to provide a device for damping thermoacoustic vibrations and a combustion chamber arrangement with this device, which allows continuous adaptation to the frequencies of the vibrations to be damped, even under high pressure conditions, such as those in gas turbines.

Darstellung der ErfindungPresentation of the invention

Die Aufgabe wird mit der Vorrichtung bzw. der Brennkammeranordnung nach den Ansprüchen 1 bzw. 7 gelöst. Vorteilhafte Ausgestaltungen der Vorrichtung sowie der Brennkammeranordnung sind Gegenstand der Unteransprüche.The object is achieved with the device or the combustion chamber arrangement according to claims 1 and 7, respectively. Advantageous embodiments of the device and the combustion chamber arrangement are the subject of the dependent claims.

Die Vorrichtung setzt sich aus einem Helmholtz-Resonator mit einem Verbindungskanal zusammen, der mit der Brennkammer, beispielsweise der Brennkammer einer Gasturbine, verbunden wird. Im Gegensatz zu den bekannten Dämpfungsvorrichtungen ist bei der vorliegenden Vorrichtung ein durch Zuführen oder Ablassen eines Fluids über eine Zuleitung im Volumen veränderbarer Hohlkörper vorgesehen, der entweder innerhalb des Helmholtz-Resonators angeordnet ist oder derart an diesen angrenzt, dass sich das Resonanzvolumen des Helmholtz-Resonators bei einer Änderung des Volumens des Hohlkörpers verändert, wobei das Fluid ein Gas ist, dessen Zuführen bzw. Ablassen durch einen Regler gesteuert wird.The device is composed of a Helmholtz resonator with a connecting channel which is connected to the combustion chamber, for example the combustion chamber of a gas turbine. In contrast to the known damping devices in the present device is provided by supplying or discharging a fluid via a supply line variable in volume hollow body which is either disposed within the Helmholtz resonator or adjacent to such that the resonant volume of the Helmholtz resonator changed with a change in the volume of the hollow body, wherein the fluid is a gas, the supply or discharge is controlled by a regulator.

Bei einer Anordnung des im Volumen veränderbaren Hohlkörpers im Helmholtz-Resonator verkleinert sich somit das Resonanzvolumen, wenn der Hohlkörper über die Zuleitung mit dem Gas aufgeblasen wird. Im umgekehrten Fall vergrößert sich das Resonanzvolumen des Helmholtz-Resonators, wenn aus dem Hohlkörper eine bestimmte Menge des Gases abgelassen wird. Die Veränderung des Resonanzvolumens bewirkt in bekannter Weise eine Änderung der Resonanzfrequenz.With an arrangement of the volume-variable hollow body in the Helmholtz resonator thus reduces the resonant volume when the hollow body is inflated via the feed line with the gas. In the opposite case, the resonant volume of the Helmholtz resonator increases when a certain amount of the gas is discharged from the hollow body. The change in the resonance volume causes a change in the resonance frequency in a known manner.

Auf diese Weise kann die Resonanzfrequenz des Helmholtz-Resonators jederzeit durch einfaches Aufblasen oder Ablassen des Hohlkörpers an die im Kammervolumen auftretenden thermoakustischen Schwingungsfrequenzen angepasst werden. Eine genaue Kenntnis der im Betrieb auftretenden Frequenzen beim Bau der entsprechenden Anlage ist daher nicht mehr erforderlich. Die Schwingungen können über ein breites Spektrum individuell einstellbarer Frequenzen gedämpft werden. Im praktischen Einsatz lässt sich durch die Veränderung des Resonanzvolumens, die zu jeder Zeit während des Betriebs der Anlage möglich ist, die Resonanzfrequenz der eingebauten Resonatoren passend zum jeweiligen Betriebspunkt einstellen.In this way, the resonant frequency of the Helmholtz resonator can be adjusted at any time by simply inflating or deflating the hollow body to the occurring in the chamber volume thermo-acoustic vibration frequencies. An exact knowledge of the frequencies occurring during operation in the construction of the corresponding system is therefore no longer necessary. The vibrations can be customized over a wide range adjustable frequencies are attenuated. In practical use, by changing the resonance volume, which is possible at any time during the operation of the system, the resonance frequency of the built-in resonators can be adjusted to match the respective operating point.

Ein besonderer Vorteil ergibt sich dadurch, dass das Resonanzvolumen des Helmholtz-Resonators, der in der Regel innerhalb des Druckgehäuses der Gasturbine angeordnet ist, verändert werden kann, ohne dass hierfür bewegliche Teile durch die Wandung des Druckbehälters hindurchgeführt werden müssen. Die Zuleitung zum Hohlkörper kann als starres Rohr ausgeführt und daher problemlos mit hoher Dichtigkeit durch das Druckgehäuse hindurch zum Außenraum geführt werden.A particular advantage results from the fact that the resonant volume of the Helmholtz resonator, which is usually arranged within the pressure housing of the gas turbine, can be changed without the need for moving parts have to be passed through the wall of the pressure vessel. The supply line to the hollow body can be designed as a rigid tube and therefore easily be performed with high density through the pressure housing through to the outside.

In einer weiteren Ausführungsform der vorliegenden Vorrichtung weist der Helmholtz-Resonator eine positionsveränderbare Wandung auf, an die der Hohlkörper angrenzt. Die positionsveränderbare Wandung wird über einen Federmechanismus gegen den Hohlkörper gedrückt. Auf diese weise wird bei einem Aufblasen des Hohlkörpers die positionsveränderbare Wandung gegen die Federkraft nach Innen gedrückt und verringert auf diese Weise das Resonanzvolumen des Helmholtz-Resonators. Im umgekehrten Fall des Ablassens von Gas aus dem Hohlkörper vergrößert sich das Resonanzvolumen durch Verschiebung der Wandung aufgrund der in Richtung des Hohlkörpers wirkenden Federkraft. Der Helmholtz-Resonator kann hierbei in Form eines Faltenbalges ausgeführt sein, wie dies aus der eingangs angeführten DE 196 40 980 A1 bekannt ist. Es versteht sich jedoch von selbst, dass auch andere Möglichkeiten einer entsprechenden Ausgestaltung des Helmholtz-Resonators möglich sind, bei der der obige Effekt erzielt wird.In a further embodiment of the present device, the Helmholtz resonator has a position-variable wall, to which the hollow body adjoins. The position variable wall is pressed by a spring mechanism against the hollow body. In this way, when the hollow body is inflated, the positionally variable wall is pressed inwards against the spring force and thus reduces the resonant volume of the Helmholtz resonator. In the reverse case of the discharge of gas from the hollow body, the resonance volume increases by displacement of the wall due to the force acting in the direction of the hollow body spring force. The Helmholtz resonator can in this case be designed in the form of a bellows, as is known from the initially mentioned DE 196 40 980 A1. It goes without saying, however, that other possibilities of a corresponding embodiment the Helmholtz resonator are possible, in which the above effect is achieved.

Bei dieser Ausführungsform muss der volumenveränderbare Hohlkörper an einer Stelle relativ zum Helmholtz-Resonator innerhalb des Druckgehäuses fixiert werden, um die entsprechende Gegenkraft auf die positionsveränderbare Wandung des Helmholtz-Resonators ausüben zu können.In this embodiment, the volume-changeable hollow body must be fixed at one point relative to the Helmholtz resonator within the pressure housing in order to be able to exert the corresponding counterforce on the position-variable wall of the Helmholtz resonator.

Der im Volumen veränderbare Hohlkörper ist vorzugsweise als aufblasbarer temperaturfester Ballon oder als aufblasbarer metallischer Faltenbalg ausgeführt. Die Zuleitung zum Hohlkörper kann flexibel oder starr ausgeführt werden.The volume-variable hollow body is preferably designed as an inflatable temperature-resistant balloon or as an inflatable metallic bellows. The supply line to the hollow body can be made flexible or rigid.

Die Gaszufuhr zum Hohlkörper bzw. das Gasablassen aus dem Hohlkörper wird automatisch von einem Regler vorgenommen, der außerhalb des Druckgehäuses an der Zuleitung vorgesehen ist. Dieser Regler verändert das Resonanzvolumen des Helmholtz-Resonators in Abhängigkeit von der in der Brennkammer auftretenden Frequenz der thermoakustischen Schwingungen mit der höchsten Amplitude, in dem er das Gas in den Hohlkörper bläst oder aus diesem ablässt. Die jeweiligen Schwingungsamplituden und Schwingungsfrequenzen werden hierbei mit einem entsprechenden Sensor, wie er dem Fachmann bekannt ist, gemessen. Vorzugsweise steuert der Regler das Resonanzvolumen bzw. das Volumen des Hohlkörpers durch Zufuhr bzw. Ablassen von Verdichterluft, die er vom Verdichteraustritt der Gasturbine erhält. Auf diese Art kann jederzeit während des Betriebs der Gasturbine eine optimale Schwingungsdämpfung erreicht werden, da der Regler das Resonanzvolumen jederzeit exakt an die jeweiligen auftretenden Frequenzen anpassen kann.The gas supply to the hollow body or the gas discharge from the hollow body is automatically carried out by a controller which is provided outside the pressure housing on the supply line. This controller alters the resonance volume of the Helmholtz resonator as a function of the frequency of the highest-amplitude thermoacoustic oscillations occurring in the combustion chamber in which it blows or discharges the gas into the hollow body. The respective vibration amplitudes and vibration frequencies are in this case measured with a corresponding sensor, as is known to the person skilled in the art. Preferably, the controller controls the resonance volume or the volume of the hollow body by supplying or discharging compressor air, which he receives from the compressor outlet of the gas turbine. In this way, an optimal vibration damping can be achieved at any time during operation of the gas turbine, since the controller can adjust the resonance volume at any time exactly to the respective frequencies occurring.

Die vorliegende Vorrichtung bzw. Brennkammeranordnung wird nachfolgend anhand von Ausführungsbeispielen in Verbindung mit den Figuren nochmals kurz erläutert. Hierbei zeigen:

Fig. 1
den prinzipiellen Aufbau eines Helmholtz-Resonators;
Fig. 2
ein erstes Ausführungsbeispiel für den Aufbau der vorliegenden Vorrichtung; und
Fig. 3
ein zweites Ausführungsbeispiel für den Aufbau der vorliegenden Vorrichtung.
The present device or combustion chamber arrangement will be briefly explained again by means of exemplary embodiments in conjunction with the figures. Hereby show:
Fig. 1
the basic structure of a Helmholtz resonator;
Fig. 2
a first embodiment of the structure of the present device; and
Fig. 3
A second embodiment of the structure of the present device.

Wege zur Ausführung der ErfindungWays to carry out the invention

Figur 1 zeigt den prinzipiellen Aufbau eines Helmholtz-Resonators 4 mit dem Resonanzvolumen 3 und einem Verbindungskanal 2, wie er aus dem Stand der Technik bekannt ist. Einzelheiten hierzu wurden in der Beschreibungseinleitung bereits dargelegt.Figure 1 shows the basic structure of a Helmholtz resonator 4 with the resonance volume 3 and a connection channel 2, as it is known from the prior art. Details of this have already been set out in the introduction to the description.

Ein erstes Ausführungsbeispiel für eine erfindungsgemäße Vorrichtung an einer Brennkammer 1 einer Gasturbine ist in Figur 2 dargestellt. In dieser Figur ist der abstimmbare Helmholtz-Resonator 4 zu erkennen, der über einen Verbindungskanal 2 mit der Brennkammer 1 verbunden ist. Innerhalb des Helmholtz-Resonators 4 ist ein Hohlkörper 6 angeordnet, dessen Volumen durch Zuführen oder Ablassen von Gas über eine Zuleitung 5 veränderbar ist. Der Hohlkörper 6 besteht in diesem Beispiel aus einem metallischen Faltenbalg, der durch Luft 10 vom Verdichteraustritt der Gasturbine aufgeblasen oder durch Ablassen dieser Luft entspannt wird. Hierdurch wird der von Verbrennungsgasen gefüllte Innenraum des Helmholtz-Resonators 4, das so genannte Resonanzvolumen 3, ausgehend von einer Mittellage vergrößert oder verkleinert, wie in der Figur durch den Pfeil angedeutet ist. Die Steuerung des Aufblasens oder Ablassens des Faltenbalges 6 erfolgt über einen entsprechenden Regler 7, der das Volumen in Abhängigkeit von den jeweils zu dämpfenden thermoakustischen Schwingungsfrequenzen einstellt. Die Ausgestaltung des Hohlkörpers 6 als metallischer Faltenbalg ist besonders für den Einsatz unter hohen Temperaturen geeignet.A first exemplary embodiment of a device according to the invention on a combustion chamber 1 of a gas turbine is shown in FIG. In this figure, the tunable Helmholtz resonator 4 can be seen, which is connected via a connecting channel 2 with the combustion chamber 1. Within the Helmholtz resonator 4, a hollow body 6 is arranged, whose volume is variable by supplying or discharging gas via a supply line 5. The hollow body 6 consists in this example of a metallic bellows, which is inflated by air 10 from the compressor outlet of the gas turbine or by venting this air is relaxed. As a result, the interior of the Helmholtz resonator 4 filled with combustion gases, the so-called resonance volume 3, is enlarged or reduced starting from a central position, as indicated by the arrow in the figure. The control of the inflation or deflation of the bellows 6 via a corresponding controller 7, which adjusts the volume as a function of each to be damped thermoacoustic vibration frequencies. The design of the hollow body 6 as a metallic bellows is particularly suitable for use under high temperatures.

Die Zuleitung 5 zum Faltenbalg 6 erfolgt durch das Druckgehäuse 8 der Gasturbine hindurch. Diese Durchführung durch das Druckgehäuse 8 kann gut abgedichtet werden, da sie keine beweglichen Bauteile enthält. Mit der vorliegenden Vorrichtung ist es daher möglich, das Resonanzvolumen 3 des Helmholtz-Resonators 4, der innerhalb des Druckgehäuses 8 montiert ist, von außerhalb des Druckgehäuses zu verändern, ohne die Gefahr einer Leckage des Druckgehäuses 8 zu erhöhen.The supply line 5 to the bellows 6 takes place through the pressure housing 8 of the gas turbine. This passage through the pressure housing 8 can be sealed well, since it contains no moving components. With the present device, it is therefore possible to change the resonance volume 3 of the Helmholtz resonator 4, which is mounted within the pressure housing 8, from outside the pressure housing, without increasing the risk of leakage of the pressure housing 8.

Entscheidenden Einfluss auf die Resonanzfrequenz des abstimmbaren Helmholtz-Resonators 4 haben nicht nur die Größe des Resonanzvolumens 3 und die Länge des Verbindungskanals 2 zur Brennkammer 1, sondern auch die Länge der Zuleitung 5 zum Regler 7 sowie die Temperatur der Steuerluft, d.h. des für das Aufblasen des Hohlkörpers 6 eingesetzten Gases. Die Zusammenhänge sind jedoch relativ komplex. Als Leitlinie kann angegeben werden, dass der mit der Vorrichtung regelbare Frequenzbereich mit zunehmender Temperaturdifferenz der im Helmholtz-Resonator 4 aneinander grenzenden Gase - Verbrennungsluft im Resonanzvolumen 3 und Steuerluft im Hohlkörper 6 - vergrößert wird. Durch geeignete Wahl bzw. Anpassung der Temperatur der eingesetzten Steuerluft zum Aufblasen des Hohlkörpers 6 kann dieser Frequenzbereich somit vergrößert werden.Decisive influence on the resonant frequency of the tunable Helmholtz resonator 4 not only have the size of the resonant volume 3 and the length of the connecting channel 2 to the combustion chamber 1, but also the length of the supply line 5 to the controller 7 and the temperature of the control air, ie that for the inflation the hollow body 6 used gas. The connections are, however, relatively complex. As a guideline, it can be stated that the frequency range which can be controlled by the device increases with increasing temperature difference in the Helmholtz resonator 4 adjacent gases - combustion air in the resonance volume 3 and control air in the hollow body 6 - is increased. By suitable choice or adaptation of the temperature of the control air used to inflate the hollow body 6, this frequency range can thus be increased.

Die Abstimmung des Resonanzvolumens 3 erfolgt über den automatischen Regler 7, der, wie bereits angeführt, je nach Frequenzlage der höchsten Schwingungsamplitude in der Brennkammer den Faltenbalg 6 vergrößert oder verkleinert. Da sich die Lage dieser Amplitude auf der Frequenzachse beim Betrieb des Brenners nur innerhalb eines relativ schmalen Bandes ändert, ist keine besonders schnelle Regelung erforderlich, um eine optimale Anpassung zu erzielen.The tuning of the resonance volume 3 via the automatic controller 7, which, as already stated, depending on the frequency position of the highest vibration amplitude in the combustion chamber, the bellows 6 increases or decreases. Since the position of this amplitude changes on the frequency axis during operation of the burner only within a relatively narrow band, no particularly fast control is required in order to achieve optimum adaptation.

Figur 3 zeigt schließlich ein weiteres Beispiel für eine mögliche Ausführungsform der erfindungsgemäßen Vorrichtung. In diesem Beispiel ist der Hohlkörper 6 nicht innerhalb des Helmholtz-Resonators 4 angeordnet, sondern grenzt an eine positionsveränderbare Wandung 11 dieses Resonators 4 an. Das Funktionsprinzip ist das Gleiche wie im Zusammenhang mit Figur 2 bereits erläutert. Bei dieser Ausführungsform ist der Helmholtz-Resonator 4 ebenso wie der Hohlkörper 6 - zumindest teilweise - als Faltenbalg ausgeführt, wobei eine Stirnfläche des Helmholtz-Resonators 4 an eine Stirnfläche des Hohlkörpers 6 angrenzt. Die gegenüberliegende Stirnfläche des Hohlkörpers 6 ist an einer entsprechenden Verankerung 9 im Druckgehäuse 8 fixiert.Finally, FIG. 3 shows a further example of a possible embodiment of the device according to the invention. In this example, the hollow body 6 is not arranged inside the Helmholtz resonator 4, but adjoins a position-variable wall 11 of this resonator 4. The operating principle is the same as already explained in connection with FIG. In this embodiment, the Helmholtz resonator 4 as well as the hollow body 6 - at least partially - designed as a bellows, wherein an end face of the Helmholtz resonator 4 adjacent to an end face of the hollow body 6. The opposite end face of the hollow body 6 is fixed to a corresponding anchoring 9 in the pressure housing 8.

Wird bei dieser Ausführungsform der Hohlkörper 6 über die Zuleitung 5 und den Regler 7 aufgeblasen, so verschiebt sich die positionsveränderliche Wandung 11 des Helmholtz-Resonators 4 in der Figur nach links, so dass das Resonanzvolumen 3 verkleinert wird. Im umgekehrten Fall ergibt sich eine Verschiebung nach rechts, wobei das Resonanzvolumen 3 vergrößert wird. Für diese Verschiebung ist es allerdings erforderlich, dass ein Federmechanismus die positionsveränderbare Wandung 11 des Helmholtz-Resonators 4 gegen den Hohlkörper 6 drückt. Dieser Federmechanismus kann beispielsweise durch eine elastische Ausgestaltung des Wandmaterials des Faltenbalges erreicht werden. Alternativ kann hierfür eine Feder innerhalb des Helmholtz-Resonators 4 vorgesehen sein.If, in this embodiment, the hollow body 6 is inflated via the feed line 5 and the controller 7, the positionally variable wall 11 of the Helmholtz resonator 4 shifts to the left in the figure, so that the resonance volume 3 is reduced. In the opposite case, there is a shift to the right, wherein the resonance volume 3 is increased. For this displacement, however, it is necessary for a spring mechanism to press the position-variable wall 11 of the Helmholtz resonator 4 against the hollow body 6. This spring mechanism can be achieved for example by an elastic configuration of the wall material of the bellows. Alternatively, a spring may be provided within the Helmholtz resonator 4 for this purpose.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Brennkammercombustion chamber
22
Verbindungskanalconnecting channel
33
Resonanzvolumenresonance volume
44
Helmholtz-ResonatorHelmholtz resonator
55
Zuleitungsupply
66
Hohlkörper; Faltenbalg.Hollow body; Bellows.
77
Reglerregulator
88th
Druckgehäusepressure housing
99
Verankerunganchoring
1010
Luft vom VerdichteraustrittAir from the compressor outlet
1111
positionsveränderbare Wandungposition adjustable wall

Claims (8)

  1. Apparatus for damping acoustic vibrations in a combustion chamber (1), comprising a Helmholtz resonator (4) having a variable resonant volume (3) and a connecting duct (2), by means of which the combustion chamber (1) can be connected to the resonant volume (3),
    characterized
    in that a hollow body (6) whose volume can be varied by supplying or discharging a fluid via a supply line (5) is contained within the Helmholtz resonator (4) or is adjoined by the latter in such a way that the resonant volume (3) of the Helmholtz resonator (4) varies with a change in volume of the hollow body (6), the fluid being a gas which is supplied or discharged in a manner controlled by a closed-loop controller.
  2. Apparatus according to Claim 1,
    characterized
    in that the variable-volume hollow body (6) is an inflatable, heat-resistant balloon.
  3. Apparatus according to Claim 1,
    characterized
    in that the variable-volume hollow body (6) is an inflatable metallic bellows.
  4. Apparatus according to one of Claims 1 to 3,
    characterized
    in that, when the hollow body (6) is arranged in the Helmholtz resonator (4), the supply line (5) runs through an aperture in a wall of the Helmholtz resonator (4).
  5. Apparatus according to one of Claims 1 to 3,
    characterized
    in that the Helmholtz resonator (4) has at least one moveable wall (11), which is adjoined by the hollow body (6), and also a spring mechanism which presses the wall (11) against the hollow body (6).
  6. Apparatus according to one of Claims 1 to 5,
    characterized
    in that the closed-loop controller (7) controls the supply or discharge of the fluid via the supply line (5) as a function of the frequency of the highest instantaneous vibration amplitude in the combustion chamber (1).
  7. Combustion chamber arrangement having an apparatus according to one of the preceding claims, in which the combustion chamber (1) and the Helmholtz resonator (4) are arranged within a pressure casing (8) of a gas or steam turbine,
    characterized
    in that the supply line (5) to the hollow body (6) is passed out through the pressure casing (8).
  8. Combustion chamber arrangement according to Claim 7,
    characterized
    in that the supply line (5) is arranged in such a way that compressor air from the gas or steam turbine can be supplied to it.
EP01110618A 2000-05-26 2001-04-30 Apparatus to reduce acoustic vibrations in a combustion chamber Expired - Lifetime EP1158247B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10026121 2000-05-26
DE10026121A DE10026121A1 (en) 2000-05-26 2000-05-26 Device for damping acoustic vibrations in a combustion chamber

Publications (3)

Publication Number Publication Date
EP1158247A2 EP1158247A2 (en) 2001-11-28
EP1158247A3 EP1158247A3 (en) 2002-01-02
EP1158247B1 true EP1158247B1 (en) 2006-04-19

Family

ID=7643661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01110618A Expired - Lifetime EP1158247B1 (en) 2000-05-26 2001-04-30 Apparatus to reduce acoustic vibrations in a combustion chamber

Country Status (4)

Country Link
US (1) US6634457B2 (en)
EP (1) EP1158247B1 (en)
JP (1) JP4880825B2 (en)
DE (2) DE10026121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848865A1 (en) 2013-09-12 2015-03-18 Alstom Technology Ltd Thermoacoustic stabilization method

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100523615C (en) 2002-01-16 2009-08-05 阿尔斯通技术有限公司 Combustion chamber in a gas turbine plant
EP1342953A1 (en) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Gas turbine
DE10247550A1 (en) * 2002-10-11 2004-04-22 Werner, Jürgen Radial fan for leaf and waste vacuum, leaf blower or Laubladegeräte
GB2396687A (en) * 2002-12-23 2004-06-30 Rolls Royce Plc Helmholtz resonator for combustion chamber use
US6792907B1 (en) 2003-03-04 2004-09-21 Visteon Global Technologies, Inc. Helmholtz resonator
US7272931B2 (en) * 2003-09-16 2007-09-25 General Electric Company Method and apparatus to decrease combustor acoustics
US20050194207A1 (en) * 2004-03-04 2005-09-08 York International Corporation Apparatus and method of sound attenuation in a system employing a VSD and a quarter-wave resonator
US7337877B2 (en) * 2004-03-12 2008-03-04 Visteon Global Technologies, Inc. Variable geometry resonator for acoustic control
EP1596130B1 (en) * 2004-05-14 2014-12-31 Siemens Aktiengesellschaft Device for damping thermoacoustic oscillations in a combustion chamber with a variable resonator frequency
US7117974B2 (en) * 2004-05-14 2006-10-10 Visteon Global Technologies, Inc. Electronically controlled dual chamber variable resonator
US7464552B2 (en) * 2004-07-02 2008-12-16 Siemens Energy, Inc. Acoustically stiffened gas-turbine fuel nozzle
JP2006125381A (en) * 2004-09-29 2006-05-18 Toyoda Gosei Co Ltd Resonator
US8024934B2 (en) * 2005-08-22 2011-09-27 Solar Turbines Inc. System and method for attenuating combustion oscillations in a gas turbine engine
US7441411B2 (en) * 2005-09-16 2008-10-28 General Electric Company Method and apparatus to detect onset of combustor hardware damage
US7819221B1 (en) * 2005-09-27 2010-10-26 The United States Of America As Represented By The Secretary Of The Air Force Lightweight acoustic damping treatment
US7866147B2 (en) * 2005-09-30 2011-01-11 Southwest Research Institute Side branch absorber for exhaust manifold of two-stroke internal combustion engine
DE102005062284B4 (en) * 2005-12-24 2019-02-28 Ansaldo Energia Ip Uk Limited Combustion chamber for a gas turbine
US7946382B2 (en) 2006-05-23 2011-05-24 Southwest Research Institute Gas compressor with side branch absorber for pulsation control
JP2008025472A (en) * 2006-07-21 2008-02-07 Denso Corp Noise reducing device
US7788926B2 (en) * 2006-08-18 2010-09-07 Siemens Energy, Inc. Resonator device at junction of combustor and combustion chamber
JP5054988B2 (en) * 2007-01-24 2012-10-24 三菱重工業株式会社 Combustor
US20080253900A1 (en) * 2007-04-11 2008-10-16 Harris Ralph E Gas compressor with pulsation absorber for reducing cylinder nozzle resonant pulsation
EP1990579A1 (en) * 2007-05-10 2008-11-12 Siemens Aktiengesellschaft Device and method for measuring acoustic oscillations in the fluid flow and gas turbine facility with such a device
US8123498B2 (en) 2008-01-24 2012-02-28 Southern Gas Association Gas Machinery Research Council Tunable choke tube for pulsation control device used with gas compressor
JP4993755B2 (en) * 2008-03-18 2012-08-08 日産自動車株式会社 Intake sound generator
US9275628B2 (en) * 2008-05-05 2016-03-01 Bonnie S. Schnitta Tunable frequency acoustic structures
CH699322A1 (en) * 2008-08-14 2010-02-15 Alstom Technology Ltd METHOD FOR SETTING A Helmholtz resonator AND HELMHOLTZ RESONATOR FOR IMPLEMENTING THE PROCESS.
US7757808B1 (en) * 2009-02-04 2010-07-20 Gm Global Technology Operations, Inc. Noise reduction system
US8030957B2 (en) 2009-03-25 2011-10-04 Aehr Test Systems System for testing an integrated circuit of a device and its method of use
US8408358B1 (en) * 2009-06-12 2013-04-02 Cornerstone Research Group, Inc. Morphing resonators for adaptive noise reduction
US8789372B2 (en) 2009-07-08 2014-07-29 General Electric Company Injector with integrated resonator
RU2508506C2 (en) * 2009-09-01 2014-02-27 Дженерал Электрик Компани Method and unit for fluid feed in gas turbine engine combustion chamber
US7896126B1 (en) * 2009-12-18 2011-03-01 Raytheon Company Methods and apparatus for sound suppression
KR101138360B1 (en) 2010-04-23 2012-04-26 서울대학교산학협력단 Method of semi-active combustion control and apparatus thereof.
EP2397761B1 (en) 2010-06-16 2021-10-06 Ansaldo Energia Switzerland AG Helmholtz Damper
EP2397760B1 (en) * 2010-06-16 2020-11-18 Ansaldo Energia IP UK Limited Damper Arrangement and Method for Designing Same
JP5639794B2 (en) * 2010-06-23 2014-12-10 株式会社マーレ フィルターシステムズ Intake sound generator for internal combustion engine
JP5693293B2 (en) * 2011-02-25 2015-04-01 三菱重工業株式会社 Combustor
DE202011004521U1 (en) 2011-03-29 2011-06-09 Alstom Technology Ltd. Gas turbine and intake manifold
ITMI20110902A1 (en) * 2011-05-20 2012-11-21 Consorzio Intellimech DEVICE FOR FITTING PRESSURE WAVES
GB201108917D0 (en) * 2011-05-27 2011-07-13 Rolls Royce Plc A Hydraulic damping apparatus
US9341375B2 (en) 2011-07-22 2016-05-17 General Electric Company System for damping oscillations in a turbine combustor
US8469141B2 (en) 2011-08-10 2013-06-25 General Electric Company Acoustic damping device for use in gas turbine engine
US8966903B2 (en) 2011-08-17 2015-03-03 General Electric Company Combustor resonator with non-uniform resonator passages
JP5834816B2 (en) * 2011-11-22 2015-12-24 ヤマハ株式会社 Acoustic structure
EP2623732A1 (en) * 2012-02-02 2013-08-07 Siemens Aktiengesellschaft Assembly and method for dampening acoustic vibrations in such an assembly
US9286882B1 (en) * 2012-03-07 2016-03-15 Great Lakes Sound & Vibration, Inc. Systems and methods for active exhaust noise cancellation
US10088165B2 (en) * 2015-04-07 2018-10-02 General Electric Company System and method for tuning resonators
US9400108B2 (en) 2013-05-14 2016-07-26 Siemens Aktiengesellschaft Acoustic damping system for a combustor of a gas turbine engine
EP2837782A1 (en) * 2013-08-14 2015-02-18 Alstom Technology Ltd Damper for combustion oscillation damping in a gas turbine
CN104676646B (en) * 2013-10-25 2019-08-13 安萨尔多能源瑞士股份公司 The damping unit of burner for gas turbine
EP2963345B1 (en) * 2014-06-30 2018-09-19 Ansaldo Energia Switzerland AG Damper for gas turbine
CN104235987B (en) * 2014-09-30 2017-02-15 长城汽车股份有限公司 Air conditioner system and vehicle comprising same
DE102014016448A1 (en) * 2014-11-06 2016-05-12 Man Diesel & Turbo Se Exhaust gas aftertreatment device and method for exhaust aftertreatment
EP3029376B1 (en) * 2014-12-01 2018-10-03 Ansaldo Energia IP UK Limited Gas turbine with a helmholtz damper
KR20160079277A (en) * 2014-12-26 2016-07-06 삼성전자주식회사 Vacuum cleaner and control method for the same
CN104566477B (en) * 2014-12-31 2019-02-01 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Frequency modulation device and term durability gas turbine flame barrel for term durability gas turbine flame barrel
EP3153777B1 (en) * 2015-10-05 2021-03-03 Ansaldo Energia Switzerland AG Damper assembly for a combustion chamber
JP6639219B2 (en) * 2015-12-18 2020-02-05 株式会社マーレ フィルターシステムズ Air intake noise reduction device for internal combustion engine
EP3182008A1 (en) * 2015-12-18 2017-06-21 Ansaldo Energia IP UK Limited Helmholtz damper for a gas turbine and gas turbine with such helmholtz damper
US10415471B2 (en) 2016-11-30 2019-09-17 United Technologies Corporation Variable volume acoustic damper
US10415506B2 (en) 2017-03-07 2019-09-17 United Technologies Corporation Multi degree of freedom flutter damper
US10612464B2 (en) 2017-03-07 2020-04-07 United Technologies Corporation Flutter inhibiting intake for gas turbine propulsion system
US10941708B2 (en) 2017-03-07 2021-03-09 Raytheon Technologies Corporation Acoustically damped gas turbine engine
US10619566B2 (en) 2017-03-07 2020-04-14 United Technologies Corporation Flutter damper for a turbofan engine
US10428685B2 (en) 2017-03-07 2019-10-01 United Technologies Corporation Flutter inhibiting intake for gas turbine propulsion system
US10539156B2 (en) * 2017-03-07 2020-01-21 United Technologies Corporation Variable displacement flutter damper for a turbofan engine
US10422280B2 (en) 2017-03-07 2019-09-24 United Technologies Corporation Fan flutter suppression system
US10167780B2 (en) * 2017-05-25 2019-01-01 Pratt & Whitney Canada Corp. Tunable resonator
EP3434876A1 (en) * 2017-07-25 2019-01-30 Siemens Aktiengesellschaft Combustor apparatus and method of operating combustor apparatus
EP3782937B1 (en) * 2018-04-16 2022-08-24 Kawasaki Jukogyo Kabushiki Kaisha Belt conveyor
CN108757101A (en) * 2018-05-15 2018-11-06 浙江吉利控股集团有限公司 A kind of resonance exhaust silencer for vehicle air inlet system and exhaust system
JP7257215B2 (en) * 2019-03-27 2023-04-13 三菱重工業株式会社 Acoustic dampers, combustors and gas turbines
DE102021103187A1 (en) 2021-02-11 2022-08-11 Bayerische Motoren Werke Aktiengesellschaft Helmholtz resonator for a motor vehicle and motor vehicle with a Helmholtz resonator
CN113757720B (en) * 2021-09-18 2023-01-31 北京航空航天大学 Combustion oscillation control device and method and combustion chamber
CN116293795A (en) * 2021-12-06 2023-06-23 通用电气阿维奥有限责任公司 Dome integrated acoustic damper for gas turbine combustor applications

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748852A (en) * 1969-12-05 1973-07-31 L Cole Self-stabilizing pressure compensated injector
JPS5544404Y2 (en) * 1974-05-09 1980-10-18
DE2851248C2 (en) * 1978-11-27 1984-02-16 Didier-Werke Ag, 6200 Wiesbaden Device for the combustion of heating gases, liquid, dusty or lumpy fuels
JPS5970868A (en) * 1982-10-15 1984-04-21 Nippon Denso Co Ltd Variable volume resonant muffler system
DE3324805A1 (en) 1983-07-09 1985-01-17 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH, 4000 Düsseldorf Device for the prevention of pressure fluctuations in combustion chambers
JPS61129414A (en) * 1984-11-27 1986-06-17 Agency Of Ind Science & Technol Silencer device of adaptable type
JPS6424109A (en) * 1987-07-20 1989-01-26 Sanshin Kogyo Kk Exhaust muffler structure of marine vessel propeller
US5283398A (en) * 1989-12-26 1994-02-01 Tsuchiya Mfg. Co., Ltd. Resonator type silencer
JPH0476943A (en) * 1990-07-18 1992-03-11 Nec Corp Semiconductor element
US5205326A (en) * 1991-08-23 1993-04-27 Hydraulic Power Systems, Inc. Pressure response type pulsation damper noise attenuator and accumulator
EP0576717A1 (en) * 1992-07-03 1994-01-05 Abb Research Ltd. Gas turbine combustor
DE59208715D1 (en) * 1992-11-09 1997-08-21 Asea Brown Boveri Gas turbine combustor
US5475189A (en) * 1992-11-16 1995-12-12 Carrier Corporation Condition responsive muffler for refrigerant compressors
DE4336112A1 (en) * 1993-10-22 1995-04-27 Knecht Filterwerke Gmbh Shunt resonator
JPH07139738A (en) * 1993-11-12 1995-05-30 Hitachi Ltd Gas turbine combustion device
JP3206260B2 (en) * 1993-11-25 2001-09-10 トヨタ自動車株式会社 Intake resonator
JP3233798B2 (en) * 1994-02-16 2001-11-26 三菱重工業株式会社 Combustor combustion vibration / pressure fluctuation reduction device
DE4414232A1 (en) * 1994-04-23 1995-10-26 Abb Management Ag Device for damping thermoacoustic vibrations in a combustion chamber
DE19640980B4 (en) * 1996-10-04 2008-06-19 Alstom Device for damping thermoacoustic oscillations in a combustion chamber
JPH1144266A (en) * 1997-07-29 1999-02-16 Toyota Motor Corp Resonator
EP0974788B1 (en) * 1998-07-23 2014-11-26 Alstom Technology Ltd Device for directed noise attenuation in a turbomachine
JP3592092B2 (en) * 1998-08-10 2004-11-24 株式会社日立製作所 Combustor
EP0985882B1 (en) * 1998-09-10 2003-12-03 ALSTOM (Switzerland) Ltd Vibration damping in combustors
GB2357141A (en) * 1999-12-09 2001-06-13 Draftex Ind Ltd Combined resonator and coolant store for an IC engine
KR100364741B1 (en) * 2000-09-28 2002-12-16 엘지전자 주식회사 Suction muffler of compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848865A1 (en) 2013-09-12 2015-03-18 Alstom Technology Ltd Thermoacoustic stabilization method

Also Published As

Publication number Publication date
US20020000343A1 (en) 2002-01-03
JP2002129982A (en) 2002-05-09
DE50109527D1 (en) 2006-05-24
US6634457B2 (en) 2003-10-21
EP1158247A3 (en) 2002-01-02
EP1158247A2 (en) 2001-11-28
JP4880825B2 (en) 2012-02-22
DE10026121A1 (en) 2001-11-29

Similar Documents

Publication Publication Date Title
EP1158247B1 (en) Apparatus to reduce acoustic vibrations in a combustion chamber
EP1423645B1 (en) Damping arrangement for reducing combustion chamber pulsations in a gas turbine system
EP1476699B1 (en) Combustion chamber and damper arrangement for reduction of combustion chamber pulsations in a gas turbine plant
DE102010037078B4 (en) Acoustically stiffened gas turbine combustor duct
EP1924805A1 (en) Method and apparatus for damping of thermo-acoustic oscillations, in particular in a gas turbine
DE102005062284B4 (en) Combustion chamber for a gas turbine
DE19640980B4 (en) Device for damping thermoacoustic oscillations in a combustion chamber
DE19851636A1 (en) Damping device for reducing vibration amplitude of acoustic waves for burner for internal combustion engine operation is preferably for driving gas turbo-group, with mixture area for air and fuel
DE10058688A1 (en) Damper arrangement for reducing combustion chamber pulsations
DE2712326A1 (en) BURNER
EP2354659A1 (en) Helmholtz damper for installing in the combustor of a gas turbine and also method for installing such a helmholtz damper
EP2394033A1 (en) Sound absorber having helical fixtures
DE112014006922T5 (en) Acoustic treatment arrangement for a turbine system
EP1507682B1 (en) Device for sonic configuration in a motor vehicle
EP0974788B1 (en) Device for directed noise attenuation in a turbomachine
EP1605209A1 (en) Combustor with thermo-acoustic vibrations dampening device
DE1523515A1 (en) Hydro-pneumatic resonator
DE3300499C2 (en)
EP1624251B1 (en) Apparatus for reducing thermoacoustic oscillations in combustion chambers with adjustable resonance frequency
EP1596130B1 (en) Device for damping thermoacoustic oscillations in a combustion chamber with a variable resonator frequency
DE2402774A1 (en) Noise absorber for high speed flow valves - is made from sintered ceramics as a cylindrical lining
DE4439704A1 (en) Pressure pulsation reduction device for ic engine exhaust pipe
DE3324805A1 (en) Device for the prevention of pressure fluctuations in combustion chambers
DE2554483C2 (en) Burner nozzle for oil and / or fuel gas with a Hartmann sound vibration generator
DE3025794C2 (en) Device for suppressing vibrations that occur in fired industrial furnaces, in particular wind heaters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23R 3/16 A, 7F 23M 13/00 B, 7F 01N 1/02 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17P Request for examination filed

Effective date: 20020524

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17Q First examination report despatched

Effective date: 20041202

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50109527

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50109527

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50109527

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50109527

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170419

Year of fee payment: 17

Ref country code: DE

Payment date: 20170419

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50109527

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50109527

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109527

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430