EP3256623B1 - Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter - Google Patents

Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter Download PDF

Info

Publication number
EP3256623B1
EP3256623B1 EP16748782.6A EP16748782A EP3256623B1 EP 3256623 B1 EP3256623 B1 EP 3256623B1 EP 16748782 A EP16748782 A EP 16748782A EP 3256623 B1 EP3256623 B1 EP 3256623B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
current
intensity
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16748782.6A
Other languages
German (de)
French (fr)
Other versions
EP3256623A4 (en
EP3256623A1 (en
EP3256623B8 (en
Inventor
Benoit BARDET
Steeve RENAUDIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Publication of EP3256623A1 publication Critical patent/EP3256623A1/en
Publication of EP3256623A4 publication Critical patent/EP3256623A4/en
Application granted granted Critical
Publication of EP3256623B1 publication Critical patent/EP3256623B1/en
Publication of EP3256623B8 publication Critical patent/EP3256623B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Definitions

  • the present invention relates to an aluminum smelter, intended for the production of aluminum by electrolysis, and to a method for compensating the vertical and horizontal components of a magnetic field generated by the circulation of an electrolysis current in this aluminum smelter.
  • an electrolysis tank comprising a steel box inside of which a coating of refractory materials is arranged, a cathode of carbonaceous material, crossed by cathode conductors intended to collect the electrolysis current at the cathode to lead it to cathode outputs passing through the bottom or sides of the box, routing conductors extending substantially horizontally to the next tank from the cathode outputs, an electrolytic bath in which the alumina is dissolved , at least one anode assembly comprising at least one anode immersed in this electrolytic bath, an anode frame to which the anode assembly is suspended, and conductors for increasing the electrolysis current, extending from bottom to top, connected to the conductors routing of the previous electrolysis tank to route the electrolysis current from the cathode outlets to the anode frame e and to the anode assembly and the anode of the next tank
  • Aluminum production plants, or aluminum smelters traditionally include several hundred electrolytic cells, aligned transversely in parallel lines and connected in series.
  • MHD magnetohydrodynamic instabilities
  • the horizontal components of the magnetic field generated by the entire path of the electric current, both in the conductors inside the tank and those outside, interact with the electric current passing through liquids, which causes stationary deformation of the sheet of metal.
  • the unevenness of the metal sheet caused must remain low enough so that the anodes are consumed uniformly with little waste.
  • it is necessary that the horizontal components of the magnetic field are as asymmetrical as possible in liquids (electrolytic bath and sheet of metal).
  • the longitudinal and transverse components of the magnetic field which constitute the horizontal components
  • antisymmetric it is meant that when one moves perpendicular to the central axis of the tank, parallel to the considered component of the field, and when one located at equal distance on either side of this central axis, the value of the component considered is opposite.
  • the asymmetry of the horizontal components of the magnetic field is the configuration providing the most symmetrical and flat interface distortion possible in the tank.
  • the main advantage of self-compensation is the use of the electrolysis current itself to compensate for MHD instabilities.
  • Another solution to reduce MHD instabilities consists in using a secondary electrical circuit, or external loop, running along the rows of electrolytic cells, on the sides.
  • This secondary electrical circuit is traversed by a current whose intensity equals a predetermined percentage of the intensity of the electrolysis current.
  • the external loop generates a magnetic field compensating for the effects of the magnetic field created by the electrolysis current of the neighboring line of electrolysis cells.
  • the compensation solution by external loop has the advantage of having a secondary circuit independent of the main circuit traversed by the electrolysis current.
  • the arrangement of the secondary circuit, located on the sides of the tank rows near the short sides of the boxes, at the height of the bath-metal interface, allows compensation of the vertical component without impacting the horizontal components of the magnetic field.
  • the compensation solution by external loop significantly reduces the length, mass and electrical losses of the routing conductors, but requires an additional electrical supply station and an additional independent secondary electrical circuit.
  • the compensation solution by external loop involves a plurality of magnetic fields, with the current of the series, creating a very strong total ambient field, so that this implies constraints on the operations and the material (for example shielding necessary vehicles), and so that the magnetic field of a queue impacts the stability of the tanks of the neighboring queue.
  • the compensation solution by external loop involves a plurality of magnetic fields, with the current of the series, creating a very strong total ambient field, so that this implies constraints on the operations and the material (for example shielding necessary vehicles), and so that the magnetic field of a queue impacts the stability of the tanks of the neighboring queue.
  • To limit the influence of a queue on the neighboring queue it is necessary to move them away from each other, which constitutes a significant spatial constraint and therefore involves sheltering each row of electrolytic cells in a separate hangar.
  • junction portion of the electrolysis circuit and the secondary circuit joining the ends of two adjacent rows of electrolysis cells tends to destabilize the end-of-line cells.
  • this portion of the secondary circuit it is possible to configure this portion of the secondary circuit according to a predetermined route, as is known from the patent. FR2868436 , in order to correct the magnetic field so that the impact on the end-of-line tanks becomes acceptable.
  • this route notably lengthens the length of the secondary circuit, therefore the material cost.
  • the usual solution consists in moving the junction portion of the secondary circuit and the electrolysis circuit away from the cells located at the end of the line, but this increases the size in addition to increasing the length of the electrical conductors, therefore the material and energy cost.
  • the present invention aims to overcome all or part of these drawbacks by proposing an aluminum smelter with a magnetic configuration making it possible to have very magnetically stable tanks, and offering improved compactness.
  • the present invention also relates to a method of compensating for a magnetic field created by the circulation of an electrolysis current in this aluminum smelter.
  • the smelter according to the invention offers the advantage of having very stable tanks magnetically, since it compensates for both the horizontal and vertical components of the magnetic field generated by the circulation of the electrolysis current, which makes it possible to improve the overall yield, and this without negative impact on the size of the smelter according to the invention since the first electrical compensation circuit extends under the electrolytic cells.
  • the electrical rise and connection conductors comprise electrical rise and upstream connection conductors, adjacent to the upstream longitudinal edge of the electrolytic cell, and electrical rise and downstream connection conductors, adjacent at the longitudinal downstream edge of the electrolysis tank, and the smelter is configured so that the distribution of the electrolysis current is asymmetrical between the upstream and downstream connection and upstream electrical conductors, the intensity of the upstream electrolysis current intended to run through all of the upstream and upstream electrical conductors of the electrolysis tank being equal to] 50-100 [% of the intensity of the electrolysis current, and the intensity of the downstream electrolysis current intended to run through all the electrical conductors for rising and connecting downstream of the electrolytic cell being equal to] 0-50 [% of the current intensity electrolysis, the sum of the intensities of the upstream and downstream electrolysis currents being equal to the intensity of the electrolysis current.
  • An advantage of these characteristics is that it makes it possible to effectively compensate the magnetic field for a large-sized electrolysis cell, in particular of large width, without any additional cost of raw materials.
  • the distribution of the upstream downstream electrolysis current is symmetrical, that is to say if this distribution is 50% upstream and 50% downstream, and the width of the tanks electrolysis is increased, to have a better efficiency, it is created, due to the increase in the path traveled by the electrical conductors of routing under the electrolysis tank to supply the electrical conductors of rise and downstream connection, an imbalance detrimental to the proper functioning of the electrolysis tank.
  • the section of these electrical conductors should be increased under the electrolytic cell.
  • this increase in section implies a significant additional cost in raw materials.
  • the Applicant has observed that the smelter according to the present invention makes it possible to introduce an asymmetry in the distribution of the electrolysis current between the upstream and downstream of the electrolytic cells without damaging increase in the cross-section of the electrical conductors, while having very magnetically stable electrolytic cells.
  • the choice of the distribution between intensities of the upstream and downstream electrolysis currents is made by economic study. This choice mainly depends on the distance between two tanks and the height of the tanks. This distribution is achieved by adjusting the sections of the electrical conductors of the upstream and downstream electrical circuits, taking into account their length.
  • the smelter comprises a power station configured to circulate through said at least one first electrical compensation circuit a first compensation current of intensity equal to twice the intensity of the current of downstream electrolysis, to within plus or minus 20%, and preferably to plus or minus 10%.
  • An advantage of this characteristic is that for this value of the intensity of the first compensation current, which is a direct function of the distribution of the electrolysis current between the upstream and downstream of the electrolysis cells, the Applicant has observed that the horizontal magnetic field generated by the first electric compensation circuit precisely corrects the asymmetry of the horizontal magnetic field resulting from the asymmetry between the upstream and downstream electrolysis current, in order to have an asymmetric distribution of the horizontal components of the field magnetic
  • This first compensation current also makes it possible to partially correct the vertical magnetic field, as a function of the distribution between upstream and downstream electrolysis current of the cell, in order to reduce the MHD instabilities in the cell.
  • the smelter includes a power station configured to circulate through said at least one second electrical compensation circuit a second intensity compensation current between 50% and 100% of the difference d intensity between the upstream and downstream electrolysis currents, and preferably between 80% and 100% of the difference in intensity between the upstream and downstream electrolysis currents.
  • intensity of the second compensation current is meant the sum of the intensities flowing in the conductors forming the second compensation circuit, in particular when the second compensation circuit consists of two conductors (or loops) arranged on either side of the electrolysis tank.
  • the vertical magnetic field generated by the second electrical compensation circuit corrects the vertical magnetic field generated by the electrolysis current flowing in the main electrical circuit (cell to cell circuit) and already partly corrected by the current flowing in the first compensation circuit.
  • the electrical rise and connection conductors are distributed at regular intervals along the longitudinal edge of the electrolytic cell to which these electrical rise and connection conductors are adjacent.
  • An advantage of this characteristic is to have a uniform distribution over the entire length of the cell of the longitudinal horizontal component of the magnetic field (that is to say parallel to the length of the electrolysis cell), which allows to facilitate its compensation via the first compensation circuit.
  • the electrical rise and connection conductors are advantageously arranged symmetrically with respect to the transverse median plane XZ of the electrolytic cells, which makes it possible to obtain an antisymmetric distribution of the transverse component of the magnetic field along X.
  • the upstream electrical conductors and upstream connection and the upstream electrical conductors and downstream connection are located equidistant from a longitudinal median plane YZ of the electrolysis cell.
  • the upstream electrical conductors and upstream connection and the upstream electrical conductors and downstream connection are arranged substantially symmetrically with respect to said longitudinal median plane YZ of the electrolysis cell.
  • This configuration combined with the first compensation circuit, ensures perfect asymmetry of the longitudinal component of the magnetic field along Y.
  • said at least one first electrical compensation circuit comprises electrical conductors extending under the electrolytic cells, together forming a sheet made up of a plurality of parallel electrical conductors, typically from two to twelve, and preferably from three to ten parallel electrical conductors.
  • the number of parallel conductors required depends in part on the distance between the liquids and these same conductors. The greater the distance, the smaller the number of conductors, the shorter the distance, the greater the number of conductors.
  • the first electrical compensation circuit is configured so that the first compensation current flows in the same direction through all the electrical conductors of the ribbon cable.
  • the intensity of the first compensation current corresponds to the sum of the intensities of the currents flowing in each of the parallel electrical conductors of the sheet extending under the tanks.
  • the electrical conductors of said sheet are arranged at regular intervals from one another in a longitudinal direction Y of the electrolysis cells.
  • the electrical conductors of said sheet are arranged in a substantially symmetrical manner with respect to a transverse median plane XZ of the electrolysis cells.
  • the electrical conductors of said sheet are arranged in the same horizontal plane XY.
  • An advantage of these characteristics is to further improve the compensation of the unfavorable magnetic field.
  • said at least one second electrical compensation circuit comprises electrical conductors extending on each side of said at least one row of electrolytic cells, and the second compensation current flows in the same direction as the overall direction of flow of the electrolysis current on each side of the electrolysis cells.
  • the electrical conductors of said at least one second electrical compensation circuit form an internal loop and an external loop, and thus offer improved compensation of the magnetic field.
  • internal loop is meant the loop being the closest to the neighboring queue and by external loop, the loop being the most distant.
  • the intensity of a second compensation current flowing in an internal loop of said at least one second compensation circuit differs from the intensity of a second compensation current flowing in an external loop of said at least one second compensation circuit.
  • This characteristic makes it possible to compensate for the residual vertical magnetic field of the neighboring file.
  • the intensity of the second compensation current corresponds to the sum of the intensities of the currents flowing in each of the loops.
  • the intensity of the second compensation current flowing in the internal loop is greater than the intensity of the second compensation current flowing in the external loop.
  • This neighboring file creates a magnetic field proportional to a current in the series from which the downstream electrolysis current is subtracted twice, while a “conventional” electrolysis series will undergo a magnetic field directly proportional to the totality of the current. electrolysis.
  • the disturbing field created by the neighboring queue is much weaker and requires much less correction. Consequently, concerning the second compensation circuit, the difference between the intensity of the inner loop and that of the outer loop will be much smaller than in the case of the patent. EP0204647 and the gap between the two rows of tanks can be minimized.
  • the electrical conductors forming the second electrical compensation circuit are substantially symmetrical with respect to a median transverse XZ plane of the electrolysis cells.
  • the electrical conductors of the second electrical compensation circuit extend in the same horizontal plane XY, preferably at the height of a sheet of liquid aluminum formed inside the electrolysis cells during of the electrolysis reaction.
  • This arrangement improves the compensation of the vertical magnetic field without impacting the horizontal component of the field already compensated by the first compensation circuit.
  • the smelter comprises two consecutive and parallel rows of electrolytic cells, and the circuit of the internal loop forms, at the end of the row, means for compensating for the “end of the row” effects caused by the connecting conductors between lines, which provides more magnetic stability and therefore improves the efficiency of the line end tanks.
  • said at least one first electrical compensation circuit is independent of the main electrical circuit through which the electrolysis current flows.
  • This characteristic has the advantage of limiting the consequences of damage such as piercing of the electrolysis cell by the liquids contained in this electrolysis cell.
  • this characteristic is advantageous in terms of scalability since it makes it possible to vary the intensity of the first compensation current to adjust the magnetic compensation.
  • An adjustment of the magnetic compensation is useful when the electrolytic cells are modified, because the magnetic configuration of these electrolytic cells is modified, or to adapt the stirring of the alumina to the quality of this alumina (which allows maintain an optimal yield despite the different quality of the alumina).
  • said at least one second electrical compensation circuit is independent of the main electrical circuit traversed by the electrolysis current.
  • this has an advantage in terms of scalability since it makes it possible to vary the intensity of the first compensation current to adjust the magnetic compensation.
  • the electrolysis cell has a modular electrical construction in N modules repeated in the direction of its length, each module comprising electrical conductors configured to generate the same predetermined magnetic configuration.
  • This characteristic is advantageous in terms of scalability: it allows modifications to the electrolysis tank, for example an enlargement by adding one or more modules, without modifying the principle of magnetic balancing of the electrolysis tank.
  • each electrical module has the same arrangement of electrical conductors, each electrical conductor of an electrical module being traversed by the same intensity and the same direction of current as the corresponding electrical conductor of an adjacent electrical module.
  • the electrical conductors of each module are in particular the electrical rise and connection conductors, the anode assemblies, the cathodes, the cathode conductors, the cathode outputs, the electrical routing conductors, and conductors the electrical conductor layer of the first electrical compensation circuit. These electrical conductors are therefore arranged in relation to each other in the same way from one module to another.
  • each electrical module comprises the same number of electrical conductors of the sheet of electrical conductors of the first electrical compensation circuit.
  • the electrolysis cells of the aluminum smelter include all or part of the abovementioned characteristics of the electrolysis cell.
  • this method offers effective magnetic compensation of the magnetic field generated by the circulation of the electrolysis current in the series of electrolysis cells of the smelter, by limiting the size.
  • the method comprises an asymmetrical distribution of the electrolysis current between the upstream and downstream of the electrolytic cells, all of the electrical conductors for raising and connecting upstream of the electrolytic cells. electrolysis being traversed by an upstream electrolysis current of intensity between] 50-100 [% of the intensity of the electrolysis current, and all of the electrical conductors for rising and connecting downstream of the cells of electrolysis being traversed by a downstream electrolysis current of intensity between] 0-50 [% of the intensity of the electrolysis current, the sum of the intensities of the upstream and downstream electrolysis currents being equal to the intensity of the electrolysis current.
  • This process makes it possible to obtain magnetically stable electrolytic cells, including when the electrolytic cells are large, in particular very large.
  • the yield can thus be significantly increased.
  • the intensity of the first compensation current is equal to twice the intensity of the downstream electrolysis current, to within plus or minus 20%, and preferably to plus or minus 10%.
  • An advantage of this characteristic is that for this value of the intensity of the first compensation current, which is a direct function of the distribution of the electrolysis current between the upstream and downstream of the electrolysis cells, the Applicant has observed that the horizontal magnetic field generated by the first electrical compensation circuit precisely corrects the asymmetry between the upstream and downstream current, in order to have an asymmetric distribution of the horizontal components of the magnetic field.
  • This first compensation current also makes it possible to correct all or part of the vertical magnetic field, according to the distribution between upstream and downstream electrolysis current of the cell, in order to reduce the MHD instabilities in the cell. The entire vertical magnetic field is corrected if the distribution between upstream and downstream is 50%.
  • the intensity of the second compensation current is between 50% and 100% of the difference in intensity between the upstream and downstream electrolysis currents, and preferably between 80% and 100% of the difference in intensity between the upstream and downstream electrolysis currents.
  • the Applicant has observed that for this intensity value of the second compensation current, which is also a direct function of the distribution of the electrolysis current between the upstream and downstream of the electrolysis cells, the vertical magnetic field generated by the second electric compensation circuit precisely corrects the remaining vertical magnetic field, resulting from the sum of the vertical magnetic field of the electrolysis current (cell to cell circuit) and the first compensation circuit.
  • said at least one second electrical compensation circuit comprises an internal loop and an external loop, and in which the intensity of a second compensation current flowing in the internal loop differs from the intensity of a second compensation current flowing in the external loop.
  • the intensity of the second compensation current flowing in the internal loop is greater than the intensity of the second compensation current flowing in the external loop.
  • the method comprises a step of analyzing at least one characteristic of the alumina in at least one of the electrolysis cells of said aluminum smelter, and determining the intensity values of the first current of compensation and the second compensation current to be circulated as a function of said at least one characteristic analyzed.
  • the method makes it possible to modify the magnetic compensation, to voluntarily induce, in special cases, a modification of the flow in the liquids and flow velocities while controlling (slightly degrading) the MHD instabilities of the bath / metal interface.
  • the flow of liquids (bath + aluminum) indeed helps to stir the alumina, which, depending on the speed and shape of the flow as well as the quality of the alumina, improves the yield.
  • This preferred embodiment therefore makes it possible to improve the yield by optimizing the flow to dissolve the alumina while controlling the level of "degradation" of the MHD stability of the bath / metal interface.
  • the figure 1 shows an aluminum plant 100 of the state of the art.
  • the aluminum smelter 100 comprises electrolytic cells arranged transversely to the length of the line which they form.
  • the electrolytic cells are here aligned in two parallel lines 101, 102. These electrolytic cells are traversed by an electrolysis current I 100 .
  • Two electrical compensation circuits 104, 106 extend on the sides of the lines 101, 102 to compensate for the magnetic field generated by the circulation of the electrolysis current I 100 from one electrolysis cell to another and in the neighboring line .
  • the electrical compensation circuits 104, 106 are traversed respectively by currents I 104 , I 106 flowing in the same direction as the electrolysis current I 100 .
  • Feed stations 108 supply the series of electrolytic cells and the electrical compensation circuits 104, 106.
  • the distance D 100 between the electrolysis cells closest to the supply stations 108 and the 108 supply stations is around 45m
  • the distance D 300 over which the electrical compensation circuits 104, 106 extend beyond the end of the line is around 45m
  • the distance D 200 between the two queues 101, 102 is around 85m to limit the magnetic disturbances from one queue to the other.
  • the figure 2 shows two consecutive traditional electrolytic cells 110 from the same row of electrolytic cells.
  • the electrolysis tank 110 comprises a box 112 internally lined with refractory materials 114, a cathode 116 and anodes 118 immersed in an electrolytic bath 120 at the bottom of which is formed a sheet 122 of aluminum.
  • the cathode 116 is electrically connected to cathode conductors 124 which cross the sides of the box 112 at cathode outputs 126.
  • the cathode outputs 126 are connected to conductors 128 which convey the electrolysis current to the conductors 130 for mounting and connecting a next electrolysis tank.
  • these rise and connection conductors 130 extend, obliquely, on one side only, the upstream side, of the electrolytic cells 110 and extend above the anodes 118, up to the longitudinal central part electrolysis tanks 110.
  • the electrolytic cell comprises a superstructure 132 which crosses it longitudinally, above the box 112 and anodes 118.
  • the superstructure 132 in particular comprises a beam resting on feet (not shown) at each of its longitudinal ends.
  • the beam supports an anode frame 134, this anode frame 134 also extending longitudinally above the box 112 and anodes 118.
  • the anode frame 134 supports the anode assemblies, the latter being electrically connected to the anode frame 134.
  • the figure 3 schematically illustrates the path traveled by the electrolysis current I 100 in each of the electrolysis cells 110 and between two adjacent electrolysis cells 110 like those shown on the figure 2 .
  • the rise of the electrolysis current I 100 to the anode assembly of an electrolysis tank 110 is asymmetrical since this rise is carried out only upstream of the electrolysis tanks 110 in the direction of overall circulation of the electrolysis current I 100 in the queue (to the left of the cells on the figures 2 and 3 ).
  • the figure 4 shows the arrangement on the sides of the tanks 110 of the state of the art of electrical conductors forming the electrical compensation circuits 104, 106, these electrical conductors being traversed respectively by the compensation currents I 104 , I 106 flowing in the same sense that the electrolysis current I 100 here passing through the routing conductors 128 positioned below the tank.
  • the figure 5 shows an aluminum smelter 1 according to an embodiment of the invention.
  • the aluminum smelter 1 is intended for the production of aluminum by electrolysis according to the Hall-Héroult process.
  • the aluminum smelter 1 comprises a plurality of substantially rectangular electrolytic cells intended for the production of aluminum by electrolysis, these electrolytic cells being able to be aligned in one or more rows 2 which can be substantially parallel. Where appropriate, the lines 2 are electrically connected in series and supplied with electrolysis current IE.
  • the aluminum smelter 1 also comprises a first electrical compensation circuit 4, which extends under the row or rows of electrolytic cells, and a second electrical compensation circuit 6, which extends over at least one side of the or rows 2 of electrolytic cells. According to the example of the figure 5 , the second electrical compensation circuit 6 extends on both sides of each row 2 of electrolysis cells.
  • the smelter has two rows of cells arranged parallel to each other, supplied by the same supply station 8, and electrically connected in series so that the electrolysis current IE flowing in the first of two rows 2 of electrolytic cells then circulates in the second of the two rows 2 of electrolytic cells.
  • Electrolysis tanks are arranged transversely to each row 2 that these electrolytic cells form. It will be noted that by electrolysis tank 2 arranged transversely is understood electrolysis tank 2, the largest dimension of which, the length, is substantially perpendicular to the overall direction in which the electrolysis current IE flows.
  • upstream and downstream are defined with respect to the overall direction of circulation of the electrolysis current IE, that is to say the direction of circulation of the electrolysis current IE at the scale of queue 2 of electrolysis tanks.
  • the electrolysis cells of the aluminum smelter are preferably large electrolysis cells, the use of large electrolysis cells being made possible by the particular configuration of the electrolysis cells of the aluminum smelter according to the invention, as described in more detail below.
  • the dimensions of an electrolytic cell are defined by the surface on the ground that this electrolytic cell represents. For this we consider that the dimensions of the tank are defined by the external dimensions of its box.
  • large electrolysis cell means electrolysis cell having a width greater than 4 m, preferably greater than or equal to 5 m, and in particular greater than or equal to 6 m, and / or having a length greater than 15 m, preferably greater than or equal to 20 m, and in particular greater than or equal to 25 m.
  • the figure 6 shows in more detail the electrolytic cells 10 of the aluminum smelter 1 according to one embodiment.
  • the electrolysis tanks 10 of the aluminum smelter 1 comprise a box 12, anode assemblies 14, a cathode 16 through which cathode electrical conductors 18 pass for collecting the electrolysis current IE at the cathode 16 to conduct it to other electrical conductors called cathode outputs 20 outside the box 12, electrical rise and connection 22 conductors to the anode assemblies 14 to conduct the electrolysis current IE to the anode assemblies 14, and conductors electrical routing 24 connected to the cathode outputs 20 and intended to conduct the electrolysis current IE from the cathode outputs 20 to the electrical rise and connection conductors 22 of the next electrolysis tank 10.
  • the box 12 includes an inner coating 26 made of refractory materials. As illustrated on figures 6 and 7 , the box 12 preferably comprises cradles 28 of reinforcements.
  • the box 12 can be metallic, for example steel.
  • the anode assemblies 14 comprise a support 30 and at least one anode 32.
  • the anode or anodes 32 are in particular made of carbonaceous material and more particularly of the precooked type.
  • the support 30 comprises a first electrically conductive part 34, for example a cross member, extending essentially in a transverse direction X of the electrolytic cells 10, and a second electrically conductive part 36 formed of several electrically conductive elements capable of be called "logs", the logs comprising a distal end electrically connected to the first part 34 of the support 30 and a proximal end electrically connected to the anode (s) 32 in order to conduct the electrolysis current IE from the first part 34 of the support 30 to this or these anodes 32.
  • the anode assemblies 14 are intended to be removed and replaced periodically when the anode or anodes 32 are worn.
  • the cathode 16 can be formed from several cathode blocks of carbonaceous material.
  • the cathode 16 is crossed by the cathode conductors 18 intended to collect the electrolysis current IE at the cathode 16 to lead it to the cathode outlets 20 advantageously exiting through the bottom of the box 12, as illustrated in the figure 6 .
  • the electrical rise and connection conductors 22 extend upwards along two opposite longitudinal edges 38 of each electrolytic cell 10, to conduct the electrolysis current IE towards the anode assemblies 14. It is specified that the edges longitudinal 38 of the electrolytic cells 10 correspond to the edges of larger dimension, that is to say the edges of the electrolytic cells 10 which are substantially parallel to the longitudinal direction Y.
  • an electrolytic cell 10 operating with an intensity of 400 to 1000 k amperes can for example preferably comprise from 4 to 40 rise and connection conductors 22 distributed regularly over the entire length of each of its two edges longitudinal 38.
  • the electrical rise and connection conductors 22 include electrical rise and upstream connection conductors 22A, that is to say adjacent to the longitudinal edge 38 upstream of the electrolysis tank 10, and electrical conductors of rise and downstream connection 22B, that is to say adjacent to the longitudinal edge 38 downstream of the electrolysis tank 10.
  • the upstream connection and upstream electrical conductors 22A are electrically connected to an upstream end of the first part 34 of the support 30, and the upstream connection and upstream connection conductors 22B are electrically connected to a downstream end of this first part 34 of the support 30.
  • the electrical routing conductors 24 are connected to the cathode outputs 20 and are intended to conduct the electrolysis current IE from these cathode outputs 20 to the electrical rise and connection conductors 22 of the next electrolysis tank 10 of the series.
  • the cathode conductors 18, the cathode outputs 20 and / or the routing conductors 24 may be metal bars, possibly composite, for example made of aluminum, copper and / or steel.
  • a sheet of liquid aluminum 40 is formed during the electrolysis reaction.
  • the electrolysis cells 10 of the aluminum smelter 1 are preferably electrolysis cells 10 of the anode replacement type by upward vertical traction of the anode assemblies 14 above the cell 10 of electrolysis, as shown by the electrolysis tank 10 right on the figure 6 .
  • the rise and connection conductors 22 extend on either side of the box 12 without extending in line with the anodes 32, that is to say without extending in a volume obtained by vertical projection of the area of the anodes 32 projected in a horizontal plane.
  • this also makes it possible to reduce the length of the rise and connection conductors 22 compared to the use of rise and connection conductors 130 of the type classic, visible on the figure 2 , which typically extend above the electrolysis tank 110 up to the longitudinal central part of the electrolysis tank 110. This helps to reduce manufacturing costs. It is also noted that the horizontal part 34 of the support 30 is supported and connected at each of the two longitudinal edges 38 of each electrolytic cell 10.
  • the anode assembly is no longer supported and electrically connected above the box and the anodes by means of a superstructure 132, as is the case for the electrolysis tanks of the state of the art illustrated on the figure 2 .
  • the electrolysis cells 10 of the aluminum smelter 1 according to this embodiment of the invention are therefore free of superstructure.
  • the absence of superstructure makes it possible to widen and / or lengthen the electrolytic cells 10, in order to benefit from large electrolytic cells 10, as mentioned previously.
  • the electrical conductors of the aluminum smelter 1 are indeed configured to obtain effective compensation of the horizontal and vertical components of the magnetic field generated by the circulation of the electrolysis current IE and, in so doing, a limitation of the instabilities MHD, therefore an improved efficiency.
  • the distribution of the electrolysis current IE passing through the electrical rise and connection conductors 22 is asymmetrical between the electrical rise and connection upstream 22A and downstream 22B conductors 22B.
  • the electrolysis current IE is divided into an upstream electrolysis current IEA, which runs through all of the upstream electrical conductors upstream and upstream connection 22A of the electrolysis cells, and a downstream electrolysis current IEB, which runs through all of the upstream and downstream connection electrical conductors 22B of the electrolysis cells 10.
  • the intensity of the upstream electrolysis current IEA is equal to] 50-100 [% of the intensity of the electrolysis current IE, while the intensity of the downstream electrolysis current IEB is equal to] 0-50 [ % of the intensity of the electrolysis current IE, it being specified that the upstream electrolysis currents IEA and downstream IEB are complementary, that is to say that the sum of the intensities of the upstream electrolysis currents IEA and downstream IEB is equal to the intensity of the electrolysis current IE.
  • the choice of the distribution between intensities of the upstream and downstream electrolysis currents IEA, IEB is made by economic study. This choice mainly depends on the distance between two tanks and the height of the tanks. This distribution is achieved by adjusting the sections of the electrical conductors of the upstream and downstream electrical circuits, taking into account their length.
  • the rise and connection conductors 22 extend substantially vertically, and preferably only vertically, so that the path of the electrolysis current IE through the rise and connection conductors 22 generates a magnetic field with only horizontal components, but no vertical component.
  • the second part 36 of the support 30 of the anode assembly 14, and / or the cathode outputs 20 advantageously extend in a vertical direction, and preferably only vertically, so that the flow of the current IE electrolysis through this second part 36 and / or through the cathode outputs 20 generates a magnetic field having only horizontal components, but no vertical component.
  • cathode outputs 20 advantageously pass through the bottom of the box 12.
  • the reduction in length of the routing conductors 24 allows, in addition to saving raw materials, a substantial reduction in horizontal currents in liquids and, therefore, better stability MHD .
  • the first part 34 of the support 30 of the anode assembly 14 extends, preferably only, in a substantially horizontal and parallel manner to the transverse direction X of the electrolysis cells 10.
  • routing conductors 24 advantageously extend in a substantially rectilinear manner and parallel to the transverse direction X of the electrolysis cells 10, up to the rise and connection conductors 22 of the next electrolysis cell 10.
  • the cost of the electrical routing conductors 24 is thus limited, by minimizing their length.
  • the magnetic fields generated by these electrical conductors 24 of routing are also limited with respect to the state of the art, and in particular with respect to the self-compensated electrolysis cells of the state of the art.
  • the electrical rise and connection conductors 22 are preferably distributed at regular intervals over substantially the entire length of the longitudinal edge 38 to which they are adjacent. In other words, the same distance separates two consecutive rise and connection electrical conductors 22 in the longitudinal direction Y. This improves the balance of the longitudinal horizontal component of the magnetic field (that is to say parallel to the length of the electrolysis tank 10).
  • the electrical upstream and upstream connection conductors 22A and the electrical upstream and downstream connection conductors 22B may be arranged equidistant from a longitudinal median plane YZ of each electrolytic cell 10, that is to say a plane substantially perpendicular to the transverse direction X and separating each electrolytic cell 10 into two substantially equal parts.
  • the upstream electrical conductors and upstream connection 22A are at the same distance from this longitudinal median plane YZ as the upstream electrical conductors and downstream connection 22B.
  • the upstream electrical conductors and upstream connection 22A are advantageously arranged in a manner substantially symmetrical to the upward electrical conductors and downstream connection 22B, with respect to this longitudinal median plane YZ. The advantageously substantially asymmetrical characteristic of the distribution of the horizontal magnetic field in liquids is thus further improved.
  • these electrical rise and connection conductors advantageously extend above liquids (electrolytic bath) at a height h between 0 and 1.5 meters.
  • the length of the rise and connection conductors 22 is thus greatly reduced compared to the rise and connection conductors 130 of conventional type which extend to heights greater than two meters for the electrolysis tanks 130 in the state of the technique.
  • the upstream conductors and upstream connection 22A of the electrolytic cells 10 can be staggered with respect to the upstream conductors and downstream connection 22B of the electrolytic cell 10 preceding it in the queue 2. This in fact allows the electrolytic cells 10 to be brought as close as possible to one another, that is to place more electrolytic cells 10 in series over the same distance, which increases the yield, that is to reduce the length of a line 2 of electrolytic cells 10, therefore saving space and achieving structural savings.
  • the first part 34 of the support 30 of the anode assembly 14 and the second part 36 of the support 30 of the anode assembly 14 are configured so that the intensity of the fraction of electrolysis current flowing through an upstream half of this second part 36 is substantially equal to the intensity of the fraction of electrolysis current flowing through a downstream half of this second part 36.
  • the intensity of the fraction of electrolysis current passing through all of the logs situated on the upstream side of a longitudinal median plane YZ of the electrolysis tank is substantially equal to the intensity of the fraction of electrolysis current crossing all the logs located downstream side of this longitudinal median plane YZ.
  • part of the upstream electrolysis current IEA reaches the logs located on the downstream side of the median plane YZ of the electrolysis tank 10. This is achieved by an overall electrical balancing of the different sections of conductors.
  • Each module M can for example comprise an electrical conductor of the first electrical compensation circuit 4 and a certain number of conveying conductors 24 and rising and connecting conductors 22 associated for each electrolytic cell 10.
  • the fact is that the electrical conductors included in each module M (rise and connection conductors 22, anode assembly 14, cathode 16, cathode conductors 18, cathode outputs 20, routing conductors 24, electrical conductors of the first compensation circuit 4 ) are configured to generate the same predetermined magnetic configuration.
  • the electrical conductors of each module M are arranged and traversed by currents such that each module M generates the same vertical and horizontal components of magnetic field.
  • the circuit of conductors, and therefore each electrolytic cell 10 can be composed of a certain number N of modules M, determining the length of the electrolytic cells 10 and the intensity of the current passing through the electrolytic cells (the intensity of the electrolysis current IE circulating in the series of electrolysis cells being equal to the intensity of the fraction of electrolysis current passing through each module M multiplied by the number N of modules M).
  • the ratio of the quantity of material forming the circuit of conductors brought back to the production surface of the electrolytic cells 10 does not deteriorate when the electrolytic cells 10 are lengthened, it increases in proportion to the number N of modules M and the intensity passing through the electrolysis cells 10.
  • the electrolytic cells 10 can be extended simply as required and the intensity of the current passing through them is not limited.
  • the modular construction of the electrical conductors of the electrolysis cells 10 therefore offers an advantage in terms of scalability, since this modular construction, combined with a simple adjustment of the amperage of the secondary compensation circuit, makes it possible to modify the cells 10 d ' electrolysis without affecting their magnetic and electrical balancing.
  • the table of the figure 9 shows for a module the intensity values traversing the different electrically conductive elements of the electrolytic cells 10, these conductive elements being symbolized by segments: S1 for the rise and upstream connection conductors 22A; S2, S5 and S8 for the first part 34 of the support 30; S3 and S9 for the second part 36 of the support 30, the anode (s) 32, the electrolytic bath, the aluminum sheet 40, the cathode 16, the cathode conductors 18 and the cathode outputs 20; S4, S6 and S10 for routing conductors 24; S7 for upstream and downstream connection conductors 22B.
  • the sum of the intensities i and ia indicated in the table of figures 9 , 13 and 14 is equal to the intensity of the upstream electrolysis current IEA divided by the number N of modules of the electrolysis tank 10; the intensity ib is equal to the intensity of the downstream electrolysis current IEB divided by the number N of modules of the electrolysis tank 10; the sum of ia and ib is equal to i; the sum of the upstream and downstream electrolysis currents IEA, IEB is therefore equal to 2i multiplied by the number N of modules; and the intensity of the electrolysis current IE flowing through the series of electrolysis cells is equal to the sum of the intensity of the upstream electrolysis current IEA traversing the entire upstream part of the electrolysis cell and l intensity of the downstream electrolysis current IEB passing through the entire downstream part of the electrolysis tank, that is to say the product of 2i and the number N of modules of the electrolysis tank.
  • the figures 10 to 12 are schematic wire-frame views of the electrical circuit traversed by the electrolysis current in a module of an electrolysis tank 10 of the aluminum smelter 1, and showing for this electrolysis tank 10 the three main zones P1, P2, P3 generating a significant disturbing magnetic field: an upstream area P1, a central intermediate area P2, and a downstream area P3 symmetrical with the upstream area P1 with respect to a longitudinal median plane YZ of the electrolysis cells 10.
  • the table of the figure 13 read in combination with figures 10, 11 and 12 , schematically shows the vertical component of the magnetic field generated by the electrical conductors (represented schematically by segments) of the electrolytic cell 10, respectively in the three zones P1, P2, P3 of the electrolytic cells, by the first and second compensation circuits 4, 6.
  • the table of the figure 14 also read in combination with figures 10, 11 and 12 , schematically shows the longitudinal horizontal component of the magnetic field generated by the circulation of the electrolysis current through the electrical conductors (symbolized by segments) of the electrolysis tank 10, zone by zone, and through the first and second circuits 4, 6.
  • the horizontal transverse component of the magnetic field is, for its part, well asymmetrical because the conductors are symmetrical with respect to the plane XZ.
  • the longitudinal horizontal component By of the magnetic field is asymmetric (opposite in the upstream and downstream areas P1, P3, and zero in the central P2 zone). This antisymmetry eliminates the deleterious effects linked to the horizontal components of the magnetic field.
  • the first electrical compensation circuit 4 is described in more detail below.
  • the first electrical compensation circuit 4 extends under the electrolytic cells 10. This first electrical compensation circuit 4 is intended to be traversed by a first compensation current IC1, in the opposite direction to the overall direction of circulation of the electrolysis current IE, as can be seen on the figures 5 and 7 . It will be recalled that by overall direction of circulation of the electrolysis current IE is meant the direction of circulation of the electrolysis current IE on the scale of the aluminum smelter 1 or of the row or rows 2 of electrolysis cells 10.
  • the first electrical compensation circuit 4 comprises electrical conductors which may be metal bars, for example made of aluminum, copper or steel, or, advantageously, electrical conductors made of superconductive material, the latter making it possible to reduce energy consumption and, because of their lower mass than that of equivalent metal conductors, reduce the structural costs for supporting them or for protecting them from possible metal flows by means of metal deflectors 42 ( figure 7 ) or by burying them.
  • these electrical conductors made of superconductive material can be arranged to perform several turns in series under the row or rows of tanks, as described in the patent application. WO2013007893 on behalf of the plaintiff.
  • the aluminum smelter 1 comprises a supply station 44 configured to circulate through the first electrical compensation circuit 4 a current intensity IC1 equal to twice the intensity of the downstream electrolysis current IEB, more or less 20% close, and preferably within 10%.
  • This supply station 44 can be a clean electrical supply station, that is to say distinct from the supply station 8 supplying the electrolysis cells 10 with electrolysis current IE.
  • the power supply station 44 of the first compensation circuit 4 is therefore exclusively dedicated to supplying this first compensation circuit 4.
  • the first electrical compensation circuit 4 is thus also independent of the main electrical circuit traversed by the electrolysis current IE comprising in particular the row or rows 2 of electrolysis cells 10. If the first electrical compensation circuit 4 is damaged, for example a piercing of one of the electrolysis cells 10 by the liquids contained in the electrolysis cells, the temperature of which is close to 1000 ° C., the reaction d electrolysis can continue, with a lower yield however since the magnetic compensation is impacted.
  • the intensity of the first compensation current IC1 can be modified independently of the electrolysis current IE. This is of paramount importance in terms of scalability and adaptability.
  • the electrical conductors of the first electrical compensation circuit 4 extend under the electrolytic cells, together forming a sheet of parallel electrical conductors, advantageously from two to twelve, and preferably from three to ten parallel electrical conductors.
  • the first electrical compensation circuit 4 extends in several places of the electrolysis tank 10.
  • the first compensation current IC1 flows in the opposite direction to the overall direction of circulation of the electrolysis current IE, this through all the electrical conductors forming the sheet.
  • the sheet can be formed by the same electrical circuit forming several turns or loops in series under the electrolytic cells 10, each loop corresponding to an electrical conductor of the sheet.
  • the sheet may be formed by a division into a bundle of parallel electrical conductors of the first electrical compensation circuit 4, the latter possibly being able to form a single loop under the electrolytic cells 10 if necessary.
  • the intensity of the first compensation current IC1 is equal to the sum of the intensities of the compensation current flowing through each electrical conductor of the sheet.
  • the intensity of the first compensation current IC1 in each electrical conductor of the sheet is equal to the intensity of the first compensation current IC1 divided by the number of electrical conductors of this sheet.
  • the electrical conductors of the sheet are advantageously equidistant from each other. The same distance therefore separates two adjacent electrical conductors from the sheet. This also improves the compensation for the unfavorable magnetic field.
  • the electrical conductors of the sheet can extend parallel to each other. They preferably extend parallel to the transverse direction X of the electrolytic cells 10. Furthermore, the electrical conductors forming the sheet can all be arranged in the same horizontal plane XY. This also makes it possible to improve the compensation of the magnetic field generated by the circulation of the electrolysis current.
  • the electrical conductors of the sheet may extend substantially symmetrically with respect to the transverse median plane XZ of the electrolytic cells, that is to say with respect to the plane perpendicular to the longitudinal direction Y, this plane separating the electrolytic cells 10 in two substantially equal halves.
  • the first electrical compensation circuit 4 forms a sheet of three substantially equidistant conductors and arranged in the same substantially horizontal XY plane.
  • This layer comprises as many electrical conductors as the electrolysis tank 10 comprises modules M.
  • each module M of the electrolytic cell 10 includes the same number of electrical conductors of the first electrical compensation circuit 4. This makes it possible to obtain compensation for the magnetic field per module, which produces better effects and offers a significant advantage in terms of implementation and scalability.
  • the second electrical compensation circuit 6 is described in more detail below.
  • the second electrical compensation circuit 6 extends on at least one transverse side of the electrolytic cells 10, substantially parallel to the transverse direction X of the electrolytic cells 10, that is to say parallel to the row or rows 2 of electrolytic cells 10.
  • the second electrical compensation circuit 6 is intended to be traversed by a second compensation current IC2, in the same direction as the overall direction of circulation of the electrolysis current IE.
  • the second electrical compensation circuit 6 extends along the two transverse sides of the electrolysis cells 10, as illustrated in the figure 5 .
  • the internal conductor 61 designates the electrical conductors of the second electrical compensation circuit 6 which are located between the first two adjacent rows 2 of electrolytic cells 10
  • the external conductor 62 designates the electrical conductors of the second electrical circuit of compensation 6 which are located on the outer side of the rows 2 of electrolytic cells 10, that is to say which are on the other side of the electrolytic cells 10 with respect to the electrical conductors forming the internal loop 61.
  • the loop internal 61 is traversed by a second compensation current IC21 and the external loop 62 is traversed by a second compensation current IC22.
  • the second compensation currents IC21 and IC22 flow in the same direction.
  • the sum of the currents IC21 and IC22 flowing respectively in the internal loop 61 and in the external loop 62 is equal to the compensation current IC2.
  • the internal loop 61 and / or the external loop 62 can possibly make several turns in series; if necessary the intensity of the current IC21, respectively IC22, is the product of the number of revolutions in series by the intensity of the current flowing in each revolution in series.
  • the aluminum smelter 1 comprises a supply station 46 which is advantageously configured to circulate through the second electrical compensation circuit 6 (internal loop 61 and / or external loop 62) a total intensity (if necessary loop internal 61 plus external loop 62) of compensation current IC2 of between 50% and 100% of the difference in intensity between the upstream and downstream electrolysis currents, and preferably between 80% and 100% of the difference of intensity between the upstream and downstream electrolysis currents.
  • This intensity value fixed as a function of the asymmetrical distribution of the electrolysis current IE in each electrolysis tank 10, offers, in synergy with the choice of the asymmetric distribution value IEA, IEB and of the intensity of the first compensation current IC1, the best magnetic field compensation results, effectively applicable to large size electrolytic cells 10.
  • the intensity of the current IC21 flowing in the internal loop 61 differs from the intensity of the current IC22 flowing in the external loop 62. More particularly, the intensity of the current IC21 flowing in the internal loop 61 is advantageously greater than 1 intensity of the current IC22 flowing in the external loop 62.
  • IE2 is greater than or equal to IE.
  • IE + IEA - 3 IEB is much lower than IE. This is a gain from this design which allows the neighboring queue to be brought closer because the creation of the magnetic field by the neighboring queue is much weaker at no additional cost compared to what is known to those skilled in the art.
  • the supply station 46 supplying the second compensation circuit 6 can be a clean electrical supply station, that is to say separate from the supply station 8 supplying the electrolysis cells 10 with electrolysis current IE and distinct from the supply station 44 supplying the first electrical compensation circuit 4.
  • the electrical supply station 46 of the second compensation circuit 6 is therefore exclusively dedicated to supplying this second compensation circuit 6.
  • the second electrical compensation circuit 6 is thus also independent of the main electrical circuit traversed by the electrolysis current IE.
  • the intensity of the second compensation current IC2 can be modified independently of the electrolysis current IE, thus offering substantial advantages in terms of scalability and adaptability of the aluminum smelter 1, as explained previously concerning the first electrical compensation circuit 4
  • the second compensation circuit 6 can also be distinct from the first compensation circuit 4.
  • the electrical conductors forming this second electrical compensation circuit 6 can advantageously be symmetrical with respect to a median transverse plane XZ of the electrolysis cells 10 . This improves compensation for the deleterious magnetic field.
  • the electrical conductors of the second electrical compensation circuit 6 advantageously extend in the same horizontal plane XY.
  • this horizontal plane XY is located at the height of the sheet of liquid aluminum 40 formed inside the electrolysis cells 10 during the electrolysis reaction.
  • the electrical conductors forming the second electrical compensation circuit 6 can advantageously be configured so as to limit the “end of line” effects, as shown on the figure 5 .
  • the electrical conductors forming the second electrical compensation circuit 6 can be metal bars, for example made of aluminum, copper or steel, or, advantageously, to electrical conductors made of superconductive material, the latter making it possible to reduce energy consumption and, because of their lower mass than that of equivalent metal conductors, reduce the structural costs for supporting them.
  • these electrical conductors made of superconductive material can be arranged to perform several turns in series on the side or sides of the rows 2 of electrolytic cells 10, as described in the patent application. WO2013007893 on behalf of the plaintiff.
  • the method also advantageously comprises the fact of asymmetrically distributing the electrolysis current IE between the upward electrical conductors and upstream connection 22A and the upward electrical conductors and downstream connection 22B.
  • This step of asymmetric distribution of the electrolysis current between upstream and downstream of the electrolysis tanks 10 comprises the separation of the electrolysis current IE into an upstream electrolysis current IEA, which flows through all of the upstream and upstream electrical connection conductors 22A of each electrolysis tank 10, so that the intensity of the upstream electrolysis current IEA is between] 50-100 [% of the intensity of the electrolysis current IE, and in a downstream electrolysis current IEB, which flows through all of the electrical upstream and downstream connection conductors 22B of each electrolysis tank 10, so that the intensity of the downstream electrolysis current IEB is included between] 0-50 [% of the intensity of the electrolysis current IE, the sum of the intensities of the upstream and downstream electrolysis currents IEA, IEB being equal to the intensity of the electrolysis current IE.
  • the step of circulating the first compensation current IC1 is advantageously such that the intensity of the first compensation current IC1 is equal to twice the intensity of the downstream electrolysis current IEB, to within plus or minus 20%, and preferably within 10%.
  • the step of circulating the second compensation current IC2 is advantageously such that the total intensity (internal loop 61 + external 62) of the second compensation current IC2 is between 50% and 100% of the difference in intensity between the upstream IEA and downstream IEB electrolysis currents, and preferably between 80% and 100% of the difference in intensity between the upstream and downstream electrolysis currents.
  • the intensity of the current IC21 flowing in the internal loop 61 may differ from the intensity of the current IC22 flowing in the external loop 62. More particularly, the intensity of the current IC21 flowing in the internal loop 61 is advantageously greater than the intensity of the current IC22 flowing in the external loop 62.
  • the method can advantageously include a step of analyzing at least one characteristic of the alumina in at least one of the electrolysis tanks 10 of the aluminum smelter 1 described above, and determining a distribution of values. of the intensity of the upstream and downstream electrolysis currents IEA, IEB to be circulated as a function of this analyzed characteristic, which also defines, if necessary, the intensity values of the first and second compensation currents IC1, IC2 and if necessary upstream and downstream electrolysis currents IEA, IEB.
  • the intensity values of the first and second compensation currents IC1, IC2, and if necessary upstream and downstream electrolysis currents IEA, IEB, can then be modified up to the values determined previously if the intensity values of the first and second compensation currents IC1, IC2 and initial upstream and downstream electrolysis currents IEA, IEB differ from the values thus determined.
  • the method makes it possible to modify the magnetic compensation, in order to increase or reduce the mixing of the liquids while controlling the MHD instabilities.
  • Such a method is particularly advantageous with the configuration of the electrical conductors described above because it makes the electrolytic cells 10 magnetically very stable and therefore offers a greater range for modulating / optimizing the mixing according to the quality of the alumina.
  • the characteristics of the alumina analyzed can in particular be the ability of the alumina to dissolve in the bath, the fluidity of the alumina, its solubility, its fluorine content, its humidity, etc.
  • the determination of a distribution of intensity values of the upstream and downstream compensation currents IEA, IEB and / or of intensity values of the first and second compensation currents IC1, IC2 according to the characteristics of the alumina analyzed can be in particular carried out by the use of an abacus, for example produced by a person skilled in the art by calculation, experimentation and recording of the optimal correspondences intensities of the upstream and downstream electrolysis currents IEA, IEB / characteristics of alumina. This involves quantifying the intensity of the mixing of the desired liquids with regard to the level of MHD instabilities.
  • the alumina available for continuous operation of the smelter is of different quality, in particular more or less pasty, and therefore having different abilities to dissolve in the electrolysis bath.
  • the movements of the liquids in the electrolytic cells 10 are an asset, because they allow this alumina to be stirred to promote its dissolution.
  • the magnetic field at the origin of the movements of liquids is directly compensated via the electrolysis current itself, with a distribution of the magnetic field imposed and frozen by the path of the routing conductors.
  • the invention is in no way limited to the embodiment described above, this embodiment having been given only by way of example. Modifications are possible.
  • the present invention is for example compatible with the use of anodes of the "inert" type at the level of which oxygen forms during the electrolysis reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

La présente invention concerne une aluminerie, destinée à la production d'aluminium par électrolyse, et un procédé de compensation des composantes verticale et horizontales d'un champ magnétique généré par la circulation d'un courant d'électrolyse dans cette aluminerie.The present invention relates to an aluminum smelter, intended for the production of aluminum by electrolysis, and to a method for compensating the vertical and horizontal components of a magnetic field generated by the circulation of an electrolysis current in this aluminum smelter.

Il est connu de produire l'aluminium industriellement à partir d'alumine par électrolyse selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse comprenant un caisson en acier à l'intérieur duquel est agencé un revêtement en matériaux réfractaires, une cathode en matériau carboné, traversée par des conducteurs cathodiques destinés à collecter le courant d'électrolyse à la cathode pour le conduire jusqu'à des sorties cathodiques traversant le fond ou les côtés du caisson, des conducteurs d'acheminement s'étendant sensiblement horizontalement jusqu'à la cuve suivante depuis les sorties cathodiques, un bain électrolytique dans lequel est dissout l'alumine, au moins un ensemble anodique comportant au moins une anode plongée dans ce bain électrolytique, un cadre anodique auquel est suspendu l'ensemble anodique, et des conducteurs de montée du courant d'électrolyse, s'étendant de bas en haut, reliés aux conducteurs d'acheminement de la cuve d'électrolyse précédente pour acheminer le courant d'électrolyse depuis les sorties cathodiques jusqu'au cadre anodique et à l'ensemble anodique et l'anode de la cuve suivante. Les anodes sont plus particulièrement de type anodes précuites avec des blocs carbonés précuits, c'est-à-dire cuits avant introduction dans la cuve d'électrolyse.It is known to produce aluminum industrially from alumina by electrolysis according to the Hall-Héroult process. For this purpose, an electrolysis tank is provided comprising a steel box inside of which a coating of refractory materials is arranged, a cathode of carbonaceous material, crossed by cathode conductors intended to collect the electrolysis current at the cathode to lead it to cathode outputs passing through the bottom or sides of the box, routing conductors extending substantially horizontally to the next tank from the cathode outputs, an electrolytic bath in which the alumina is dissolved , at least one anode assembly comprising at least one anode immersed in this electrolytic bath, an anode frame to which the anode assembly is suspended, and conductors for increasing the electrolysis current, extending from bottom to top, connected to the conductors routing of the previous electrolysis tank to route the electrolysis current from the cathode outlets to the anode frame e and to the anode assembly and the anode of the next tank. The anodes are more particularly of the prebaked anode type with prebaked carbon blocks, that is to say baked before introduction into the electrolysis tank.

Les usines de production d'aluminium, ou alumineries, comprennent traditionnellement plusieurs centaines de cuves d'électrolyse, alignées transversalement en files parallèles et connectées en série.Aluminum production plants, or aluminum smelters, traditionally include several hundred electrolytic cells, aligned transversely in parallel lines and connected in series.

Ces cuves d'électrolyse sont parcourues par un courant d'électrolyse de l'ordre de plusieurs centaines de milliers d'Ampères, ce qui crée un champ magnétique important. La composante verticale de ce champ magnétique, générée principalement par les conducteurs d'acheminement conduisant le courant d'une cuve d'électrolyse à la suivante, est connue pour provoquer des instabilités appelées instabilités magnétohydrodynamiques (MHD).These electrolytic cells are traversed by an electrolysis current of the order of several hundreds of thousands of amperes, which creates a large magnetic field. The vertical component of this magnetic field, mainly generated by the conductors carrying the current from one electrolysis cell to the next, is known to cause instabilities called magnetohydrodynamic instabilities (MHD).

Ces instabilités MHD sont connues pour dégrader le rendement du procédé. Plus une cuve est instable, plus la distance interpolaire entre l'anode et la nappe de métal doit être élevée. Or, plus la distance interpolaire est importante, plus la consommation énergétique du procédé est élevée car dissipée par effet Joule dans l'espace interpolaire.These MHD instabilities are known to degrade the yield of the process. The more unstable a tank, the greater the interpolar distance between the anode and the metal sheet. However, the greater the interpolar distance, the higher the energy consumption of the process because it is dissipated by the Joule effect in the interpolar space.

D'autre part, les composantes horizontales du champ magnétique, générées par l'ensemble du parcours du courant électrique, aussi bien dans les conducteurs situés à l'intérieur de la cuve que ceux situés à l'extérieur, interagissent avec le courant électrique traversant les liquides, ce qui engendre une déformation stationnaire de la nappe de métal. La dénivellation de la nappe de métal occasionnée doit rester suffisamment faible pour que les anodes soient consommées de façon uniforme avec peu de déchet. Pour obtenir une faible dénivellation, il est nécessaire que les composantes horizontales du champ magnétique soient le plus antisymétrique possible dans les liquides (bain électrolytique et nappe de métal). Pour les composantes longitudinale et transversale du champ magnétique qui constituent les composantes horizontales, par antisymétrique on entend que lorsque l'on se déplace perpendiculairement à l'axe central de la cuve, parallèle à la composante considérée du champ, et lorsque l'on se situe à égale distance de part et d'autre de cet axe central, la valeur de la composante considérée est opposée. L'antisymétrie des composantes horizontales du champ magnétique est la configuration fournissant la déformée d'interface la plus symétrique et la plus plate possible dans la cuve.On the other hand, the horizontal components of the magnetic field, generated by the entire path of the electric current, both in the conductors inside the tank and those outside, interact with the electric current passing through liquids, which causes stationary deformation of the sheet of metal. The unevenness of the metal sheet caused must remain low enough so that the anodes are consumed uniformly with little waste. To obtain a small difference in level, it is necessary that the horizontal components of the magnetic field are as asymmetrical as possible in liquids (electrolytic bath and sheet of metal). For the longitudinal and transverse components of the magnetic field which constitute the horizontal components, by antisymmetric it is meant that when one moves perpendicular to the central axis of the tank, parallel to the considered component of the field, and when one located at equal distance on either side of this central axis, the value of the component considered is opposite. The asymmetry of the horizontal components of the magnetic field is the configuration providing the most symmetrical and flat interface distortion possible in the tank.

Il est connu, notamment des documents de brevet FR1079131 et FR2469475 , de lutter contre les instabilités MHD en compensant le champ magnétique créé par la circulation du courant d'électrolyse, grâce à une disposition particulière des conducteurs conduisant le courant d'électrolyse. Par exemple, selon le document de brevet FR2469475 , les conducteurs d'acheminement contournent latéralement les extrémités ou têtes de chaque cuve d'électrolyse. On parle d'auto-compensation. Ce principe repose sur un équilibrage local du champ magnétique, à l'échelle d'une cuve d'électrolyse.It is known, in particular documents of patent FR1079131 and FR2469475 , to fight against MHD instabilities by compensating for the magnetic field created by the circulation of the electrolysis current, thanks to a particular arrangement of the conductors conducting the electrolysis current. For example, according to the document of patent FR2469475 , the routing conductors bypass laterally the ends or heads of each electrolysis tank. We are talking about self-compensation. This principle is based on local balancing of the magnetic field, on the scale of an electrolysis cell.

L'avantage principal de l'auto-compensation réside dans l'utilisation du courant d'électrolyse lui-même pour compenser les instabilités MHD.The main advantage of self-compensation is the use of the electrolysis current itself to compensate for MHD instabilities.

Cependant, l'auto-compensation peut créer un encombrement latéral important puisque les conducteurs électriques contournent les têtes de cuves d'électrolyse.However, self-compensation can create significant lateral bulk since the electrical conductors bypass the heads of electrolytic cells.

Surtout, la longueur importante des conducteurs d'acheminement pour la mise en œuvre de cette solution génère de la perte électrique en ligne par effet résistif des conducteurs, donc une augmentation des coûts de fonctionnement, et nécessite beaucoup de matière première, donc des coûts de fabrication élevés. Ces inconvénients sont d'autant plus marqués que les cuves d'électrolyse ont des dimensions importantes et fonctionnent avec des intensités importantes.Above all, the long length of the routing conductors for the implementation of this solution generates electrical loss online by resistive effect of the conductors, therefore an increase in operating costs, and requires a lot of raw material, therefore high manufacturing. These drawbacks are all the more marked as the electrolytic cells have large dimensions and operate with high intensities.

Aussi, la conception d'une aluminerie avec un circuit électrique auto-compensé est figée. Or, en cours de vie, il peut devenir nécessaire d'augmenter l'intensité du courant d'électrolyse, au-delà de l'intensité prévue lors de la conception. Cela modifie aussi de fait la répartition du champ magnétique du circuit électrique auto-compensé, non conçu pour cette répartition nouvelle, qui ne permet plus de compenser de façon optimale ce champ magnétique. Il existe des solutions pour pallier ce manque d'évolutivité et retrouver une compensation magnétique proche de l'optimum, mais ces solutions sont particulièrement complexes et coûteuses à mettre en œuvre.Also, the design of an aluminum smelter with a self-compensated electrical circuit is frozen. However, during life, it may become necessary to increase the intensity of the current electrolysis, beyond the intensity expected during design. This also in fact modifies the distribution of the magnetic field of the self-compensated electric circuit, not designed for this new distribution, which no longer makes it possible to optimally compensate for this magnetic field. There are solutions to overcome this lack of scalability and find a magnetic compensation close to the optimum, but these solutions are particularly complex and costly to implement.

Une autre solution pour diminuer les instabilités MHD, connue notamment du document de brevet FR2425482 , consiste à utiliser un circuit électrique secondaire, ou boucle externe, longeant les files de cuves d'électrolyse, sur les côtés. Ce circuit électrique secondaire est parcouru par un courant dont l'intensité égale un pourcentage prédéterminé de l'intensité du courant d'électrolyse. Ainsi, la boucle externe génère un champ magnétique compensant les effets du champ magnétique créé par le courant d'électrolyse de la file voisine de cuves d'électrolyse.Another solution to reduce MHD instabilities, known in particular from the patent document FR2425482 , consists in using a secondary electrical circuit, or external loop, running along the rows of electrolytic cells, on the sides. This secondary electrical circuit is traversed by a current whose intensity equals a predetermined percentage of the intensity of the electrolysis current. Thus, the external loop generates a magnetic field compensating for the effects of the magnetic field created by the electrolysis current of the neighboring line of electrolysis cells.

Il est également connu du document de brevet EP0204647 l'utilisation d'un circuit secondaire longeant les files de cuves d'électrolyse sur les côtés pour réduire l'effet du champ magnétique généré par les conducteurs d'acheminement, l'intensité du courant parcourant les conducteurs électriques de ce circuit secondaire étant de l'ordre de 5 à 80% de l'intensité du courant d'électrolyse, et ce courant circulant dans le même sens que le courant d'électrolyse.It is also known from the patent document EP0204647 the use of a secondary circuit along the rows of electrolytic cells on the sides to reduce the effect of the magnetic field generated by the routing conductors, the intensity of the current flowing through the electrical conductors of this secondary circuit being on the order of 5 to 80% of the intensity of the electrolysis current, and this current flowing in the same direction as the electrolysis current.

La solution de compensation par boucle externe présente l'avantage de disposer d'un circuit secondaire indépendant du circuit principal parcouru par le courant d'électrolyse.The compensation solution by external loop has the advantage of having a secondary circuit independent of the main circuit traversed by the electrolysis current.

L'agencement du circuit secondaire, situé sur les côtés des files de cuve à proximité des petits côtés des caissons, à la hauteur de l'interface bain-métal, permet une compensation de la composante verticale sans impacter les composantes horizontales du champ magnétique.The arrangement of the secondary circuit, located on the sides of the tank rows near the short sides of the boxes, at the height of the bath-metal interface, allows compensation of the vertical component without impacting the horizontal components of the magnetic field.

La solution de compensation par boucle externe diminue de manière importante la longueur, la masse et les pertes électriques des conducteurs d'acheminement, mais nécessite une station d'alimentation électrique supplémentaire et un circuit électrique secondaire indépendant supplémentaire.The compensation solution by external loop significantly reduces the length, mass and electrical losses of the routing conductors, but requires an additional electrical supply station and an additional independent secondary electrical circuit.

On notera également que la solution de compensation par boucle externe implique un cumul de champs magnétiques, avec le courant de la série, créant un champ ambiant total très fort, si bien que cela implique des contraintes sur les opérations et le matériel (par exemple blindage nécessaire des véhicules), et si bien que le champ magnétique d'une file impacte la stabilité des cuves de la file voisine. Pour limiter l'influence d'une file sur la file voisine, il est nécessaire de les éloigner l'une de l'autre, ce qui constitue une contrainte spatiale importante et implique par conséquent d'abriter chaque file de cuves d'électrolyse dans un hangar distinct.It will also be noted that the compensation solution by external loop involves a plurality of magnetic fields, with the current of the series, creating a very strong total ambient field, so that this implies constraints on the operations and the material (for example shielding necessary vehicles), and so that the magnetic field of a queue impacts the stability of the tanks of the neighboring queue. To limit the influence of a queue on the neighboring queue, it is necessary to move them away from each other, which constitutes a significant spatial constraint and therefore involves sheltering each row of electrolytic cells in a separate hangar.

Par ailleurs, la portion de jonction du circuit d'électrolyse et du circuit secondaire joignant les extrémités de deux files adjacentes de cuves d'électrolyse tend à déstabiliser les cuves de fin de file. Pour éviter d'avoir des cuves de fin de file instables, il est possible de configurer cette portion du circuit secondaire selon un parcours prédéterminé, comme cela est connu du brevet FR2868436 , afin de corriger le champ magnétique pour que l'impact sur les cuves de bout de file devienne acceptable. Cependant, ce parcours rallonge notamment la longueur du circuit secondaire, donc le coût matière. Il est à noter que la solution usuelle consiste à éloigner la portion de jonction du circuit secondaire et du circuit d'électrolyse des cuves situées en extrémité de file, mais cela augmente l'encombrement en plus d'augmenter la longueur des conducteurs électriques donc le coût matière et énergétique.Furthermore, the junction portion of the electrolysis circuit and the secondary circuit joining the ends of two adjacent rows of electrolysis cells tends to destabilize the end-of-line cells. To avoid having unstable end-of-line tanks, it is possible to configure this portion of the secondary circuit according to a predetermined route, as is known from the patent. FR2868436 , in order to correct the magnetic field so that the impact on the end-of-line tanks becomes acceptable. However, this route notably lengthens the length of the secondary circuit, therefore the material cost. It should be noted that the usual solution consists in moving the junction portion of the secondary circuit and the electrolysis circuit away from the cells located at the end of the line, but this increases the size in addition to increasing the length of the electrical conductors, therefore the material and energy cost.

On retiendra donc que les solutions connues de compensation par boucle externe génèrent des coûts structurels relativement importants.It will therefore be noted that the known solutions for compensation by external loop generate relatively high structural costs.

Aussi, la présente invention vise à pallier tout ou partie de ces inconvénients en proposant une aluminerie avec une configuration magnétique permettant d'avoir des cuves très stables magnétiquement, et offrant une compacité améliorée. La présente invention vise aussi un procédé de compensation d'un champ magnétique créé par la circulation d'un courant d'électrolyse dans cette aluminerie.Also, the present invention aims to overcome all or part of these drawbacks by proposing an aluminum smelter with a magnetic configuration making it possible to have very magnetically stable tanks, and offering improved compactness. The present invention also relates to a method of compensating for a magnetic field created by the circulation of an electrolysis current in this aluminum smelter.

A cet effet, la présente invention a pour objet une aluminerie comprenant au moins une file de cuves d'électrolyse agencées transversalement par rapport à la longueur de ladite au moins une file, une des cuves d'électrolyse comprenant des ensembles anodiques et des conducteurs électriques de montée et de connexion aux ensembles anodiques, caractérisée en ce que les conducteurs électriques de montée et de connexion s'étendent vers le haut le long de deux bords longitudinaux opposés de la cuve d'électrolyse pour conduire le courant d'électrolyse vers les ensembles anodiques, et en ce que l'aluminerie comprend

  • au moins un premier circuit électrique de compensation s'étendant sous les cuves d'électrolyse, ledit au moins un premier circuit électrique de compensation pouvant être parcouru par un premier courant de compensation destiné à circuler sous les cuves d'électrolyse en sens inverse du sens de circulation global du courant d'électrolyse,
  • au moins un deuxième circuit électrique de compensation s'étendant sur au moins un côté de ladite au moins une file de cuves d'électrolyse, ledit au moins un deuxième circuit électrique de compensation pouvant être parcouru par un deuxième courant de compensation destiné à circuler dans le même sens que le sens de circulation global du courant d'électrolyse.
To this end, the subject of the present invention is an aluminum smelter comprising at least one row of electrolytic cells arranged transversely to the length of said at least one row, one of the electrolytic cells comprising anode assemblies and electrical conductors for mounting and connection to the anode assemblies, characterized in that the electrical conductors for mounting and connection extend upward along two opposite longitudinal edges of the electrolysis tank to conduct the electrolysis current to the assemblies anodic, and in that the smelter includes
  • at least a first electrical compensation circuit extending under the electrolytic cells, said at least one first electrical compensation circuit being able to be traversed by a first compensating current intended to flow under the electrolytic cells in opposite direction overall circulation of the electrolysis current,
  • at least one second electrical compensation circuit extending on at least one side of said at least one row of electrolytic cells, said at least one second electric compensation circuit which can be traversed by a second compensation current intended to flow in the same direction as the overall direction of circulation of the electrolysis current.

Ainsi, l'aluminerie selon l'invention offre l'avantage de disposer de cuves très stables magnétiquement, car compensant à la fois les composantes horizontales et verticale du champ magnétique généré par la circulation du courant d'électrolyse, ce qui permet d'améliorer le rendement global, et cela sans impact négatif sur l'encombrement de l'aluminerie selon l'invention puisque le premier circuit électrique de compensation s'étend sous les cuves d'électrolyse.Thus, the smelter according to the invention offers the advantage of having very stable tanks magnetically, since it compensates for both the horizontal and vertical components of the magnetic field generated by the circulation of the electrolysis current, which makes it possible to improve the overall yield, and this without negative impact on the size of the smelter according to the invention since the first electrical compensation circuit extends under the electrolytic cells.

Selon un mode de réalisation préféré, les conducteurs électriques de montée et de connexion comprennent des conducteurs électriques de montée et de connexion amont, adjacents au bord longitudinal amont de la cuve d'électrolyse, et des conducteurs électriques de montée et de connexion aval, adjacents au bord longitudinal aval de la cuve d'électrolyse, et l'aluminerie est configurée pour que la répartition du courant d'électrolyse soit dissymétrique entre les conducteurs électriques de montée et de connexion amont et aval, l'intensité du courant d'électrolyse amont destiné à parcourir l'ensemble des conducteurs électriques de montée et de connexion amont de la cuve d'électrolyse étant égale à ]50-100[% de l'intensité du courant d'électrolyse, et l'intensité du courant d'électrolyse aval destiné à parcourir l'ensemble des conducteurs électriques de montée et de connexion aval de la cuve d'électrolyse étant égale à ]0-50[% de l'intensité du courant d'électrolyse, la somme des intensités des courants d'électrolyse amont et aval étant égale à l'intensité du courant d'électrolyse.According to a preferred embodiment, the electrical rise and connection conductors comprise electrical rise and upstream connection conductors, adjacent to the upstream longitudinal edge of the electrolytic cell, and electrical rise and downstream connection conductors, adjacent at the longitudinal downstream edge of the electrolysis tank, and the smelter is configured so that the distribution of the electrolysis current is asymmetrical between the upstream and downstream connection and upstream electrical conductors, the intensity of the upstream electrolysis current intended to run through all of the upstream and upstream electrical conductors of the electrolysis tank being equal to] 50-100 [% of the intensity of the electrolysis current, and the intensity of the downstream electrolysis current intended to run through all the electrical conductors for rising and connecting downstream of the electrolytic cell being equal to] 0-50 [% of the current intensity electrolysis, the sum of the intensities of the upstream and downstream electrolysis currents being equal to the intensity of the electrolysis current.

Un avantage de ces caractéristiques est de permettre de compenser efficacement le champ magnétique pour une cuve d'électrolyse de grandes dimensions, en particulier de grande largeur, cela sans surcoût en matières premières.An advantage of these characteristics is that it makes it possible to effectively compensate the magnetic field for a large-sized electrolysis cell, in particular of large width, without any additional cost of raw materials.

En effet, si la répartition du courant d'électrolyse amont aval est symétrique, c'est-à-dire si cette répartition est de 50% à l'amont et 50% à l'aval, et que la largeur des cuves d'électrolyse est augmentée, pour avoir un meilleur rendement, il se crée, du fait de l'augmentation du chemin parcouru par les conducteurs électriques d'acheminement sous la cuve d'électrolyse pour alimenter les conducteurs électriques de montée et de connexion aval, un déséquilibre préjudiciable au bon fonctionnement de la cuve d'électrolyse. Pour rétablir un équilibrage, il faudrait augmenter la section de ces conducteurs électriques d'acheminement sous la cuve d'électrolyse. Or cette augmentation de section implique un surcoût important en matières premières. En revanche, la demanderesse a observé que l'aluminerie selon la présente invention permet d'introduire une dissymétrie dans la répartition du courant d'électrolyse entre l'amont et l'aval des cuves d'électrolyse sans augmentation préjudiciable de la section des conducteurs électriques d'acheminement, tout en disposant de cuves d'électrolyse très stables magnétiquement.Indeed, if the distribution of the upstream downstream electrolysis current is symmetrical, that is to say if this distribution is 50% upstream and 50% downstream, and the width of the tanks electrolysis is increased, to have a better efficiency, it is created, due to the increase in the path traveled by the electrical conductors of routing under the electrolysis tank to supply the electrical conductors of rise and downstream connection, an imbalance detrimental to the proper functioning of the electrolysis tank. To restore balance, the section of these electrical conductors should be increased under the electrolytic cell. However, this increase in section implies a significant additional cost in raw materials. On the other hand, the Applicant has observed that the smelter according to the present invention makes it possible to introduce an asymmetry in the distribution of the electrolysis current between the upstream and downstream of the electrolytic cells without damaging increase in the cross-section of the electrical conductors, while having very magnetically stable electrolytic cells.

Le choix de la répartition entre intensités des courants d'électrolyse amont et aval est réalisé par étude économique. Ce choix dépend principalement de la distance entre deux cuves et de la hauteur des cuves. Cette répartition est réalisée en ajustant les sections des conducteurs électriques des circuits électriques amont et aval, en tenant compte de leur longueur.The choice of the distribution between intensities of the upstream and downstream electrolysis currents is made by economic study. This choice mainly depends on the distance between two tanks and the height of the tanks. This distribution is achieved by adjusting the sections of the electrical conductors of the upstream and downstream electrical circuits, taking into account their length.

Selon un mode de réalisation préféré, l'aluminerie comprend une station d'alimentation configurée pour faire circuler à travers ledit au moins un premier circuit électrique de compensation un premier courant de compensation d'intensité égale au double de l'intensité du courant d'électrolyse aval, à plus ou moins 20% près, et de préférence à plus ou moins 10% près.According to a preferred embodiment, the smelter comprises a power station configured to circulate through said at least one first electrical compensation circuit a first compensation current of intensity equal to twice the intensity of the current of downstream electrolysis, to within plus or minus 20%, and preferably to plus or minus 10%.

Un avantage de cette caractéristique est que pour cette valeur de l'intensité du premier courant de compensation, qui est directement fonction de la répartition du courant d'électrolyse entre l'amont et l'aval des cuves d'électrolyse, la demanderesse a observé que le champ magnétique horizontal généré par le premier circuit électrique de compensation corrige précisément la dissymétrie du champ magnétique horizontal résultant de la dissymétrie entre le courant d'électrolyse amont et aval, et ce, afin d'avoir une distribution antisymétrique des composantes horizontales du champ magnétique Ce premier courant de compensation permet en outre de corriger en partie le champ magnétique vertical, en fonction de la répartition entre courant d'électrolyse amont et aval de la cuve, et ce, afin de réduire les instabilités MHD dans la cuve.An advantage of this characteristic is that for this value of the intensity of the first compensation current, which is a direct function of the distribution of the electrolysis current between the upstream and downstream of the electrolysis cells, the Applicant has observed that the horizontal magnetic field generated by the first electric compensation circuit precisely corrects the asymmetry of the horizontal magnetic field resulting from the asymmetry between the upstream and downstream electrolysis current, in order to have an asymmetric distribution of the horizontal components of the field magnetic This first compensation current also makes it possible to partially correct the vertical magnetic field, as a function of the distribution between upstream and downstream electrolysis current of the cell, in order to reduce the MHD instabilities in the cell.

Selon un mode de réalisation préféré, l'aluminerie comprend une station d'alimentation configurée pour faire circuler à travers ledit au moins un deuxième circuit électrique de compensation un deuxième courant de compensation d'intensité comprise entre 50% et 100% de la différence d'intensité entre les courants d'électrolyse amont et aval, et de préférence comprise entre 80% et 100% de la différence d'intensité entre les courants d'électrolyse amont et aval.According to a preferred embodiment, the smelter includes a power station configured to circulate through said at least one second electrical compensation circuit a second intensity compensation current between 50% and 100% of the difference d intensity between the upstream and downstream electrolysis currents, and preferably between 80% and 100% of the difference in intensity between the upstream and downstream electrolysis currents.

Par intensité du deuxième courant de compensation, on entend la somme des intensités circulant dans les conducteurs formant le deuxième circuit de compensation, notamment lorsque le deuxième circuit de compensation est constitué de deux conducteurs (ou boucles) disposés de part et d'autre de la cuve d'électrolyse.By intensity of the second compensation current is meant the sum of the intensities flowing in the conductors forming the second compensation circuit, in particular when the second compensation circuit consists of two conductors (or loops) arranged on either side of the electrolysis tank.

La demanderesse a observé que pour cette valeur d'intensité du deuxième courant de compensation, qui est aussi directement fonction de la répartition du courant d'électrolyse entre l'amont et l'aval des cuves d'électrolyse, le champ magnétique vertical généré par le deuxième circuit électrique de compensation corrige le champ magnétique vertical généré par le courant d'électrolyse circulant dans le circuit électrique principal (circuit cuve à cuve) et déjà en partie corrigé par le courant circulant dans le premier circuit de compensation.The Applicant has observed that for this intensity value of the second compensation current, which is also a direct function of the distribution of the electrolysis current between the upstream and downstream of the electrolysis cells, the vertical magnetic field generated by the second electrical compensation circuit corrects the vertical magnetic field generated by the electrolysis current flowing in the main electrical circuit (cell to cell circuit) and already partly corrected by the current flowing in the first compensation circuit.

On notera que cette caractéristique est particulièrement avantageuse quand elle est utilisée en combinaison avec la précédente.Note that this feature is particularly advantageous when used in combination with the previous one.

Selon un mode de réalisation préféré, les conducteurs électriques de montée et de connexion sont répartis à intervalle régulier le long du bord longitudinal de la cuve d'électrolyse auquel ces conducteurs électriques de montée et de connexion sont adjacents.According to a preferred embodiment, the electrical rise and connection conductors are distributed at regular intervals along the longitudinal edge of the electrolytic cell to which these electrical rise and connection conductors are adjacent.

Un avantage de cette caractéristique ést d'avoir une distribution uniforme sur toute la longueur de la cuve de la composante horizontale longitudinale du champ magnétique (c'est-à-dire parallèlement à la longueur de la cuve d'électrolyse), ce qui permet de faciliter sa compensation via le premier circuit de compensation.An advantage of this characteristic is to have a uniform distribution over the entire length of the cell of the longitudinal horizontal component of the magnetic field (that is to say parallel to the length of the electrolysis cell), which allows to facilitate its compensation via the first compensation circuit.

Les conducteurs électriques de montée et de connexion sont avantageusement disposés de façon symétrique par rapport au plan médian transversal XZ des cuves d'électrolyse, ce qui permet d'obtenir une distribution antisymétrique de la composante transversale du champ magnétique selon X.The electrical rise and connection conductors are advantageously arranged symmetrically with respect to the transverse median plane XZ of the electrolytic cells, which makes it possible to obtain an antisymmetric distribution of the transverse component of the magnetic field along X.

Selon un mode de réalisation préféré, les conducteurs électriques de montée et de connexion amont et les conducteurs électriques de montée et de connexion aval sont situés à équidistance d'un plan médian longitudinal YZ de la cuve d'électrolyse.According to a preferred embodiment, the upstream electrical conductors and upstream connection and the upstream electrical conductors and downstream connection are located equidistant from a longitudinal median plane YZ of the electrolysis cell.

Selon un mode de réalisation préféré, les conducteurs électriques de montée et de connexion amont et les conducteurs électriques de montée et de connexion aval sont disposés de façon sensiblement symétrique par rapport audit plan médian longitudinal YZ de la cuve d'électrolyse.According to a preferred embodiment, the upstream electrical conductors and upstream connection and the upstream electrical conductors and downstream connection are arranged substantially symmetrically with respect to said longitudinal median plane YZ of the electrolysis cell.

Cette configuration, combinée au premier circuit de compensation, assure une parfaite antisymétrie de la composante longitudinale du champ magnétique selon Y.This configuration, combined with the first compensation circuit, ensures perfect asymmetry of the longitudinal component of the magnetic field along Y.

Selon un mode de réalisation préféré, ledit au moins un premier circuit électrique de compensation comprend des conducteurs électriques s'étendant sous les cuves d'électrolyse en formant ensemble une nappe constituée d'une pluralité de conducteurs électriques parallèles, typiquement de deux à douze, et de préférence de trois à dix conducteurs électriques parallèles.According to a preferred embodiment, said at least one first electrical compensation circuit comprises electrical conductors extending under the electrolytic cells, together forming a sheet made up of a plurality of parallel electrical conductors, typically from two to twelve, and preferably from three to ten parallel electrical conductors.

Le nombre de conducteurs parallèles nécessaires dépend en partie de la distance entre les liquides et ces mêmes conducteurs. Plus la distance est grande, plus le nombre de conducteurs doit être faible, plus la distance est courte, plus le nombre de conducteurs doit être élevé.The number of parallel conductors required depends in part on the distance between the liquids and these same conductors. The greater the distance, the smaller the number of conductors, the shorter the distance, the greater the number of conductors.

Un avantage de cette caractéristique est une compensation répartie sous toute la longueur de la cuve d'électrolyse, produisant donc de meilleurs résultats. On notera que le premier circuit électrique de compensation est configuré pour que le premier courant de compensation circule dans le même sens à travers tous les conducteurs électriques de la nappe.An advantage of this characteristic is a compensation distributed over the entire length of the electrolysis tank, thus producing better results. Note that the first electrical compensation circuit is configured so that the first compensation current flows in the same direction through all the electrical conductors of the ribbon cable.

L'intensité du premier courant de compensation correspond à la somme des intensités des courants circulant dans chacun des conducteurs électriques parallèles de la nappe s'étendant sous les cuves.The intensity of the first compensation current corresponds to the sum of the intensities of the currents flowing in each of the parallel electrical conductors of the sheet extending under the tanks.

Selon un mode de réalisation préféré, les conducteurs électriques de ladite nappe sont agencés à intervalle régulier les uns des autres selon une direction longitudinale Y des cuves d'électrolyse.According to a preferred embodiment, the electrical conductors of said sheet are arranged at regular intervals from one another in a longitudinal direction Y of the electrolysis cells.

Selon un mode de réalisation préféré, les conducteurs électriques de ladite nappe sont agencés de façon sensiblement symétrique par rapport à un plan médian transversal XZ des cuves d'électrolyse.According to a preferred embodiment, the electrical conductors of said sheet are arranged in a substantially symmetrical manner with respect to a transverse median plane XZ of the electrolysis cells.

Selon un mode de réalisation préféré, les conducteurs électriques de ladite nappe sont agencés dans un même plan horizontal XY.According to a preferred embodiment, the electrical conductors of said sheet are arranged in the same horizontal plane XY.

Un avantage de ces caractéristiques est d'améliorer encore davantage la compensation du champ magnétique défavorable.An advantage of these characteristics is to further improve the compensation of the unfavorable magnetic field.

Selon un mode de réalisation préféré, ledit au moins un deuxième circuit électrique de compensation comprend des conducteurs électriques s'étendant de chaque côté de ladite au moins une file de cuves d'électrolyse, et le deuxième courant de compensation circule dans le même sens que le sens de circulation global du courant d'électrolyse de chaque côté des cuves d'électrolyse.According to a preferred embodiment, said at least one second electrical compensation circuit comprises electrical conductors extending on each side of said at least one row of electrolytic cells, and the second compensation current flows in the same direction as the overall direction of flow of the electrolysis current on each side of the electrolysis cells.

Ainsi, les conducteurs électriques dudit au moins un deuxième circuit électrique de compensation forment une boucle interne et une boucle externe, et offrent ainsi une compensation améliorée du champ magnétique. On entend par boucle interne la boucle étant la plus proche de la file voisine et par boucle externe, la boucle étant la plus éloignée.Thus, the electrical conductors of said at least one second electrical compensation circuit form an internal loop and an external loop, and thus offer improved compensation of the magnetic field. By internal loop is meant the loop being the closest to the neighboring queue and by external loop, the loop being the most distant.

Selon un mode de réalisation préféré, l'intensité d'un deuxième courant de compensation circulant dans une boucle interne dudit au moins un deuxième circuit de compensation diffère de l'intensité d'un deuxième courant de compensation circulant dans une boucle externe dudit au moins un deuxième circuit de compensation.According to a preferred embodiment, the intensity of a second compensation current flowing in an internal loop of said at least one second compensation circuit differs from the intensity of a second compensation current flowing in an external loop of said at least one second compensation circuit.

Cette caractéristique permet de compenser le champ magnétique vertical résiduel de la file voisine.This characteristic makes it possible to compensate for the residual vertical magnetic field of the neighboring file.

L'intensité du deuxième courant de compensation correspond à la somme des intensités des courants circulant dans chacune des boucles.The intensity of the second compensation current corresponds to the sum of the intensities of the currents flowing in each of the loops.

Selon un mode de réalisation préféré, l'intensité du deuxième courant de compensation circulant dans la boucle interne est supérieure à l'intensité du deuxième courant de compensation circulant dans la boucle externe.According to a preferred embodiment, the intensity of the second compensation current flowing in the internal loop is greater than the intensity of the second compensation current flowing in the external loop.

Cela permet de corriger le champ magnétique créé par la file voisine. Cette file voisine crée un champ magnétique proportionnel à un courant de la série auquel on soustrait deux fois le courant d'électrolyse aval, tandis qu'une série d'électrolyse « conventionnelle » subira un champ magnétique directement proportionnel à la totalité du courant d'électrolyse. Ainsi, grâce au premier circuit de compensation, le champ perturbateur créé par la file voisine est beaucoup plus faible et nécéssite une correction bien moindre. Par conséquent, concernant le deuxième circuit de compensation, l'écart entre l'intensité de la boucle intérieure et celle de la boucle externe sera bien plus faible que dans le cas du brevet EP0204647 et l'écart entre les deux files de cuves peut être minimisé.This corrects the magnetic field created by the neighboring queue. This neighboring file creates a magnetic field proportional to a current in the series from which the downstream electrolysis current is subtracted twice, while a “conventional” electrolysis series will undergo a magnetic field directly proportional to the totality of the current. electrolysis. Thus, thanks to the first compensation circuit, the disturbing field created by the neighboring queue is much weaker and requires much less correction. Consequently, concerning the second compensation circuit, the difference between the intensity of the inner loop and that of the outer loop will be much smaller than in the case of the patent. EP0204647 and the gap between the two rows of tanks can be minimized.

Selon un mode de réalisation préféré, les conducteurs électriques formant le deuxième circuit électrique de compensation sont sensiblement symétriques par rapport à un plan XZ transversal médian des cuves d'électrolyse.According to a preferred embodiment, the electrical conductors forming the second electrical compensation circuit are substantially symmetrical with respect to a median transverse XZ plane of the electrolysis cells.

Cela améliore la compensation du champ magnétique délétère.This improves compensation for the deleterious magnetic field.

Selon un mode de réalisation préféré, les conducteurs électriques du deuxième circuit électrique de compensation s'étendent dans un même plan horizontal XY, de préférence à hauteur d'une nappe d'aluminium liquide formée à l'intérieur des cuves d'électrolyse au cours de la réaction d'électrolyse.According to a preferred embodiment, the electrical conductors of the second electrical compensation circuit extend in the same horizontal plane XY, preferably at the height of a sheet of liquid aluminum formed inside the electrolysis cells during of the electrolysis reaction.

Cet agencement améliore la compensation du champ magnétique vertical sans impacter la composante horizontale du champ déjà compensée par le premier circuit de compensation.This arrangement improves the compensation of the vertical magnetic field without impacting the horizontal component of the field already compensated by the first compensation circuit.

De préférence, l'aluminerie comprend deux files consécutives et parallèles de cuves d'électrolyse, et le circuit de la boucle interne forme en extrémité de file des moyens de compensation des effets de « fin de file » provoqués par les conducteurs de liaison entre les files, ce qui procure davantage de stabilité magnétique et améliore donc le rendement des cuves d'extrémité de file.Preferably, the smelter comprises two consecutive and parallel rows of electrolytic cells, and the circuit of the internal loop forms, at the end of the row, means for compensating for the “end of the row” effects caused by the connecting conductors between lines, which provides more magnetic stability and therefore improves the efficiency of the line end tanks.

Selon un mode de réalisation préféré, ledit au moins un premier circuit électrique de compensation est indépendant du circuit électrique principal parcouru par le courant d'électrolyse.According to a preferred embodiment, said at least one first electrical compensation circuit is independent of the main electrical circuit through which the electrolysis current flows.

Cette caractéristique a l'avantage de limiter les conséquences d'une avarie comme un perçage de cuve d'électrolyse par les liquides contenus dans cette cuve d'électrolyse. En outre, cette caractéristique est avantageuse en termes d'évolutivité puisqu'elle permet de faire varier l'intensité du premier courant de compensation pour ajuster la compensation magnétique. Un ajustement de la compensation magnétique est utile lorsque les cuves d'électrolyse sont modifiées, parce que la configuration magnétique de ces cuves d'électrolyse est modifiée, ou pour adapter le brassage de l'alumine à la qualité de cette alumine (ce qui permet de conserver un rendement optimal malgré la qualité différente de l'alumine).This characteristic has the advantage of limiting the consequences of damage such as piercing of the electrolysis cell by the liquids contained in this electrolysis cell. In addition, this characteristic is advantageous in terms of scalability since it makes it possible to vary the intensity of the first compensation current to adjust the magnetic compensation. An adjustment of the magnetic compensation is useful when the electrolytic cells are modified, because the magnetic configuration of these electrolytic cells is modified, or to adapt the stirring of the alumina to the quality of this alumina (which allows maintain an optimal yield despite the different quality of the alumina).

Selon un mode de réalisation préféré, ledit au moins un deuxième circuit électrique de compensation est indépendant du circuit électrique principal parcouru par le courant d'électrolyse.According to a preferred embodiment, said at least one second electrical compensation circuit is independent of the main electrical circuit traversed by the electrolysis current.

Comme expliqué ci-dessus, cela présente un avantage en termes d'évolutivité puisque cela permet de faire varier l'intensité du premier courant de compensation pour ajuster la compensation magnétique.As explained above, this has an advantage in terms of scalability since it makes it possible to vary the intensity of the first compensation current to adjust the magnetic compensation.

Selon un mode de réalisation préféré, la cuve d'électrolyse présente une construction électrique modulaire en N modules répétés dans le sens de sa longueur, chaque module comprenant des conducteurs électriques configurés pour générer une même configuration magnétique prédéterminée.According to a preferred embodiment, the electrolysis cell has a modular electrical construction in N modules repeated in the direction of its length, each module comprising electrical conductors configured to generate the same predetermined magnetic configuration.

Cette caractéristique est avantageuse en termes d'évolutivité : elle permet des modifications de la cuve d'élecrolyse, par exemple un agrandissement par adjonction d'un ou plusieurs modules, sans modifier le principe d'équilibrage magnétique de la cuve d'électrolyse.This characteristic is advantageous in terms of scalability: it allows modifications to the electrolysis tank, for example an enlargement by adding one or more modules, without modifying the principle of magnetic balancing of the electrolysis tank.

Pour obtenir la même configuration magnétique, chaque module électrique présente le même agencement de conducteurs électriques, chaque conducteur électrique d'un module électrique étant traversé par la même intensité et le même sens de courant que le conducteur électrique correspondant d'un module électrique adjacent. Les conducteurs électriques de chaque module sont notamment les conducteurs électriques de montée et de connexion, les ensembles anodiques, les cathodes, les conducteurs cathodiques, les sorties cathodiques, les conducteurs électriques d'acheminement, et des conducteurs électriques de la nappe de conducteurs électriques du premier circuit électrique de compensation. Ces conducteurs électriques sont donc agencés les uns par rappport aux autres de la même façon d'un module à l'autre. En particulier, chaque module électrique comprend le même nombre de conducteurs électriques de la nappe de conducteurs électriques du premier circuit électrique de compensation.To obtain the same magnetic configuration, each electrical module has the same arrangement of electrical conductors, each electrical conductor of an electrical module being traversed by the same intensity and the same direction of current as the corresponding electrical conductor of an adjacent electrical module. The electrical conductors of each module are in particular the electrical rise and connection conductors, the anode assemblies, the cathodes, the cathode conductors, the cathode outputs, the electrical routing conductors, and conductors the electrical conductor layer of the first electrical compensation circuit. These electrical conductors are therefore arranged in relation to each other in the same way from one module to another. In particular, each electrical module comprises the same number of electrical conductors of the sheet of electrical conductors of the first electrical compensation circuit.

On précise que les cuves d'électrolyse de l'aluminerie comprennent tout ou partie des caractéristiques susmentionnées de la cuve d'électrolyse.It is specified that the electrolysis cells of the aluminum smelter include all or part of the abovementioned characteristics of the electrolysis cell.

L'invention concerne également un procédé de compensation d'un champ magnétique créé par la circulation d'un courant d'électrolyse dans une pluralité de cuves d'électrolyse d'une aluminerie ayant les caractéristiques précitées, le procédé comprenant :

  • la circulation, en sens contraire du sens de circulation global du courant d'électrolyse, d'un premier courant de compensation à travers ledit au moins un premier circuit électrique de compensation,
  • la circulation, dans le même sens que le sens de circulation global du courant d'électrolyse, d'un deuxième courant de compensation à travers ledit au moins un deuxième circuit électrique de compensation.
The invention also relates to a method for compensating for a magnetic field created by the circulation of an electrolysis current in a plurality of electrolysis cells of an aluminum smelter having the aforementioned characteristics, the method comprising:
  • the circulation, in the opposite direction of the overall direction of circulation of the electrolysis current, of a first compensation current through said at least one first electrical compensation circuit,
  • the circulation, in the same direction as the overall direction of circulation of the electrolysis current, of a second compensation current through said at least one second electrical compensation circuit.

Ainsi, ce procédé offre une compensation magnétique efficace du champ magnétique généré par la circulation du courant d'électrolyse dans la série de cuves d'électrolyse de l'aluminerie, en limitant l'encombrement.Thus, this method offers effective magnetic compensation of the magnetic field generated by the circulation of the electrolysis current in the series of electrolysis cells of the smelter, by limiting the size.

Selon un mode de réalisation préféré, le procédé comprend une répartition dissymétrique du courant d'électrolyse entre l'amont et l'aval des cuves d'électrolyse, l'ensemble des conducteurs électriques de montée et de connexion à l'amont des cuves d'électrolyse étant parcouru par un courant d'électrolyse amont d'intensité comprise entre ]50-100[% de l'intensité du courant d'électrolyse, et l'ensemble des conducteurs électriques de montée et de connexion à l'aval des cuves d'électrolyse étant parcouru par un courant d'électrolyse aval d'intensité comprise entre ]0-50[% de l'intensité du courant d'électrolyse, la somme des intensités des courants d'électrolyse amont et aval étant égale à l'intensité du courant d'électrolyse.According to a preferred embodiment, the method comprises an asymmetrical distribution of the electrolysis current between the upstream and downstream of the electrolytic cells, all of the electrical conductors for raising and connecting upstream of the electrolytic cells. electrolysis being traversed by an upstream electrolysis current of intensity between] 50-100 [% of the intensity of the electrolysis current, and all of the electrical conductors for rising and connecting downstream of the cells of electrolysis being traversed by a downstream electrolysis current of intensity between] 0-50 [% of the intensity of the electrolysis current, the sum of the intensities of the upstream and downstream electrolysis currents being equal to the intensity of the electrolysis current.

Ce procédé permet d'obtenir des cuves d'électrolyse stables magnétiquement, y compris quand les cuves d'électrolyse sont de grandes dimensions, notamment de grande largeur. Le rendement peut ainsi être sensiblement augmenté.This process makes it possible to obtain magnetically stable electrolytic cells, including when the electrolytic cells are large, in particular very large. The yield can thus be significantly increased.

Selon un mode de réalisation préféré, l'intensité du premier courant de compensation est égale au double de l'intensité du courant d'électrolyse aval, à plus ou moins 20% près, et de préférence à plus ou moins 10% près.According to a preferred embodiment, the intensity of the first compensation current is equal to twice the intensity of the downstream electrolysis current, to within plus or minus 20%, and preferably to plus or minus 10%.

Un avantage de cette caractéristique est que pour cette valeur de l'intensité du premier courant de compensation, qui est directement fonction de la répartition du courant d'électrolyse entre l'amont et l'aval des cuves d'électrolyse, la demanderesse a observé que le champ magnétique horizontal généré par le premier circuit électrique de compensation corrige précisément la dissymétrie entre le courant amont et aval, et ce, afin d'avoir une distribution antisymétrique des composantes horizontales du champ magnétique. Ce premier courant de compensation permet également de corriger tout ou partie du champ magnétique vertical, suivant la répartition entre courant d'électrolyse amont et aval de la cuve, et ce, afin de réduire les instabilités MHD dans la cuve. L'intégralité du champ magnétique vertical est corrigée si la répartition entre l'amont et l'aval est de 50%.An advantage of this characteristic is that for this value of the intensity of the first compensation current, which is a direct function of the distribution of the electrolysis current between the upstream and downstream of the electrolysis cells, the Applicant has observed that the horizontal magnetic field generated by the first electrical compensation circuit precisely corrects the asymmetry between the upstream and downstream current, in order to have an asymmetric distribution of the horizontal components of the magnetic field. This first compensation current also makes it possible to correct all or part of the vertical magnetic field, according to the distribution between upstream and downstream electrolysis current of the cell, in order to reduce the MHD instabilities in the cell. The entire vertical magnetic field is corrected if the distribution between upstream and downstream is 50%.

Selon un mode de réalisation préféré, l'intensité du deuxième courant de compensation est comprise entre 50% et 100% de la différence d'intensité entre les courants d'électrolyse amont et aval, et de préférence comprise entre 80% et 100% de la différence d'intensité entre les courants d'électrolyse amont et aval.According to a preferred embodiment, the intensity of the second compensation current is between 50% and 100% of the difference in intensity between the upstream and downstream electrolysis currents, and preferably between 80% and 100% of the difference in intensity between the upstream and downstream electrolysis currents.

De la même manière, la demanderesse a observé que pour cette valeur d'intensité du deuxième courant de compensation, qui est aussi directement fonction de la répartition du courant d'électrolyse entre l'amont et l'aval des cuves d'électrolyse, le champ magnétique vertical généré par le deuxième circuit électrique de compensation corrige précisément le champ magnétique vertical restant, résultant de la somme du champ magnétique vertical du courant d'électrolyse (circuit cuve à cuve) et du premier circuit de compensation.Likewise, the Applicant has observed that for this intensity value of the second compensation current, which is also a direct function of the distribution of the electrolysis current between the upstream and downstream of the electrolysis cells, the vertical magnetic field generated by the second electric compensation circuit precisely corrects the remaining vertical magnetic field, resulting from the sum of the vertical magnetic field of the electrolysis current (cell to cell circuit) and the first compensation circuit.

Selon un mode de réalisation préféré, ledit au moins un deuxième circuit électrique de compensation comprend une boucle interne et une boucle externe, et dans lequel l'intensité d'un deuxième courant de compensation circulant dans la boucle interne diffère de l'intensité d'un deuxième courant de compensation circulant dans la boucle externe.According to a preferred embodiment, said at least one second electrical compensation circuit comprises an internal loop and an external loop, and in which the intensity of a second compensation current flowing in the internal loop differs from the intensity of a second compensation current flowing in the external loop.

Selon un mode de réalisation préféré, l'intensité du deuxième courant de compensation circulant dans la boucle interne est supérieure à l'intensité du deuxième courant de compensation circulant dans la boucle externe.According to a preferred embodiment, the intensity of the second compensation current flowing in the internal loop is greater than the intensity of the second compensation current flowing in the external loop.

Selon un mode de réalisation préféré, le procédé comprend une étape d'analyse d'au moins une caractéristique de l'alumine dans au moins une des cuves d'électrolyse de ladite aluminerie, et la détermination des valeurs d'intensité du premier courant de compensation et du deuxième courant de compensation à faire circuler en fonction de ladite au moins une caractéristique analysée.According to a preferred embodiment, the method comprises a step of analyzing at least one characteristic of the alumina in at least one of the electrolysis cells of said aluminum smelter, and determining the intensity values of the first current of compensation and the second compensation current to be circulated as a function of said at least one characteristic analyzed.

Ainsi, le procédé permet de modifier la compensation magnétique, pour induire volontairement, dans des cas particuliers, une modification de l'écoulement dans les liquides et des vitesses de l'écoulement tout en contrôlant (dégradant faiblement) les instabilités MHD de l'interface bain/métal. L'écoulement des liquides (bain + aluminium) contribue en effet à brasser l'alumine, ce qui, selon les vitesses et la forme de l'écoulement ainsi que selon la qualité de l'alumine, permet d'améliorer le rendement. Ce mode de réalisation préféré permet donc d'améliorer le rendement en optimisant l'écoulement pour dissoudre l'alumine tout en contrôlant le niveau de « dégradation » de la stabilité MHD de l'interface bain/métal.Thus, the method makes it possible to modify the magnetic compensation, to voluntarily induce, in special cases, a modification of the flow in the liquids and flow velocities while controlling (slightly degrading) the MHD instabilities of the bath / metal interface. The flow of liquids (bath + aluminum) indeed helps to stir the alumina, which, depending on the speed and shape of the flow as well as the quality of the alumina, improves the yield. This preferred embodiment therefore makes it possible to improve the yield by optimizing the flow to dissolve the alumina while controlling the level of "degradation" of the MHD stability of the bath / metal interface.

D'autres caractéristiques et avantages de la présente invention ressortiront clairement de la description ci-après d'un mode particulier de réalisation, donné à titre d'exemple non limitatif, en référence aux dessins annexés dans lesquels :

  • La figure 1 est une vue schématique d'une aluminerie selon l'état de la technique,
  • La figure 2 est une vue schématique de côté de deux cuves d'électrolyse successives de l'état de la technique,
  • La figure 3 est une vue schématique en filaire du circuit électrique parcouru par le courant d'électrolyse dans les deux cuves d'électrolyse de la figure 2,
  • La figure 4 est une vue schématique en coupe selon un plan longitudinal vertical d'une cuve d'électrolyse de l'état de la technique,
  • La figure 5 est une vue schématique d'une aluminerie selon un mode de réalisation de l'invention,
  • La figure 6 est une vue schématique de côté de deux cuves d'électrolyse successives d'une aluminerie selon un mode de réalisation de l'invention,
  • La figure 7 est une vue schématique en coupe selon un plan longitudinal YZ d'une cuve d'électrolyse d'une aluminerie selon un mode de réalisation de l'invention,
  • La figure 8 est une vue schématique filaire du circuit électrique parcouru par le courant d'électrolyse dans une cuve d'électrolyse d'une aluminerie selon un mode de réalisation de l'invention,
  • La figure 9 est un tableau montrant l'intensité du courant d'électrolyse parcourant chaque segment de la figure 8,
  • Les figures 10 à 12 sont des vues schématiques filaires du circuit électrique parcouru par le courant d'électrolyse dans une cuve d'électrolyse d'une aluminerie selon un mode de réalisation de l'invention, montrant pour cette cuve d'électrolyse les zones générant un champ magnétique significatif,
  • La figure 13 est un tableau montrant la contribution de chaque segment des figures 10 à 12 dans le calcul de la composante verticale du champ magnétique généré par la circulation du courant d'électrolyse,
  • La figure 14 est un tableau montrant la contribution de chaque segment des figures 10 à 12 dans le calcul de la composante horizontale longitudinale du champ magnétique généré par la circulation du courant d'électrolyse.
Other characteristics and advantages of the present invention will emerge clearly from the description below of a particular embodiment, given by way of nonlimiting example, with reference to the appended drawings in which:
  • The figure 1 is a schematic view of an aluminum smelter according to the state of the art,
  • The figure 2 is a schematic side view of two successive electrolytic cells of the state of the art,
  • The figure 3 is a schematic wire-frame view of the electrical circuit traversed by the electrolysis current in the two electrolysis cells of the figure 2 ,
  • The figure 4 is a schematic sectional view along a vertical longitudinal plane of an electrolytic cell of the state of the art,
  • The figure 5 is a schematic view of an aluminum smelter according to one embodiment of the invention,
  • The figure 6 is a schematic side view of two successive electrolytic cells of an aluminum smelter according to an embodiment of the invention,
  • The figure 7 is a schematic sectional view along a longitudinal plane YZ of an electrolysis cell of an aluminum smelter according to an embodiment of the invention,
  • The figure 8 is a wired schematic view of the electric circuit traversed by the electrolysis current in an electrolysis tank of an aluminum smelter according to an embodiment of the invention,
  • The figure 9 is a table showing the intensity of the electrolysis current flowing through each segment of the figure 8 ,
  • The figures 10 to 12 are schematic wire-frame views of the electric circuit traversed by the electrolysis current in an electrolysis tank of an aluminum smelter according to an embodiment of the invention, showing for this electrolysis tank the zones generating a significant magnetic field,
  • The figure 13 is a table showing the contribution of each segment of figures 10 to 12 in the calculation of the vertical component of the magnetic field generated by the circulation of the electrolysis current,
  • The figure 14 is a table showing the contribution of each segment of figures 10 to 12 in the calculation of the longitudinal horizontal component of the magnetic field generated by the circulation of the electrolysis current.

La figure 1 montre une aluminerie 100 de l'état de la technique. L'aluminerie 100 comprend des cuves d'électrolyse disposées transversalement par rapport à la longueur de la file qu'elles forment. Les cuves d'électrolyse sont ici alignées selon deux files 101, 102 parallèles. Ces cuves d'électrolyse sont parcourues par un courant d'électrolyse I100. Deux circuits 104, 106 électriques de compensation s'étendent sur les côtés des files 101, 102 pour compenser le champ magnétique généré par la circulation du courant I100 d'électrolyse d'une cuve d'électrolyse à une autre et dans la file voisine. Les circuits 104, 106 électriques de compensation sont parcourus respectivement par des courants I104, I106 circulant dans le même sens que le courant d'électrolyse I100. Des stations 108 d'alimentation alimentent la série de cuves d'électrolyse et les circuits 104, 106 électriques de compensation. Selon cet exemple, pour un courant d'électrolyse d'intensité 500kA, et compte-tenu des perturbations magnétiques de « fin de file », la distance D100 entre les cuves d'électrolyse les plus proches des stations 108 d'alimentation et les stations 108 d'alimentation est de l'ordre de 45m, et la distance D300 sur laquelle s'étendent les circuits 104, 106 électriques de compensation au-delà des fins de file est de l'ordre de 45m, tandis que la distance D200 entre les deux files 101, 102 est de l'ordre de 85m pour limiter les perturbations magnétiques d'une file sur l'autre.The figure 1 shows an aluminum plant 100 of the state of the art. The aluminum smelter 100 comprises electrolytic cells arranged transversely to the length of the line which they form. The electrolytic cells are here aligned in two parallel lines 101, 102. These electrolytic cells are traversed by an electrolysis current I 100 . Two electrical compensation circuits 104, 106 extend on the sides of the lines 101, 102 to compensate for the magnetic field generated by the circulation of the electrolysis current I 100 from one electrolysis cell to another and in the neighboring line . The electrical compensation circuits 104, 106 are traversed respectively by currents I 104 , I 106 flowing in the same direction as the electrolysis current I 100 . Feed stations 108 supply the series of electrolytic cells and the electrical compensation circuits 104, 106. According to this example, for an electrolysis current of intensity 500kA, and taking into account the magnetic disturbances at the "end of the line", the distance D 100 between the electrolysis cells closest to the supply stations 108 and the 108 supply stations is around 45m, and the distance D 300 over which the electrical compensation circuits 104, 106 extend beyond the end of the line is around 45m, while the distance D 200 between the two queues 101, 102 is around 85m to limit the magnetic disturbances from one queue to the other.

La figure 2 montre deux cuves 110 d'électrolyse traditionnelles consécutives d'une même file de cuves d'électrolyse. Comme on peut le voir sur la figure 2, la cuve 110 d'électrolyse comprend un caisson 112 garni intérieurement par des matériaux 114 réfractaires, une cathode 116 et des anodes 118 plongées dans un bain 120 électrolytique au fond duquel est formée une nappe 122 d'aluminium. La cathode 116 est reliée électriquement à des conducteurs cathodiques 124 qui traversent les côtés du caisson 112 au niveau de sorties cathodiques 126. Les sorties 126 cathodiques sont reliées à des conducteurs 128 d'acheminement qui acheminent le courant d'électrolyse jusqu'aux conducteurs 130 de montée et de connexion d'une cuve d'électrolyse suivante. Comme on peut le voir sur la figure 2, ces conducteurs 130 de montée et de connexion s'étendent, de façon oblique, sur un seul côté, le côté amont, des cuves 110 d'électrolyse et s'étendent au-dessus des anodes 118, jusqu'à la partie centrale longitudinale des cuves 110 d'électrolyse.The figure 2 shows two consecutive traditional electrolytic cells 110 from the same row of electrolytic cells. As we can see on the figure 2 , the electrolysis tank 110 comprises a box 112 internally lined with refractory materials 114, a cathode 116 and anodes 118 immersed in an electrolytic bath 120 at the bottom of which is formed a sheet 122 of aluminum. The cathode 116 is electrically connected to cathode conductors 124 which cross the sides of the box 112 at cathode outputs 126. The cathode outputs 126 are connected to conductors 128 which convey the electrolysis current to the conductors 130 for mounting and connecting a next electrolysis tank. As we can see on the figure 2 , these rise and connection conductors 130 extend, obliquely, on one side only, the upstream side, of the electrolytic cells 110 and extend above the anodes 118, up to the longitudinal central part electrolysis tanks 110.

La cuve d'électrolyse comporte une superstructure 132 qui la traverse longitudinalement, au-dessus du caisson 112 et des anodes 118. La superstructure 132 comporte notamment une poutre reposant sur des pieds (non représentés) à chacune de ses extrémités longitudinales. La poutre supporte un cadre 134 anodique, ce cadre 134 anodique s'étendant également longitudinalement au-dessus du caisson 112 et des anodes 118. Le cadre 134 anodique supporte les ensembles anodiques, ces derniers étant connectés électriquement au cadre 134 anodique.The electrolytic cell comprises a superstructure 132 which crosses it longitudinally, above the box 112 and anodes 118. The superstructure 132 in particular comprises a beam resting on feet (not shown) at each of its longitudinal ends. The beam supports an anode frame 134, this anode frame 134 also extending longitudinally above the box 112 and anodes 118. The anode frame 134 supports the anode assemblies, the latter being electrically connected to the anode frame 134.

La figure 3 illustre schématiquement le chemin parcouru par le courant d'électrolyse I100 dans chacune des cuves 110 d'électrolyse et entre deux cuves 110 d'électrolyse adjacentes comme celles représentées sur la figure 2. On remarque notamment que la montée du courant d'électrolyse I100 jusqu'à l'ensemble anodique d'une cuve 110 d'électrolyse est asymétrique puisque cette montée est effectuée uniquement à l'amont des cuves 110 d'électrolyse dans le sens de circulation globale du courant d'électrolyse I100 dans la file (à gauche des cuves sur les figures 2 et 3).The figure 3 schematically illustrates the path traveled by the electrolysis current I 100 in each of the electrolysis cells 110 and between two adjacent electrolysis cells 110 like those shown on the figure 2 . We note in particular that the rise of the electrolysis current I 100 to the anode assembly of an electrolysis tank 110 is asymmetrical since this rise is carried out only upstream of the electrolysis tanks 110 in the direction of overall circulation of the electrolysis current I 100 in the queue (to the left of the cells on the figures 2 and 3 ).

La figure 4 montre l'agencement sur les côtés des cuves 110 de l'état de la technique de conducteurs électriques formant les circuits 104, 106 électriques de compensation, ces conducteurs électriques étant parcourus respectivement par les courants I104, I106 de compensation circulant dans le même sens que le courant I100 d'électrolyse parcourant ici les conducteurs 128 d'acheminement positionnés en dessous de la cuve.The figure 4 shows the arrangement on the sides of the tanks 110 of the state of the art of electrical conductors forming the electrical compensation circuits 104, 106, these electrical conductors being traversed respectively by the compensation currents I 104 , I 106 flowing in the same sense that the electrolysis current I 100 here passing through the routing conductors 128 positioned below the tank.

La figure 5 montre une aluminerie 1 selon un mode de réalisation de l'invention. L'aluminerie 1 est destinée à la production d'aluminium par électrolyse selon le procédé de Hall-Héroult.The figure 5 shows an aluminum smelter 1 according to an embodiment of the invention. The aluminum smelter 1 is intended for the production of aluminum by electrolysis according to the Hall-Héroult process.

L'aluminerie 1 comprend une pluralité de cuves d'électrolyse, sensiblement rectangulaires, destinées à la production d'aluminium par électrolyse, ces cuves d'électrolyse pouvant être alignées selon une ou plusieurs files 2 qui peuvent être sensiblement parallèles. Le cas échéant, les files 2 sont reliées électriquement en série et alimentées en courant d'électrolyse IE. L'aluminerie 1 comprend aussi un premier circuit électrique de compensation 4, qui s'étend sous la ou les files de cuves d'électrolyse, et un deuxième circuit électrique de compensation 6, qui s'étend sur au moins un côté de la ou des files 2 de cuves d'électrolyse. Selon l'exemple de la figure 5, le deuxième circuit électrique de compensation 6 s'étend des deux côtés de chaque file 2 de cuves d'électrolyse. Toujours selon l'exemple de la figure 5, l'aluminerie comporte deux files de cuves agencées parallèlement l'une par rapport à l'autre, alimentées par une même station 8 d'alimentation, et reliées électriquement en série de sorte que le courant d'électrolyse IE circulant dans la première des deux files 2 de cuves d'électrolyse circule ensuite dans la deuxième des deux files 2 de cuves d'électrolyse. Les cuves d'électrolyse sont agencées transversalement par rapport à chaque file 2 que ces cuves d'électrolyse forment. On notera que par cuve 2 d'électrolyse agencée transversalement on entend cuve 2 d'électrolyse dont la plus grande dimension, la longueur, est sensiblement perpendiculaire à la direction globale dans laquelle circule le courant IE d'électrolyse.The aluminum smelter 1 comprises a plurality of substantially rectangular electrolytic cells intended for the production of aluminum by electrolysis, these electrolytic cells being able to be aligned in one or more rows 2 which can be substantially parallel. Where appropriate, the lines 2 are electrically connected in series and supplied with electrolysis current IE. The aluminum smelter 1 also comprises a first electrical compensation circuit 4, which extends under the row or rows of electrolytic cells, and a second electrical compensation circuit 6, which extends over at least one side of the or rows 2 of electrolytic cells. According to the example of the figure 5 , the second electrical compensation circuit 6 extends on both sides of each row 2 of electrolysis cells. Still following the example of the figure 5 , the smelter has two rows of cells arranged parallel to each other, supplied by the same supply station 8, and electrically connected in series so that the electrolysis current IE flowing in the first of two rows 2 of electrolytic cells then circulates in the second of the two rows 2 of electrolytic cells. Electrolysis tanks are arranged transversely to each row 2 that these electrolytic cells form. It will be noted that by electrolysis tank 2 arranged transversely is understood electrolysis tank 2, the largest dimension of which, the length, is substantially perpendicular to the overall direction in which the electrolysis current IE flows.

Dans la présente description, amont et aval sont définis par rapport au sens de circulation global du courant d'électrolyse IE, c'est-à-dire le sens de circulation du courant d'électrolyse IE à l'échelle de la file 2 de cuves d'électrolyse.In the present description, upstream and downstream are defined with respect to the overall direction of circulation of the electrolysis current IE, that is to say the direction of circulation of the electrolysis current IE at the scale of queue 2 of electrolysis tanks.

On précise aussi que la description est réalisée par rapport à un référentiel cartésien lié à une cuve d'électrolyse, l'axe X étant orienté dans une direction transversale de la cuve d'électrolyse, l'axe Y étant orienté dans une direction longitudinale de la cuve d'électrolyse, et l'axe Z étant orienté dans une direction verticale de la cuve d'électrolyse. Les orientations, directions, plans et déplacements longitudinaux, transversaux, verticaux sont ainsi définis par rapport à ce référentiel.It should also be noted that the description is made in relation to a Cartesian frame of reference linked to an electrolytic cell, the X axis being oriented in a transverse direction to the electrolytic cell, the Y axis being oriented in a longitudinal direction of the electrolytic cell, and the axis Z being oriented in a vertical direction of the electrolytic cell. Longitudinal, transverse, vertical orientations, directions, planes and displacements are thus defined in relation to this reference system.

On notera que les cuves d'électrolyse de l'aluminerie sont de préférence des cuves d'électrolyse de grandes dimensions, l'utilisation de cuves d'électrolyse de grandes dimensions étant rendue possible par la configuration particulière des cuves d'électrolyse de l'aluminerie selon l'invention, comme décrit plus en détails ci-après. On définit les dimensions d'une cuve d'électrolyse par la surface au sol que cette cuve d'électrolyse représente. Pour cela on considère que les dimensions de la cuve sont définies par les dimensions extérieures de son caisson. Par cuve d'électrolyse de grandes dimensions, on entend cuve d'électrolyse ayant une largeur supérieure à 4 m, de préférence supérieure ou égale à 5 m, et notamment supérieure ou égale à 6 m, et/ou ayant une longueur supérieure à 15 m, de préférence supérieure ou égale à 20 m, et notamment supérieure ou égale à 25 m.It will be noted that the electrolysis cells of the aluminum smelter are preferably large electrolysis cells, the use of large electrolysis cells being made possible by the particular configuration of the electrolysis cells of the aluminum smelter according to the invention, as described in more detail below. The dimensions of an electrolytic cell are defined by the surface on the ground that this electrolytic cell represents. For this we consider that the dimensions of the tank are defined by the external dimensions of its box. By large electrolysis cell means electrolysis cell having a width greater than 4 m, preferably greater than or equal to 5 m, and in particular greater than or equal to 6 m, and / or having a length greater than 15 m, preferably greater than or equal to 20 m, and in particular greater than or equal to 25 m.

La figure 6 montre plus en détails des cuves 10 d'électrolyse de l'aluminerie 1 selon un mode de réalisation. Comme illustré sur cette figure, les cuves 10 d'électrolyse de l'aluminerie 1 comprennent un caisson 12, des ensembles anodiques 14, une cathode 16 traversée par des conducteurs électriques cathodiques 18 destinés à collecter le courant d'électrolyse IE à la cathode 16 pour le conduire jusqu'à d'autres conducteurs électriques appelés sorties cathodiques 20 hors du caisson 12, des conducteurs électriques de montée et de connexion 22 aux ensembles anodiques 14 pour conduire le courant d'électrolyse IE vers les ensembles anodiques 14, et des conducteurs électriques d'acheminement 24 connectés aux sorties cathodiques 20 et destinés à conduire le courant d'électrolyse IE depuis les sorties cathodiques 20 jusqu'aux conducteurs électriques de montée et de connexion 22 de la cuve 10 d'électrolyse suivante.The figure 6 shows in more detail the electrolytic cells 10 of the aluminum smelter 1 according to one embodiment. As illustrated in this figure, the electrolysis tanks 10 of the aluminum smelter 1 comprise a box 12, anode assemblies 14, a cathode 16 through which cathode electrical conductors 18 pass for collecting the electrolysis current IE at the cathode 16 to conduct it to other electrical conductors called cathode outputs 20 outside the box 12, electrical rise and connection 22 conductors to the anode assemblies 14 to conduct the electrolysis current IE to the anode assemblies 14, and conductors electrical routing 24 connected to the cathode outputs 20 and intended to conduct the electrolysis current IE from the cathode outputs 20 to the electrical rise and connection conductors 22 of the next electrolysis tank 10.

Le caisson 12 comprend un revêtement intérieur 26 en matériaux réfractaires. Comme illustré sur les figures 6 et 7, le caisson 12 comprend de préférence des berceaux 28 de renforts. Le caisson 12 peut être métallique, par exemple en acier.The box 12 includes an inner coating 26 made of refractory materials. As illustrated on figures 6 and 7 , the box 12 preferably comprises cradles 28 of reinforcements. The box 12 can be metallic, for example steel.

Les ensembles anodiques 14 comportent un support 30 et au moins une anode 32. La ou les anodes 32 sont notamment en matériau carboné et plus particulièrement de type précuites. Le support 30 comprend quand à lui une première partie 34 électriquement conductrice, par exemple une traverse, s'étendant essentiellement selon une direction transversale X des cuves 10 d'électrolyse, et une deuxième partie 36 électriquement conductrice, formée de plusieurs éléments électriquement conducteurs pouvant être appelés « rondins », les rondins comprenant une extrémité distale reliée électriquement à la première partie 34 du support 30 et une extrémité proximale reliée électriquement à la ou aux anodes 32 afin de conduire le courant d'électrolyse IE depuis la première partie 34 du support 30 jusqu'à cette ou ces anodes 32. Les ensembles anodiques 14 sont destinés à être enlevés et remplacés périodiquement lorsque la ou les anodes 32 sont usées.The anode assemblies 14 comprise a support 30 and at least one anode 32. The anode or anodes 32 are in particular made of carbonaceous material and more particularly of the precooked type. The support 30 comprises a first electrically conductive part 34, for example a cross member, extending essentially in a transverse direction X of the electrolytic cells 10, and a second electrically conductive part 36 formed of several electrically conductive elements capable of be called "logs", the logs comprising a distal end electrically connected to the first part 34 of the support 30 and a proximal end electrically connected to the anode (s) 32 in order to conduct the electrolysis current IE from the first part 34 of the support 30 to this or these anodes 32. The anode assemblies 14 are intended to be removed and replaced periodically when the anode or anodes 32 are worn.

La cathode 16 peut être formée de plusieurs blocs cathodiques en matériau carboné. La cathode 16 est traversée par les conducteurs cathodiques 18 destinés à collecter le courant d'électrolyse IE à la cathode 16 pour le conduire jusqu'aux sorties cathodiques 20 sortant avantageusement par le fond du caisson 12, comme illustré sur la figure 6.The cathode 16 can be formed from several cathode blocks of carbonaceous material. The cathode 16 is crossed by the cathode conductors 18 intended to collect the electrolysis current IE at the cathode 16 to lead it to the cathode outlets 20 advantageously exiting through the bottom of the box 12, as illustrated in the figure 6 .

Les conducteurs électriques de montée et de connexion 22 s'étendent vers le haut le long de deux bords longitudinaux 38 opposés de chaque cuve 10 d'électrolyse, pour conduire le courant d'électrolyse IE vers les ensembles anodiques 14. On précise que les bords longitudinaux 38 des cuves 10 d'électrolyse correspondent aux bords de plus grande dimension, c'est-à-dire les bords des cuves 10 d'électrolyse qui sont sensiblement parallèles à la direction Y longitudinale. A titre d'exemple, une cuve 10 d'électrolyse fonctionnant avec une intensité de 400 à 1000k Ampères peut par exemple comprendre de préférence de 4 à 40 conducteurs de montée et de connexion 22 répartis régulièrement sur toute la longueur de chacun de ses deux bords longitudinaux 38. Les conducteurs électriques de montée et de connexion 22 comprennent des conducteurs électriques de montée et de connexion amont 22A, c'est-à-dire adjacents au bord longitudinal 38 amont de la cuve 10 d'électrolyse, et des conducteurs électriques de montée et de connexion aval 22B, c'est-à-dire adjacents au bord longitudinal 38 aval de la cuve 10 d'électrolyse. Les conducteurs électriques de montée et de connexion amont 22A sont connectés électriquement à une extrémité amont de la première partie 34 du support 30, et les conducteurs électriques de montée et de connexion aval 22B sont connectés électriquement à une extrémité aval de cette première partie 34 du support 30.The electrical rise and connection conductors 22 extend upwards along two opposite longitudinal edges 38 of each electrolytic cell 10, to conduct the electrolysis current IE towards the anode assemblies 14. It is specified that the edges longitudinal 38 of the electrolytic cells 10 correspond to the edges of larger dimension, that is to say the edges of the electrolytic cells 10 which are substantially parallel to the longitudinal direction Y. By way of example, an electrolytic cell 10 operating with an intensity of 400 to 1000 k amperes can for example preferably comprise from 4 to 40 rise and connection conductors 22 distributed regularly over the entire length of each of its two edges longitudinal 38. The electrical rise and connection conductors 22 include electrical rise and upstream connection conductors 22A, that is to say adjacent to the longitudinal edge 38 upstream of the electrolysis tank 10, and electrical conductors of rise and downstream connection 22B, that is to say adjacent to the longitudinal edge 38 downstream of the electrolysis tank 10. The upstream connection and upstream electrical conductors 22A are electrically connected to an upstream end of the first part 34 of the support 30, and the upstream connection and upstream connection conductors 22B are electrically connected to a downstream end of this first part 34 of the support 30.

Les conducteurs électriques d'acheminement 24 sont connectés aux sorties cathodiques 20 et sont destinés à conduire le courant d'électrolyse IE depuis ces sorties cathodiques 20 jusqu'aux conducteurs électriques de montée et de connexion 22 de la cuve 10 d'électrolyse suivante de la série.The electrical routing conductors 24 are connected to the cathode outputs 20 and are intended to conduct the electrolysis current IE from these cathode outputs 20 to the electrical rise and connection conductors 22 of the next electrolysis tank 10 of the series.

Les conducteurs cathodiques 18, les sorties cathodiques 20 et/ou les conducteurs d'acheminement 24 peuvent être des barres métalliques, éventuellement composites, par exemple en aluminium, cuivre et/ou acier.The cathode conductors 18, the cathode outputs 20 and / or the routing conductors 24 may be metal bars, possibly composite, for example made of aluminum, copper and / or steel.

Une nappe d'aluminium 40 liquide est formée au cours de la réaction d'électrolyse.A sheet of liquid aluminum 40 is formed during the electrolysis reaction.

On notera que les cuves 10 d'électrolyse de l'aluminerie 1 selon l'invention sont préférentiellement des cuves 10 d'électrolyse de type à remplacement d'anode par traction verticale ascendante des ensembles anodiques 14 au-dessus de la cuve 10 d'électrolyse, comme cela est réprésenté par l'intermédiaire de la cuve 10 d'électrolyse à droite sur la figure 6. Les conducteurs de montée et de connexion 22 s'étendent de part et d'autre du caisson 12 sans s'étendre au droit des anodes 32, c'est-à-dire sans s'étendre dans un volume obtenu par projection verticale de la superficie des anodes 32 projetée dans un plan horizontal. Outre l'intérêt que cela représente pour permettre un changement d'anode 32 par traction verticale ascendante, cela permet aussi de diminuer la longueur des conducteurs de montée et de connexion 22 par rapport à une utilisation de conducteurs de montée et de connexion 130 de type classique, visibles sur la figure 2, qui s'étendent typiquement au-dessus de la cuve 110 d'électrolyse jusque dans la partie centrale longitudinale de la cuve 110 d'électrolyse. Cela contribue à réduire les coûts de fabrication. On note aussi que la partie horizontale 34 du support 30 est supportée et connectée au niveau de chacun des deux bords longitudinaux 38 de chaque cuve 10 d'électrolyse.It will be noted that the electrolysis cells 10 of the aluminum smelter 1 according to the invention are preferably electrolysis cells 10 of the anode replacement type by upward vertical traction of the anode assemblies 14 above the cell 10 of electrolysis, as shown by the electrolysis tank 10 right on the figure 6 . The rise and connection conductors 22 extend on either side of the box 12 without extending in line with the anodes 32, that is to say without extending in a volume obtained by vertical projection of the area of the anodes 32 projected in a horizontal plane. In addition to the advantage that this represents for allowing an anode change 32 by vertical upward traction, this also makes it possible to reduce the length of the rise and connection conductors 22 compared to the use of rise and connection conductors 130 of the type classic, visible on the figure 2 , which typically extend above the electrolysis tank 110 up to the longitudinal central part of the electrolysis tank 110. This helps to reduce manufacturing costs. It is also noted that the horizontal part 34 of the support 30 is supported and connected at each of the two longitudinal edges 38 of each electrolytic cell 10.

Ainsi, l'ensemble anodique n'est plus supporté et connecté électriquement au-dessus du caisson et des anodes au moyen d'une superstructure 132, comme cela est le cas pour les cuves d'électrolyse de l'état de la technique illustrées sur la figure 2. Les cuves 10 d'électrolyse de l'aluminerie 1 selon ce mode de réalisation de l'invention sont donc exemptes de superstructure. L'absence de superstructure permet d'élargir et/ou allonger les cuves 10 d'électrolyse, afin de bénéficier de cuves 10 d'électrolyse de grandes dimensions, comme mentionné précédemment. Un tel élargissement ou allongement des cuves 110 d'électrolyse de l'état de la technique n'est pas possible du fait de la superstructure 132, car cet élargissement et/ou allongement entraînerait un élargissement et/ou allongement de la superstructure 132 elle-même, donc de la portée de la poutre entre les pieds soutenant la poutre et du poids à soutenir par cette superstructure 132. Il existe des superstructures comportant une ou plusieurs arches intermédiaires de soutènement de la poutre, mais de telles arches intermédiaires, s'étendant transversalement au-dessus du caisson 112 et des anodes 118, sont encombrantes et complexifient les opérations sur cuves, notamment les changements d'anodes.Thus, the anode assembly is no longer supported and electrically connected above the box and the anodes by means of a superstructure 132, as is the case for the electrolysis tanks of the state of the art illustrated on the figure 2 . The electrolysis cells 10 of the aluminum smelter 1 according to this embodiment of the invention are therefore free of superstructure. The absence of superstructure makes it possible to widen and / or lengthen the electrolytic cells 10, in order to benefit from large electrolytic cells 10, as mentioned previously. Such a widening or lengthening of the electrolytic cells 110 of the prior art is not possible due to the superstructure 132, since this widening and / or lengthening would result in a widening and / or lengthening of the superstructure 132 itself even, therefore the span of the beam between the feet supporting the beam and the weight to be supported by this superstructure 132. There are superstructures comprising one or more intermediate arches of support of the beam, but such intermediate arches, extending transversely above the box 112 and the anodes 118, are bulky and complicate the operations on tanks, in particular the changes of anodes.

Le fait de pouvoir augmenter les dimensions des cuves d'électrolyse, combiné à une augmentation de l'intensité du courant d'électrolyse IE, cela sans créer d'instabilités MHD du fait de la configuration magnétique particulière de l'aluminerie 1 selon l'invention décrite plus en détails ci-après, permet d'améliorer substantiellement le rendement de l'aluminerie 1 en comparaison avec l'état de la technique.The fact of being able to increase the dimensions of the electrolysis cells, combined with an increase in the intensity of the electrolysis current IE, without creating MHD instabilities due to the particular magnetic configuration of the aluminum smelter 1 according to the The invention described in more detail below, makes it possible to substantially improve the efficiency of the aluminum smelter 1 in comparison with the state of the art.

Les conducteurs électriques de l'aluminerie 1 (en particulier conducteurs électriques de montée et de connexion 22, support 30, sorties cathodiques 20, conducteurs d'acheminement 24, conducteurs électriques des premier et deuxième circuits électriques de compensation 4, 6) sont en effet configurés pour obtenir une compensation efficace des composantes horizontales et verticale du champ magnétique généré par la circulation du courant d'électrolyse IE et, ce faisant, une limitation des instabilités MHD, donc un rendement amélioré.The electrical conductors of the aluminum smelter 1 (in particular electrical rise and connection conductors 22, support 30, cathode outputs 20, routing conductors 24, electrical conductors of the first and second electrical compensation circuits 4, 6) are indeed configured to obtain effective compensation of the horizontal and vertical components of the magnetic field generated by the circulation of the electrolysis current IE and, in so doing, a limitation of the instabilities MHD, therefore an improved efficiency.

Plus particulièrement, la répartition du courant d'électrolyse IE parcourant les conducteurs électriques de montée et de connexion 22 est dissymétrique entre les conducteurs électriques de montée et de connexion amont 22A et aval 22B. Le courant d'électrolyse IE est réparti en un courant d'électrolyse amont IEA, qui parcourt l'ensemble des conducteurs électriques de montée et de connexion amont 22A des cuves 10 d'électrolyse, et un courant d'électrolyse aval IEB, qui parcourt l'ensemble des conducteurs électriques de montée et de connexion aval 22B des cuves 10 d'électrolyse. L'intensité du courant d'électrolyse amont IEA est égale à ]50-100[% de l'intensité du courant d'électrolyse IE, tandis que l'intensité du courant d'électrolyse aval IEB est égale à ]0-50[% de l'intensité du courant d'électrolyse IE, étant précisé que les courants d'électrolyse amont IEA et aval IEB sont complémentaires, c'est-à-dire que la somme des intensités des courants d'électrolyse amont IEA et aval IEB est égale à l'intensité du courant d'électrolyse IE.More particularly, the distribution of the electrolysis current IE passing through the electrical rise and connection conductors 22 is asymmetrical between the electrical rise and connection upstream 22A and downstream 22B conductors 22B. The electrolysis current IE is divided into an upstream electrolysis current IEA, which runs through all of the upstream electrical conductors upstream and upstream connection 22A of the electrolysis cells, and a downstream electrolysis current IEB, which runs through all of the upstream and downstream connection electrical conductors 22B of the electrolysis cells 10. The intensity of the upstream electrolysis current IEA is equal to] 50-100 [% of the intensity of the electrolysis current IE, while the intensity of the downstream electrolysis current IEB is equal to] 0-50 [ % of the intensity of the electrolysis current IE, it being specified that the upstream electrolysis currents IEA and downstream IEB are complementary, that is to say that the sum of the intensities of the upstream electrolysis currents IEA and downstream IEB is equal to the intensity of the electrolysis current IE.

Cette répartition dissymétrique avec prépondérance de l'amont par rapport à l'aval est particulièrement avantageuse quand les cuves 10 d'électrolyse de l'aluminerie sont des cuves d'électrolyse de grandes dimensions. En effet, la dissymétrie amont/aval du courant d'électrolyse IE permet d'éviter de recourir à une augmentation trop importante de section des conducteurs d'acheminement 24 sous la cuve 10 d'électrolyse, si bien que des économies de matières et d'espace sont réalisées, et cela sans préjudice de la stabilité magnétique de la cuve 10 d'électrolyse.This asymmetrical distribution with preponderance of the upstream relative to the downstream is particularly advantageous when the electrolysis tanks 10 of the smelter are large-scale electrolysis tanks. Indeed, the asymmetry upstream / downstream of the electrolysis current IE makes it possible to avoid resorting to an excessive increase in cross section of the routing conductors 24 under the electrolysis tank 10, so that savings in materials and in space are made, and this without prejudice to the magnetic stability of the electrolytic cell 10.

Le choix de la répartition entre intensités des courants d'électrolyse amont et aval IEA, IEB est réalisé par étude économique. Ce choix dépend principalement de la distance entre deux cuves et de la hauteur des cuves. Cette répartition est réalisée en ajustant les sections des conducteurs électriques des circuits électriques amont et aval, en tenant compte de leur longueur.The choice of the distribution between intensities of the upstream and downstream electrolysis currents IEA, IEB is made by economic study. This choice mainly depends on the distance between two tanks and the height of the tanks. This distribution is achieved by adjusting the sections of the electrical conductors of the upstream and downstream electrical circuits, taking into account their length.

Les conducteurs de montée et de connexion 22 s'étendent de façon sensiblement verticale, et de préférence uniquement de façon verticale, si bien que le cheminement du courant d'électrolyse IE à travers les conducteurs de montée et de connexion 22 génère un champ magnétique avec uniquement des composantes horizontales, mais pas de composante verticale.The rise and connection conductors 22 extend substantially vertically, and preferably only vertically, so that the path of the electrolysis current IE through the rise and connection conductors 22 generates a magnetic field with only horizontal components, but no vertical component.

De même, la deuxième partie 36 du support 30 de l'ensemble anodique 14, et/ou les sorties cathodiques 20, s'étendent avantageusement selon une direction verticale, et de préférence uniquement de façon verticale, afin que le cheminement du courant d'électrolyse IE à travers cette deuxième partie 36 et/ou à travers les sorties cathodiques 20 génère un champ magnétique présentant uniquement des composantes horizontales, mais pas de composante verticale.Likewise, the second part 36 of the support 30 of the anode assembly 14, and / or the cathode outputs 20, advantageously extend in a vertical direction, and preferably only vertically, so that the flow of the current IE electrolysis through this second part 36 and / or through the cathode outputs 20 generates a magnetic field having only horizontal components, but no vertical component.

On notera que les sorties cathodiques 20 traversent avantageusement le fond du caisson 12. Le fait de disposer de sorties cathodiques 20 par le fond, au lieu de sorties cathodiques sur les côtés de la cuve d'électrolyse comme dans l'état de la technique (figure 2), permet de réduire la longueur des conducteurs d'acheminement 24. La réduction de longueur des conducteurs d'acheminement 24 permet, outre une économie de matières premières, une diminution substantielle des courants horizontaux dans les liquides et, ainsi, une meilleure stabilité MHD.It will be noted that the cathode outputs 20 advantageously pass through the bottom of the box 12. The fact of having cathode outputs 20 from the bottom, instead of cathode outputs on the sides of the electrolysis tank as in the prior art ( figure 2 ), makes it possible to reduce the length of the routing conductors 24. The reduction in length of the routing conductors 24 allows, in addition to saving raw materials, a substantial reduction in horizontal currents in liquids and, therefore, better stability MHD .

Par ailleurs, toujours en vue de compenser efficacement le champ magnétique créé par la circulation du courant d'électrolyse IE, la première partie 34 du support 30 de l'ensemble anodique 14 s'étend, de préférence uniquement, de façon sensiblement horizontale et parallèle à la direction transversale X des cuves 10 d'électrolyse.Furthermore, still with a view to effectively compensating for the magnetic field created by the circulation of the electrolysis current IE, the first part 34 of the support 30 of the anode assembly 14 extends, preferably only, in a substantially horizontal and parallel manner to the transverse direction X of the electrolysis cells 10.

De même, les conducteurs d'acheminement 24 s'étendent avantageusement de façon sensiblement rectiligne et parallèle à la direction transversale X des cuves 10 d'électrolyse, jusqu'aux conducteurs de montée et de connexion 22 de la cuve 10 d'électrolyse suivante. On limite ainsi le coût des conducteurs électriques d'acheminement 24, en minimisant leur longueur. On limite également les champs magnétiques générés par ces conducteurs électriques 24 d'acheminement par rapport à l'état de la technique, et en particulier par rapport aux cuves d'électrolyse auto-compensées de l'état de la technique.Likewise, the routing conductors 24 advantageously extend in a substantially rectilinear manner and parallel to the transverse direction X of the electrolysis cells 10, up to the rise and connection conductors 22 of the next electrolysis cell 10. The cost of the electrical routing conductors 24 is thus limited, by minimizing their length. The magnetic fields generated by these electrical conductors 24 of routing are also limited with respect to the state of the art, and in particular with respect to the self-compensated electrolysis cells of the state of the art.

Les conducteurs électriques de montée et de connexion 22 sont de préférence répartis à intervalles réguliers sur sensiblement toute la longueur du bord longitudinal 38 auquel ils sont adjacents. Autrement dit, une même distance sépare deux conducteurs électriques de montée et de connexion 22 consécutifs dans la direction longitudinale Y. Cela permet d'améliorer l'équilibre de la composante horizontale longitudinale du champ magnétique (c'est-à-dire parallèlement à la longueur de la cuve 10 d'électrolyse).The electrical rise and connection conductors 22 are preferably distributed at regular intervals over substantially the entire length of the longitudinal edge 38 to which they are adjacent. In other words, the same distance separates two consecutive rise and connection electrical conductors 22 in the longitudinal direction Y. This improves the balance of the longitudinal horizontal component of the magnetic field (that is to say parallel to the length of the electrolysis tank 10).

Les conducteurs électriques de montée et de connexion amont 22A et les conducteurs électriques de montée et de connexion aval 22B peuvent être agencés à équidistance d'un plan médian longitudinal YZ de chaque cuve 10 d'électrolyse, c'est-à-dire un plan sensiblement perpendiculaire à la direction transversale X et séparant chaque cuve 10 d'électrolyse en deux parties sensiblement égales. En d'autres termes, les conducteurs électriques de montée et de connexion amont 22A sont à la même distance de ce plan médian longitudinal YZ que les conducteurs électriques de montée et de connexion aval 22B. De plus, les conducteurs électriques de montée et de connexion amont 22A sont avantageusement disposés de façon sensiblement symétrique aux conducteurs électriques de montée et de connexion aval 22B, par rapport à ce plan médian longitudinal YZ. On améliore ainsi encore la caractéristique sensiblement antisymétrique avantageuse de la distribution du champ magnétique horizontale dans les liquides.The electrical upstream and upstream connection conductors 22A and the electrical upstream and downstream connection conductors 22B may be arranged equidistant from a longitudinal median plane YZ of each electrolytic cell 10, that is to say a plane substantially perpendicular to the transverse direction X and separating each electrolytic cell 10 into two substantially equal parts. In other words, the upstream electrical conductors and upstream connection 22A are at the same distance from this longitudinal median plane YZ as the upstream electrical conductors and downstream connection 22B. In addition, the upstream electrical conductors and upstream connection 22A are advantageously arranged in a manner substantially symmetrical to the upward electrical conductors and downstream connection 22B, with respect to this longitudinal median plane YZ. The advantageously substantially asymmetrical characteristic of the distribution of the horizontal magnetic field in liquids is thus further improved.

Pour limiter le champ magnétique généré par la circulation du courant d'électrolyse à travers les conducteurs électriques de montée et de connexion 22, ces conducteurs électriques de montée et de connexion s'étendent avantageusement au-dessus des liquides (bain électrolytique) à une hauteur h comprise entre 0 et 1,5 mètre. La longueur des conducteurs de montée et de connexion 22 est ainsi fortement diminuée par rapport aux conducteurs de montée et de connexion 130 de type classique qui s'étendent à des hauteurs supérieures à deux mètres pour les cuves 130 d'électrolyse de l'état de la technique.To limit the magnetic field generated by the circulation of the electrolysis current through the electrical rise and connection conductors 22, these electrical rise and connection conductors advantageously extend above liquids (electrolytic bath) at a height h between 0 and 1.5 meters. The length of the rise and connection conductors 22 is thus greatly reduced compared to the rise and connection conductors 130 of conventional type which extend to heights greater than two meters for the electrolysis tanks 130 in the state of the technique.

Pour améliorer la compacité de l'aluminerie 1 et limiter les coûts en matières premières, les conducteurs de montée et de connexion amont 22A des cuves 10 d'électrolyse peuvent être agencés en quinconce par rapport aux conducteurs de montée et de connexion aval 22B de la cuve 10 d'électrolyse la précédant dans la file 2. Cela permet en effet de rapprocher au maximum les cuves 10 d'électrolyse les unes des autres, soit pour placer davantage de cuves 10 d'électrolyse en série sur une même distance, ce qui augmente le rendement, soit pour réduire la longueur d'une file 2 de cuves 10 d'électrolyse, donc gagner de l'espace et réaliser des économies de structure.To improve the compactness of the aluminum smelter 1 and limit the costs of raw materials, the upstream conductors and upstream connection 22A of the electrolytic cells 10 can be staggered with respect to the upstream conductors and downstream connection 22B of the electrolytic cell 10 preceding it in the queue 2. This in fact allows the electrolytic cells 10 to be brought as close as possible to one another, that is to place more electrolytic cells 10 in series over the same distance, which increases the yield, that is to reduce the length of a line 2 of electrolytic cells 10, therefore saving space and achieving structural savings.

Pour une compensation efficace des composantes horizontales du champ magnétique généré par la circulation du courant d'électrolyse IE, c'est-à-dire pour avoir des composantes horizontales antisymétriques, la première partie 34 du support 30 de l'ensemble anodique 14 et la deuxième partie 36 du support 30 de l'ensemble anodique 14 sont configurées pour que l'intensité de la fraction de courant d'électrolyse parcourant une moitié amont de cette deuxième partie 36 soit sensiblement égale à l'intensité de la fraction de courant d'électrolyse parcourant une moitié aval de cette deuxième partie 36. Autrement dit, et comme cela est représenté sur la figure 8, l'intensité de la fraction de courant d'électrolyse traversant l'ensemble des rondins situés côté amont d'un plan médian longitudinal YZ de la cuve 10 d'électrolyse est sensiblement égale à l'intensité de la fraction de courant d'électrolyse traversant l'ensemble des rondins situés côté aval de ce plan médian longitudinal YZ. En particulier, comme cela ressort du segment S9 de la figure 8 lue en combinaison avec le tableau de la figure 9, une partie du courant d'électrolyse amont IEA parvient jusqu'aux rondins situés côté aval du plan médian YZ de la cuve 10 d'électrolyse. Cela est obtenu grâce à un équilibrage électrique global des différentes sections de conducteurs.For effective compensation of the horizontal components of the magnetic field generated by the circulation of the electrolysis current IE, that is to say to have anti-asymmetrical horizontal components, the first part 34 of the support 30 of the anode assembly 14 and the second part 36 of the support 30 of the anode assembly 14 are configured so that the intensity of the fraction of electrolysis current flowing through an upstream half of this second part 36 is substantially equal to the intensity of the fraction of electrolysis current flowing through a downstream half of this second part 36. In other words, and as shown in the figure 8 , the intensity of the fraction of electrolysis current passing through all of the logs situated on the upstream side of a longitudinal median plane YZ of the electrolysis tank is substantially equal to the intensity of the fraction of electrolysis current crossing all the logs located downstream side of this longitudinal median plane YZ. In particular, as can be seen from the S9 segment of the figure 8 read in combination with the table of figure 9 , part of the upstream electrolysis current IEA reaches the logs located on the downstream side of the median plane YZ of the electrolysis tank 10. This is achieved by an overall electrical balancing of the different sections of conductors.

Le principe de compensation ou équilibrage magnétique de l'aluminerie 1 selon l'invention permet d'obtenir pour l'aluminerie 1 un circuit de conducteurs pouvant être réalisé de façon modulaire, comme cela est illustré sur la figure 7. Chaque module M peut comporter par exemple un conducteur électrique du premier circuit électrique de compensation 4 et un certain nombre de conducteurs d'acheminement 24 et de conducteurs de montée et de connexion 22 associés pour chaque cuve 10 d'électrolyse. Le fait est que les conducteurs électriques compris dans chaque module M (conducteurs de montée et de connexion 22, ensemble anodique 14, cathode 16, conducteurs cathodiques 18, sorties cathodiques 20, conducteurs d'acheminement 24, conducteurs électriques du premier circuit de compensation 4) sont configurés pour générer une même configuration magnétique prédéterminée. En d'autres termes, les conducteurs électriques de chaque module M sont agencés et parcourus par des courants tels que chaque module M génère les mêmes composantes verticale et horizontales de champ magnétique.The principle of magnetic compensation or balancing of the aluminum smelter 1 according to the invention makes it possible to obtain for the aluminum smelter 1 a circuit of conductors which can be produced in a modular fashion, as illustrated on the figure 7 . Each module M can for example comprise an electrical conductor of the first electrical compensation circuit 4 and a certain number of conveying conductors 24 and rising and connecting conductors 22 associated for each electrolytic cell 10. The fact is that the electrical conductors included in each module M (rise and connection conductors 22, anode assembly 14, cathode 16, cathode conductors 18, cathode outputs 20, routing conductors 24, electrical conductors of the first compensation circuit 4 ) are configured to generate the same predetermined magnetic configuration. In other words, the electrical conductors of each module M are arranged and traversed by currents such that each module M generates the same vertical and horizontal components of magnetic field.

Le circuit de conducteurs, et donc chaque cuve 10 d'électrolyse, peut être composé d'un certain nombre N de modules M, déterminant la longueur des cuves 10 d'électrolyse et l'intensité du courant traversant les cuves 10 d'électrolyse (l'intensité du courant d'électrolyse IE circulant dans la série de cuves d'électrolyse étant égale à l'intensité de la fraction de courant d'électrolyse traversant chaque module M multipliée par le nombre N de modules M).The circuit of conductors, and therefore each electrolytic cell 10, can be composed of a certain number N of modules M, determining the length of the electrolytic cells 10 and the intensity of the current passing through the electrolytic cells ( the intensity of the electrolysis current IE circulating in the series of electrolysis cells being equal to the intensity of the fraction of electrolysis current passing through each module M multiplied by the number N of modules M).

Il est important de préciser que, compte-tenu de la configuration magnétique de chaque module M, le choix du nombre N de modules M par cuve 10 d'électrolyse, compensé par le circuit secondaire de compensation 6 sur les extrémités de cuve, ne perturbe que peu l'équilibre magnétique des cuves 10 d'électrolyse. Cela permet d'obtenir une configuration magnétique optimale, et ce, pour des ampérages au-delà de 1000 kA voire 2000 kA lors de la conception ou une extension de la longueur des cuves 10 d'électrolyse par addition de tels modules. A contrario, l'allongement de cuves d'électrolyse de type auto-compensée ou compensée par des circuits magnétiques de compensation disposés sur les côtés des cuves connues de l'art antérieur imposent de redessiner complètement les circuits de conducteurs. Aussi, le rapport de la quantité de matériau formant le circuit de conducteurs ramené à la surface de production des cuves 10 d'électrolyse ne se dégrade pas lorsque l'on allonge les cuves 10 d'électrolyse, il augmente proportionnellement au nombre N de modules M et à l'intensité traversant les cuves 10 d'électrolyse. Ainsi, les cuves 10 d'électrolyse peuvent être allongées simplement en fonction des besoins et l'intensité du courant les traversant n'est pas limitée. La construction modulaire des conducteurs électriques des cuves 10 d'électrolyse offre donc un avantage en termes d'évolutivité, puisque cette construction modulaire, combinée à un simple ajustement de l'ampérage du circuit secondaire de compensation, permet de modifier les cuves 10 d'électrolyse sans porter atteinte à leur équilibrage magnétique et électrique.It is important to specify that, taking into account the magnetic configuration of each module M, the choice of the number N of modules M per cell 10 of electrolysis, compensated by the secondary compensation circuit 6 on the ends of cell, does not disturb that little the magnetic equilibrium of the electrolysis cells 10. This makes it possible to obtain an optimal magnetic configuration, and this, for amperages above 1000 kA or even 2000 kA during the design or an extension of the length of the electrolysis cells 10 by the addition of such modules. Conversely, the elongation of self-compensated or compensated type electrolysis cells by magnetic compensation circuits arranged on the sides of the cells known from the prior art means that the conductor circuits must be completely redesigned. Also, the ratio of the quantity of material forming the circuit of conductors brought back to the production surface of the electrolytic cells 10 does not deteriorate when the electrolytic cells 10 are lengthened, it increases in proportion to the number N of modules M and the intensity passing through the electrolysis cells 10. Thus, the electrolytic cells 10 can be extended simply as required and the intensity of the current passing through them is not limited. The modular construction of the electrical conductors of the electrolysis cells 10 therefore offers an advantage in terms of scalability, since this modular construction, combined with a simple adjustment of the amperage of the secondary compensation circuit, makes it possible to modify the cells 10 d ' electrolysis without affecting their magnetic and electrical balancing.

Le tableau de la figure 9, lu en combinaison avec la figure 8, montre pour un module les valeurs d'intensité parcourant les différents éléments électriquement conducteurs des cuves 10 d'électrolyse, ces éléments conducteurs étant symbolisés par des segments : S1 pour les conducteurs de montée et de connexion amont 22A ; S2, S5 et S8 pour la première partie 34 du support 30 ; S3 et S9 pour la deuxième partie 36 du support 30, la ou les anodes 32, le bain électrolytique, la nappe d'aluminium 40, la cathode 16, les conducteurs cathodiques 18 et les sorties cathodiques 20 ; S4, S6 et S10 pour les conducteurs d'acheminement 24 ; S7 pour les conducteurs de montée et de connexion aval 22B.The table of the figure 9 , read in combination with the figure 8 , shows for a module the intensity values traversing the different electrically conductive elements of the electrolytic cells 10, these conductive elements being symbolized by segments: S1 for the rise and upstream connection conductors 22A; S2, S5 and S8 for the first part 34 of the support 30; S3 and S9 for the second part 36 of the support 30, the anode (s) 32, the electrolytic bath, the aluminum sheet 40, the cathode 16, the cathode conductors 18 and the cathode outputs 20; S4, S6 and S10 for routing conductors 24; S7 for upstream and downstream connection conductors 22B.

On précise que la somme des intensités i et ia indiquées dans le tableau des figures 9, 13 et 14 est égale à l'intensité du courant d'électrolyse amont IEA divisée par le nombre N de modules de la cuve 10 d'électrolyse ; l'intensité ib est égale à l'intensité du courant d'électrolyse aval IEB divisée par le nombre N de modules de la cuve 10 d'électrolyse ; la somme de ia et ib est égale à i ; la somme des courants d'électrolyse amont et aval IEA, IEB est donc égale à 2i multiplié par le nombre N de modules ; et l'intensité du courant d'électrolyse IE circulant à travers la série de cuves d'électrolyse est égale à la somme de l'intensité du courant d'électrolyse amont IEA traversant toute la partie amont de la cuve d'électrolyse et de l'intensité du courant d'électrolyse aval IEB traversant toute la partie aval de la cuve d'élecrtolyse, c'est-à-dire au produit de 2i et du nombre N de modules de la cuve d'électrolyse.It is specified that the sum of the intensities i and ia indicated in the table of figures 9 , 13 and 14 is equal to the intensity of the upstream electrolysis current IEA divided by the number N of modules of the electrolysis tank 10; the intensity ib is equal to the intensity of the downstream electrolysis current IEB divided by the number N of modules of the electrolysis tank 10; the sum of ia and ib is equal to i; the sum of the upstream and downstream electrolysis currents IEA, IEB is therefore equal to 2i multiplied by the number N of modules; and the intensity of the electrolysis current IE flowing through the series of electrolysis cells is equal to the sum of the intensity of the upstream electrolysis current IEA traversing the entire upstream part of the electrolysis cell and l intensity of the downstream electrolysis current IEB passing through the entire downstream part of the electrolysis tank, that is to say the product of 2i and the number N of modules of the electrolysis tank.

Les figures 10 à 12 sont des vues schématiques filaires du circuit électrique parcouru par le courant d'électrolyse dans un module d'une cuve 10 d'électrolyse de l'aluminerie 1, et montrant pour cette cuve 10 d'électrolyse les trois zones principales P1, P2, P3 générant un champ magnétique perturbateur significatif : une zone P1 amont, une zone P2 intermédiaire centrale, et une zone P3 aval symétrique de la zone P1 amont par rapport à un plan médian longitudinal YZ des cuves 10 d'électrolyse.The figures 10 to 12 are schematic wire-frame views of the electrical circuit traversed by the electrolysis current in a module of an electrolysis tank 10 of the aluminum smelter 1, and showing for this electrolysis tank 10 the three main zones P1, P2, P3 generating a significant disturbing magnetic field: an upstream area P1, a central intermediate area P2, and a downstream area P3 symmetrical with the upstream area P1 with respect to a longitudinal median plane YZ of the electrolysis cells 10.

Le tableau de la figure 13, lu en combinaison avec les figures 10, 11 et 12, montre schématiquement la composante verticale du champ magnétique généré par les conducteurs électriques (représentés schématiquement par des segments) de la cuve 10 d'électrolyse, respectivement dans les trois zones P1, P2, P3 des cuves 10 d'électrolyse, par les premier et deuxième circuits de compensation 4, 6. En additionnant les contributions de chacun de ces conducteurs électriques, et celle du premier et du deuxième circuit de compensation 4, 6, on constate que la composante verticale Bz de champ magnétique généré par la circulation du courant d'électrolyse est nulle, c'est-à-dire parfaitement compensée. Ainsi, les instabilités MHD sont réduites au minimum ; cela offre la possibilité d'améliorer substantiellement le rendement.The table of the figure 13 , read in combination with figures 10, 11 and 12 , schematically shows the vertical component of the magnetic field generated by the electrical conductors (represented schematically by segments) of the electrolytic cell 10, respectively in the three zones P1, P2, P3 of the electrolytic cells, by the first and second compensation circuits 4, 6. By adding the contributions of each of these electrical conductors, and that of the first and second compensation circuits 4, 6, it can be seen that the vertical component Bz of magnetic field generated by the circulation of the current d electrolysis is zero, that is to say perfectly compensated. Thus, MHD instabilities are minimized; this offers the possibility of substantially improving the yield.

En outre, le tableau de la figure 14, lu aussi en combinaison avec les figures 10, 11 et 12, montre schématiquement la composante horizontale longitudinale du champ magnétique généré par la circulation du courant d'électrolyse à travers les conducteurs électriques (symbolisés par des segments) de la cuve 10 d'électrolyse, zone par zone, et à travers les premier et deuxième circuits de compensation 4, 6. La composante horizontale transversale du champ magnétique est quant à elle bien antisymétrique car les conducteurs sont symétriques par rapport au plan XZ. En additionnant les contributions de chaque segment, et celles des premier et deuxième circuits de compensation 4, 6, on constate que la composante horizontale longitudinale By du champ magnétique est antisymétrique (opposée dans les zones P1, P3 amont et aval, et nulle dans la zone P2 centrale). Cette antisymétrie supprime les effets délétères liés aux composantes horizontales du champ magnétique.In addition, the table of the figure 14 , also read in combination with figures 10, 11 and 12 , schematically shows the longitudinal horizontal component of the magnetic field generated by the circulation of the electrolysis current through the electrical conductors (symbolized by segments) of the electrolysis tank 10, zone by zone, and through the first and second circuits 4, 6. The horizontal transverse component of the magnetic field is, for its part, well asymmetrical because the conductors are symmetrical with respect to the plane XZ. By adding the contributions of each segment, and those of the first and second compensation circuits 4, 6, it can be seen that the longitudinal horizontal component By of the magnetic field is asymmetric (opposite in the upstream and downstream areas P1, P3, and zero in the central P2 zone). This antisymmetry eliminates the deleterious effects linked to the horizontal components of the magnetic field.

Le premier circuit électrique de compensation 4 est décrit plus en détails ci-après.The first electrical compensation circuit 4 is described in more detail below.

Le premier circuit électrique de compensation 4 s'étend sous les cuves 10 d'électrolyse. Ce premier circuit électrique de compensation 4 est destiné à être parcouru par un premier courant de compensation IC1, en sens inverse du sens de circulation global du courant d'électrolyse IE, comme cela est visible sur les figures 5 et 7. On rappel que par sens de circulation global du courant d'électrolyse IE on entend sens de circulation du courant d'électrolyse IE à l'échelle de l'aluminerie 1 ou de la ou des files 2 de cuves 10 d'électrolyse.The first electrical compensation circuit 4 extends under the electrolytic cells 10. This first electrical compensation circuit 4 is intended to be traversed by a first compensation current IC1, in the opposite direction to the overall direction of circulation of the electrolysis current IE, as can be seen on the figures 5 and 7 . It will be recalled that by overall direction of circulation of the electrolysis current IE is meant the direction of circulation of the electrolysis current IE on the scale of the aluminum smelter 1 or of the row or rows 2 of electrolysis cells 10.

Le premier circuit électrique de compensation 4 comprend des conducteurs électriques qui peuvent être des barres métalliques, par exemple en aluminium, cuivre ou acier, ou, de manière avantageuse, des conducteurs électriques en matériau supraconducteur, ces derniers permettant de réduire la consommation d'énergie et, du fait de leur masse plus faible que celle des conducteurs équivalents en métal, de réduire les frais de structure pour les supporter ou pour les protéger d'éventuelles coulées de métal au moyen de déflecteurs 42 métalliques (figure 7) ou en les enterrant. Avantageusement, ces conducteurs électriques en matériau supraconducteur peuvent être agencés pour réaliser plusieurs tours en série sous la ou les files de cuves, comme cela est décrit dans la demande de brevet WO2013007893 au nom de la demanderesse.The first electrical compensation circuit 4 comprises electrical conductors which may be metal bars, for example made of aluminum, copper or steel, or, advantageously, electrical conductors made of superconductive material, the latter making it possible to reduce energy consumption and, because of their lower mass than that of equivalent metal conductors, reduce the structural costs for supporting them or for protecting them from possible metal flows by means of metal deflectors 42 ( figure 7 ) or by burying them. Advantageously, these electrical conductors made of superconductive material can be arranged to perform several turns in series under the row or rows of tanks, as described in the patent application. WO2013007893 on behalf of the plaintiff.

L'aluminerie 1 comprend une station 44 d'alimentation configurée pour faire circuler à travers le premier circuit électrique de compensation 4 une intensité de courant IC1 égale au double de l'intensité du courant d'électrolyse aval IEB, à plus ou moins 20% près, et de préférence à plus ou moins 10% près.The aluminum smelter 1 comprises a supply station 44 configured to circulate through the first electrical compensation circuit 4 a current intensity IC1 equal to twice the intensity of the downstream electrolysis current IEB, more or less 20% close, and preferably within 10%.

Cette station 44 d'alimentation peut être une station d'alimentation électrique propre, c'est-à-dire distincte de la station 8 d'alimentation alimentant les cuves 10 d'électrolyse en courant d'électrolyse IE. La station 44 d'alimentation électrique du premier circuit de compensation 4 est donc exclusivement dédiée à l'alimentation de ce premier circuit de compensation 4.This supply station 44 can be a clean electrical supply station, that is to say distinct from the supply station 8 supplying the electrolysis cells 10 with electrolysis current IE. The power supply station 44 of the first compensation circuit 4 is therefore exclusively dedicated to supplying this first compensation circuit 4.

Le premier circuit électrique de compensation 4 est ainsi également indépendant du circuit électrique principal parcouru par le courant d'électrolyse IE comprenant notamment la ou les files 2 de cuves 10 d'électrolyse. Si le premier circuit électrique de compensation 4 subit une avarie, par exemple un perçage d'une des cuves 10 d'électrolyse par les liquides contenus dans les cuves d'électrolyse, dont la température est proche de 1 000°C, la réaction d'électrolyse peut se poursuivre, avec un rendement moindre toutefois puisque la compensation magnétique est impactée. De plus, l'intensité du premier courant de compensation IC1 est modifiable indépendamment du courant d'électrolyse IE. Cela est d'une importance primordiale en termes d'évolutivité et d'adaptabilité. D'une part parce que cela permet, en cas d'augmentation de l'intensité du courant d'électrolyse IE en cours de vie de l'aluminerie 1, d'adapter la compensation magnétique à cette évolution, par variation de l'intensité du premier courant de compensation IC1 en fonction des besoins. D'autre part parce que cela permet d'adapter l'ampérage du premier courant de compensation IC1 aux caractéristiques et à la qualité de l'alumine disponible. Cela permet de contrôler la vitesse des écoulements MHD pour favoriser ou limiter le brassage des liquides et la dissolution de l'alumine dans le bain en fonction des caractéristiques de l'alumine disponible, ce qui in fine contribue à un rendement le meilleur possible compte-tenu des approvisionnements en alumine.The first electrical compensation circuit 4 is thus also independent of the main electrical circuit traversed by the electrolysis current IE comprising in particular the row or rows 2 of electrolysis cells 10. If the first electrical compensation circuit 4 is damaged, for example a piercing of one of the electrolysis cells 10 by the liquids contained in the electrolysis cells, the temperature of which is close to 1000 ° C., the reaction d electrolysis can continue, with a lower yield however since the magnetic compensation is impacted. In addition, the intensity of the first compensation current IC1 can be modified independently of the electrolysis current IE. This is of paramount importance in terms of scalability and adaptability. On the one hand because this allows, in the event of an increase in the intensity of the electrolysis current IE during the lifetime of the aluminum smelter 1, to adapt the magnetic compensation to this development, by varying the intensity of the first compensation current IC1 as required. On the other hand because it makes it possible to adapt the amperage of the first compensation current IC1 to the characteristics and the quality of the available alumina. This makes it possible to control the speed of the MHD flows to promote or limit the stirring of the liquids and the dissolution of the alumina in the bath according to the characteristics of alumina available, which ultimately contributes to the best possible yield given the supply of alumina.

Les conducteurs électriques du premier circuit électrique de compensation 4 s'étendent sous les cuves d'électrolyse en formant ensemble une nappe de conducteurs électriques parallèles, avantageusement de deux à douze, et de préférence de trois à dix conducteurs électriques parrallèles. En d'autres termes, en section longitudinal d'une cuve 10 d'électrolyse, c'est-à-dire dans un plan longitudinal YZ de la cuve 10 d'électrolyse, comme cela est représenté sur la figure 7, le premier circuit électrique de compensation 4 s'étend sous plusieurs endroits de la cuve 10 d'électrolyse. On notera que le premier courant de compensation IC1 circule en sens contraire du sens de circulation global du courant d'électrolyse IE, ce à travers tous les conducteurs électriques formant la nappe. La nappe peut être formée par un même circuit électrique formant plusieurs tours ou boucles en série sous les cuves 10 d'électrolyse, chaque boucle correspondant à un conducteur électrique de la nappe. Alternativement, la nappe peut être formée par une division en un faisceau de conducteurs électriques parallèles du premier circuit électrique de compensation 4, ce dernier pouvant former le cas échéant une seule boucle sous les cuves 10 d'électrolyse.The electrical conductors of the first electrical compensation circuit 4 extend under the electrolytic cells, together forming a sheet of parallel electrical conductors, advantageously from two to twelve, and preferably from three to ten parallel electrical conductors. In other words, in longitudinal section of an electrolytic cell 10, that is to say in a longitudinal plane YZ of the electrolytic cell 10, as shown in the figure 7 , the first electrical compensation circuit 4 extends in several places of the electrolysis tank 10. It will be noted that the first compensation current IC1 flows in the opposite direction to the overall direction of circulation of the electrolysis current IE, this through all the electrical conductors forming the sheet. The sheet can be formed by the same electrical circuit forming several turns or loops in series under the electrolytic cells 10, each loop corresponding to an electrical conductor of the sheet. Alternatively, the sheet may be formed by a division into a bundle of parallel electrical conductors of the first electrical compensation circuit 4, the latter possibly being able to form a single loop under the electrolytic cells 10 if necessary.

L'intensité du premier courant de compensation IC1 est égale à la somme des intensités du courant de compensation parcourant chaque conducteur électrique de la nappe. De préférence, l'intensité du premier courant de compensation IC1 dans chaque conducteur électrique de la nappe est égale à l'intensité du premier courant de compensation IC1 divisée par le nombre de conducteurs électriques de cette nappe.The intensity of the first compensation current IC1 is equal to the sum of the intensities of the compensation current flowing through each electrical conductor of the sheet. Preferably, the intensity of the first compensation current IC1 in each electrical conductor of the sheet is equal to the intensity of the first compensation current IC1 divided by the number of electrical conductors of this sheet.

Les conducteurs électriques de la nappe sont avantageusement équidistants les uns des autres. Une même distance sépare donc deux conducteurs électriques adjacents de la nappe. On améliore encore ainsi la compensation du champ magnétique défavorable.The electrical conductors of the sheet are advantageously equidistant from each other. The same distance therefore separates two adjacent electrical conductors from the sheet. This also improves the compensation for the unfavorable magnetic field.

Les conducteurs électriques de la nappe peuvent s'étendre parallèlement les uns aux autres. Ils s'étendent de préférence parallèlement à la direction transversale X des cuves 10 d'électrolyse. Par ailleurs, les conducteurs électriques formant la nappe peuvent être agencés tous dans un même plan horizontal XY. Cela permet aussi d'améliorer la compensation du champ magnétique généré par la circulation du courant d'électrolyse.The electrical conductors of the sheet can extend parallel to each other. They preferably extend parallel to the transverse direction X of the electrolytic cells 10. Furthermore, the electrical conductors forming the sheet can all be arranged in the same horizontal plane XY. This also makes it possible to improve the compensation of the magnetic field generated by the circulation of the electrolysis current.

De plus, les conducteurs électriques de la nappe peuvent s'étendre sensiblement symétriquement par rapport au plan médian transversal XZ des cuves d'électrolyse, c'est-à-dire par rapport au plan perpendiculaire à la direction longitudinale Y, ce plan séparant les cuves 10 d'électrolyse en deux moitiés sensiblement égales.In addition, the electrical conductors of the sheet may extend substantially symmetrically with respect to the transverse median plane XZ of the electrolytic cells, that is to say with respect to the plane perpendicular to the longitudinal direction Y, this plane separating the electrolytic cells 10 in two substantially equal halves.

Selon l'exemple de la figure 7, le premier circuit électrique de compensation 4 forme une nappe de trois conducteurs sensiblement équidistants et agencés dans un même plan XY sensiblement horizontal. Cette nappe comprend autant de conducteurs électriques que la cuve 10 d'électrolyse comprend de modules M.According to the example of the figure 7 , the first electrical compensation circuit 4 forms a sheet of three substantially equidistant conductors and arranged in the same substantially horizontal XY plane. This layer comprises as many electrical conductors as the electrolysis tank 10 comprises modules M.

De fait, la nappe est avantageusement configurée pour que chaque module M de la cuve 10 d'électrolyse comprenne le même nombre de conducteurs électriques du premier circuit électrique de compensation 4. Cela permet d'obtenir une compensation du champ magnétique par module, ce qui produit de meilleurs effets et offre un avantage significatif en termes de mise en œuvre et d'évolutivité.In fact, the sheet is advantageously configured so that each module M of the electrolytic cell 10 includes the same number of electrical conductors of the first electrical compensation circuit 4. This makes it possible to obtain compensation for the magnetic field per module, which produces better effects and offers a significant advantage in terms of implementation and scalability.

Le deuxième circuit électrique de compensation 6 est décrit plus en détails ci-après.The second electrical compensation circuit 6 is described in more detail below.

Le deuxième circuit électrique de compensation 6 s'étend sur au moins un côté, transversal, des cuves 10 d'électrolyse, de façon sensiblement parallèle à la direction transversale X des cuves 10 d'électrolyse, c'est-à-dire parallèlement à la ou les files 2 de cuves 10 d'électrolyse. Le deuxième circuit électrique de compensation 6 est destiné à être parcouru par un deuxième courant de compensation IC2, dans le même sens que le sens de circulation global du courant d'électrolyse IE.The second electrical compensation circuit 6 extends on at least one transverse side of the electrolytic cells 10, substantially parallel to the transverse direction X of the electrolytic cells 10, that is to say parallel to the row or rows 2 of electrolytic cells 10. The second electrical compensation circuit 6 is intended to be traversed by a second compensation current IC2, in the same direction as the overall direction of circulation of the electrolysis current IE.

De préférence, le deuxième circuit électrique de compensation 6 s'étend le long des deux côtés transversaux des cuves 10 d'électrolyse, comme cela est illustré sur la figure 5. Dans ce cas, on désigne par boucle interne 61 les conducteurs électriques du deuxième circuit électrique de compensation 6 qui sont situés entre les deux premières files 2 adjacentes de cuves 10 d'électrolyse, et par boucle externe 62 les conducteurs électriques du deuxième circuit électrique de compensation 6 qui sont situés côté extérieur des files 2 de cuves 10 d'électrolyse, c'est-à-dire qui sont de l'autre côté des cuves 10 d'électrolyse par rapport aux conducteurs électriques formant la boucle interne 61. La boucle interne 61 est parcourue par un deuxième courant de compensation IC21 et la boucle externe 62 est parcourue par un deuxième courant de compensation IC22. Les deuxième courants de compensation IC21 et IC22 circulent dans le même sens. La somme des courants IC21 et IC22 circulant respectivement dans la boucle interne 61 et dans la boucle externe 62 est égale au courant de compensation IC2. La boucle interne 61 et/ou la boucle externe 62 peuvent éventuellement faire plusieurs tours en série ; le cas échéant l'intensité du courant IC21, respectivement IC22, est le produit du nombre de tours en série par l'intensité du courant circulant dans chaque tour en série.Preferably, the second electrical compensation circuit 6 extends along the two transverse sides of the electrolysis cells 10, as illustrated in the figure 5 . In this case, the internal conductor 61 designates the electrical conductors of the second electrical compensation circuit 6 which are located between the first two adjacent rows 2 of electrolytic cells 10, and the external conductor 62 designates the electrical conductors of the second electrical circuit of compensation 6 which are located on the outer side of the rows 2 of electrolytic cells 10, that is to say which are on the other side of the electrolytic cells 10 with respect to the electrical conductors forming the internal loop 61. The loop internal 61 is traversed by a second compensation current IC21 and the external loop 62 is traversed by a second compensation current IC22. The second compensation currents IC21 and IC22 flow in the same direction. The sum of the currents IC21 and IC22 flowing respectively in the internal loop 61 and in the external loop 62 is equal to the compensation current IC2. The internal loop 61 and / or the external loop 62 can possibly make several turns in series; if necessary the intensity of the current IC21, respectively IC22, is the product of the number of revolutions in series by the intensity of the current flowing in each revolution in series.

L'aluminerie 1 comprend une station 46 d'alimentation qui est avantageusement configurée pour faire circuler à travers le deuxième circuit électrique de compensation 6 (boucle interne 61 et/ou boucle externe 62) une intensité totale (le cas échéant boucle interne 61 plus boucle externe 62) de courant de compensation IC2 comprise entre 50% et 100% de la différence d'intensité entre les courants d'électrolyse amont et aval, et de préférence comprise entre 80% et 100% de la différence d'intensité entre les courants d'électrolyse amont et aval. Cette valeur d'intensité, fixée en fonction de la répartition dissymétrique du courant d'électrolyse IE dans chaque cuve 10 d'électrolyse, offre, en synergie avec le choix de la valeur de répartition dissymétrique IEA, IEB et de l'intensité du premier courant de compensation IC1, les meilleurs résultats de compensation du champ magnétique, applicable efficacement aux cuves 10 d'électrolyse de grandes dimensions.The aluminum smelter 1 comprises a supply station 46 which is advantageously configured to circulate through the second electrical compensation circuit 6 (internal loop 61 and / or external loop 62) a total intensity (if necessary loop internal 61 plus external loop 62) of compensation current IC2 of between 50% and 100% of the difference in intensity between the upstream and downstream electrolysis currents, and preferably between 80% and 100% of the difference of intensity between the upstream and downstream electrolysis currents. This intensity value, fixed as a function of the asymmetrical distribution of the electrolysis current IE in each electrolysis tank 10, offers, in synergy with the choice of the asymmetric distribution value IEA, IEB and of the intensity of the first compensation current IC1, the best magnetic field compensation results, effectively applicable to large size electrolytic cells 10.

De préférence, l'intensité du courant IC21 circulant dans la boucle interne 61 diffère de l'intensité du courant IC22 circulant dans la boucle externe 62. Plus particulièrement, l'intensité du courant IC21 circulant dans la boucle interne 61 est avantageusement supérieure à l'intensité du courant IC22 circulant dans la boucle externe 62.Preferably, the intensity of the current IC21 flowing in the internal loop 61 differs from the intensity of the current IC22 flowing in the external loop 62. More particularly, the intensity of the current IC21 flowing in the internal loop 61 is advantageously greater than 1 intensity of the current IC22 flowing in the external loop 62.

Le courant parcourant la boucle interne 61 pourra être augmenté afin de compenser l'impact de la file voisine sur le champ magnétique vertical. Cette augmentation aura une valeur typique voisine de (à 50% près) IE2xD61/DP2, où IE2 = IE-IC1 + IC2 = IE + IEA - 3 IEB et DP2 est la distance de la file voisine au centre de la cuve et D61 est la distance de la boucle interne 61 au centre de la cuve. Pour une série d'électrolyse classique IE2 est supérieur ou égal à IE. On peut noter que IE + IEA - 3 IEB est très inférieur à IE. Ceci est un gain de ce design qui permet le rapprochement de la file voisine car la création du champ magnétique par la file voisine est beaucoup plus faible sans surcoût par rapport à ce qui est connue par l'homme du métier.The current flowing through the internal loop 61 may be increased in order to compensate for the impact of the neighboring file on the vertical magnetic field. This increase will have a typical value close to (within 50%) IE2xD61 / DP2, where IE2 = IE-IC1 + IC2 = IE + IEA - 3 IEB and DP2 is the distance from the neighboring line to the center of the tank and D61 is the distance from the internal loop 61 to the center of the tank. For a conventional electrolysis series IE2 is greater than or equal to IE. It can be noted that IE + IEA - 3 IEB is much lower than IE. This is a gain from this design which allows the neighboring queue to be brought closer because the creation of the magnetic field by the neighboring queue is much weaker at no additional cost compared to what is known to those skilled in the art.

La station 46 d'alimentation alimentant le deuxième circuit de compensation 6 peut être une station d'alimentation électrique propre, c'est-à-dire distincte de la station 8 d'alimentation alimentant les cuves 10 d'électrolyse en courant d'électrolyse IE et distincte de la station 44 d'alimentation alimentant le premier circuit électrique de compensation 4. La station 46 d'alimentation électrique du deuxième circuit de compensation 6 est donc exclusivement dédiée à l'alimentation de ce deuxième circuit de compensation 6. Le deuxième circuit électrique de compensation 6 est ainsi également indépendant du circuit électrique principal parcouru par le courant d'électrolyse IE. L'intensité du deuxième courant de compensation IC2 est modifiable indépendamment du courant d'électrolyse IE, offrant ainsi des avantages substantiels en termes d'évolutivité et d'adaptabilité de l'aluminerie 1, comme expliqué précédemment concernant le premier circuit électrique de compensation 4. Avantageusement, le deuxième circuit de compensation 6 peut être également distinct du premier circuit de compensation 4.The supply station 46 supplying the second compensation circuit 6 can be a clean electrical supply station, that is to say separate from the supply station 8 supplying the electrolysis cells 10 with electrolysis current IE and distinct from the supply station 44 supplying the first electrical compensation circuit 4. The electrical supply station 46 of the second compensation circuit 6 is therefore exclusively dedicated to supplying this second compensation circuit 6. The second electrical compensation circuit 6 is thus also independent of the main electrical circuit traversed by the electrolysis current IE. The intensity of the second compensation current IC2 can be modified independently of the electrolysis current IE, thus offering substantial advantages in terms of scalability and adaptability of the aluminum smelter 1, as explained previously concerning the first electrical compensation circuit 4 Advantageously, the second compensation circuit 6 can also be distinct from the first compensation circuit 4.

Quand le deuxième circuit électrique de compensation 6 s'étend des deux côtés des cuves 10 d'électrolyse, les conducteurs électriques formant ce deuxième circuit électrique de compensation 6 peuvent avantageusement être symétriques par rapport à un plan XZ transversal médian des cuves 10 d'électrolyse. Cela améliore la compensation du champ magnétique délétère.When the second electrical compensation circuit 6 extends on both sides of the electrolysis cells 10, the electrical conductors forming this second electrical compensation circuit 6 can advantageously be symmetrical with respect to a median transverse plane XZ of the electrolysis cells 10 . This improves compensation for the deleterious magnetic field.

Par ailleurs, toujours dans l'optique de compenser efficacement ce champ magnétique, créé par la circulation du courant d'électrolyse IE, les conducteurs électriques du deuxième circuit électrique de compensation 6 s'étendent avantageusement dans un même plan horizontal XY. De préférence, ce plan horizontal XY est situé à hauteur de la nappe d'aluminium 40 liquide formée à l'intérieur des cuves 10 d'électrolyse au cours de la réaction d'électrolyse.Furthermore, still with the aim of effectively compensating this magnetic field, created by the circulation of the electrolysis current IE, the electrical conductors of the second electrical compensation circuit 6 advantageously extend in the same horizontal plane XY. Preferably, this horizontal plane XY is located at the height of the sheet of liquid aluminum 40 formed inside the electrolysis cells 10 during the electrolysis reaction.

On notera que les conducteurs électriques formant le deuxième circuit électrique de compensation 6 peuvent avantageusement être configurés de manière à limiter les effets de « fin de file », comme cela est montré sur la figure 5.It will be noted that the electrical conductors forming the second electrical compensation circuit 6 can advantageously be configured so as to limit the “end of line” effects, as shown on the figure 5 .

Les conducteurs électriques formant le deuxième circuit électrique de compensation 6 peuvent être des barres métalliques, par exemple en aluminium, cuivre ou acier, ou, de manière avantageuse, à des conducteurs électriques en matériau supraconducteur, ces derniers permettant de réduire la consommation d'énergie et, du fait de leur masse plus faible que celle des conducteurs équivalents en métal, de réduire les frais de structure pour les supporter. Avantageusement, ces conducteurs électriques en matériau supraconducteur peuvent être agencés pour réaliser plusieurs tours en série sur le ou les côtés des files 2 de cuves 10 d'électrolyse, comme cela est décrit dans la demande de brevet WO2013007893 au nom de la demanderesse.The electrical conductors forming the second electrical compensation circuit 6 can be metal bars, for example made of aluminum, copper or steel, or, advantageously, to electrical conductors made of superconductive material, the latter making it possible to reduce energy consumption and, because of their lower mass than that of equivalent metal conductors, reduce the structural costs for supporting them. Advantageously, these electrical conductors made of superconductive material can be arranged to perform several turns in series on the side or sides of the rows 2 of electrolytic cells 10, as described in the patent application. WO2013007893 on behalf of the plaintiff.

L'invention concerne également un procédé de compensation du champ magnétique créé par la circulation d'un courant d'électrolyse IE dans les cuves 10 d'électrolyse de l'aluminerie 1 décrite ci-dessus. Ce procédé comprend :

  • le fait de faire circuler, en sens contraire du sens de circulation global du courant d'électrolyse IE, le premier courant de compensation IC1 à travers le premier circuit électrique de compensation 4,
  • le fait de faire circuler, dans le même sens de circulation que le sens de circulation global du courant d'électrolyse IE, le deuxième courant de compensation IC2 à travers le deuxième circuit électrique de compensation 6.
The invention also relates to a method of compensating for the magnetic field created by the circulation of an electrolysis current IE in the electrolytic cells 10 of the aluminum smelter 1 described above. This process includes:
  • circulating, in the opposite direction to the overall direction of circulation of the electrolysis current IE, the first compensation current IC1 through the first electrical compensation circuit 4,
  • circulating, in the same direction of circulation as the overall direction of circulation of the electrolysis current IE, the second compensation current IC2 through the second electrical compensation circuit 6.

Le procédé comprend aussi avantageusement le fait de répartir de façon dissymétrique le courant d'électrolyse IE entre les conducteurs électriques de montée et de connexion amont 22A et les conducteurs électriques de montée et de connexion aval 22B.The method also advantageously comprises the fact of asymmetrically distributing the electrolysis current IE between the upward electrical conductors and upstream connection 22A and the upward electrical conductors and downstream connection 22B.

Cette étape de répartition dissymétrique du courant d'électrolyse entre l'amont et l'aval des cuves 10 d'électrolyse comprend la séparation du courant d'électrolyse IE en un courant d'électrolyse amont IEA, qui circule à travers l'ensemble des conducteurs électriques de montée et de connexion amont 22A de chaque cuve 10 d'électrolyse, de sorte que l'intensité du courant d'électrolyse amont IEA soit comprise entre ]50-100[% de l'intensité du courant d'électrolyse IE, et en un courant d'électrolyse aval IEB, qui circule à travers l'ensemble des conducteurs électriques de montée et de connexion aval 22B de chaque cuve 10 d'électrolyse, de sorte que l'intensité du courant d'électrolyse aval IEB soit comprise entre ]0-50[% de l'intensité du courant d'électrolyse IE, la somme des intensités des courants d'électrolyse amont et aval IEA, IEB étant égale à l'intensité du courant d'électrolyse IE.This step of asymmetric distribution of the electrolysis current between upstream and downstream of the electrolysis tanks 10 comprises the separation of the electrolysis current IE into an upstream electrolysis current IEA, which flows through all of the upstream and upstream electrical connection conductors 22A of each electrolysis tank 10, so that the intensity of the upstream electrolysis current IEA is between] 50-100 [% of the intensity of the electrolysis current IE, and in a downstream electrolysis current IEB, which flows through all of the electrical upstream and downstream connection conductors 22B of each electrolysis tank 10, so that the intensity of the downstream electrolysis current IEB is included between] 0-50 [% of the intensity of the electrolysis current IE, the sum of the intensities of the upstream and downstream electrolysis currents IEA, IEB being equal to the intensity of the electrolysis current IE.

L'étape de mise en circulation du premier courant de compensation IC1 est avantageusement telle que l'intensité du premier courant de compensation IC1 soit égale au double de l'intensité du courant d'électrolyse aval IEB, à plus ou moins 20% près, et de préférence à plus ou moins 10% près.The step of circulating the first compensation current IC1 is advantageously such that the intensity of the first compensation current IC1 is equal to twice the intensity of the downstream electrolysis current IEB, to within plus or minus 20%, and preferably within 10%.

L'étape de mise en circulation du deuxième courant de compensation IC2 est avantageusement telle que l'intensité totale (boucle interne 61 + externe 62) du deuxième courant de compensation IC2 soit comprise entre 50% et 100% de la différence d'intensité entre les courants d'électrolyse amont IEA et aval IEB, et de préférence comprise entre 80% et 100% de la différence d'intensité entre les courants d'électrolyse amont et aval.The step of circulating the second compensation current IC2 is advantageously such that the total intensity (internal loop 61 + external 62) of the second compensation current IC2 is between 50% and 100% of the difference in intensity between the upstream IEA and downstream IEB electrolysis currents, and preferably between 80% and 100% of the difference in intensity between the upstream and downstream electrolysis currents.

Pour ces valeurs d'intensités du courant d'électrolyse amont IEA, du courant d'électrolyse aval IEB, du premier courant de compensation IC1 et du deuxième courant de compensation IC2, la demanderesse a constaté que le champ magnétique généré par la circulation du courant d'électrolyse est le plus efficacement compensé.For these intensity values of the upstream electrolysis current IEA, of the downstream electrolysis current IEB, of the first compensation current IC1 and of the second compensation current IC2, the Applicant has observed that the magnetic field generated by the circulation of the current is most effectively compensated.

De plus, l'intensité du courant IC21 circulant dans la boucle interne 61 peut différer de l'intensité du courant IC22 circulant dans la boucle externe 62. Plus particulièrement, l'intensité du courant IC21 circulant dans la boucle interne 61 est avantageusement supérieure à l'intensité du courant IC22 circulant dans la boucle externe 62.In addition, the intensity of the current IC21 flowing in the internal loop 61 may differ from the intensity of the current IC22 flowing in the external loop 62. More particularly, the intensity of the current IC21 flowing in the internal loop 61 is advantageously greater than the intensity of the current IC22 flowing in the external loop 62.

Par ailleurs, le procédé peut comprendre avantageusement une étape d'analyse d'au moins une caractéristique de l'alumine dans au moins une des cuves 10 d'élecrolyse de l'aluminerie 1 décrite précédemment, et la détermination d'une répartition de valeurs d'intensité des courants d'électrolyse amont et aval IEA, IEB à faire circuler en fonction de cette caractéristique analysée, ce qui définit aussi le cas échéant les valeurs d'intensité des premier et deuxième courants de compensation IC1, IC2 et le cas échéant des courants d'électrolyse amont et aval IEA, IEB. Les valeurs d'intensité des premier et deuxième courants de compensation IC1, IC2, et le cas échéant des courants d'électrolyse amont et aval IEA, IEB, peuvent être ensuite modifiées jusqu'aux valeurs déterminées précédemment si les valeurs d'intensité des premier et deuxième courants de compensation IC1, IC2 et des courants d'électrolyse amont et aval IEA, IEB initiales diffèrent des valeurs ainsi déterminées. Ainsi, le procédé permet de modifier la compensation magnétique, afin d'augmenter ou réduire le brassage des liquides tout en contrôlant les instabilités MHD. De manière générale plus le brassage (ou l'écoulement) des liquides est fort, plus la dissolution d'alumine va être efficace mais plus l'interface bain/métal va être instable (= instabilité MHD), ce qui peut dégrader le rendement des cuves. Un tel procédé est particulièrement intéressant avec la configuration des conducteurs électriques décrite ci-dessus car il rend les cuves 10 d'électrolyse magnétiquement très stables et offre donc une plus grande plage pour moduler/optimiser le brassage en fonction de la qualité de l'alumine. Les caractéristiques de l'alumine analysées peuvent notamment être l'habilité de l'alumine à se dissoudre dans le bain, la fluidité de l'alumine, sa solubilité, sa teneur en fluor, son humidité...Furthermore, the method can advantageously include a step of analyzing at least one characteristic of the alumina in at least one of the electrolysis tanks 10 of the aluminum smelter 1 described above, and determining a distribution of values. of the intensity of the upstream and downstream electrolysis currents IEA, IEB to be circulated as a function of this analyzed characteristic, which also defines, if necessary, the intensity values of the first and second compensation currents IC1, IC2 and if necessary upstream and downstream electrolysis currents IEA, IEB. The intensity values of the first and second compensation currents IC1, IC2, and if necessary upstream and downstream electrolysis currents IEA, IEB, can then be modified up to the values determined previously if the intensity values of the first and second compensation currents IC1, IC2 and initial upstream and downstream electrolysis currents IEA, IEB differ from the values thus determined. Thus, the method makes it possible to modify the magnetic compensation, in order to increase or reduce the mixing of the liquids while controlling the MHD instabilities. In general, the stronger the mixing (or flow) of liquids, the more efficient the alumina dissolution will be but the more the bath / metal interface will be unstable (= MHD instability), which can degrade the efficiency of the tanks. Such a method is particularly advantageous with the configuration of the electrical conductors described above because it makes the electrolytic cells 10 magnetically very stable and therefore offers a greater range for modulating / optimizing the mixing according to the quality of the alumina. . The characteristics of the alumina analyzed can in particular be the ability of the alumina to dissolve in the bath, the fluidity of the alumina, its solubility, its fluorine content, its humidity, etc.

La détermination d'une répartition de valeurs d'intensité des courants de compensation amont et aval IEA, IEB et/ou de valeurs d'intensité des premier et deuxième courants de compensation IC1, IC2 en fonction des caractéristiques de l'alumine analysée peut être notamment effectuée par utilisation d'un abaque, par exemple réalisé par l'homme du métier par calcul, expérimentation et consignation des correspondances optimales intensités des courants d'électrolyse amont et aval IEA, IEB / caractéristiques de l'alumine. Il s'agit ici de quantifier l'intensité du brassage des liquide souhaité au regard du niveau d'instabilités MHD.The determination of a distribution of intensity values of the upstream and downstream compensation currents IEA, IEB and / or of intensity values of the first and second compensation currents IC1, IC2 according to the characteristics of the alumina analyzed can be in particular carried out by the use of an abacus, for example produced by a person skilled in the art by calculation, experimentation and recording of the optimal correspondences intensities of the upstream and downstream electrolysis currents IEA, IEB / characteristics of alumina. This involves quantifying the intensity of the mixing of the desired liquids with regard to the level of MHD instabilities.

Il peut arriver que l'alumine disponible pour un fonctionnement continu de l'aluminerie soit de qualité différente, notamment plus ou moins pâteuse, et donc ayant des habilités différentes à se dissoudre dans le bain d'électrolyse. Dans ce cas, les mouvements des liquides dans les cuves 10 d'électrolyse constituent un atout, car ils permettent de brasser cette alumine pour favoriser sa dissolution. Or, dans le cas de l'auto-compensation notamment (utilisée dans l'état de la technique), le champ magnétique à l'origine des mouvements des liquides est directement compensé via le courant d'électrolyse lui-même, avec une distribution du champ magnétique imposée et figée par le parcours des conducteurs d'acheminement. Il n'est donc pas possible dans les alumineries avec auto-compensation d'introduire volontairement et temporairement un déséquilibre dans la compensation du champ magnétique afin d'augmenter l'intensité du brassage de l'alumine dans les cuves, et ce afin d'augmenter l'efficacité de la dissolution. Ainsi, lorsque l'alumine disponible est uniquement de l'alumine plus difficile à dissoudre que d'ordinaire, le rendement d'alumineries avec auto-compensation peut être sensiblement affecté.It may happen that the alumina available for continuous operation of the smelter is of different quality, in particular more or less pasty, and therefore having different abilities to dissolve in the electrolysis bath. In this case, the movements of the liquids in the electrolytic cells 10 are an asset, because they allow this alumina to be stirred to promote its dissolution. However, in the case of self-compensation in particular (used in the state of the art), the magnetic field at the origin of the movements of liquids is directly compensated via the electrolysis current itself, with a distribution of the magnetic field imposed and frozen by the path of the routing conductors. It is therefore not possible in self-compensating aluminum smelters to introduce a voluntary and temporary imbalance in the compensation of the magnetic field in order to increase the intensity of the mixing of alumina in the tanks, in order to increase the efficiency of dissolution. So when the available alumina is only alumina more difficult to dissolve than typically, the efficiency of self-compensating smelters can be significantly affected.

Bien entendu, l'invention n'est nullement limitée au mode de réalisation décrit ci-dessus, ce mode de réalisation n'ayant été donné qu'à titre d'exemple. Des modifications sont possibles. Ainsi, la présente invention est par exemple compatible avec l'utilisation d'anodes de type « inerte » au niveau desquelles se forme de l'oxygène au cours de la réaction d'électrolyse.Of course, the invention is in no way limited to the embodiment described above, this embodiment having been given only by way of example. Modifications are possible. Thus, the present invention is for example compatible with the use of anodes of the "inert" type at the level of which oxygen forms during the electrolysis reaction.

Claims (18)

  1. Aluminum smelter (1) comprising at least one row (2) of electrolytic cells (10) arranged transversely in relation to the length of said at least one row (2), one of the electrolytic cells (10) comprising anode assemblies (14) and rising and connecting electrical conductors (22) to the anode assemblies (14), characterized in that the rising and connecting electrical conductors (22) extend upwardly along two opposite longitudinal edges (38) of the electrolytic cell (10) for conducting electrolysis current (IE) to the anode assemblies (14), and in that the aluminum smelter (1) includes:
    - at least one first electrical compensation circuit (4) extending beneath the electrolytic cells (10), said at least one first electrical compensation circuit (4) being possibly traversed by a first compensation current (IC1) designed to flow under the electrolytic cells (10) in the opposite direction to the global direction of flow of the electrolysis current (IE),
    - at least one second electric compensation circuit (6) extending over at least one side of said at least one row (2) of electrolytic cells (10), said at least one second electric compensation circuit (6) being possibly traversed by a second compensation current (IC2) designed to flow in the same direction as the global direction of flow of the electrolysis current (IE).
  2. Aluminum smelter (1) according to claim 1 in which the rising and connecting electrical conductors (22) comprise upstream rising and connecting electrical conductors (22A), adjacent to the upstream longitudinal edge (38) of the electrolytic cell (10), and downstream rising and connecting electrical conductors (22B), adjacent to the downstream longitudinal edge (38) of the electrolytic cell (10), and the aluminum smelter (1) is laid out so that the distribution of the electrolysis current (IE) is asymmetrical between the upstream (22A) and downstream (22B) rising and connecting electrical conductors, the intensity of the upstream electrolysis current (IEA) designed to run through all of the rising and connecting electrical conductors upstream (22A) of the electrolytic cell (10) being equal to] 50-100 [% of the intensity of the electrolysis current (IE), and the intensity of the downstream electrolysis current (IEB) designed to run through all of the rising and connecting electrical conductors downstream (22B) of the electrolytic cell (10) is equal to] 0-50 [% of the intensity of the electrolysis current (IE), the total intensity of the upstream and downstream electrolysis currents (IEA), (IEB) being equal to the intensity of the electrolysis current (IE).
  3. Aluminum smelter (1) according to claim 2 in which the aluminum smelter comprises a power station (44) configured to cause to flow through said at least one first compensating electrical circuit (4) a first compensating current (IC1) of intensity equal to twice the intensity of the downstream electrolysis current (IEB) to the nearest 20%, and preferably to the nearest 10%.
  4. Aluminum smelter (1) according to claim 2 or 3 in which the aluminum smelter (1) includes a power station (46) configured to cause to flow through said at least one second electrical compensating circuit (6) a second compensating current (IC2) of intensity between 50% and 100% of the difference in intensity between the upstream and downstream electrolysis currents (IEA, IEB), and preferably between 80% and 100% of the difference in intensity between the upstream and downstream electrolysis currents (IEA, IEB).
  5. Aluminum smelter (1) according to claims 1 to 4 in which the rising and connecting electrical conductors (22) are distributed at regular intervals along the longitudinal edge (38) of the electrolytic cell (10) to which these rising and connecting electrical conductors (22) are adjacent.
  6. Aluminum smelter (1) according to claims 1 to 5 in which said at least one first electrical compensating circuit (4) includes electrical conductors extending under the electrolytic cells (10) together forming a layer made up of a plurality of parallel electrical conductors, typically from two to twelve, and preferably three to ten parallel electrical conductors.
  7. Aluminum smelter (1) according to claim 6 in which the electrical conductors of said layer are arranged at regular intervals from each other along a longitudinal direction (Y) of the electrolytic cells (10).
  8. Aluminum smelter (1) according to one of claims 6 to 7 in which the electrical conductors of said layer are arranged in the same horizontal plane (XY).
  9. Aluminum smelter (1) according to one of claims 1 to 8 in which said at least one second electric compensating circuit (6) includes electrical conductors extending from each side of said at least one row (2) of electrolytic cells (10), and the second compensating current (IC2) flows in the same direction as the direction of the overall flow of the electrolysis current (IE) on each side of the electrolytic cells (10).
  10. Aluminum smelter (1) according to claim 9 in which the electrical conductors of the second compensating electrical circuit (6) extend in the same horizontal plane (XY), preferably at the height of a layer of liquid aluminum (40) formed inside the electrolytic cells (10) during the electrolysis reaction.
  11. Aluminum smelter (1) according to one of claims 1 to 10 in which said at least one first electric compensating circuit (4) and/or said at least one second electric compensating circuit (6) are independent of the main electrical circuit through which the electrolysis current (IE) flows.
  12. Method of compensating for a magnetic field created by the flow of an electrolysis current (IE) in a plurality of electrolytic cells (10) of an aluminum smelter (1) according to one of claims 1 to 11, the method comprising:
    - flow, in the opposite direction to the direction of overall flow of the electrolysis current (IE), of a first compensating current (IC1) through said at least one first electrical compensating circuit (4),
    - flow, in the same direction as the direction of overall flow of the electrolysis current (IE), of a second compensating current (IC2) through said at least one second electrical compensating circuit(6).
  13. Method according to claim 12 in which the method comprises an asymmetric distribution of the electrolytic current (IE) between the upstream and the downstream of the electrolytic cells (10), the set of rising and connecting electrical conductors (22) upstream of the electrolytic cells (10) being traversed by an upstream electrolysis current (IEA) of intensity between ]50-100[% of the intensity of the electrolysis current (IE), and the set of rising and connecting electrical conductors (22) downstream of the electrolytic cells (10) being traversed by a downstream electrolysis current (IEB) of intensity between ]0-50[% of the intensity of the electrolysis current (IE), the sum of intensities of the upstream and downstream electrolysis currents (IEA), (IEB) being equal to the intensity of the electrolysis current (IE).
  14. Method according to claim 13 in which the intensity of the first compensating current (IC1) is equal to twice the intensity of the downstream electrolysis current (IEB), to the nearest 20%, and preferably to the nearest 10%.
  15. Method according to claim 12 or 13 in which, the intensity of the second compensating current (IC2) is between 50% and 100% of the difference in intensity between the upstream and downstream electrolysis currents (IEA, IEB), and preferably between 80% and 100% of the difference in intensity between the upstream and downstream electrolysis currents (IEA, IEB).
  16. Method according to one of claims 12 to 15 in which said at least one second electric compensating circuit (6) comprises an inner loop and an outer loop, and wherein the intensity of a second compensating current (IC21) flowing in the inner loop is different from the intensity of a second compensating current (IC22) flowing in the outer loop.
  17. Method according to claim 16 in which the intensity of the second compensating current (IC21) flowing in the inner loop is greater than the intensity of the second compensating current (IC22) flowing in the outer loop.
  18. Method according to one of claims 12 to 17 in which the method comprises a step of analyzing at least one characteristic of the alumina in at least one of the electrolytic cells (10) of said aluminum smelter (1), and determining the intensity values of the first compensating current (IC1) and the second compensating current (IC2) to be made to flow as a function of said at least one characteristic analyzed.
EP16748782.6A 2015-02-09 2016-02-05 Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter Active EP3256623B8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1500251A FR3032459B1 (en) 2015-02-09 2015-02-09 ALUMINERY AND METHOD FOR COMPENSATING A MAGNETIC FIELD CREATED BY CIRCULATION OF THE ELECTROLYSIS CURRENT OF THIS ALUMINUM
PCT/IB2016/000120 WO2016128824A1 (en) 2015-02-09 2016-02-05 Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter

Publications (4)

Publication Number Publication Date
EP3256623A1 EP3256623A1 (en) 2017-12-20
EP3256623A4 EP3256623A4 (en) 2018-12-19
EP3256623B1 true EP3256623B1 (en) 2020-03-25
EP3256623B8 EP3256623B8 (en) 2020-04-29

Family

ID=52807940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16748782.6A Active EP3256623B8 (en) 2015-02-09 2016-02-05 Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter

Country Status (13)

Country Link
US (1) US10358733B2 (en)
EP (1) EP3256623B8 (en)
CN (1) CN107250439B (en)
AR (1) AR103789A1 (en)
AU (1) AU2016217610B2 (en)
BR (1) BR112017015161A2 (en)
CA (1) CA2975962C (en)
DK (1) DK179924B1 (en)
EA (1) EA035575B1 (en)
FR (1) FR3032459B1 (en)
MY (1) MY183698A (en)
WO (1) WO2016128824A1 (en)
ZA (1) ZA201705498B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678624C1 (en) 2017-12-29 2019-01-30 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Modular busbar for series of aluminum electrolysis cells
WO2023233190A1 (en) * 2022-06-03 2023-12-07 Vedanta Limited (Aluminium & Power) A magnetic shielding assembly for balancing magnetic field in an electrolytic cell assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104954C (en) 1954-02-09 1900-01-01
NO139525C (en) * 1977-07-14 1979-03-28 Ardal Og Sunndal Verk DEVICE FOR COMPENSATION OF HORIZONTAL MAGNETIC FIELDS IN MELTING ELECTROLYSIS OVENS
FR2425482A1 (en) 1978-05-11 1979-12-07 Pechiney Aluminium PROCESS FOR COMPENSATION OF THE MAGNETIC FIELD INDUCED BY THE NEIGHBORING LINE IN SERIES OF HIGH INTENSITY ELECTROLYSIS TANKS
FR2469475A1 (en) 1979-11-07 1981-05-22 Pechiney Aluminium METHOD AND DEVICE FOR THE REMOVAL OF MAGNETIC DISTURBANCES IN VERY HIGH-INTENSITY ELECTROLYSING Cuvettes Placed Through Them
DE3009098C2 (en) * 1979-12-21 1983-02-24 Schweizerische Aluminium AG, 3965 Chippis Method of conducting electricity between electrolytic furnaces
FR2583069B1 (en) 1985-06-05 1987-07-31 Pechiney Aluminium CONNECTION DEVICE BETWEEN VERY HIGH INTENSITY ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM, INCLUDING A SUPPLY CIRCUIT AND AN INDEPENDENT MAGNETIC FIELD CORRECTION CIRCUIT
FR2868436B1 (en) 2004-04-02 2006-05-26 Aluminium Pechiney Soc Par Act SERIES OF ELECTROLYSIS CELLS FOR THE PRODUCTION OF ALUMINUM COMPRISING MEANS FOR BALANCING THE MAGNETIC FIELDS AT THE END OF THE FILE
NO322258B1 (en) * 2004-09-23 2006-09-04 Norsk Hydro As A method for electrical coupling and magnetic compensation of reduction cells for aluminum, and a system for this
RU2288976C1 (en) * 2005-05-04 2006-12-10 Общество с ограниченной ответственностью "Инженерно-технологический центр" Module-type bus arrangement of aluminum producing electrolyzers
RU2316619C1 (en) * 2006-04-18 2008-02-10 Общество с ограниченной ответственностью "Русская инжиниринговая компания" Apparatus for compensating magnetic field induced by adjacent row of connected in series high-power aluminum cells
FR2977898A1 (en) * 2011-07-12 2013-01-18 Rio Tinto Alcan Int Ltd ALUMINERY COMPRISING CATHODIC EXIT TANKS THROUGH THE BOTTOM OF THE HOUSING AND TANK STABILIZATION MEANS
CA2841847A1 (en) 2011-07-12 2013-01-17 Rio Tinto Alcan International Limited Aluminium smelter comprising electrical conductors made from a superconducting material
FR3009564A1 (en) * 2013-08-09 2015-02-13 Rio Tinto Alcan Int Ltd ALUMINUM COMPRISING AN ELECTRIC COMPENSATION CIRCUIT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112017015161A2 (en) 2018-01-23
WO2016128824A1 (en) 2016-08-18
MY183698A (en) 2021-03-08
AU2016217610B2 (en) 2020-12-10
EA201791722A1 (en) 2017-11-30
DK201770671A1 (en) 2017-09-18
US20180023207A1 (en) 2018-01-25
ZA201705498B (en) 2018-12-19
AU2016217610A1 (en) 2017-08-03
EP3256623A4 (en) 2018-12-19
AR103789A1 (en) 2017-06-07
EA035575B1 (en) 2020-07-09
US10358733B2 (en) 2019-07-23
DK179924B1 (en) 2019-10-08
CN107250439B (en) 2020-03-24
CN107250439A (en) 2017-10-13
CA2975962C (en) 2023-02-21
EP3256623A1 (en) 2017-12-20
FR3032459A1 (en) 2016-08-12
EP3256623B8 (en) 2020-04-29
FR3032459B1 (en) 2019-08-23
CA2975962A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
EP2732074B1 (en) Aluminum smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells
EP3030695B1 (en) Aluminium smelter comprising a compensating electric circuit
EP0204647B1 (en) Connection device between very high intensity electrolytic pots for aluminium production, comprising a current supply circuit and an independent circuit for correcting the magnetic field
EP3256623B1 (en) Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter
CH660496A5 (en) ELECTROLYSIS TANK WITH INTENSITY HIGHER THAN 250,000 AMPERES FOR THE PRODUCTION OF ALUMINUM BY THE HALL-HEROULT PROCESS.
EP3030694B1 (en) Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
CA1100906A (en) Method for improving current feed to lengthwise aligned electrolysis baths
CA1143695A (en) Method and device for the suppression of magnetic interferences in high amperage cross fitted electrolytic process furnaces
CA2808355C (en) Electrical connection device, for connecting between two successive cells of a series of cells for the production of aluminium
WO2013007894A2 (en) Aluminium smelter comprising electrical conductors made from a superconducting material
OA18402A (en) Aluminum smelter and process for compensating a magnetic field created by the circulation of electrolysis current from this smelter.
WO2009066025A2 (en) Grooved anode for an electrolysis tank
EP3362590B1 (en) Series of electrolysis cells for the production of aluminium comprising means for balancing the magnetic fields at the end of the line
OA17793A (en) Aluminum plant including an electrical compensation circuit
CH668985A5 (en) ELECTRICAL CONNECTION CIRCUIT OF SERIES OF ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM AT VERY HIGH INTENSITY.
EP1155167B1 (en) Electrolytic cell arrangement for production of aluminium
OA16842A (en) Aluminum plant comprising tanks with cathodic outlet through the bottom of the box and means for stabilizing the tanks
WO2016128826A1 (en) Electrolysis cell
FR2505368A1 (en) Aluminium prodn. in Hall-Heroult cell - with high current intensity and reduced energy consumption

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20170828

A4 Supplementary search report drawn up and despatched

Effective date: 20181119

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/16 20060101AFI20181113BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016032552

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25C0003200000

Ipc: C25C0003160000

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/16 20060101AFI20190806BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016032552

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1248662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: PK

Free format text: RECTIFICATION B8

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1248662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016032552

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210205

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210205

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220203

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20240131

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240208

Year of fee payment: 9

Ref country code: FR

Payment date: 20240123

Year of fee payment: 9