EP1155167A1 - Electrolytic cell arrangement for production of aluminium - Google Patents

Electrolytic cell arrangement for production of aluminium

Info

Publication number
EP1155167A1
EP1155167A1 EP00901689A EP00901689A EP1155167A1 EP 1155167 A1 EP1155167 A1 EP 1155167A1 EP 00901689 A EP00901689 A EP 00901689A EP 00901689 A EP00901689 A EP 00901689A EP 1155167 A1 EP1155167 A1 EP 1155167A1
Authority
EP
European Patent Office
Prior art keywords
tank
current
conductor
upstream
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00901689A
Other languages
German (de)
French (fr)
Other versions
EP1155167B1 (en
Inventor
Jean-Marie Gaillard
Jacques Colin De Verdiere
Pierre Homsi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of EP1155167A1 publication Critical patent/EP1155167A1/en
Application granted granted Critical
Publication of EP1155167B1 publication Critical patent/EP1155167B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the invention relates to the production of aluminum by igneous electrolysis according to the Hall-Héroult process, and more particularly to the methods and means enabling it to be used industrially.
  • the invention relates very particularly to the rows of electrolytic cells arranged crosswise, that is to say the long sides of which are perpendicular to the axis of the row.
  • Aluminum metal is produced industrially by igneous electrolysis, namely by electrolysis of alumina in solution in a molten cryolite bath, called electrolysis bath, according to the well-known Hall-Héroult process.
  • the electrolysis bath is contained in a tank comprising a steel box, which is coated internally with refractory and / or insulating materials, and a cathode assembly located at the bottom of the tank.
  • Anodes made of carbonaceous material are partially immersed in the electrolysis bath.
  • the cell and the anodes form what is often called an electrolysis cell.
  • the electrolysis current which circulates in the electrolysis bath and the sheet of liquid aluminum via the anodes and cathode elements, operates the alumina reduction reactions and also makes it possible to maintain the bath. electrolysis at a temperature of the order of 950 ° C by the Joule effect.
  • the tanks which almost always have a rectangular shape, are generally arranged side by side, that is to say that the long sides are perpendicular to the axis of the queue (we also say that they are oriented "crosswise”), but they can also be arranged head-to-head (we also say that they are oriented "lengthwise”).
  • the tanks are generally arranged so as to form two or more parallel rows which are electrically linked together by end conductors.
  • the electrolysis current thus cascades from one cell to the next.
  • the length and mass of the conductors are as small as possible so as to limit the corresponding investment and operating costs, in particular by reducing losses by Joule effect in the conductors.
  • the bringing together of the electrolysis cells and the increase in the intensities of the electrolysis current have led to the development of configurations of conductors capable of compensating for the effects of the magnetic fields produced by the electrolysis current.
  • the electrolytic cells are generally controlled in such a way that they are in thermal equilibrium, that is to say that the heat dissipated by each electrolytic cell is generally compensated by the heat produced in it, which comes mainly from the electrolysis current.
  • the conditions of thermal equilibrium depend on the physical parameters of the tank, such as the dimensions and the nature of the constituent materials, and on the operating conditions of the tank, such as the electrical resistance of the tank, the temperature of the bath or the intensity of the electrolysis current.
  • the tank is often constructed and driven so as to cause the formation of a solidified embankment on the side walls of this tank, which in particular makes it possible to inhibit the attack of the coatings of said walls by the liquid cryolite.
  • the point of thermal equilibrium is generally chosen so as to achieve the most favorable operating conditions from a point of view not only technical, but also economic.
  • French patent FR 2 552 782 (corresponding to American patent US 4 592 821), in the name of the applicant, describes a line of electrolysis cells which can operate industrially at intensities above 300 kA and with Faraday yields greater than 90%.
  • the Applicant has found that the electrolytic cells exhibit temperature heterogeneities, and more precisely a dispersion of the temperature values throughout the liquid mass, which, although relatively low, tend to be maintained over time. , that is to say that certain temperature deviations from the average value of the tank do not cancel out by an effect of average over time.
  • These heterogeneities in particular have the drawback of limiting the finesse of the thermal regulation of the tanks.
  • Known control methods certainly allow temperature fluctuations to be controlled over time, but do not do not directly limit the dispersion of temperature values over the entire tank.
  • the temperature zones below the set point favor material deposits at the bottom of the tank and the formation of a running slope (that is to say that part of the slope partially covers the cathode), which increase cathodic drop and cause instability of the tank, and temperature zones above the set value tend to reduce the protective solidified bath slopes on the sides of the tank and can lead to irregular wear of the coatings.
  • the Applicant has therefore sought solutions to reduce the dispersion of temperatures and thermal fluctuations in the electrolytic cells which overcomes the drawbacks of the prior art while remaining satisfactory for the general design of the cells, in particular as regards the floor occupation and investment and operating costs, and for the operation of tanks.
  • the first object of the invention is an arrangement of electrolytic cells arranged across, for the production of aluminum by igneous electrolysis according to the Hall-Héroult process.
  • the invention also relates to an electrolysis plant comprising an arrangement of cells according to the first object of the invention.
  • the arrangement of electrolysis cells for the production of aluminum by igneous electrolysis according to the Hall-Héroult process with an electrolysis current of intensity lo, comprises at least a first row of cells electrolysis, forming a first electrical circuit, and at least a second electrical circuit located at a determined average distance from said first queue, said first queue comprising N cells arranged across and connecting conductors for transmitting said electrolysis current lo from a cell of said line, said upstream cell, to the next cell of said line, said downstream cell, each cell comprising a metal box, interior cladding elements, anodes and cathode elements, said cathode elements being provided with cathode connection outputs projecting from the upstream side and from the downstream side of the tank of each tank, a first part Im of the current lo exiting through the cathode outputs making protruding from the upstream side of each tank, a second part Iv of the current lo exiting through the cathode outlets projecting from the downstream side of each tank, said connecting conduct
  • the lateral and central areas of the tank and the queue are delimited by two imaginary vertical planes parallel to the axis of the queue. Each of said planes intercepts the tanks so as to form three zones corresponding to three comparable volumes of liquid mass inside each tank in the queue.
  • the central volume is between 25 and 40% of the total volume, and more preferably between 30 and 35% of the total volume.
  • the exact volume of each zone, as well as the exact distribution of the current under the tank, depends on the structure of the tank (in particular the number of cathode outlets) and the operating mode of the tank (in particular the thickness of the slopes solidified bath on the edges of the crucible of the tank, which changes the distribution of liquid masses).
  • Said second electrical circuit also called “neighboring queue” in the following text, is generally substantially parallel to the queue and generally comprises at least one electrolysis tank. It most often includes a line of electrolytic cells, but it can optionally consist only of conductors. In operation, a current of intensity lo 'flows in said second circuit.
  • the arrangement of the tanks is preferably such that the currents lo and lo 'have substantially equal intensities and flow in opposite directions from one another.
  • the sharing of the upstream current of the electrolytic cells between the conductors is a function of the intensity of the current of the line lo and that of the neighboring line lo ', as well as the distance between the two lines of cells.
  • FIG. 1 shows the electrical connection between two successive tanks of a file according to the prior art (corresponding to French patent FR 2,552,782 and to American patent US 4,592,821).
  • the direction of the neighboring queue is indicated by the arrow FN.
  • the direction of the electrolysis current is indicated by the arrow lo.
  • FIG. 2 illustrates the parameters for distributing the current in a row of electrolytic cells according to the invention. To simplify the figure, only two tanks are shown: an upstream tank of rank n and a downstream tank of rank n + 1.
  • the upstream side of a tank is identified by the letters AM; the downstream side is identified by the letters AN.
  • the lateral and central zones of the tank plane are delimited by two vertical planes PI and P2 parallel to the axis A of the queue and placed on either side of this axis.
  • the inner, central and outer lateral zones are identified respectively by the letters F, C and E.
  • the arrow indicates the direction of the electrolysis current.
  • Figure 3 shows the electrical connection between two successive tanks of an arrangement according to the invention.
  • the direction of the neighboring queue is indicated by the arrow FN.
  • the direction of the electrolysis current is indicated by the arrow lo.
  • each tank comprises a box (1), generally made of steel, lined internally with insulating refractory materials, anodes and cathode elements.
  • the anodes and the cathode elements are not illustrated to simplify the figures.
  • the cathode elements include carbon blocks and cathode bars sealed in said blocks; a cathode element generally comprises one or two cathode bars.
  • the cathode bars protrude from each side of the tanks and form said upstream (3) and downstream (4) cathode outlets (the term "cathode outlet" designates all the cathode bars of the same element projecting on one side of the tank).
  • the cathode elements are arranged side by side in the transverse direction of the tanks.
  • the anodes generally consisting of precooked carbonaceous pastes and metal anode rods sealed in said pasta, are fixed to a movable spider (5).
  • the means of electrical connection between the cathode outputs and the spider comprise ascending (or mounted) conductors (6 A, 6B, 6B ', 6C, 6D, 6D', 6E), axial conductors (7), lateral conductors ( 8) and bypass conductors (11 A and 11B).
  • the mounts are connected to the spider by means of flexible electrical conductors (10A, 10B, 10B ', 10C, 10D, 10D', 10E).
  • the circuit can include intermediate conductors (12, 13, 14A, 14B, 15A, 15B, 16A, 16B, 17A, 17B, 18A, 18B, 19A, 19B, 20A, 20B, 21) and equipotential bonding conductors (22 , 23 A, 23B) to distribute the electrolysis current in the climbs.
  • the intensity of the current II is preferably comparable to the intensity of the current 12, in the sense that they differ by less than 15% compared to the average of II and 12 (i.e. (II + 12) / 2).
  • the axial conductor is preferably single.
  • the lateral conductor is unique. It is also advantageous that a single bypass conductor (said interior bypass conductor) bypasses the tank on the inside and / or a single bypass conductor (said outside bypass conductor) bypasses the tank on the outside.
  • each tank comprises at least one internal bypass conductor and at least one external bypass conductor
  • the intensity li of the current flowing in the, or all of, the conductor (s) of internal bypass is comparable to the intensity of the current flowing in the, or all, external bypass conductor (s).
  • the intensities li and le differ by less than 15% compared to the average of li and le (that is to say (li + Ie) / 2).
  • the central climb 6C carries no current, and is preferably absent, the climbs (6A, 6B, 6B ', 6D, 6D', 6E) are placed symmetrically on either side other from the axial plane of the queue, outside said central zone C, each tank comprises a single axial conductor (7), a single lateral conductor (8), a first single bypass conductor (11B) on the side of the neighboring queue , or "inside side", and a second single bypass conductor (HA) on the side opposite to the neighboring line, or "outside side".
  • the climbs are preferably located between the tanks, that is to say between the two adjacent sides of successive tanks.
  • the number of said climbs is even and an equal number of climbs is placed on each side of the axis of the queue.
  • the intensity of the current flowing in the axial conductor (7) and the intensity of the current flowing in the lateral conductor (8) are comparable, that is to say that they differ by less than 15% by compared to the average of their values.
  • the bypass conductors (11 A, 11B) also carry a current of comparable intensity.
  • the, or each, lateral conductor passing under the tank is located near the end of the tank, and more preferably near the last cathode outlet.
  • the N tanks in a row typically include two end tanks (namely the row 1 tank and the row N tank) which do not have an upstream or downstream tank, or whose upstream or downstream tank is not located at the same distance as the tanks in the queue (which are generally equidistant), or whose upstream or downstream tank is not located in the axis of the queue.
  • the supply conductors of the first tank in the queue and / or the connection conductors of the last tank in the queue to the electrical circuit or to the next queue may have a configuration different from that of the connecting conductors between the N tanks of the queue.
  • said connection conductors of the last tank may not include any climbs.
  • each tank included 20 cathode outputs on each side, that is to say 20 outputs on the upstream side and 20 outputs on the downstream side.
  • Each cathode output included two cathode bars.
  • the electrolysis current lo was substantially the same in all these tests, namely 300 kA.
  • the neighboring queues were located at the same distance in all cases, namely approximately 85 m center-to-center.
  • the current lo 'flowing in the neighboring lines was substantially equal to the electrolysis current lo.
  • the cathode current of the upstream outputs (Im) was distributed as follows in the transmission conductors: 15 kA in the conductor (9 A), 7, 5 kA in the conductor (9B), 22.5 kA in the conductor (9C), 52.5 kA in the conductor (HA) and 52.5 kA in the conductor (11B).
  • the total cathodic current of the downstream tank was distributed as follows in the climbs: 60 kA in the climbs (6 A) and (6E), 15 kA in the climbs (6B) and (6D 1 ), 45 kA in the climbs ( 6B 1 ) and (6D), and 60 kA in the central climb (6C).
  • Each cathode output carried a current of approximately the same intensity, that is to say approximately 7.5 kA.
  • the number of climbs was 7 arranged as in Figure 1. These climbs were arranged between the upstream and downstream tanks and symmetrically on either side of the axis of the queue of tanks.
  • the electrical conductors had a configuration similar to that illustrated in FIG. 3.
  • the three zones cut the plane of the tank into three surfaces substantially of the same dimensions, that is to say that the planes PI and P2 intercepted the plane of the tank so as to form a central zone (C) corresponding to 32% of the liquid mass and two lateral zones (a zone E on the outside side and a zone F on the side of the neighboring file) each corresponding to 34% of the liquid mass (taking into account the slopes).
  • the central zone included 6 cathode outputs and each lateral zone included 7 cathode outputs.
  • Each of the cathode outputs carried a current of approximately the same intensity, that is to say approximately 7.5 kA.
  • the total cathode current of the downstream tank was distributed as follows in the climbs: 76.5 kA in the climbs (6 A) and (6E), 28.0 kA in the climbs (6B) and (6D 1 ), and 45 , 5 kA in the climbs (6B 1 ) and (6D).
  • the updraft flowing in the central area was therefore zero.
  • the number of climbs was 6, 3 climbs in the outer side area and 3 climbs in the inner side area (and therefore no climb in the central area). These climbs were arranged between the upstream and downstream tanks and symmetrically on either side of the axis of the tank line.
  • the temperature measurements were carried out using thermocouples plugged into the vertical wall of the tank casing and arranged around the casing. In the case of tanks of the prior art, the measurements were carried out on 20 tanks of the same line. In the case of tanks according to the invention, the measurements were carried out on 3 tanks in a row.
  • the arrangement according to the invention makes it possible to obtain a significant reduction in the temperature difference between the upstream and downstream sides of each tank.
  • the difference between the temperature values measured in the central zone on the upstream side, at the interface between the electrolysis bath and the liquid metal, and those measured in the central zone on the downstream side, also at l the interface between the electrolysis bath and the liquid metal observed on the cells according to the invention was 25 ° C ⁇ 10 ° C lower than that observed on the cells according to the prior art.
  • the arrangement of tanks according to the invention makes it possible to advantageously modify the rows of tanks of existing factories without requiring a significant investment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

The invention concerns an electrolytic cell arrangement (1), disposed transversely, for producing aluminium by fused-salt electrolysis in accordance with the Hall-Heroult process, comprising at least a first row of electrolytic cells, forming a first electric circuit, and at least a second electric circuit located at a specific mean distance from the first row. The invention is characterised in that at least one conductor (7), said to be axial, passes beneath each upstream cell, in the central zone, and at least a conductor (8), said to be lateral, passes beneath each upstream cell, in the inner lateral zone, and at least one conductor (11A, 11B), said to be bypassing, bypasses each upstream cell, and said or each lateral conductor is connected to a first set of said cathode bar ends located on the upstream side so as to transmit to said risers (6A, 6B, 6D, 6E) a first part (I1) of the current (Im), ranging between 20 and 20 % of said current (Im), and said or each axial conductor is connected to a second set of cathode bar ends located on the upstream side so as to transmit to said risers (6A, 6B. 6D, 6E) a second part (I2) of said current (Im), ranging between 10 and 20 % of said current Im, and said or each bypassing conductor is connected to a third set of cathode bar ends located on the upstream side so as to transmit a third part (I3) of the current (Im), corresponding to the remainder of the current Im, and said risers are connected to said cathode bar ends located on the downstream side of the corresponding upstream cell, to the conductors passing beneath said cell, and to said or each bypassing conductor of said cell, such that a fraction (Mc) of said current (Io) less than 15 % is transmitted to the risers located in the central zone of the row.

Description

ARRANGEMENT DE CUVES D'ELECTROLYSE POUR LA PRODUCTION ARRANGEMENT OF ELECTROLYSIS TANKS FOR PRODUCTION
D'ALUMINIUMALUMINUM
Domaine de l'inventionField of the invention
L'invention concerne la production d'aluminium par électrolyse ignée selon le procédé Hall-Héroult, et plus particulièrement les méthodes et moyens permettant de le mettre en œuvre de manière industrielle. L'invention concerne tout particulièrement les files de cuves d'électrolyse disposées en travers, c'est-à-dire dont les côtés longs sont perpendiculaires à l'axe de la file.The invention relates to the production of aluminum by igneous electrolysis according to the Hall-Héroult process, and more particularly to the methods and means enabling it to be used industrially. The invention relates very particularly to the rows of electrolytic cells arranged crosswise, that is to say the long sides of which are perpendicular to the axis of the row.
Etat de la techniqueState of the art
L'aluminium métal est produit industriellement par électrolyse ignée, à savoir par électrolyse de l'alumine en solution dans un bain de cryolithe fondue, appelé bain d'électrolyse, selon le procédé bien connu de Hall-Héroult. Le bain d'électrolyse est contenu dans une cuve comprenant un caisson en acier, qui est revêtu intérieurement de matériaux réfractaires et/ou isolants, et un ensemble cathodique situé au fond de la cuve. Des anodes en matériau carboné sont partiellement immergées dans le bain d'électrolyse. La cuve et les anodes forment ce qui est souvent appelé une cellule d'électrolyse. Le courant d'électrolyse, qui circule dans le bain d'électrolyse et la nappe d'aluminium liquide par l'intermédiaire des anodes et des éléments cathodiques, opère les réactions de réduction de l'alumine et permet également de maintenir le bain d'électrolyse à une température de l'ordre de 950 °C par effet Joule.Aluminum metal is produced industrially by igneous electrolysis, namely by electrolysis of alumina in solution in a molten cryolite bath, called electrolysis bath, according to the well-known Hall-Héroult process. The electrolysis bath is contained in a tank comprising a steel box, which is coated internally with refractory and / or insulating materials, and a cathode assembly located at the bottom of the tank. Anodes made of carbonaceous material are partially immersed in the electrolysis bath. The cell and the anodes form what is often called an electrolysis cell. The electrolysis current, which circulates in the electrolysis bath and the sheet of liquid aluminum via the anodes and cathode elements, operates the alumina reduction reactions and also makes it possible to maintain the bath. electrolysis at a temperature of the order of 950 ° C by the Joule effect.
Pour des raisons de rentabilité d'une usine, on cherche, d'une part, à réduire les coûts d'investissement et de fonctionnement et, d'autre part, à obtenir simultanément des intensités et des rendements Faraday les plus élevés possible, tout en préservant, voire en améliorant, les conditions de fonctionnement des cellules d'électrolyse. Dans ce but, les usines les plus modernes contiennent un grand nombre de cellules d'électrolyse disposées en ligne, dans des halls dits d'électrolyse, et raccordées électriquement en série à l'aide de conducteurs de liaison, de manière à optimiser l'occupation au sol des usines. Les cuves, qui ont pratiquement toujours une forme rectangulaire, sont en général disposées côte-à-côte, c'est-à-dire que les grands côtés sont perpendiculaires à l'axe de la file (on dit aussi qu'elles sont orientées "en travers"), mais elles peuvent aussi être disposées tête-à-tête (on dit aussi qu'elles sont orientées "en long"). Les cuves sont généralement disposées de manière à former deux ou plusieurs files parallèles qui sont électriquement liées entre elles par des conducteurs d'extrémité. Le courant d'électrolyse passe ainsi en cascade d'une cellule à la suivante. La longueur et la masse des conducteurs sont le plus réduit possible de manière à limiter les coûts d'investissement et de fonctionnement correspondants, en particulier par une réduction des pertes par effet Joule dans les conducteurs. En outre, le rapprochement des cuves d'électrolyse et l'augmentation des intensités du courant d'électrolyse ont conduit au développement de configurations de conducteurs capables de compenser les effets des champs magnétiques produits par le courant d'électrolyse.For reasons of profitability of a factory, one seeks, on the one hand, to reduce the investment and operating costs and, on the other hand, to simultaneously obtain the highest possible intensities and Faraday yields, all by preserving, or even improving, the operating conditions of the electrolysis cells. For this purpose, the most modern factories contain a large number of electrolysis cells arranged in line, in so-called electrolysis halls, and electrically connected in series using connecting conductors, so as to optimize the factory floor occupancy. The tanks, which almost always have a rectangular shape, are generally arranged side by side, that is to say that the long sides are perpendicular to the axis of the queue (we also say that they are oriented "crosswise"), but they can also be arranged head-to-head (we also say that they are oriented "lengthwise"). The tanks are generally arranged so as to form two or more parallel rows which are electrically linked together by end conductors. The electrolysis current thus cascades from one cell to the next. The length and mass of the conductors are as small as possible so as to limit the corresponding investment and operating costs, in particular by reducing losses by Joule effect in the conductors. In addition, the bringing together of the electrolysis cells and the increase in the intensities of the electrolysis current have led to the development of configurations of conductors capable of compensating for the effects of the magnetic fields produced by the electrolysis current.
Dans ce même but, il est connu de doter les cuves, ou files de cuves, de moyens de contrôle élaborés qui permettent une grande maîtrise du procédé d'électrolyse. En particulier, la demande française FR 2 753 727, au nom de la demanderesse, propose un procédé de régulation fine de la température qui permet d'atteindre des valeurs élevées du rendement Faraday.For this same purpose, it is known to provide cells, or rows of cells, with sophisticated control means which allow great control of the electrolysis process. In particular, French application FR 2 753 727, in the name of the applicant, proposes a process for fine regulation of the temperature which makes it possible to achieve high values of the Faraday yield.
Les cuves d'électrolyse sont généralement pilotées de telle manière qu'elles se trouvent en équilibre thermique, c'est-à-dire que la chaleur dissipée par chaque cuve d'électrolyse est globalement compensée par la chaleur produite dans celle-ci, qui provient essentiellement du courant d'électrolyse. Les conditions d'équilibre thermique dépendent des paramètres physiques de la cuve, tels que les dimensions et la nature des matériaux constitutifs, et des conditions de fonctionnement de la cuve, tels que la résistance électrique de la cuve, la température du bain ou l'intensité du courant d'électrolyse. La cuve est souvent constituée et conduite de façon à entraîner la formation d'un talus de bain solidifié sur les parois latérales de cette cuve, ce qui permet notamment d'inhiber l'attaque des revêtements desdites parois par la cryolithe liquide. Le point d'équilibre thermique est généralement choisi de manière à atteindre les conditions de fonctionnement les plus favorables d'un point de vue non seulement technique, mais également économique.The electrolytic cells are generally controlled in such a way that they are in thermal equilibrium, that is to say that the heat dissipated by each electrolytic cell is generally compensated by the heat produced in it, which comes mainly from the electrolysis current. The conditions of thermal equilibrium depend on the physical parameters of the tank, such as the dimensions and the nature of the constituent materials, and on the operating conditions of the tank, such as the electrical resistance of the tank, the temperature of the bath or the intensity of the electrolysis current. The tank is often constructed and driven so as to cause the formation of a solidified embankment on the side walls of this tank, which in particular makes it possible to inhibit the attack of the coatings of said walls by the liquid cryolite. The point of thermal equilibrium is generally chosen so as to achieve the most favorable operating conditions from a point of view not only technical, but also economic.
Le brevet français FR 2 552 782 (correspondant au brevet américain US 4 592 821), au nom de la demanderesse, décrit une file de cuves d'électrolyse qui peut fonctionner industriellement à des intensités supérieures à 300 kA et avec des rendements Faraday supérieurs à 90 %.French patent FR 2 552 782 (corresponding to American patent US 4 592 821), in the name of the applicant, describes a line of electrolysis cells which can operate industrially at intensities above 300 kA and with Faraday yields greater than 90%.
Problème poséProblem
Le développement continu des performances des usines d'électrolyse, aussi bien sur le plan technique que sur le plan économique, a conduit la demanderesse à rechercher des solutions pour augmenter la rentabilité des usines de manière globale, en prévoyant notamment la possibilité d'une plage d'intensités de fonctionnement des cuves. En effet, la possibilité d'effectuer des variations volontaires des conditions de fonctionnement, qui peuvent être importantes par rapport aux conditions nominales, est souvent utile dans la gestion d'une usine d'électrolyse. Par exemple, on peut chercher à varier la puissance d'une série de cuves d'électrolyse en fonction d'un contrat d'énergie électrique.The continuous development of the performance of electrolysis factories, both technically and economically, has led the applicant to seek solutions to increase the profitability of factories in general, by providing in particular for the possibility of a range operating intensities of the tanks. Indeed, the possibility of carrying out voluntary variations in the operating conditions, which can be significant compared to the nominal conditions, is often useful in the management of an electrolysis plant. For example, we can try to vary the power of a series of electrolytic cells according to an electrical energy contract.
Or, la demanderesse a constaté que les cuves d'électrolyse présentent des hétérogénéités de température, et plus précisément une dispersion des valeurs de température dans l'ensemble de la masse liquide, qui, quoique relativement faibles, ont tendance à se maintenir dans le temps, c'est-à-dire que certains écarts de température par rapport à la valeur moyenne de la cuve ne s'annulent pas par un effet de moyenne dans le temps. Ces hétérogénéités ont en particulier pour inconvénient de limiter la finesse de la régulation thermique des cuves. Les procédés de régulation connus permettent certes de maîtriser les fluctuations de température dans le temps, mais ne limitent pas directement la dispersion des valeurs de température sur l'ensemble de la cuve. En outre, les zones de température inférieure à la valeur de consigne favorisent les dépôts de matière au fond de la cuve et la formation de talus filant (c'est-à-dire qu'une partie du talus recouvre partiellement la cathode), qui augmentent la chute cathodique et sont à l'origine d'instabilités de la cuve, et les zones de température supérieure à la valeur de consigne tendent à réduire les talus de bain solidifié protecteur sur les côtés de cuve et peuvent conduire à une usure irrégulière des revêtements.However, the Applicant has found that the electrolytic cells exhibit temperature heterogeneities, and more precisely a dispersion of the temperature values throughout the liquid mass, which, although relatively low, tend to be maintained over time. , that is to say that certain temperature deviations from the average value of the tank do not cancel out by an effect of average over time. These heterogeneities in particular have the drawback of limiting the finesse of the thermal regulation of the tanks. Known control methods certainly allow temperature fluctuations to be controlled over time, but do not do not directly limit the dispersion of temperature values over the entire tank. In addition, the temperature zones below the set point favor material deposits at the bottom of the tank and the formation of a running slope (that is to say that part of the slope partially covers the cathode), which increase cathodic drop and cause instability of the tank, and temperature zones above the set value tend to reduce the protective solidified bath slopes on the sides of the tank and can lead to irregular wear of the coatings.
La demanderesse a donc recherché des solutions pour réduire la dispersion des températures et les fluctuations thermiques dans les cuves d'électrolyse qui pallient les inconvénients de l'art antérieur tout en restant satisfaisantes pour la conception générale des cuves, notamment en ce qui concerne l'occupation au sol et les coûts d'investissement et de fonctionnement, et pour la conduite des cuves.The Applicant has therefore sought solutions to reduce the dispersion of temperatures and thermal fluctuations in the electrolytic cells which overcomes the drawbacks of the prior art while remaining satisfactory for the general design of the cells, in particular as regards the floor occupation and investment and operating costs, and for the operation of tanks.
Objet de l'inventionSubject of the invention
L'invention a pour premier objet un arrangement de cuves d'électrolyse disposées en travers, pour la production d'aluminium par électrolyse ignée selon le procédé Hall- Héroult.The first object of the invention is an arrangement of electrolytic cells arranged across, for the production of aluminum by igneous electrolysis according to the Hall-Héroult process.
L'invention a également pour objet une usine d'électrolyse comprenant un arrangement de cuves selon le premier objet de l'invention.The invention also relates to an electrolysis plant comprising an arrangement of cells according to the first object of the invention.
Description de l'inventionDescription of the invention
Selon l'invention, l'arrangement de cuves d'électrolyse, pour la production d'aluminium par électrolyse ignée selon le procédé Hall-Héroult avec un courant d'électrolyse d'intensité lo, comprend au moins une première file de cuves d'électrolyse, formant un premier circuit électrique, et au moins un deuxième circuit électrique situé à une distance moyenne déterminée de ladite première file, ladite première file comprenant N cuves disposées en travers et des conducteurs de liaison pour transmettre ledit courant d'électrolyse lo d'une cuve de ladite file, dite cuve amont, à la cuve suivante de ladite file, dite cuve aval, chaque cuve comprenant un caisson métallique, des éléments de revêtement intérieur, des anodes et des éléments cathodiques, lesdits éléments cathodiques étant munies de sorties cathodiques de raccordement faisant saillie du côté amont et du côté aval du caisson de chaque cuve, une première partie Im du courant lo sortant par les sorties cathodiques faisant saillie du côté amont de chaque cuve, une deuxième partie Iv du courant lo sortant par les sorties cathodiques faisant saillie du côté aval de chaque cuve, lesdits conducteurs de liaison comprenant des conducteurs ascendants, appelés "montées", le courant lo provenant de l'ensemble des éléments cathodiques d'une cuve amont étant transmis aux anodes de la cuve aval par l'intermédiaire desdites montées, et est caractérisé en ce qu'au moins un conducteur dit "axial" passe sous chaque cuve amont, dans la zone centrale, en ce qu'au moins un conducteur dit "latéral" passe sous chaque cuve amont, dans la zone latérale intérieure, c'est-à-dire la zone de chaque cuve située du côté dudit deuxième circuit électrique, en ce qu'au moins un conducteur dit "de contoumement" contourne chaque cuve amont, en ce que le ou chaque conducteur latéral est raccordé à un premier ensemble desdites sorties cathodiques situées du côté amont de manière à transmettre aux dites montées une première partie II du courant Im, comprise entre 10 et 20 % dudit courant Im, en ce que le ou chaque conducteur axial est raccordé à un deuxième ensemble desdites sorties cathodiques situées du côté amont de manière à transmettre aux dites montées une deuxième partie 12 dudit courant Im, comprise entre 10 et 20 % dudit courant Im, en ce que le ou chaque conducteur de contoumement est raccordé à un troisième ensemble desdites sorties cathodiques situées du côté amont de manière à transmettre une troisième partie 13 du courant Im, correspondant au reste du courant Im, en ce que lesdites montées sont raccordées aux sorties cathodiques situées du côté aval de la cuve amont correspondante, aux conducteurs passant sous ladite cuve, et au, ou à chaque, conducteur de contoumement de ladite cuve, de manière à ce qu'une fraction Me du courant lo inférieure à 15 %, et de préférence inférieure à 10 %, est transmise par les montées situées dans la zone centrale de la file. Les zones latérales et centrale de la cuve et de la file sont délimitées par deux plans imaginaires verticaux et parallèles à l'axe de la file. Chacun desdits plans intercepte les cuves de manière à former trois zones correspondant à trois volumes comparables de masse liquide à l'intérieur de chaque cuve de la file. De préférence, le volume central est compris entre 25 et 40 % du volume total, et de préférence encore entre 30 et 35 % du volume total. Le volume exact de chaque zone, ainsi que la répartition exacte du courant sous la cuve, sont fonctions de la structure de la cuve (notamment du nombre de sorties cathodiques) et du mode de fonctionnement de la cuve (notamment de l'épaisseur des talus de bain solidifié sur les bords du creuset de la cuve, ce qui modifie la répartition des masses liquides).According to the invention, the arrangement of electrolysis cells, for the production of aluminum by igneous electrolysis according to the Hall-Héroult process with an electrolysis current of intensity lo, comprises at least a first row of cells electrolysis, forming a first electrical circuit, and at least a second electrical circuit located at a determined average distance from said first queue, said first queue comprising N cells arranged across and connecting conductors for transmitting said electrolysis current lo from a cell of said line, said upstream cell, to the next cell of said line, said downstream cell, each cell comprising a metal box, interior cladding elements, anodes and cathode elements, said cathode elements being provided with cathode connection outputs projecting from the upstream side and from the downstream side of the tank of each tank, a first part Im of the current lo exiting through the cathode outputs making protruding from the upstream side of each tank, a second part Iv of the current lo exiting through the cathode outlets projecting from the downstream side of each tank, said connecting conductors comprising ascending conductors, called "mounted", the current lo coming from the all the cathode elements of an upstream tank being transmitted to the anodes of the downstream tank by means of said assemblies, and e st characterized in that at least one conductor called "axial" passes under each upstream tank, in the central zone, in that at least one conductor said "lateral" passes under each upstream tank, in the interior lateral zone, c that is to say the zone of each tank located on the side of said second electrical circuit, in that at least one conductor called "bypass" bypasses each upstream tank, in that the or each lateral conductor is connected to a first set of said cathode outputs located on the upstream side so as to transmit to said mounted a first part II of the current Im, between 10 and 20% of said current Im, in that the or each axial conductor is connected to a second set of said cathode outputs located on the upstream side so as to transmit to said mounted a second part 12 of said current Im, between 10 and 20% of said current Im, in that the or each bypass conductor is connected to a third set of said cathode outputs located on the upstream side so as to transmit a third part 13 of the current Im, corresponding to the rest of the current Im, in that said assemblies are connected to the cathode outputs located on the downstream side of the corresponding upstream tank, to the conductors passing under said tank, and at, or at each, bypass conductor of said tank, so that a fraction Me of the current lo less than 15%, and preferably less than 10%, is transmitted by the climbs located in the central area of the queue. The lateral and central areas of the tank and the queue are delimited by two imaginary vertical planes parallel to the axis of the queue. Each of said planes intercepts the tanks so as to form three zones corresponding to three comparable volumes of liquid mass inside each tank in the queue. Preferably, the central volume is between 25 and 40% of the total volume, and more preferably between 30 and 35% of the total volume. The exact volume of each zone, as well as the exact distribution of the current under the tank, depends on the structure of the tank (in particular the number of cathode outlets) and the operating mode of the tank (in particular the thickness of the slopes solidified bath on the edges of the crucible of the tank, which changes the distribution of liquid masses).
Ledit deuxième circuit électrique, appelé également "file voisine" dans la suite du texte, est généralement sensiblement parallèle à la file et comprend généralement au moins une cuve d'électrolyse. Il comprend le plus souvent une file de cuves d'électrolyse, mais il peut éventuellement être constitué uniquement de conducteurs. En fonctionnement, un courant d'intensité lo' circule dans ledit deuxième circuit. L'arrangement des cuves est de préférence tel que les courants lo et lo' ont des intensités sensiblement égales et circulent dans des directions opposées l'une de l'autre.Said second electrical circuit, also called "neighboring queue" in the following text, is generally substantially parallel to the queue and generally comprises at least one electrolysis tank. It most often includes a line of electrolytic cells, but it can optionally consist only of conductors. In operation, a current of intensity lo 'flows in said second circuit. The arrangement of the tanks is preferably such that the currents lo and lo 'have substantially equal intensities and flow in opposite directions from one another.
Le partage du courant amont des cuves d'électrolyse entre les conducteurs est fonction de l'intensité du courant de la file lo et de celui de la file voisine lo', ainsi que de la distance entre les deux files de cuves.The sharing of the upstream current of the electrolytic cells between the conductors is a function of the intensity of the current of the line lo and that of the neighboring line lo ', as well as the distance between the two lines of cells.
Description des figuresDescription of the figures
La figure 1 montre le raccordement électrique entre deux cuves successives d'une file selon l'art antérieur (correspondant au brevet français FR 2 552 782 et au brevet américain US 4 592 821). La direction de la file voisine est indiquée par la flèche FN. La direction du courant d'électrolyse est indiqué par la flèche lo. La figure 2 illustre les paramètres de répartition du courant dans une file de cuves d'électrolyse selon l'invention. Afin de simplifier la figure, seules deux cuves sont représentées : une cuve amont de rang n et une cuve aval de rang n + 1. Le côté amont d'une cuve est identifié par les lettres AM ; le côté aval est identifié par les lettres AN. Les zones latérales et centrale du plan de cuve sont délimitées par deux plans verticaux PI et P2 parallèles à l'axe A de la file et placés de part et d'autre de cet axe. Les zones latérale intérieure, centrale et latérale extérieure sont identifiées respectivement par les lettres F, C et E. La flèche indique le sens du courant d'électrolyse.FIG. 1 shows the electrical connection between two successive tanks of a file according to the prior art (corresponding to French patent FR 2,552,782 and to American patent US 4,592,821). The direction of the neighboring queue is indicated by the arrow FN. The direction of the electrolysis current is indicated by the arrow lo. FIG. 2 illustrates the parameters for distributing the current in a row of electrolytic cells according to the invention. To simplify the figure, only two tanks are shown: an upstream tank of rank n and a downstream tank of rank n + 1. The upstream side of a tank is identified by the letters AM; the downstream side is identified by the letters AN. The lateral and central zones of the tank plane are delimited by two vertical planes PI and P2 parallel to the axis A of the queue and placed on either side of this axis. The inner, central and outer lateral zones are identified respectively by the letters F, C and E. The arrow indicates the direction of the electrolysis current.
La figure 3 montre le raccordement électrique entre deux cuves successives d'un arrangement selon l'invention. La direction de la file voisine est indiquée par la flèche FN. La direction du courant d'électrolyse est indiqué par la flèche lo.Figure 3 shows the electrical connection between two successive tanks of an arrangement according to the invention. The direction of the neighboring queue is indicated by the arrow FN. The direction of the electrolysis current is indicated by the arrow lo.
Description détaillée de l'inventionDetailed description of the invention
Dans un arrangement de cuves selon l'invention, chaque cuve comprend un caisson (1), généralement en acier, garni intérieurement de matériaux réfractaires isolants, des anodes et des éléments cathodiques. Les anodes et les éléments cathodiques ne sont pas illustrés pour simplifier les figures. Les éléments cathodiques comportent des blocs carbonés et des barres cathodiques scellées dans lesdits blocs ; un élément cathodique comprend généralement une ou deux barres cathodiques. Les barres cathodiques font saillie de chaque côté des cuves et forment lesdites sorties cathodiques amont (3) et aval (4) (le terme "sortie cathodique" désigne l'ensemble des barres cathodiques d'un même élément faisant saillie sur un côté de la cuve). En général, les éléments cathodiques sont disposés côte à côte dans le sens transversal des cuves. Les anodes, généralement constituées de pâtes carbonées précuites et de tiges d'anodes métalliques scellées dans lesdites pâtes, sont fixées à un croisillon (5) mobile. Les moyens de raccordement électrique entre les sorties cathodiques et le croisillon comprennent des conducteurs ascendants (ou montées) (6 A, 6B, 6B', 6C, 6D, 6D', 6E), des conducteurs axiaux (7), des conducteurs latéraux (8) et des conducteurs de contoumement (11 A et 11B). Afin de permettre la mobilité du croisillon, les montées sont raccordées au croisillon par l'intermédiaire de conducteurs électriques souples (10A, 10B, 10B', 10C, 10D, 10D', 10E). Le circuit peut comprendre des conducteurs intermédiaires (12, 13, 14A, 14B, 15A, 15B, 16A, 16B, 17A, 17B, 18A, 18B, 19A, 19B, 20A, 20B, 21) et des conducteurs de liaisons équipotentielles (22, 23 A, 23B) pour répartir le courant d'électrolyse dans les montées.In a tank arrangement according to the invention, each tank comprises a box (1), generally made of steel, lined internally with insulating refractory materials, anodes and cathode elements. The anodes and the cathode elements are not illustrated to simplify the figures. The cathode elements include carbon blocks and cathode bars sealed in said blocks; a cathode element generally comprises one or two cathode bars. The cathode bars protrude from each side of the tanks and form said upstream (3) and downstream (4) cathode outlets (the term "cathode outlet" designates all the cathode bars of the same element projecting on one side of the tank). In general, the cathode elements are arranged side by side in the transverse direction of the tanks. The anodes, generally consisting of precooked carbonaceous pastes and metal anode rods sealed in said pasta, are fixed to a movable spider (5). The means of electrical connection between the cathode outputs and the spider comprise ascending (or mounted) conductors (6 A, 6B, 6B ', 6C, 6D, 6D', 6E), axial conductors (7), lateral conductors ( 8) and bypass conductors (11 A and 11B). In order to allow mobility of the spider, the mounts are connected to the spider by means of flexible electrical conductors (10A, 10B, 10B ', 10C, 10D, 10D', 10E). The circuit can include intermediate conductors (12, 13, 14A, 14B, 15A, 15B, 16A, 16B, 17A, 17B, 18A, 18B, 19A, 19B, 20A, 20B, 21) and equipotential bonding conductors (22 , 23 A, 23B) to distribute the electrolysis current in the climbs.
L'intensité du courant II est de préférence comparable à l'intensité du courant 12, en ce sens qu'elles diffèrent de moins de 15 % par rapport à la moyenne de II et 12 (c'est- à-dire (Il + 12)/2).The intensity of the current II is preferably comparable to the intensity of the current 12, in the sense that they differ by less than 15% compared to the average of II and 12 (i.e. (II + 12) / 2).
Le conducteur axial est de préférence unique. De préférence également, le conducteur latéral est unique. Il est également avantageux qu'un conducteur de contoumement unique (dit conducteur de contoumement intérieur) contourne la cuve du côté intérieur et/ou qu'un conducteur de contoumement unique (dit conducteur de contoumement extérieur) contourne la cuve du côté extérieur. Ces mesures permettent de mettre en oeuvre l'invention de manière efficace tout en maintenant un circuit électrique relativement simple.The axial conductor is preferably single. Preferably also, the lateral conductor is unique. It is also advantageous that a single bypass conductor (said interior bypass conductor) bypasses the tank on the inside and / or a single bypass conductor (said outside bypass conductor) bypasses the tank on the outside. These measures make it possible to implement the invention effectively while maintaining a relatively simple electrical circuit.
Selon une variante préférée de l'invention, chaque cuve comprend au moins un conducteur de contoumement intérieur et au moins un conducteur de contoumement extérieur, et l'intensité li du courant circulant dans le, ou l'ensemble des, conducteur(s) de contoumement intérieur est comparable à l'intensité le du courant circulant dans le, ou l'ensemble des, conducteur(s) de contoumement extérieur. De préférence, les intensités li et le diffèrent de moins de 15 % par rapport à la moyenne de li et le (c'est-à-dire (li + Ie)/2). Dans le mode de réalisation préféré de l'invention, la montée centrale 6C ne porte aucun courant, et est de préférence absente, les montées (6A, 6B, 6B', 6D, 6D', 6E) sont placées symétriquement de part et d'autre du plan axial de la file, hors de ladite zone centrale C, chaque cuve comprend un conducteur axial unique (7), un conducteur latéral unique (8), un premier conducteur de contoumement unique (11B) du côté de la file voisine, ou "côté intérieur", et un second conducteur de contoumement unique (HA) du côté opposé à la file voisine, ou "côté extérieur". Aucun courant ne circule sous le caisson dans la zone E située du côté extérieur de la cuve.According to a preferred variant of the invention, each tank comprises at least one internal bypass conductor and at least one external bypass conductor, and the intensity li of the current flowing in the, or all of, the conductor (s) of internal bypass is comparable to the intensity of the current flowing in the, or all, external bypass conductor (s). Preferably, the intensities li and le differ by less than 15% compared to the average of li and le (that is to say (li + Ie) / 2). In the preferred embodiment of the invention, the central climb 6C carries no current, and is preferably absent, the climbs (6A, 6B, 6B ', 6D, 6D', 6E) are placed symmetrically on either side other from the axial plane of the queue, outside said central zone C, each tank comprises a single axial conductor (7), a single lateral conductor (8), a first single bypass conductor (11B) on the side of the neighboring queue , or "inside side", and a second single bypass conductor (HA) on the side opposite to the neighboring line, or "outside side". No current flows under the box in zone E located on the outside of the tank.
Les montées sont de préférence situées entre les cuves, c'est-à-dire entre les deux côtés adjacents de cuves successives. De préférence, le nombre desdites montées est pair et un nombre égal de montées est placé de chaque côté de l'axe de la file.The climbs are preferably located between the tanks, that is to say between the two adjacent sides of successive tanks. Preferably, the number of said climbs is even and an equal number of climbs is placed on each side of the axis of the queue.
De préférence, l'intensité du courant circulant dans le conducteur axial (7) et l'intensité du courant circulant dans le conducteur latéral (8) sont comparables, c'est-à-dire qu'elles diffèrent de moins de 15 % par rapport à la moyenne de leurs valeurs. De préférence, les conducteurs de contoumement (11 A, 11B) transportent également un courant d'une intensité comparable.Preferably, the intensity of the current flowing in the axial conductor (7) and the intensity of the current flowing in the lateral conductor (8) are comparable, that is to say that they differ by less than 15% by compared to the average of their values. Preferably, the bypass conductors (11 A, 11B) also carry a current of comparable intensity.
De préférence, le, ou chaque, conducteur latéral passant sous la cuve est situé près de l'extrémité de la cuve, et de préférence encore à proximité de la dernière sortie cathodique.Preferably, the, or each, lateral conductor passing under the tank is located near the end of the tank, and more preferably near the last cathode outlet.
En pratique, les N cuves d'une file comprennent typiquement deux cuves d'extrémité (à savoir la cuve de rang 1 et la cuve de rang N) qui n'ont pas de cuve amont ou aval, ou dont la cuve amont ou aval n'est pas située à la même distance que les cuves de la file (qui sont généralement équidistantes), ou dont la cuve amont ou aval n'est pas située dans l'axe de la file. Dans ces cas, les conducteurs d'alimentation de la première cuve de la file et/ou les conducteurs de raccordement de la dernière cuve de la file au circuit électrique ou à la file suivante peuvent avoir une configuration différente de celle des conducteurs de liaison entre les N cuves de la file. En particulier, lesdits conducteurs de raccordement de la dernière cuve peuvent ne pas comprendre de montées.In practice, the N tanks in a row typically include two end tanks (namely the row 1 tank and the row N tank) which do not have an upstream or downstream tank, or whose upstream or downstream tank is not located at the same distance as the tanks in the queue (which are generally equidistant), or whose upstream or downstream tank is not located in the axis of the queue. In these cases, the supply conductors of the first tank in the queue and / or the connection conductors of the last tank in the queue to the electrical circuit or to the next queue may have a configuration different from that of the connecting conductors between the N tanks of the queue. In particular, said connection conductors of the last tank may not include any climbs.
Essais comparatifsComparative tests
Des mesures de température ont été réalisées sur un arrangement de cuves selon l'art antérieur le plus proche (figure 1) et sur un arrangement de cuves prototype selon l'invention (figure 3). Dans ces essais, chaque cuve comprenait 20 sorties cathodiques de chaque côté, c'est-à-dire 20 sorties du coté amont et 20 sorties du côté aval. Chaque sortie cathodique comprenait deux barres cathodiques. Le courant d'électrolyse lo était sensiblement le même dans tous ces essais, à savoir 300 kA. Les files voisines étaient situées à la même distance dans tous les cas, à savoir environ 85 m centre-à-centre. Le courant lo' circulant dans les files voisines était sensiblement égal au courant d'électrolyse lo.Temperature measurements were carried out on an arrangement of tanks according to the closest prior art (FIG. 1) and on an arrangement of prototype tanks according to the invention (FIG. 3). In these tests, each tank included 20 cathode outputs on each side, that is to say 20 outputs on the upstream side and 20 outputs on the downstream side. Each cathode output included two cathode bars. The electrolysis current lo was substantially the same in all these tests, namely 300 kA. The neighboring queues were located at the same distance in all cases, namely approximately 85 m center-to-center. The current lo 'flowing in the neighboring lines was substantially equal to the electrolysis current lo.
Dans l'arrangement de cuves d'électrolyse de l'art antérieur (figure 1), le courant cathodique des sorties amont (Im) était réparti comme suit dans les conducteurs de transmission : 15 kA dans le conducteur (9 A), 7,5 kA dans le conducteur (9B), 22,5 kA dans le conducteur (9C), 52,5 kA dans le conducteur (HA) et 52,5 kA dans le conducteur (11B). Le courant cathodique total de la cuve aval était réparti comme suit dans les montées : 60 kA dans les montées (6 A) et (6E), 15 kA dans les montées (6B) et (6D1), 45 kA dans les montées (6B1) et (6D), et 60 kA dans la montée centrale (6C). Chaque sortie cathodique transportait un courant sensiblement de même intensité, soit environ 7,5 kA.In the arrangement of electrolytic cells of the prior art (FIG. 1), the cathode current of the upstream outputs (Im) was distributed as follows in the transmission conductors: 15 kA in the conductor (9 A), 7, 5 kA in the conductor (9B), 22.5 kA in the conductor (9C), 52.5 kA in the conductor (HA) and 52.5 kA in the conductor (11B). The total cathodic current of the downstream tank was distributed as follows in the climbs: 60 kA in the climbs (6 A) and (6E), 15 kA in the climbs (6B) and (6D 1 ), 45 kA in the climbs ( 6B 1 ) and (6D), and 60 kA in the central climb (6C). Each cathode output carried a current of approximately the same intensity, that is to say approximately 7.5 kA.
Le nombre de montées était de 7 disposées comme sur la figure 1. Ces montées étaient disposées entre les cuves amont et aval et symétriquement de part et d'autre de l'axe de la file de cuves. Dans l'arrangement selon l'invention, les conducteurs électriques avaient une configuration similaire à celle illustrée à la figure 3. Les trois zones découpaient le plan de la cuve en trois surfaces sensiblement de mêmes dimensions, c'est-à-dire que les plans PI et P2 interceptaient le plan de la cuve de manière à former une zone centrale (C) correspondant à 32 % de la masse liquide et deux zones latérales (une zone E du côté extérieur et une zone F du côté de la file voisine) correspondant chacune à 34 % de la masse liquide (en tenant compte des talus). La zone centrale comprenait 6 sorties cathodiques et chaque zone latérale comprenait 7 sorties cathodiques. Chacune des sorties cathodiques transportait un courant sensiblement de même intensité, soit environ 7,5 kA.The number of climbs was 7 arranged as in Figure 1. These climbs were arranged between the upstream and downstream tanks and symmetrically on either side of the axis of the queue of tanks. In the arrangement according to the invention, the electrical conductors had a configuration similar to that illustrated in FIG. 3. The three zones cut the plane of the tank into three surfaces substantially of the same dimensions, that is to say that the planes PI and P2 intercepted the plane of the tank so as to form a central zone (C) corresponding to 32% of the liquid mass and two lateral zones (a zone E on the outside side and a zone F on the side of the neighboring file) each corresponding to 34% of the liquid mass (taking into account the slopes). The central zone included 6 cathode outputs and each lateral zone included 7 cathode outputs. Each of the cathode outputs carried a current of approximately the same intensity, that is to say approximately 7.5 kA.
Le courant provenant des sorties cathodiques amont (Im), ou "courant amont", était réparti comme suit dans les conducteurs de transmission : 20,0 kA dans le conducteur axial (7), 25,0 kA dans le conducteur latéral (8), 52,5 kA dans les conducteurs de contoumement (11 A) et (11B). Cette répartition correspond à : 13,3 % dans le conducteur axial, 16,7 % dans le conducteur latéral, 35 % dans le conducteur de contoumement du côté de la file voisine et 35 % dans le conducteur de contoumement du côté extérieur.The current from the upstream cathode outputs (Im), or "upstream current", was distributed as follows in the transmission conductors: 20.0 kA in the axial conductor (7), 25.0 kA in the lateral conductor (8) , 52.5 kA in the bypass conductors (11 A) and (11B). This distribution corresponds to: 13.3% in the axial conductor, 16.7% in the lateral conductor, 35% in the bypass conductor on the side of the neighboring queue and 35% in the bypass conductor on the outer side.
Le courant cathodique total de la cuve aval était réparti comme suit dans les montées : 76,5 kA dans les montées (6 A) et (6E), 28,0 kA dans les montées (6B) et (6D1), et 45,5 kA dans les montées (6B1) et (6D). Le courant ascendant circulant dans la zone centrale était donc nul.The total cathode current of the downstream tank was distributed as follows in the climbs: 76.5 kA in the climbs (6 A) and (6E), 28.0 kA in the climbs (6B) and (6D 1 ), and 45 , 5 kA in the climbs (6B 1 ) and (6D). The updraft flowing in the central area was therefore zero.
Le nombre de montées était de 6, soit 3 montées dans la zone latérale extérieure et 3 montées dans la zone latérale intérieure (et donc aucune montée dans la zone centrale). Ces montées étaient disposées entre les cuves amont et aval et symétriquement de part et d'autre de l'axe de la file de cuves.The number of climbs was 6, 3 climbs in the outer side area and 3 climbs in the inner side area (and therefore no climb in the central area). These climbs were arranged between the upstream and downstream tanks and symmetrically on either side of the axis of the tank line.
Les mesures de température ont été effectuées à l'aide de thermocouples fichés dans la paroi verticale du caisson des cuves et disposés autour du caisson. Dans le cas des cuves de l'art antérieur, les mesures ont été effectuées sur 20 cuves d'une même file. Dans le cas des cuves selon l'invention, les mesures ont été effectuées sur 3 cuves en file.The temperature measurements were carried out using thermocouples plugged into the vertical wall of the tank casing and arranged around the casing. In the case of tanks of the prior art, the measurements were carried out on 20 tanks of the same line. In the case of tanks according to the invention, the measurements were carried out on 3 tanks in a row.
Ces essais ont montré que l'arrangement selon l'invention permet d'obtenir une diminution significative de l'écart de température entre les côtés amont et aval de chaque cuve. Typiquement, l'écart entre les valeurs de température mesurées dans la zone centrale côté amont, au niveau de l'interface entre le bain d'électrolyse et le métal liquide, et celles mesurées dans la zone centrale côté aval, également au niveau de l'interface entre le bain d'électrolyse et le métal liquide, observé sur les cuves selon l'invention était inférieur de 25°C ± 10°C à celui observé sur les cuves selon l'art antérieur.These tests have shown that the arrangement according to the invention makes it possible to obtain a significant reduction in the temperature difference between the upstream and downstream sides of each tank. Typically, the difference between the temperature values measured in the central zone on the upstream side, at the interface between the electrolysis bath and the liquid metal, and those measured in the central zone on the downstream side, also at l the interface between the electrolysis bath and the liquid metal observed on the cells according to the invention was 25 ° C ± 10 ° C lower than that observed on the cells according to the prior art.
Avantages de l'inventionAdvantages of the invention
L'arrangement de cuves selon l'invention permet de modifier avantageusement les files de cuves d'usines existantes sans nécessiter un investissement important. The arrangement of tanks according to the invention makes it possible to advantageously modify the rows of tanks of existing factories without requiring a significant investment.

Claims

REVENDICATIONS
1. Arrangement de cuves d'électrolyse, pour la production d'aluminium par électrolyse ignée selon le procédé Hall-Héroult à l'aide d'un courant d'électrolyse d'intensité lo, comprenant au moins une première file de cuves d'électrolyse, formant un premier circuit électrique, et au moins un deuxième circuit électrique situé à une distance moyenne déterminée de ladite première file, ladite première file comprenant N cuves disposées en travers et des conducteurs de liaison pour transmettre ledit courant d'électrolyse lo d'une cuve de ladite file, dite cuve amont, à la cuve suivante de ladite file, dite cuve aval, chaque cuve comprenant un caisson métallique, des éléments de revêtement intérieur, des anodes et des éléments cathodiques, lesdits éléments cathodiques étant munies de sorties cathodiques de raccordement faisant saillie du côté amont et du côté aval du caisson de chaque cuve, une première partie Im du courant lo sortant par les sorties cathodiques faisant saillie du côté amont de chaque cuve, une deuxième partie Iv du courant lo sortant par les sorties cathodiques faisant saillie du côté aval de chaque cuve, lesdits conducteurs de liaison comprenant des conducteurs ascendants, appelés "montées", le courant lo provenant de l'ensemble des éléments cathodiques d'une cuve amont étant transmis aux anodes de la cuve aval par l'intermédiaire desdites montées, ledit arrangement étant caractérisé en ce qu'au moins un conducteur dit "axial" passe sous chaque cuve amont, dans la zone centrale, en ce qu'au moins un conducteur dit "latéral" passe sous chaque cuve amont, dans la zone latérale intérieure, c'est-à-dire la zone de chaque cuve située du côté dudit deuxième circuit électrique, en ce qu'au moins un conducteur dit "de contoumement" contourne chaque cuve amont, en ce que le ou chaque conducteur latéral est raccordé à un premier ensemble desdites sorties cathodiques situées du côté amont de manière à transmettre aux dites montées une première partie II du courant Im, comprise entre 10 et 20 % dudit courant Im, en ce que le ou chaque conducteur axial est raccordé à un deuxième ensemble desdites sorties cathodiques situées du côté amont de manière à transmettre aux dites montées une deuxième partie 12 dudit courant Im, comprise entre 10 et 20 % dudit courant Im, en ce que le ou chaque conducteur de contoumement est raccordé à un troisième ensemble desdites sorties cathodiques situées du côté amont de manière à transmettre une troisième partie 13 du courant Im, correspondant au reste du courant Im, en ce que lesdites montées sont raccordées aux sorties cathodiques situées du côté aval de la cuve amont correspondante, aux conducteurs passant sous ladite cuve et au, ou à chaque, conducteur de contoumement de ladite cuve, de manière à ce qu'une fraction Me du courant lo inférieure à 15 % est transmise par les montées situées dans la zone centrale de ladite file.1. Arrangement of electrolysis cells, for the production of aluminum by igneous electrolysis according to the Hall-Héroult process using an electrolysis current of intensity lo, comprising at least a first row of cells electrolysis, forming a first electrical circuit, and at least a second electrical circuit located at a determined average distance from said first row, said first row comprising N cells arranged across and connecting conductors for transmitting said electrolysis current lo d ' a tank of said line, called upstream tank, to the next tank of said line, called downstream tank, each tank comprising a metal box, internal coating elements, anodes and cathode elements, said cathode elements being provided with cathode outputs of connection projecting from the upstream side and from the downstream side of the box of each tank, a first part Im of the current lo exiting through the cathod outputs ics projecting from the upstream side of each tank, a second part Iv of the current lo exiting through the cathode outputs projecting from the downstream side of each tank, said connecting conductors comprising ascending conductors, called "mounted", the current lo coming from all the cathode elements of an upstream tank being transmitted to the anodes of the downstream tank via said assemblies, said arrangement being characterized in that at least one conductor called "axial" passes under each upstream tank, in the central zone, in that at least one so-called "lateral" conductor passes under each upstream tank, in the interior lateral zone, that is to say the zone of each tank situated on the side of said second electrical circuit, in that 'at least one conductor called "bypass" bypasses each upstream tank, in that the or each lateral conductor is connected to a first set of said cathode outputs located on the upstream side to transmit to said mounted a first part II of the current Im, between 10 and 20% of said current Im, in that the or each axial conductor is connected to a second set of said cathode outputs located on the upstream side so as to transmit to said mounted a second part 12 of said current Im, between 10 and 20 % of said current Im, in that the or each bypass conductor is connected to a third set of said cathode outputs located on the upstream side so as to transmit a third part 13 of current Im, corresponding to the rest of current Im, in that said mounted are connected to the cathode outputs located on the downstream side of the corresponding upstream tank, to the conductors passing under said tank and to, or to each, bypass conductor of said tank, so that a fraction Me of the current lo less than 15% is transmitted by the climbs located in the central zone of the said queue.
2. Arrangement selon la revendication 1, caractérisé en ce que la fraction Me est inférieure à 10 %.2. Arrangement according to claim 1, characterized in that the fraction Me is less than 10%.
3. Arrangement selon la revendication 1 ou 2, caractérisé en ce que les montées se situent entre les deux côtés adjacents de cuves successives.3. Arrangement according to claim 1 or 2, characterized in that the climbs are located between the two adjacent sides of successive tanks.
4. Arrangement selon l'une des revendications 1 à 3, caractérisé en ce que le deuxième circuit comprend au moins une cuve.4. Arrangement according to one of claims 1 to 3, characterized in that the second circuit comprises at least one tank.
5. Arrangement selon l'une des revendications 1 à 4, caractérisé en ce que le conducteur axial est unique.5. Arrangement according to one of claims 1 to 4, characterized in that the axial conductor is unique.
6. Arrangement selon l'une des revendications 1 à 5, caractérisé en ce que le conducteur latéral est unique.6. Arrangement according to one of claims 1 to 5, characterized in that the lateral conductor is unique.
7. Arrangement selon l'une des revendications 1 à 6, caractérisé en ce que l'intensité du courant II et l'intensité du courant 12 diffèrent de moins de 15 % par rapport à la moyenne de II et 12.7. Arrangement according to one of claims 1 to 6, characterized in that the intensity of current II and the intensity of current 12 differ by less than 15% compared to the average of II and 12.
8. Arrangement selon l'une des revendications 1 à 7, caractérisé en ce que chaque cuve comprend un seul conducteur de contoumement. 8. Arrangement according to one of claims 1 to 7, characterized in that each tank comprises a single bypass conductor.
9. Arrangement selon l'une des revendications 1 à 7, caractérisé en ce que chaque cuve comprend au moins un conducteur de contoumement intérieur et au moins un conducteur de contoumement extérieur, et en ce que l'intensité du courant li circulant dans le, ou l'ensemble des, conducteur(s) de contoumement intérieur et l'intensité du courant le circulant dans le, ou l'ensemble des, conducteur(s) de contoumement extérieur diffèrent de moins de 15 % par rapport à la moyenne de li et le.9. Arrangement according to one of claims 1 to 7, characterized in that each tank comprises at least one internal bypass conductor and at least one external bypass conductor, and in that the intensity of the current li flowing in the, or all of the internal bypass conductor (s) and the intensity of the current flowing in the or all of the external bypass conductor (s) differ by less than 15% from the average li and the.
10. Arrangement selon l'une des revendications 1 à 7 et 9, caractérisé en ce que chaque cuve comprend un seul conducteur de contoumement du côté extérieur et un seul conducteur de contoumement du côté intérieur.10. Arrangement according to one of claims 1 to 7 and 9, characterized in that each tank comprises a single bypass conductor on the outside and a single bypass conductor on the inside.
11. Usine d'électrolyse comprenant au moins un arrangement de cuves d'électrolyse selon les revendications 1 à 10. 11. Electrolysis plant comprising at least one arrangement of electrolytic cells according to claims 1 to 10.
EP00901689A 1999-02-05 2000-02-01 Electrolytic cell arrangement for production of aluminium Expired - Lifetime EP1155167B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9901529 1999-02-05
FR9901529A FR2789407B1 (en) 1999-02-05 1999-02-05 ARRANGEMENT OF ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM
PCT/FR2000/000228 WO2000046429A1 (en) 1999-02-05 2000-02-01 Electrolytic cell arrangement for production of aluminium

Publications (2)

Publication Number Publication Date
EP1155167A1 true EP1155167A1 (en) 2001-11-21
EP1155167B1 EP1155167B1 (en) 2002-11-06

Family

ID=9541800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00901689A Expired - Lifetime EP1155167B1 (en) 1999-02-05 2000-02-01 Electrolytic cell arrangement for production of aluminium

Country Status (15)

Country Link
US (1) US6551473B1 (en)
EP (1) EP1155167B1 (en)
AR (1) AR022463A1 (en)
AU (1) AU764224B2 (en)
BR (1) BR0007986A (en)
CA (1) CA2361671A1 (en)
DE (1) DE60000721T2 (en)
EG (1) EG21884A (en)
FR (1) FR2789407B1 (en)
GC (1) GC0000125A (en)
NO (1) NO20013714L (en)
NZ (1) NZ512913A (en)
RU (1) RU2227179C2 (en)
WO (1) WO2000046429A1 (en)
ZA (1) ZA200105654B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868436B1 (en) * 2004-04-02 2006-05-26 Aluminium Pechiney Soc Par Act SERIES OF ELECTROLYSIS CELLS FOR THE PRODUCTION OF ALUMINUM COMPRISING MEANS FOR BALANCING THE MAGNETIC FIELDS AT THE END OF THE FILE
US8048286B2 (en) * 2006-07-11 2011-11-01 Bharat Aluminum Company Limited Aluminum reduction cell fuse technology
GB2549731A (en) * 2016-04-26 2017-11-01 Dubai Aluminium Pjsc Busbar system for electrolytic cells arranged side by side in series
RU2643005C1 (en) * 2017-03-24 2018-01-29 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Wheels for aluminium electrolysers of large capacity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054399B2 (en) * 1982-04-30 1985-11-29 住友アルミニウム製錬株式会社 Electrolytic furnace for aluminum production
CH648065A5 (en) * 1982-06-23 1985-02-28 Alusuisse RAIL ARRANGEMENT FOR ELECTROLYSIS CELLS OF AN ALUMINUM HUT.
FR2552782B1 (en) * 1983-10-04 1989-08-18 Pechiney Aluminium ELECTROLYSIS TANK WITH INTENSITY HIGHER THAN 250,000 AMPERES FOR THE PRODUCTION OF ALUMINUM BY THE HALL-HEROULT PROCESS
DE3482272D1 (en) * 1984-12-28 1990-06-21 Alcan Int Ltd RAIL ARRANGEMENT FOR ELECTROLYSIS CELLS FOR THE PRODUCTION OF ALUMINUM.
FR2583068B1 (en) * 1985-06-05 1987-09-11 Pechiney Aluminium ELECTRICAL CONNECTION CIRCUIT OF SERIES OF ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM AT VERY HIGH INTENSITY
FR2583069B1 (en) * 1985-06-05 1987-07-31 Pechiney Aluminium CONNECTION DEVICE BETWEEN VERY HIGH INTENSITY ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM, INCLUDING A SUPPLY CIRCUIT AND AN INDEPENDENT MAGNETIC FIELD CORRECTION CIRCUIT
FR2753727B1 (en) 1996-09-25 1998-10-23 METHOD FOR REGULATING THE BATH TEMPERATURE OF AN ELECTROLYSIS TANK FOR THE PRODUCTION OF ALUMINUM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0046429A1 *

Also Published As

Publication number Publication date
NO20013714L (en) 2001-10-05
DE60000721T2 (en) 2003-09-18
EP1155167B1 (en) 2002-11-06
ZA200105654B (en) 2002-05-30
US6551473B1 (en) 2003-04-22
FR2789407B1 (en) 2001-03-23
DE60000721D1 (en) 2002-12-12
NO20013714D0 (en) 2001-07-27
EG21884A (en) 2002-04-30
FR2789407A1 (en) 2000-08-11
GC0000125A (en) 2005-06-29
NZ512913A (en) 2003-03-28
AR022463A1 (en) 2002-09-04
AU764224B2 (en) 2003-08-14
RU2227179C2 (en) 2004-04-20
CA2361671A1 (en) 2000-08-10
WO2000046429A1 (en) 2000-08-10
AU2301000A (en) 2000-08-25
BR0007986A (en) 2001-11-06

Similar Documents

Publication Publication Date Title
EP1733075B1 (en) Cathode element for an electrolysis cell for the production of aluminium
CA1178921A (en) Control process and device for the anode level in aluminium producing electrolytic vats
FR2583069A1 (en) CONNECTION DEVICE BETWEEN VERY HIGH-INTENSITY ELECTROLYSING CUPES FOR THE PRODUCTION OF ALUMINUM HAVING A POWER CIRCUIT AND AN INDEPENDENT CIRCUIT FOR CORRECTING THE MAGNETIC FIELD
EP1070158B2 (en) Fused bath electrolysis cell for producing aluminium by hall-heroult process comprising cooling means
CA2841297A1 (en) Aluminum smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells
CA1061745A (en) Method and apparatus for supplying power to igneous electrolysis baths st crosswise____________________________________________________________
EP1155167B1 (en) Electrolytic cell arrangement for production of aluminium
CA2841300C (en) Aluminium smelter comprising electrical conductors made from a superconducting material
CA1232869A (en) Electrolysis cell with feeder current over 250 000 amps for the production of aluminum according to the hall-heroult process
EP3030695B1 (en) Aluminium smelter comprising a compensating electric circuit
CA2698894A1 (en) Grooved anode for an electrolysis tank
EP3256623B1 (en) Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter
CA3000482C (en) Series of electrolysis cells for the production of aluminium comprising means for balancing the magnetic fields at the end of the line
CA3122500A1 (en) Anode assembly and electrolytic cell comprising said anode assembly
BE1001438A6 (en) Cooling and stirring device for metal during casting
FR2647698A1 (en) LIQUID METAL SUPPLY DEVICE FOR A CONTINUOUS CASTING PLANT FOR THIN PRODUCTS AND METHOD FOR ITS IMPLEMENTATION
WO2012172196A1 (en) Electrolysis cell intended to be used to produce aluminium
OA18402A (en) Aluminum smelter and process for compensating a magnetic field created by the circulation of electrolysis current from this smelter.
OA16842A (en) Aluminum plant comprising tanks with cathodic outlet through the bottom of the box and means for stabilizing the tanks
OA17793A (en) Aluminum plant including an electrical compensation circuit
FR2977899A1 (en) Smelter, useful for the production of aluminum from alumina by electrolysis, comprises series of electrolysis tank for producing aluminum, station that is adapted for supplying power to tank, electric circuits, and electric conductor
EP0294358A2 (en) Electrode for an electrolytic cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO PAYMENT 20010702;SI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020131

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

AX Request for extension of the european patent

Free format text: RO PAYMENT 20010702

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60000721

Country of ref document: DE

Date of ref document: 20021212

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20021106

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1155167E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070118

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902