EP1154825A1 - Procede d'optimisation du fonctionnement d'un four a cuve - Google Patents

Procede d'optimisation du fonctionnement d'un four a cuve

Info

Publication number
EP1154825A1
EP1154825A1 EP99964668A EP99964668A EP1154825A1 EP 1154825 A1 EP1154825 A1 EP 1154825A1 EP 99964668 A EP99964668 A EP 99964668A EP 99964668 A EP99964668 A EP 99964668A EP 1154825 A1 EP1154825 A1 EP 1154825A1
Authority
EP
European Patent Office
Prior art keywords
reduced iron
mixture
fine particles
solid carbonaceous
shaft furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99964668A
Other languages
German (de)
English (en)
Other versions
EP1154825B1 (fr
Inventor
Jean-Luc Roth
Marc Solvi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Wurth SA
Original Assignee
Paul Wurth SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Wurth SA filed Critical Paul Wurth SA
Publication of EP1154825A1 publication Critical patent/EP1154825A1/fr
Application granted granted Critical
Publication of EP1154825B1 publication Critical patent/EP1154825B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part

Definitions

  • the invention relates to a method for optimizing the operation of a shaft furnace.
  • Bowls have long been used for the production of pig iron and over the years have been modified and improved to increase their productivity.
  • a certain number of factories are at the limit of the production capacity of their shaft furnaces, in particular because the limit of the load of the wind blowers is reached.
  • the document DE 312 935 C describes the introduction of pre-reduced iron ore finely divided, by the nozzles into the crucible of the blast furnace.
  • lime is either mixed in advance with the prereduced, or added to the nozzles.
  • finely ground carbon can be added to the hot wind in the nozzles.
  • the injection of pre-reduced iron ore by the nozzles with coal seems advantageous to provide part of the heat necessary for the fusion of the pre-reduced.
  • the application of the measures described in document DE 312 935 C results in blockage of the nozzle cavities, and a lowering of the temperature of the molten metal in the crucible of the blast furnace.
  • the object of the present invention is to provide a method for optimizing the operation of a shaft furnace.
  • this objective is achieved by a process for optimizing the operation of a shaft furnace comprising nozzles comprising the following steps: a) manufacture of fine particles of pre-reduced iron; b) mixing the fine particles of pre-reduced iron with a solid carbonaceous reducing agent, the fine particles of pre-reduced iron preferably having a particle size less than 2 mm and the solid carbonaceous reducing agent preferably having a particle size less than 200 ⁇ m; c) injection of the mixture into the shaft furnace through the nozzles; d) fusion of the pre-reduced iron particles.
  • One of the advantages of this process consists in the fact that the operating principle of the shaft furnace is not disturbed.
  • the production of pig iron is rapidly increased, thanks to the nature of the mixture proposed by the present process.
  • a mixture of pre-reduced iron particles and carbon reducer is injected into the shaft furnace where these particles are reduced and melted and the carbon reducer is consumed.
  • the particle sizes chosen for the carbon reducer and the fine particles of pre-reduced iron allow the injection of a mixture which is well assimilated by the blast furnace. It is therefore essential not only to make a mixture of the prereduced and the carbonaceous reducer, but also to choose the particle sizes of the components of the mixture.
  • the injection of such a mixture ensures stable operation of the nozzles and coke cavities opposite the nozzles.
  • the additional thermal requirements associated with the injection can be covered by the energy released during the oxidation of the carbon reducer.
  • an intimate mixture of fine particles of pre-reduced iron and of solid carbonaceous reducing agent is injected. This can be obtained by providing a transport distance of the mixture before its injection into the shaft furnace through the nozzles equal to at least 25 times, preferably 50 times, the diameter of the orifice ejection of the mixture at the nose of the nozzle.
  • An intimate mixture facilitates the melting of the mixture in the crucible of the blast furnace.
  • the placing of coke in the charge of the shaft furnace can be adapted. This is another aspect of the optimization of the shaft furnace since it can save the coke introduced by the mouth.
  • the solid carbon reducer that is used is normally carbon.
  • a mixture comprising 300 to 600 kg of carbon per tonne of fine particles of pre-reduced iron.
  • Up to 6% additional pig iron obtained by melting the pre-reduced iron it is not necessary to change the operating parameters of the blast furnace.
  • Preferably, between 6% and 20% additional pig iron, about 100 m 3 additional pure oxygen is introduced into the shaft furnace per tonne of pre-reduced iron particles.
  • the proposed mixture makes it possible to significantly increase the quantity of cast iron produced in the shaft furnace by limiting the modification of operating parameters.
  • the present process can be implemented on any production site with a shaft furnace such as a blast furnace. It is not necessary that the production site has a pre-reduction furnace, it is simply necessary to carry out the mixing before the introduction into the hot wind of the nozzles.
  • the mixing and injection of the fine particles of pre-reduced iron and of the solid carbonaceous reducing agent are carried out hot.
  • the additional thermal requirements associated with the injection are low and can be easily covered by the energy released during the oxidation of the carbonaceous reducing agent.
  • Mixing and hot injection can advantageously be carried out when a pre-reduction oven, e.g. a multi-stage oven is located near the blast furnace.
  • the quantity of oxygen introduced into the shaft furnace is adjusted. That is to say that the quantity of oxygen introduced into the furnace is adapted so as to have sufficient oxygen for the traditional operation of the blast furnace and the oxidation of the carbonaceous reducing agent added to the iron ore. pre-reduced.
  • This adaptation which generally consists in increasing the quantity of oxygen introduced into the blast furnace, is a function of the quantity of carbonaceous reducing agent injected but also of its quality.
  • This additional supply of oxygen is achievable, either by increasing the oxygen concentration of the hot wind, or by increasing the flow of hot wind, or even by injecting pure oxygen directly into the nozzles, hot or cold.
  • the solid carbon reducer that is used is normally carbon.
  • the coal is advantageously brought to a temperature at which it is released from its volatile fraction.
  • step a) it may be useful to inject an oxygen-containing gas in order to burn the volatile matter contained in the coal.
  • the heat released during the combustion of the volatile materials of the coal can be used in step a) for the manufacture of fine particles of pre-reduced iron or else to heat the mixture of particles of pre-reduced iron and of coal.
  • the wind / oxygen control leads to a reduction in coke consumption for “through” cast iron, a reduction in the wind flow rate, and a CO enrichment of the gas from the shaft furnace.
  • slag-forming agents are also added during step a) or step b). These slag-forming agents are chosen, preferably from the group consisting of lime, limestone and magnesia as well as their mixtures.
  • a sufficient quantity of carbon will be used during step b) to completely reduce and melt the pre-reduced iron particles in the shaft furnace.
  • an excess of coal is used during step b) which is sufficient to cover the coal requirements of the shaft furnace. This avoids having to inject carbon separately through the nozzles.
  • Fig. 1 Schematic diagram of the coupling of a pre-reduction oven and a shaft oven.
  • a shaft furnace such as a blast furnace is supplied from the top, the top, with agglomerated ore and coke. Hot air, and in some cases coal, is blown into the bottom of the blast furnace. The blown air burns part of the carbonaceous fuel to generate the heat necessary for the chemical reactions and for the fusion of iron in the bottom of the blast furnace, while the rest of the carbonaceous fuel as well as part of the gases reduce the iron oxides.
  • the crucible are the molten iron and the slag.
  • Cowpers are refractory brick regenerators placed in a circular metal enclosure covered with a dome. Before introducing air into the cowpers, the refractories are brought to temperature by burning blast furnace gases and a rich gas (natural gas for example).
  • the well-operated blast furnace operates at the limits of its productivity. It uses the maximum hot wind flow for its blowers, and, to minimize coke consumption, this wind is heated to the maximum temperature achievable in cowpers: between 1200 and 1300 ° C. This has in return an expensive maintenance of the cowpers, whose refractories and the metal carcass are at the limits of the stresses authorized by the state of the art. In the long term, refractories are destroyed by high temperature thermal cycles and the metal carcass is attacked by cracking corrosion. Finally, a rich gas must be used in addition to blast furnace gas to reach the necessary flame temperature.
  • a mixture of fine particles of pre-reduced iron and coal is injected through the nozzles.
  • the fine particles of pre-reduced iron have a particle size of less than 2 mm, preferably less than 1 mm if it is desired to inject large quantities.
  • the solid carbonaceous reducing agent, carbon is preferably so-called “pulverized” carbon with a particle size less than 200 ⁇ m and a median diameter less than 100 ⁇ m.
  • the mixture is therefore advantageously prepared upstream of the nozzle and brought by a pipe into the nose of the nozzle, where it is introduced into the hot wind through an injection orifice.
  • a first embodiment of the present method proposes the mixing and the injection of the cold mixture. That is to say, the blast furnace is not coupled with a pre-reduction reactor.
  • a blast furnace As part of the injection of the cold mixture, a blast furnace is used by way of example, the operating characteristics of which are as follows:
  • the pre-reduced iron ore injected has the characteristics of a commercial-grade pre-reduced iron ore, that is to say 5 to 8% gangue, metallization from 90 to 95%, and 0 to 2% carbon.
  • a range of injection of a pre-reduced iron ore / coal mixture allowing the blast furnace to absorb this injection with a minimum of modification of the basic parameters is as follows:
  • a mixture of hot pre-reduced iron ore and coal is injected into the crucible of the blast furnace, as soon as it leaves the pre-reduction furnace, through the nozzles of the blast furnace.
  • a pre-reduction reactor such as a stage oven
  • US-2, 089,782 in which the iron ore is prereduced by a solid carbonaceous reducer. It is a multiple hearth oven, the hearths being annular and spaced vertically. Loading and unloading decks are arranged alternately. The former have an open central circular part; the seconds have a series of orifices spaced along the periphery of the sole.
  • the oven is also provided, in its central part, with a vertical rotation shaft to which are attached rakes extending over the entire radius of the hearths.
  • the iron ore is introduced through the upper part of the furnace and falls on the first loading floor. Rakes, driven by the rotation shaft vertical, spread the iron ore and bring it back to the central opening through which it falls on the lower unloading floor.
  • the rakes then direct the iron ore to the peripheral orifices, through which it falls on the bottom loading floor. These steps are repeated until the iron ore reaches the lowest stage.
  • the iron ore is then removed and we speak of pre-reduced iron ore.
  • the reducing material, carbon can be introduced at the level of the first loading floor, but also at a lower level.
  • the reduction gases are burned in the upper part of the oven by injecting air or oxygen.
  • the high temperatures prevailing inside the oven are reached with additional energy such as natural gas.
  • the rakes by their permanent brewing, allow an intimate mixture of iron ore and coal. The angles and the speed of the rakes are calculated to avoid crushing and agglomeration of the ore.
  • any reactor capable of producing pre-reduced iron from iron ore can be used within the scope of the present.
  • FIG. 1 the operation of the method according to the present invention is presented using a block diagram.
  • iron ore is introduced in the form of fines.
  • the arrow 12 illustrates the gradual reduction of the iron ore which descends the stages of the stage furnace 10.
  • the arrow 13 symbolizes the ascending reduction gases.
  • Fine particle sizes of iron ore and coal allow good heat exchange and promote chemical reactions.
  • the reduction carbon can be inserted on the upper hearth, or in a lower part of the tiered oven 10.
  • bonding agents and slag forming agents chosen from the group are also injected into the tiered oven. lime, limestone and magnesia as well as their mixture.
  • the iron ore is at a temperature of around 1000 ° C.
  • the mixture of smelting coal and pre-reduced iron ore can be done either in the last zone of the stage furnace 10, or in a separate enclosure. In both cases, the mixture causes a rise in temperature of the coal, the volatile materials of which pass into the gas phase; the temperature of the mixture is approximately 500 ° C.
  • the next step is to transfer the degassed mixture to a blast furnace 14, which can be done pneumatically. Then, the mixture is injected through the nozzles into the crucible of the blast furnace 14. The latter is in turn supplied in the traditional manner with agglomerated ore and coke.
  • the path of the agglomerated ore through the blast furnace is represented by the arrow 16, the arrow 18 symbolizes the path of the blast furnace gases which escape through the blast pipe. Cowpers, generators of hot wind, are designated by the reference 20.
  • iron will be recovered from the melting of the agglomerated ore as well as from the iron from the melting of fines.
  • the desired production surplus is 25 t / h, for a total production of 275 t / h of pig iron.
  • 29 t / h of DRI fines mixed with 12 t / h of lean smelting coal are injected through the nozzles.
  • the temperature of the mixture deposited in the nozzles is between
  • the quantity of oxygen introduced into the furnace is therefore adapted so as to have sufficient oxygen for the traditional operation of the blast furnace and the oxidation of the carbon reducer added to the pre-reduced iron ore.
  • the adaptation of the quantity of oxygen consists of a 2.7% increase in the oxygen concentration of the hot wind.
  • Another alternative would be to increase the flow of hot wind, or to inject oxygen, hot or cold, directly through the nozzles.
  • a rate of 2.7% additional oxygen corresponds to the injection of 12 t / h of lean coal. This rate obviously varies according to the quantity and the quality of this carbonaceous reducer.
  • the wind / oxygen control leads to a reduction in the consumption of coke for "through" cast iron, a reduction in the wind flow rate, and a CO enrichment of the gas from the oven to the shaft. It will be noted that the lowering of the wind temperature and the simultaneous increase in the calorific value of the furnace gas make it possible to achieve a substantial savings on the cost of heating the wind, and on the maintenance of cowpers, an economy which is added to that made on coke. In addition, the reduction in wind flow gives a potential for increased productivity compared to the blower limit.
  • the present process therefore makes it possible to increase the overall production of the blast furnace.
  • the deck oven is particularly advantageous in this process, because of its counter-current operation, because it allows better energy exploitation of volatile materials from coal.
  • a certain additional quantity of coal is injected by the nozzles.
  • This additional coal can be injected independently, but can also be mixed at the same time as the smelting coal with pre-reduced iron ore.
  • part of the fusion carbon and / or the additional carbon can be injected at the same time as the reduction carbon in the stage oven, which does not in any way harm the reduction reactions.
  • the mixture which is injected here has a very interesting health characteristic: it is “self-deepening. In fact, it contains the reducing agent, the fuel and the "flux" necessary for its fusion in the crucible of the blast furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Processing Of Solid Wastes (AREA)

Description

Procédé d'optimisation du fonctionnement d'un four à cuve
L'invention concerne un procédé d'optimisation du fonctionnement d'un four à cuve.
Des fours à cuve sont utilisés depuis bien longtemps pour la production de fonte et au cours des années, ils ont été modifiés et améliorés de manière à accroître leur productivité. Il en résulte qu'un certain nombre d'usines sont à la limite de la capacité de production de leurs fours à cuve, notamment parce que la limite de la charge des soufflantes de vent est atteinte.
Une manière d'augmenter la productivité en dépit de ceci consiste à enfourner au niveau du gueulard une partie du minerai de fer sous la forme de fer préréduit (DRI). Les inconvénients de cette solution sont un coût de transformation élevé, et l'obligation de mettre le DRI sous forme de boulets ou briquettes.
Une autre solution consiste à utiliser comme « smelter » le creuset du four à cuve, en injectant des fines de DRI aux tuyères. Il faut néanmoins tenir compte du besoin thermique supplémentaire engendré par cette injection, et veiller à ne pas boucher la cavité des tuyères. Il est ainsi possible d'augmenter la production de fonte du four à cuve, cependant les paramètres du four à cuve doivent être modifiés sensiblement.
Le document DE 312 935 C décrit l'introduction de minerai préréduit de fer finement divisé, par les tuyères dans le creuset du haut fourneau. Afin de séparer la gangue, de la chaux est soit mélangée à l'avance avec le préréduit, soit ajoutée dans les tuyères. Enfin, du carbone finement broyé peut être ajouté au vent chaud dans les tuyères. L'injection de minerai de fer préréduit par les tuyères avec du charbon parait intéressante pour fournir une partie de la chaleur nécessaire à la fusion du préréduit. Toutefois, l'application des mesures décrites dans le docu- ment DE 312 935 C se traduit par un bouchage des cavités des tuyères, et un abaissement de température du métal en fusion dans le creuset du haut fourneau.
Il serait avantageux de disposer d'un procédé permettant d'augmenter la production de fonte d'un four à cuve. L'objet de la présente invention est de proposer un procédé d'optimisation du fonctionnement d'un four à cuve.
Conformément à l'invention, cet objectif est atteint par un procédé d'optimisation du fonctionnement d'un four à cuve comportant des tuyères comprenant les étapes suivantes : a) fabrication de particules fines de fer préreduit ; b) mélange des particules fines de fer préréduit avec un réducteur carboné solide, les particules fines de fer préréduit ayant de préférence une granulométrie inférieure à 2 mm et le réducteur carboné solide ayant de préfé- rence une granulométrie inférieure à 200 μm ; c) injection du mélange dans le four à cuve par les tuyères ; d) fusion des particules de fer préréduit.
Un des avantages de ce procédé consiste dans le fait que le principe de fonctionnement du four à cuve n'est pas perturbé. De plus, la production de fonte est rapidement accrue, grâce à la nature du mélange proposé par le présent procédé. En effet, on injecte un mélange de particules de fer préréduit et de réducteur carboné dans le four à cuve où ces particules sont réduites et fondues et le réducteur carboné est consommé. Les granulométries choisies pour le réducteur carboné et les particules fines de fer préréduit permettent l'injection d'un mélange qui est bien assimilé par le haut fourneau. Il est donc essentiel de non seulement de réaliser un mélange du préréduit et du réducteur carboné, mais également de choisir les granulométries des composants du mélange. L'injection d'un tel mélange permet de garantir un fonctionnement stable des tuyères et des cavités de coke en face des tuyères. Comme le mélange contient un réducteur carboné, les besoins thermiques supplémentaires associés à l'injection peuvent être couverts par l'énergie libérée lors de l'oxydation du réducteur carboné.
Avantageusement, on injecte un mélange intime de particules fines de fer préréduit et de réducteur carboné solide. Ceci peut être obtenu en prévoyant une distance de transport du mélange avant son injection dans le four à cuve par les tuyères égale à au moins 25 fois, de préférence 50 fois, le diamètre de l'orifice d'éjection du mélange au nez de la tuyère. Un mélange intime facilite la fusion du mélange dans le creuset du haut fourneau.
Une fois le régime d'injection stabilisé, la mise de coke dans la charge du four à cuve peut être adaptée. C'est un autre aspect de l'optimisation du four à cuve puisqu'on peut économiser le coke introduit par le gueulard.
Le réducteur carboné solide que l'on met en oeuvre est normalement du charbon.
Selon un premier mode de réalisation, on réalise un mélange comprenant 300 à 600 kg de charbon par tonne de particules fines de fer préréduit. Jusqu'à 6% de fonte supplémentaire obtenue par la fusion du fer préréduit, il n'est pas nécessaire de changer les paramètres de fonctionnement du haut fourneau. De préférence, entre 6% et 20% de fonte supplémentaire on introduit dans le four à cuve environ 100 m3 supplémentaires d'oxygène pur par tonne de particules de fer préréduit. Ainsi le mélange proposé permet d'augmenter sensiblement la quantité de fonte produite dans le four à cuve en limitant les modification de paramètres de marche. On remarquera que le présent procédé peut être mis en oeuvre sur n'importe quel site de production avec un four à cuve tel qu'un haut fourneau. Il n'est pas nécessaire que le site de production possède un four de préréduction, il faut simplement réaliser le mélange avant l'introduction dans le vent chaud des tuyères.
Selon un deuxième mode de réalisation, le mélange et l'injection des particules fines de fer préréduit et du réducteur carboné solide se font à chaud. Comme le mélange injecté est chaud, les besoins thermiques supplémentaires associés à l'injection sont faibles et peuvent être facilement couverts par l'énergie libérée lors de l'oxydation du réducteur carboné. Le mélange et l'injection à chaud peuvent être avantageusement réalisés lorsqu'un four de préréduction, par ex. un four multi-étages est situé à proximité du haut fourneau.
De préférence, on adapte la quantité d'oxygène introduite dans le four à cuve. C'est à dire qu'on adapte la quantité d'oxygène introduite dans le four de manière à avoir suffisamment d'oxygène pour le fonctionnement traditionnel du haut fourneau et l'oxydation du réducteur carboné ajouté au minerai de fer préréduit. Cette adaptation, qui consiste généralement à augmenter la quantité d'oxygène introduite dans le haut fourneau, est fonction de la quantité de réducteur carboné injecté mais également de sa qualité. Cet apport supplémentaire d'oxygène est réalisable, soit en augmentant la concentration d'oxygène du vent chaud, soit en augmentant le débit de vent chaud, ou encore en injectant directement de l'oxygène pur au niveau des tuyères, chaud ou froid.
Le réducteur carboné solide que l'on met en œuvre est normalement du charbon. Par le mélange avec les particules de fer préréduit chaud, le charbon est avantageusement porté à une température à laquelle il est libéré de sa fraction volatile.
Pendant ce mélange, il peut être utile d'injecter un gaz contenant de l'oxygène afin de brûler les matières volatiles contenues dans le charbon. La chaleur libérée pendant la combustion des matières volatiles du charbon peut être utilisée dans l'étape a) pour la fabrication de particules fines de fer préreduit ou bien pour chauffer le mélange de particules de fer préréduit et de charbon.
En injectant un mélange chaud, il est en outre possible de modifier les paramètres du four à cuve afin d'en accroître encore la productivité :
- on apporte la totalité du comburant, oxygène, pour la combustion du réducteur carboné nécessaire pour la fusion des particules de fer préré- duit ;
- on abaisse la température du vent chaud de manière à maintenir la température de flamme constante ;
Le réglage vent/oxygène conduit à une baisse de la consommation de coke pour la fonte « traversante », une diminution du débit de vent, et un enrichisse- ment en CO du gaz de four à cuve.
On notera que l'abaissement de la température de vent et l'augmentation simultanée du pouvoir calorifique du gaz de gueulard permettent de réaliser une économie substantielle sur le coût de chauffage du vent, et sur l'entretien des cowpers, économie qui vient s'ajouter à celle qui est faite sur le coke. En outre, la diminution du débit de vent redonne un potentiel d'augmentation de productivité par rapport à la limite des soufflantes.
Selon un autre mode de réalisation préféré, on ajoute en outre des agents de formation de laitier pendant l'étape a) ou l'étape b). Ces agents de formation de laitier sont choisis, de préférence parmi le groupe constitué de chaux, de castine et de magnésie ainsi que de leurs mélanges.
On utilisera avantageusement pendant l'étape b) une quantité de charbon suffisant à réduire complètement et à fondre les particules de fer préréduit dans le four à cuve.
Selon un mode de réalisation préféré, on utilise pendant l'étape b) un excès de charbon qui est suffisant pour couvrir les besoins en charbon du four à cuve. Ceci évite de devoir injecter du charbon séparément par les tuyères.
D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée de deux modes de réalisation avantageux présentés ci- dessous, à titre d'illustration, en se référant au dessin annexé. Celui-ci montre:
Fig.1 : Schéma de principe du couplage d'un four de préréduction et d'un four à cuve. Dans son fonctionnement classique, un four à cuve tel qu'un haut fourneau est alimenté par le haut, le gueulard, en minerai aggloméré et en coke. De l'air chaud, et dans certains cas du charbon, sont soufflés dans le bas du haut fourneau. L'air soufflé brûle une partie du combustible carboné pour générer la chaleur nécessaire aux réactions chimiques et à la fusion du fer dans le bas du haut fourneau, alors que le reste du combustible carboné ainsi qu'une partie des gaz réduisent les oxydes de fer. Dans la partie inférieure du haut fourneau, le creuset, se trouvent la fonte en fusion et le laitier.
De l'air est soufflé dans le haut fourneau par l'intermédiaire de tuyères situées juste au dessus du creuset. Cet air a été préalablement chauffé dans des « cowpers », qui délivrent ce qu'on appelle le « vent chaud ». Les cowpers sont des régénérateurs en briques réfractaires placées dans une enceinte circulaire métallique recouverte d'un dôme. Avant d'introduire l'air dans les cowpers, les réfractaires sont mis à température en y brûlant des gaz de haut fourneau et un gaz riche (gaz naturel par exemple).
Le haut fourneau bien exploité fonctionne aux limites de sa productivité. Il utilise le débit de vent chaud maximal pour ses soufflantes, et, pour minimiser la consommation de coke, ce vent est chauffé à la température maximale réalisable dans les cowpers : entre 1200 et 1300°C. Cela a comme contrepartie un entretien coûteux des cowpers, dont les réfractaires et la carcasse métallique sont aux limites des sollicitations autorisées par l'état de la technique. A long terme, les réfractaires sont détruits par les cycles thermiques à haute température et la carcasse métallique est attaquée par la corrosion fissurante. Enfin, un gaz riche doit être utilisé en complément du gaz de haut fourneau pour atteindre la température de flamme nécessaire.
Dans le cas présent, pour optimiser le fonctionnement du haut fourneau, et en accroître la productivité, on injecte par les tuyères un mélange de particules fines de fer préréduit et de charbon. Les particules fines de fer préréduit ont une granulométrie inférieure à 2 mm, de préférence inférieure à 1 mm si l'on souhaite injecter des quantités importantes. Le réducteur carboné solide, le charbon, est de préférence du charbon dit « pulvérisé » avec une granulométrie inférieure à 200 μm et un diamètre médian inférieur à 100 μm. Le mélange est donc de avantageusement préparé en amont de la tuyère et amené par une conduite dans le nez de la tuyère, où il est introduit dans le vent chaud à travers un orifice d'injection.
On veillera également à injecter un mélange intime des particules de fer préréduit avec le charbon, ce qui permet un fonctionnement stable des tuyères et des cavités de coke en face des tuyères. Ceci est assuré en réalisant le mélange en amont du tube d'injection et en respectant une distance de transport du mélange représentant au moins 25 fois (de préférence 50 fois) le diamètre de l'orifice d'éjection du mélange dans le vent chaud au nez de la tuyère.
Une injection non contrôlée du préréduit et du charbon risquerait de boucher les tuyères et/ou de diminuer considérablement la température du bain métallique liquide dans le creuset du haut fourneau. Les conditions d'injections préconisées dans le cadre de la présente seront donc avantageusement respectées pour les différents modes de réalisation présentés par la suite, à savoir l'injection du mélange à froid et à chaud.
1. Injection du mélange à froid
Un premier mode de réalisation du présent procédé propose le mélange et l'injection du mélange à froid. C'est-à-dire que le haut fourneau n'est pas couplé avec un réacteur de préréduction.
Dans le cadre de l'injection du mélange à froid on utilise un à titre d'exemple un haut fourneau dont les caractéristiques de fonctionnement sont les suivantes :
- mise de coke 270 kg/tfonte
- injection aux tuyères de charbon gras 200 kg/tf0nte
- vent à 1200°C, suroxygéné à 25,6 % d'O2 ce qui correspond pour 850 m3vent/tf0nte à une consommation d'oxygène pur de 54 m3 O2/tfθnte.
Le minerai de fer préréduit injecté possède les caractéristiques d'un minerai de fer préréduit de qualité commerciale c'est-à-dire 5 à 8 % de gangue, métallisa- tion de 90 à 95 %, et 0 à 2 % de carbone.
Dans ces conditions, 1 tonne de minerai de fer préréduit donne 0,9 à 0,95 tonne de fonte.
Une gamme d'injection d'un mélange minerai de fer préréduit / charbon per- mettant au haut fourneau d'absorber cette injection avec un minimum de modification des paramètres de base, est la suivante :
Associer à chaque tonne de minerai de fer préréduit injectée 300 kg de charbon (voire jusqu'à 600 kg suivant qualité du fer préréduit et qualité de charbon utilisées) en maintenant sensiblement le débit et la température du vent chaud. Après mise en régime de l'injection, ajuster la mise de coke en retranchant environ 60 % de la quantité de charbon associé à l'injection de DRI (Exemple : si l'on injecte une quantité de minerai de fer préréduit donnant 10 % de fonte supplémentaire, la mise de coke avec la charge traversante pourra être diminuée de (300 X 10 X 0,60)/100= 18 kg COke /tfonte traversante)- A partir de 6 % de fonte supplémentaire, et jusqu'à 20 % de fonte supplémentaire produite à partir de minerai de fer préréduit, on ajoutera pour maintenir la température de flamme aux tuyères environ 100 m3 d'oxygène pur par tonne de préréduit, au-delà de la quantité donnant 6 % de fonte supplémentaire. Ce qui conduit à enrichir le vent chaud :
- pour 6 % de fonte supplémentaire on n'ajoute pas d'O2, soit une concentration de 25,6 % O2 ;
- pour 12 % de fonte supplémentaire on ajoute 12 m3 O2 pur /tfonte traversante, soit une concentration de 26,6 % O2 ; - pour 18 % de fonte supplémentaire on ajoute 25 m3 O2 pur /tf0nte traversante, soit 27,6 % O2.
2. Injection du mélange à chaud
Dans le deuxième mode de réalisation, on injecte dans le creuset du haut fourneau un mélange de minerai de fer préréduit chaud et de charbon, dès la sortie du four de préréduction, par les tuyères du haut fourneau. Le couplage d'un haut fourneau et d'un réacteur de préréduction, tel qu'un four à étages, est particulièrement intéressant car il permet d'améliorer le fonctionnement des deux réacteurs. On emploie ici un four à étages classique, tel que celui décrit dans le brevet
US-2, 089,782, dans lequel le minerai de fer est préréduit par un réducteur carboné solide. Il s'agit d'un four à sole multiple, les soles étant annulaires et espacées verticalement. Des soles de chargement et de déchargement sont disposées alternativement. Les premières possèdent une partie circulaire centrale ouverte ; les secondes possèdent une série d'orifices espacés le long de la périphérie de la sole. Le four est également muni, en sa partie centrale, d'un arbre de rotation vertical auquel sont attachés des râteaux s'étendant sur tout le rayon des soles. Le minerai de fer est introduit par la partie supérieure du four et tombe sur la première sole de chargement. Les râteaux, entraînés par l'arbre de rotation vertical, étalent le minerai de fer et le ramènent vers l'ouverture centrale par laquelle il tombe sur la sole de déchargement inférieure. Les râteaux dirigent ensuite le minerai de fer vers les orifices périphériques, par lesquels il tombe sur la sole de chargement inférieure. Ces étapes se répètent jusqu'à ce que le minerai de fer atteigne l'étage le plus bas. Le minerai de fer est alors évacué et on parle de minerai de fer préréduit. Le matériau réducteur, le charbon, peut être introduit au niveau de la première sole de chargement, mais également à un niveau inférieur. Alors que le minerai de fer descend dans le four, les gaz produits par les réductions s'élèvent : c'est un réacteur à contre-courant. Les gaz de la réduction sont brûlés dans la partie supérieure du four par injection d'air ou d'oxygène. Les hautes températures qui régnent à l'intérieur du four sont atteintes avec une énergie d'appoint telle que du gaz naturel. Les râteaux, par leur brassage permanent, permettent un mélange intime du minerai de fer et du charbon. Les angles et la vitesse des râteaux sont calculés pour éviter l'écrasement et l'agglomération du minerai.
Bien entendu, tout réacteur capable de produire du fer préréduit à partir de minerai de fer peut être utilisé dans le cadre de la présente.
Sur la figure 1 , le fonctionnement du procédé selon la présente invention est présenté à l'aide d'un schéma de principe. Au sommet d'un four à étages 10 on introduit du minerai de fer sous formes de fines. La flèche 12 illustre la réduction graduelle du minerai de fer qui descend les étages du four à étages 10. La flèche 13 symbolise les gaz de réduction ascendants. Des granulométries fines du minerai de fer et du charbon permettent de bons échanges thermiques et favorisent les réactions chimiques. On notera que le charbon de réduction peut être inséré sur la sole supérieure, ou dans une partie inférieure du four à étages 10. De préférence, on injecte également dans le four à étage des agents de liaison et de formation de laitier choisis parmi le groupe de la chaux, la castine et la magnésie ainsi que de leur mélange. Ces agents sont introduits en même temps que le minerai de fer ou sur des soles inférieures dans des proportions convenables pour donner le laitier de basicité visée au haut fourneau. A la fin de la préréduction, le minerai de fer se trouve à une température d'environ 1000°C. On lui ajoute alors une quantité de charbon nécessaire à sa fusion dans le haut fourneau. Le mélange du charbon de fusion et du minerai de fer préréduit peut se faire soit dans la dernière zone du four à étages 10, soit dans une enceinte séparée. Dans les deux cas, le mélange provoque une élévation de température du charbon dont les matières volatiles passent en phase gazeuse ; la température du mélange est d'environ 500°C. L'ajout d'air ou d'oxygène permet de brûler une fraction de ces matières volatiles, d'élever ainsi la température du mélange à 600°C, et de compléter la dévolatilisation du charbon. Le reste des gaz volatiles est dirigé vers le four à étages 10 dans lequel il est brûlé, réalisant une économie partielle de l'énergie d'appoint. De plus, on remarquera que le fait de mélanger le minerai de fer et son charbon de fusion dans la dernière zone du four à étages 10 ou dans une enceinte séparée permet de mettre à profit les matières volatiles du charbon dans le réacteur de préréduction, alors qu'on ne sait pas bien les exploiter dans le haut fourneau.
L'étape suivante consiste à transférer le mélange dégazé vers un haut fourneau 14, ce qui peut se faire de manière pneumatique. Puis, le mélange est injecté par les tuyères dans le creuset du haut fourneau 14. Ce dernier est quant à lui alimenté de manière traditionnelle en minerai aggloméré et en coke. Le trajet du minerai aggloméré à travers le haut fourneau est représenté par la flèche 16, la flèche 18 symbolise le trajet des gaz de haut fourneau qui s'échappent par le gueulard. Les cowpers, générateurs de vent chaud, sont désignés par la référence 20.
En définitive, lors de la coulée du four à cuve, on récupérera de la fonte pro- venant de la fusion du minerai aggloméré ainsi que de la fonte provenant de la fusion des fines.
Afin de profiter de l'injection du mélange pour améliorer le fonctionnement et l'efficacité du haut fourneau, il est nécessaire de faire quelques réglages. Le tableau suivant présente les variations des paramètres de marche du haut fourneau avec une injection optimisée de fines de préréduit (85% de métallisation) donnant 10% de fonte supplémentaire. suivant le niveau d'injection de charbon (100 à 200 kg / 1 fonte)
Pour 250 t/h de fonte traversante, le surplus de production souhaité est de 25 t/h, soit une production totale de 275 t/h de fonte. Pour ce faire, on injecte par les tuyères 29 t/h de fines de DRI mélangées à 12 t/h de charbon de fusion maigre. La température du mélange déposé dans les tuyères est comprise entre
400 et 600°C. Les paramètres du four à cuve ont été modifiés :
- on apporte la totalité du comburant, oxygène, pour la combustion du charbon de fusion des fines de DRI ;
- on abaisse la température du vent chaud de manière à maintenir la température de flamme constante ;
On adapte donc la quantité d'oxygène introduite dans le four de manière à avoir suffisamment d'oxygène pour le fonctionnement traditionnel du haut four- neau et l'oxydation du réducteur carboné ajouté au minerai de fer préréduit. Dans cet exemple, l'adaptation de la quantité d'oxygène consiste en une augmentation de 2,7% de la concentration d'oxygène du vent chaud. Une autre alternative serait d'augmenter le débit de vent chaud, ou encore d'injecter de l'oxygène, chaud ou froid, directement par les tuyères. Un taux de 2,7% d'oxygène supplémentaire correspond à l'injection de 12 t/h de charbon maigre. Ce taux varie évidemment en fonction de la quantité, et de la qualité de ce réducteur carboné.
Le réglage vent/oxygène conduit à une baisse de la consommation de coke pour la fonte « traversante », une diminution du débit de vent, et un enrichissement en CO du gaz de four à cuve. On notera que l'abaissement de la température de vent et l'augmentation simultanée du pouvoir calorifique du gaz de four à cuve permettent de réaliser une économie substantielle sur le coût de chauffage du vent, et sur l'entretien des cowpers, économie qui vient s'ajouter à celle qui est faite sur le coke. En outre, la réduction du débit de vent redonne un potentiel d'augmentation de productivité par rapport à la limite des soufflantes.
Le présent procédé permet donc d'accroître la production globale du haut fourneau. Le four à étages est particulièrement intéressant dans ce procédé, de par son fonctionnement à contre courant, car il permet une meilleure exploitation énergétique des matières volatiles du charbon.
3. Remarques :
Comme indiqué plus haut, dans l'utilisation traditionnelle du haut fourneau, une certaine quantité supplémentaire de charbon est injectée par les tuyères. Ce charbon supplémentaire peut être injecté de manière indépendante, mais peut également être mélangé en même temps que le charbon de fusion au minerai de fer préréduit. Par ailleurs, une partie du charbon de fusion et/ou le charbon supplémentaire peuvent être injectés en même temps que le charbon de réduction dans le four à étages, ce qui ne nuit en rien aux réactions de réduction.
On remarquera que le mélange qui est injecté ici (minerai de fer préréduit, charbon de fusion, agents de liaison) possède une caractéristique très intéres- santé : il est « autofondant. » En effet, il contient le réducteur, le combustible et le « fondant » nécessaires à sa fusion dans le creuset du haut fourneau.
On remarquera enfin, que si l'on ne dispose plus de minerai de fer préréduit à injecter, par exemple suite à une panne du four de préréduction, le haut fourneau peut être rapidement rétabli dans son mode de fonctionnement traditionnel.

Claims

Revendications
1. Procédé d'optimisation du fonctionnement d'un four à cuve comportant des tuyères comprenant les étapes suivantes : a) fabrication de particules fines de fer préreduit ; b) mélange des particules fines de fer préréduit avec un réducteur carbo- né solide, les particules fines de fer préréduit ayant une granulométrie inférieure à 2 mm et le réducteur carboné solide ayant une granulométrie inférieure à 200 μm ; c) injection du mélange dans le four à cuve par les tuyères ; d) fusion des particules fines de fer préréduit.
2. Procédé selon la revendication 1, caractérisé en ce qu'on injecte un mélange intime de particules fines de fer préréduit et de réducteur carboné solide.
3. Procédé selon la revendication 2, caractérisé en ce que la distance de transport du mélange avant son injection dans le four à cuve par les tuyè- res est égale à au moins 25 fois, de préférence 50 fois, le diamètre de l'orifice d'éjection du mélange au nez de la tuyère.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on adapte la mise de coke de la charge du four à cuve, une fois le régime d'injection établi.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le réducteur carboné solide est du charbon.
6. Procédé selon la revendication 5, caractérisé en ce qu'on réalise un mélange comprenant 300 à 600 kg de charbon par tonne de particules fines de fer préréduit.
7. Procédé selon la revendication 6, caractérisé en ce qu'entre 6% et 20% de fonte supplémentaire obtenue par la fusion des particules de fer préré- duit on introduit dans le four à cuve environ 100 m3 supplémentaires d'oxygène pur par tonne de particules de fer préréduit.
8. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le mélange et l'injection des particules fines de fer préréduit et du réducteur carboné solide se font à chaud.
9. Procédé selon la revendication 8, caractérisé en ce que l'on adapte la quantité d'oxygène introduite dans le four à cuve.
10. Procédé selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que le mélange de l'étape b) est porté à une température à laquelle le réducteur carboné solide est libéré de sa fraction volatile.
11. Procédé selon l'une quelconque des revendications 8 à 10, caractérisé en ce que l'on injecte un gaz contenant de l'oxygène pendant le mélange du réducteur carboné solide et du fer préréduit chaud afin de brûler les matières volatiles contenues dans le réducteur carboné solide.
12. Procédé selon la revendication 11 , caractérisé en ce que la chaleur libérée pendant la combustion des matières volatiles du réducteur carboné solide est utilisée dans l'étape a) pour la fabrication de particules fines de fer préreduit.
13. Procédé selon la revendication l'une quelconque des revendications précédentes, caractérisé en ce que l'on ajoute en outre des agents de formation de laitier pendant l'étape a) ou l'étape b).
14. Procédé selon la revendication 13, caractérisé en ce que les agents de formation de laitier sont choisis parmi le groupe constitué de chaux, de castine et de magnésie ainsi que de leurs mélanges.
15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise pendant l'étape b) une quantité de réducteur carboné solide suffisant à réduire complètement et à fondre les particules de fer préréduit.
16. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'on utilise pendant l'étape b) un excès de réducteur carboné solide.
17. Procédé selon la revendication 10, caractérisé en ce que l'excès de réducteur carboné solide est suffisant pour couvrir les besoins en réducteur carboné solide du four à cuve.
EP99964668A 1998-12-23 1999-12-23 Procede d'optimisation du fonctionnement d'un haut four Expired - Lifetime EP1154825B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
LU90333 1998-12-23
LU90333A LU90333B1 (fr) 1998-12-23 1998-12-23 Proc-d- d'optimisation du fonctionnement d'un four - cuve
PCT/EP1999/010348 WO2000038496A2 (fr) 1998-12-23 1999-12-23 Procede d'optimisation du fonctionnement d'un four a cuve

Publications (2)

Publication Number Publication Date
EP1154825A1 true EP1154825A1 (fr) 2001-11-21
EP1154825B1 EP1154825B1 (fr) 2003-10-08

Family

ID=19731792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99964668A Expired - Lifetime EP1154825B1 (fr) 1998-12-23 1999-12-23 Procede d'optimisation du fonctionnement d'un haut four

Country Status (7)

Country Link
EP (1) EP1154825B1 (fr)
AT (1) ATE251487T1 (fr)
AU (1) AU3043200A (fr)
DE (1) DE69912003T2 (fr)
LU (1) LU90333B1 (fr)
TW (1) TW473546B (fr)
WO (1) WO2000038496A2 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE312935C (fr) *
DE822089C (de) * 1948-10-02 1951-11-22 Thyssensche Gas Und Wasserwerk Verfahren zur unmittelbaren Gewinnung von Stahl aus Eisenerzen und Schrott
US2846300A (en) * 1952-07-23 1958-08-05 Wenzel Werner Process for smelting ores
FR1243733A (fr) * 1959-01-01 1960-10-14 British Iron Steel Research Procédé de réduction des minerais métallifères, en particulier des minerais de fer pour la production du fer
FR1387048A (fr) * 1963-08-29 1965-01-29 Procédé pour l'utilisation des fines parties des minerais de fer
DE3273996D1 (en) * 1981-04-28 1986-12-04 Kawasaki Steel Co Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
JPS6277412A (ja) * 1985-09-30 1987-04-09 Nippon Steel Corp 粉体の吹込方法
IT1263909B (it) * 1993-02-12 1996-09-05 Balzaretti Modigliani Spa Introduzione di addittivi polverulenti nelle tubiere che alimentano un forno con comburente

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0038496A3 *

Also Published As

Publication number Publication date
EP1154825B1 (fr) 2003-10-08
TW473546B (en) 2002-01-21
AU3043200A (en) 2000-07-31
DE69912003D1 (de) 2003-11-13
WO2000038496A2 (fr) 2000-07-06
DE69912003T2 (de) 2004-08-05
LU90333B1 (fr) 2000-07-19
WO2000038496A3 (fr) 2001-11-08
ATE251487T1 (de) 2003-10-15

Similar Documents

Publication Publication Date Title
RU2242520C2 (ru) Способ запуска процесса прямой плавки
FR2507624A1 (fr) Procede pour la gazeification du charbon et la fabrication de fonte et installation pour sa mise en oeuvre
JP5552754B2 (ja) アーク炉の操業方法
CN111518986B (zh) 一种利用一次燃烧热能冶炼废钢系统的炼钢方法
US4753677A (en) Process and apparatus for producing steel from scrap
KR20150034259A (ko) 제련 공정 시동
CA2437254C (fr) Procede de production de fonte liquide dans un four electrique
RU2282664C2 (ru) Способ и установка для проведения металлургических процессов с использованием углеродсодержащих материалов
AU2012350144B2 (en) Starting a smelting process
EP1187942B1 (fr) Procede de production de fonte liquide
JP2015504969A (ja) 製錬プロセスの起動
EP1154825B1 (fr) Procede d'optimisation du fonctionnement d'un haut four
AU2012350151B2 (en) Starting a smelting process
FR2486962A1 (fr) Procede pour reduire la consommation d'agents reducteurs dans un appareil de reduction-fusion des minerais metalliques, notamment dans un haut-fourneau siderurgique
JP3629740B2 (ja) 溶銑の製造方法
TWI817466B (zh) 電爐及煉鋼方法
CN103392013A (zh) 制造铁水和钢的方法和设备
JP2000017319A (ja) アーク炉操業方法
RU2206623C2 (ru) Способ выплавки стали в конвертере
EP0921200A1 (fr) Procédé de réduction d'oxydes de fer et de fusion du fer et installation à cet effet
JPH1123156A (ja) 金属の溶解炉及び金属の溶解方法
JP2002327211A (ja) 冷鉄源の溶解方法
RU2368669C1 (ru) Способ выплавки стали в конвертере
JP2022500556A (ja) 電気炉を用いた低窒素鋼の精錬方法
UA125045C2 (uk) Спосіб виплавки залізовуглецевого напівпродукту в кисневому конвертері

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

D17D Deferred search report published (deleted)
17Q First examination report despatched

Effective date: 20020606

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: METHOD FOR OPTIMISING THE OPERATION OF A BLAST FURNACE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031008

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031008

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69912003

Country of ref document: DE

Date of ref document: 20031113

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20031008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051223

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101223

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131015

Year of fee payment: 15

Ref country code: AT

Payment date: 20131018

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69912003

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 251487

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141223