EP1148527A1 - Interrupteur à soufflage d'arc, possédant une chambre de coupure à compression de gaz réduite et un mouvement alternatif du piston - Google Patents

Interrupteur à soufflage d'arc, possédant une chambre de coupure à compression de gaz réduite et un mouvement alternatif du piston Download PDF

Info

Publication number
EP1148527A1
EP1148527A1 EP01400884A EP01400884A EP1148527A1 EP 1148527 A1 EP1148527 A1 EP 1148527A1 EP 01400884 A EP01400884 A EP 01400884A EP 01400884 A EP01400884 A EP 01400884A EP 1148527 A1 EP1148527 A1 EP 1148527A1
Authority
EP
European Patent Office
Prior art keywords
contact
piston
compression
cylinder
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01400884A
Other languages
German (de)
English (en)
Other versions
EP1148527B1 (fr
Inventor
Joel Ozil
Michel Perret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grid Solutions SAS
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP1148527A1 publication Critical patent/EP1148527A1/fr
Application granted granted Critical
Publication of EP1148527B1 publication Critical patent/EP1148527B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/905Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the compression volume being formed by a movable cylinder and a semi-mobile piston
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H2033/028Details the cooperating contacts being both actuated simultaneously in opposite directions

Definitions

  • the invention relates generally to a switch, and more particularly on a circuit breaker, having a breaking chamber with reduced gas compression.
  • the invention can be applied equally well to circuit breakers with single contact movement than with double circuit breakers movement of contacts.
  • the functionality of the double movement of the contacts and that of the reduced gas compression are known separately for many years, but their association has drawbacks explained below.
  • a device has in particular been the subject of Patent FR 2,696,274.
  • the principle of reduced compression means that in the interrupting chamber, the compression of the gas is not performed only during part of the contact stroke, generally less than 50% of it.
  • This first part of the circuit breaker opening operation corresponds to the movement of contacts from the closed position to the start of arc blowing following their separation.
  • the gas compression is maximum at the moment separation of the contacts, and drops rapidly with the blowing of the arc. The energy required to open the circuit breaker is therefore reduced during the second part of the contact stroke.
  • the reduced speed of the contacts mobile in a dual movement device has an advantage certain in terms of total kinetic energy consumed which can be reduced by around 50% (schematically, the moving masses double, but the average speed of contacts decreases by half, hence a kinetic energy approximately divided by 2).
  • such reciprocating piston system can provide a compression length L typically between 1.1 x R / 2 to 1.25 x R / 2, instead of L equal to R / 2 for a fixed piston.
  • L typically between 1.1 x R / 2 to 1.25 x R / 2, instead of L equal to R / 2 for a fixed piston.
  • the pressure of blowing therefore remains significantly lower than that obtained in a analog circuit breaker with simple movement.
  • An object of the invention is to propose a solution which remedies these disadvantages, and which can be applied to all types of circuit breakers cut-off chamber with reduced gas compression, whether single or double movement of the contacts.
  • the invention makes it possible to combine, in a circuit breaker with double contact movement, the advantages of single circuit breakers movement with those of double movement circuit breakers without have the disadvantages.
  • the invention provides a device having the same compression length L as a single device movement, at distance R of identical contact overlap.
  • the invention also makes it possible to improve the performance of circuit breakers simple touch movement.
  • the known devices of the prior art do not allow to obtain that L typically between R and 1.25 x R. comparison, a device proposed in the context of the invention allows to obtain L at least equal to 2 x R.
  • the subject of the invention is an arc blowing switch, having a cut-off chamber with reduced gas compression, comprising a first contact and a second contact, the first contact being movable in a longitudinal direction (A) and integral with the switching chamber in which gas is compressed by a piston, means for moving said piston being arranged so that its movement changes direction in the switch enclosure after the gas compression phase, characterized in that said means of displacement include a telescopic link connected to said piston and in that the length of the displacement of said piston in said envelope during said compression phase is at least equal to the length displacement of said first contact during this same phase of compression.
  • said second contact is movable in said direction longitudinal in the opposite direction of said first contact.
  • said piston is alternately in connection with the second and the first contact during the opening operation of the switch.
  • said piston is integral with the second movable contact during the entire gas compression phase, and dissociates from it after the separation of said first and second contacts to become united said first contact.
  • This united connection provides a compression length L equal to said distance R.
  • the telescopic link is formed by a first cylinder extending the piston and surrounded by a second cylinder, the latter being fixed to a peripheral link permanently attached to the second mobile contact.
  • This telescopic link includes a set of blocking is released at the end of gas compression to allow the movement of the piston to change direction and follow the movement of the first contact after separation of the first and second contacts.
  • said blocking assembly is constituted by balls arranged in openings in the first cylinder, said balls being engaged in internal peripheral grooves at second cylinder during the gas compression phase to block said telescopic link.
  • Figure 1 is a very schematic representation, in half-section axial, of a circuit breaker according to the invention in its closed position.
  • Figure 2 is a very schematic representation, in half-section axial, of a circuit breaker according to the invention in an intermediate position opening hours.
  • Figure 3 is a very schematic representation, in half-section axial, of a circuit breaker according to the invention in its open position.
  • Figure 4 is a very schematic representation, in half-section axial, of a locking assembly used in the device according to the invention. The assembly is shown in the gas compression phase.
  • Figure 5 is a representation of said blocking assembly at the end gas compression, in a position corresponding to that described by figure 2.
  • Figure 6 is a representation of said just blocking assembly after the position described in figure 5. This moment corresponds to reversing the piston movement.
  • Figure 7 is a very schematic representation, in half-section axial, of a particular embodiment of a circuit breaker according to the invention. Telescopic inserts introducing travel ⁇ allow the stroke L of the piston in the compression volume during the gas compression phase is greater than the distance R of covering of the first and second contacts.
  • Figure 8 is a very schematic representation, in half-section axial, of a circuit breaker according to the invention having means of operation of the second contact which are separate from those of the first contact.
  • Figure 9 is a very schematic representation, in half-section axial, of a system of spring inserts introducing a travel ⁇ allowing a result equivalent to that provided by the device described in Figure 7.
  • a circuit breaker according to the invention is shown in half-section axial along its axis of revolution A. It includes an envelope, generally cylindrical in shape, not shown in the figures, the interior of which is disposed a first contact 1 which is hollow and which is movable in translation in direction A with a cylindrical cut 2 coaxially surrounding the contact 1.
  • the chamber cut-off 2 forms a blowing volume 3 and a volume of compression 4 separated by a crown 5 coaxial at contact 1, which extends radially from contact 1 and which is integral with the latter.
  • the blowing volume is closed by a nozzle 6 and communicates with through the crown 5 by a one-way valve 7 with the volume of compression 4 which is closed by a piston 8.
  • the circuit breaker also includes in the enclosure a second contact 9 in the form of a rod which is inserted into the hollow contact 1 in circuit breaker closing position.
  • This contact 9 is coaxial with the contact 1 and passes through the neck of the nozzle 6 in the closed position of the circuit breaker as shown in Figure 1.
  • contact 9 or contact 1 is moved in translation in direction A to be inserted in the other contact or be separated from the latter.
  • contact 9 is returned in the opposite direction to contact 1 by a fixed swivel mechanism in the envelope of the circuit breaker, illustrated by 10 and which can be a rack system or return levers so that the two contacts always move in the opposite direction in direction A.
  • a fixed swivel mechanism in the envelope of the circuit breaker illustrated by 10 and which can be a rack system or return levers so that the two contacts always move in the opposite direction in direction A.
  • the piston 8 is integral in movement with the contact 9 by in particular through a mechanical telescopic link 11 which extends in direction A and which is formed by a first cylinder 12 extending the rear of the piston 8 and a second cylinder 13 sliding on the cylinder 12.
  • a peripheral connection (14) which may consist of a third cylinder or connecting rods arranged around the axis A, surrounds the second cylinder 13 and is attached to it as well as to the second contact 9 by known fastening means.
  • This peripheral link (14) advantageously comprises a cylindrical section of insulating material 15.
  • Contact 1 has a bead over part of its length device 16 on which balls 17 placed in openings 18 formed in the cylinder 12 and coming to engage in an internal peripheral groove 19 of the second cylinder 13 in the gas compression phase, i.e. at the start of opening.
  • the telescopic link 11 is then locked by the balls 17 which transmit the thrust from the second cylinder 13 to the part 12A of the first cylinder 12 which is extended by the piston 8. From this done, the piston 8 is moved in the opposite direction from contact 1 and therefore from cylinder head 5 so that when approaching each other, cylinder head 5 and the piston 8 compress the gas in the compression volume 4.
  • the small annular part 12B of the first cylinder 12 located at the end of the cylinder opposite the piston, does not undergoes no effort from the balls, so that play can exist between the balls and said annular part 12B.
  • part 12A of the first cylinder 12 has at the openings 18 of the housings each having a spherical surface portion complementary to the surface of the ball bearing against this housing, in order to limit the contact pressures exerted by the balls on said part 12A during gas compression.
  • the depth of the grooves 19 of the second cylinder 13 is typically between 30% and 50% of the diameter D of the balls.
  • the part 12A of the first cylinder 12 can therefore have a thickness up to 70% of the diameter D of the balls.
  • the play between the balls and the annular part 12B allows that the minimum diameter G of the opening 18 is greater than the diameter D of the balls, even when the space between the part 12A of the first cylinder 12 and the peripheral bead 16 is reduced to a minimum.
  • the length L of the compression volume 4 in the direction A is substantially equal to the length R of the overlap area of the contacts, as well as the length of the movement of the balls 17 on the bead 16.
  • the insulation distance d between the two contacts 1 and 9 is otherwise substantially equal to the length of the relative displacement of the second cylinder 13 relative to cylinder 12 in direction A.
  • FIG. 7 illustrates an alternative embodiment of a circuit breaker with double movement of the contacts according to the invention.
  • a part of the gas compression operation of the compression volume is carried out before the start of the first movement phase and second contacts, which is delayed in relation to tripping opening the switch to allow the piston to have traveled a distance ⁇ when the movement of the contacts is engaged.
  • the delay in moving the first and second contacts is provided by two telescopic insert systems 20 and 21 which separate respectively the first contact 1 and the peripheral link 14 each in two parts in the longitudinal direction (A).
  • Each system insert allows to introduce a certain longitudinal travel between the two parts of the same element that it separates.
  • Figure 7 is shown with a game ⁇ consisting of gas space, but other variants can be envisaged.
  • the inserts 20 and 21 may each consist of a spring joining the two parts it separates. Blocking systems first and second contacts must then be set up so that keep these contacts stationary as long as the piston 8 moves in volume 4 has not reached the desired length ⁇ .
  • a system of movement return for example from cylinders 12 or 13 of the telescopic link 11, can unlock these locking systems as soon as that the length ⁇ is reached, the springs then being compressed, to allow the movement of the first and second contacts with a significant acceleration.
  • This device makes it possible to increase the compression volume, at detriment of the contact separation time which increases, as well as the mass of the moving parts. At equivalent compression volume, we can decrease the overlap distance R of the first and second contacts by increasing ⁇ .
  • the delay in moving the first and second contacts is here provided by means consisting of a single system of inserts telescopic, such as springs 26, allowing to introduce a certain longitudinal travel between the second cylinder 13 and the link peripheral 14.
  • the latter can be extended by a part cylindrical 14A surrounding the second cylinder 13 and capable of sliding the along it, for example thanks to ball bearings.
  • the pivoting mechanism 10 for coordinating the movements of the first and second contacts pass through the second cylinder 13 by longitudinal openings provided for this purpose.
  • the circuit breaker operating mechanism is connected to the second cylinder 13 and acts in thrust in the direction of the arrow on the figure when opening the circuit breaker.
  • the blocking system first and second contacts can here be achieved by a single device 30, consisting for example of a locking pivoting arm 31 retaining the peripheral connection 14 by a lug, this arm being able to be unlocked in a known manner by the thrust of the second cylinder 13 on an element 32 controlling the movement of said arm, as soon as said second cylinder has traveled a distance ⁇ .
  • FIG. 8 represents a circuit breaker whose constituent means are equivalent to those of the circuit breaker described in Figures 1 and 3, except for the operating means 25 of the second contact which are separated from the means 24 operating the first contact.
  • the stroke L of the piston 8 during the gas compression is equal to the distance R of overlap of first and second contacts. It is also possible to obtain a length compression L greater than R by separating the first contact 1 into two parts by a system of telescopic inserts 20 as shown in Figure 7.
  • the operating means 25 will then be actuated with a certain delay with respect to the means 24, depending on the travel ⁇ provided by said system of inserts, so as to synchronize the displacements of the first and second contacts.

Landscapes

  • Circuit Breakers (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

L'interrupteur à soufflage d'arc, qui peut être à simple ou à double mouvement des contacts, possède une chambre de coupure à compression de gaz réduite, comprenant un premier contact (1) et un second contact (9), le premier contact étant mobile selon une direction longitudinale (A) et solidaire de la chambre de coupure (2) dans laquelle du gaz est comprimé par un piston (8). Des moyens de déplacement dudit piston sont agencés pour que son mouvement change de sens dans l'enveloppe de l'interrupteur après la phase de compression du gaz, et comprennent une liaison télescopique (11) reliée audit piston. La longueur du déplacement du piston dans ladite enveloppe pendant ladite phase de compression est au moins égale à la longueur du déplacement dudit premier contact pendant cette même phase de compression.

Description

L'invention porte de façon générale sur un interrupteur, et plus particulièrement sur un disjoncteur, possédant une chambre de coupure à compression de gaz réduite. L'invention peut s'appliquer aussi bien aux disjoncteurs à simple mouvement de contact qu'aux disjoncteurs à double mouvement des contacts. En particulier, la fonctionnalité du double mouvement des contacts et celle de la compression de gaz réduite sont connues séparément depuis de nombreuses années, mais leur association présente des inconvénients expliqués plus loin. Concernant la compression de gaz réduite, un dispositif a notamment fait l'objet du brevet FR 2 696 274.
Il convient de rappeler que le principe de la compression réduite signifie que dans la chambre de coupure, la compression du gaz n'est effectuée que pendant une partie de la course des contacts, généralement inférieure à 50% de celle-ci. Cette première partie de l'opération d'ouverture du disjoncteur correspond au déplacement des contacts depuis la position fermée jusqu'au début du soufflage de l'arc qui suit leur séparation. La compression du gaz est maximale au moment de la séparation des contacts, et chute rapidement avec le soufflage de l'arc. L'énergie nécessaire pour l'ouverture du disjoncteur est donc réduite pendant la deuxième partie de la course des contacts.
Le principe du double mouvement des contacts est appliqué depuis plus longtemps (voir brevet FR 2 491 675), car il consiste simplement à entraíner simultanément chacun des deux contacts dans des directions opposées, soit à des vitesses instantanées égales, ce qui revient à un déplacement symétrique par rapport à la position de fermeture, soit à des vitesses différentes. L'entraínement peut être réalisé par un système à bielles de renvoi ou à crémaillères. L'intérêt de ce type de dispositif par rapport à un dispositif à simple mouvement est de permettre de diminuer le temps de séparation des contacts, sans augmenter la vitesse du contact mobile. En effet, le temps de séparation des contacts dépend de leur vitesse moyenne relative et de leur distance de recouvrement R. Ainsi, pour un dispositif à double mouvement symétrique, le temps de séparation des contacts est environ divisé par deux par rapport à un dispositif à simple mouvement, à distance de recouvrement R et vitesse moyenne des contacts identiques. De plus, à la séparation des contacts, chaque contact s'est déplacé seulement d'une distance R/2 dans l'enveloppe du disjoncteur à double mouvement symétrique, alors que le contact mobile s'est déplacé d'une distance R dans l'enveloppe du disjoncteur à simple mouvement. Enfin, la vitesse réduite des contacts mobiles dans un dispositif à double mouvement présente un avantage certain en matière d'énergie cinétique totale consommée qui peut être réduite de l'ordre de 50% (schématiquement, les masses en mouvement doublent mais la vitesse moyenne des contacts diminue de moitié, d'où une énergie cinétique environ divisée par 2).
La fonctionnalité du double mouvement des contacts n'apporte pourtant pas que des avantages, notamment si elle est associée à une chambre de coupure à compression de gaz réduite. En effet, du fait du déplacement réduit des contacts, la longueur L (course relative du piston dans la chambre de compression) du volume de compression est diminuée de moitié, d'où une pression de soufflage aussi diminuée de moitié.
Il convient de rappeler que dans la plupart des disjoncteurs à compression de gaz réduite, le piston de la chambre de coupure est en général maintenu fixe dans l'enveloppe pendant la première partie de l'ouverture du disjoncteur. C'est en fait la chambre de compression qui est solidaire du contact portant la buse de soufflage, et qui se rapproche du piston pour obtenir la compression du gaz (voir le brevet FR 2 696 274 cité plus haut). Pour un disjoncteur à simple mouvement, on obtient alors une longueur de compression L égale à la course du contact mobile pendant la première phase de l'ouverture, c'est à dire aussi égale à la distance de recouvrement R des contacts. On considère pour simplifier que le volume de compression Vc est égal à L x S, S étant la section (l'alésage) du piston.
En comparaison, un disjoncteur à double mouvement des contacts implique une longueur de compression L égale à R/2. Ainsi, pour obtenir un volume de compression Vc équivalent à celui du disjoncteur à simple mouvement sans augmenter la distance de recouvrement R des contacts, il faut doubler la section S du piston. Cette solution présente des inconvénients de trois ordres:
  • elle oblige à augmenter le diamètre de l'enveloppe, et donc son encombrement,
  • elle impose de doubler l'effort nécessaire à la compression pour obtenir une même pression de gaz,
  • elle aboutit à quasiment doubler la masse des éléments mobiles, ce qui annule le gain en énergie cinétique consommée procuré par la fonctionnalité du double mouvement.
Afin d'augmenter le volume de compression sans augmenter la section du piston, certains dispositifs à simple mouvement permettent d'obtenir une longueur de compression L supérieure à la distance de recouvrement R des contacts, typiquement 1,1 x R à 1,25 x R. A cet effet, le piston n'est plus fixe pendant la phase de compression, mais se déplace quelque peu dans l'enveloppe en direction de la chambre de compression grâce à un système de renvoi à bielles reliées au piston et au contact portant la chambre de compression. On trouve par exemple un tel système dans le brevet EP 664 552. On parle alors de mouvement alternatif du piston, puisque celui ci se déplace dans un sens pendant la phase de compression, et dans l'autre sens après la séparation des contacts. Ce déplacement pendant la première phase du mouvement est égal à la différence L - R et ne représente que 10% à 20% de la longueur L du volume de compression dans les dispositifs connus.
Appliqué à un disjoncteur à double mouvement des contacts, un tel système de mouvement alternatif du piston peut permettre d'obtenir une longueur de compression L typiquement comprise entre 1,1 x R/2 à 1,25 x R/2, au lieu de L égale à R/2 pour un piston fixe. La pression de soufflage reste donc nettement inférieure à celle obtenue dans un disjoncteur analogue à simple mouvement.
Un but de l'invention est de proposer une solution qui remédie à ces inconvénients, et pouvant s'appliquer à tous les types de disjoncteurs à chambre de coupure à compression de gaz réduite, qu'ils soient à simple ou à double mouvement des contacts.
Notamment, l'invention permet de cumuler, dans un disjoncteur à double mouvement des contacts, les avantages des disjoncteurs à simple mouvement avec ceux des disjoncteurs à double mouvement sans en avoir les inconvénients. En particulier, l'invention propose un dispositif possédant la même longueur de compression L qu'un dispositif à simple mouvement, à distance R de recouvrement des contacts identique. L'invention permet aussi d'améliorer les performances des disjoncteurs à simple mouvement de contact. Les dispositifs connus de l'art antérieur ne permettent d'obtenir que L typiquement compris entre R et 1,25 x R. En comparaison, un dispositif proposé dans le cadre de l'invention permet d'obtenir L au moins égale à 2 x R.
A cet effet, l'invention a pour objet un interrupteur à soufflage d'arc, possédant une chambre de coupure à compression de gaz réduite, comprenant un premier contact et un second contact, le premier contact étant mobile selon une direction longitudinale (A) et solidaire de la chambre de coupure dans laquelle du gaz est comprimé par un piston, des moyens de déplacement dudit piston étant agencés pour que son mouvement change de sens dans l'enveloppe de l'interrupteur après la phase de compression du gaz, caractérisé en ce que lesdits moyens de déplacement comprennent une liaison télescopique reliée audit piston et en ce que la longueur du déplacement dudit piston dans ladite enveloppe pendant ladite phase de compression est au moins égale à la longueur du déplacement dudit premier contact pendant cette même phase de compression.
Selon un premier mode de réalisation de l'interrupteur d'après l'invention, ledit second contact est mobile selon ladite direction longitudinale en sens contraire dudit premier contact.
Selon un mode de réalisation particulier de l'interrupteur d'après l'invention, ledit piston est alternativement en liaison avec le second et le premier contact durant l'opération d'ouverture de l'interrupteur.
Selon un mode de réalisation particulier de l'interrupteur d'après l'invention, ledit piston est solidaire du second contact mobile pendant toute la phase de compression du gaz, et s'en désolidarise après la séparation desdits premier et second contacts pour devenir solidaire dudit premier contact. Cette liaison solidaire permet d'obtenir une longueur de compression L égale à ladite distance R.
Selon un mode de réalisation particulier de l'interrupteur selon l'invention, la liaison télescopique est formée d'un premier cylindre prolongeant le piston et entouré d'un second cylindre, ce dernier étant fixé à une liaison périphérique solidaire en permanence du second contact mobile. Cette liaison télescopique comprend un ensemble de blocage se débloquant en fin de compression du gaz pour permettre au mouvement du piston de changer de sens et de suivre le mouvement du premier contact après la séparation des premier et second contacts.
Selon un mode de réalisation particulier de l'interrupteur selon l'invention, ledit ensemble de blocage est constitué par des billes disposées dans des ouvertures ménagées dans le premier cylindre, lesdites billes étant engagées dans des gorges périphériques internes au second cylindre durant la phase de compression du gaz afin de bloquer ladite liaison télescopique.
La figure 1 est une représentation très schématique, en demi-coupe axiale, d'un disjoncteur selon l'invention dans sa position de fermeture.
La figure 2 est une représentation très schématique, en demi-coupe axiale, d'un disjoncteur selon l'invention dans une position intermédiaire d'ouverture.
La figure 3 est une représentation très schématique, en demi-coupe axiale, d'un disjoncteur selon l'invention dans sa position d'ouverture.
La figure 4 est une représentation très schématique, en demi-coupe axiale, d'un ensemble de blocage utilisé dans le dispositif selon l'invention. L'ensemble est représenté en phase de compression du gaz.
La figure 5 est une représentation dudit ensemble de blocage en fin de compression du gaz, dans une position correspondant à celle décrite par la figure 2.
La figure 6 est une représentation dudit ensemble de blocage juste après la position décrite par la figure 5. Ce moment correspond à l'inversion du mouvement du piston.
La figure 7 est une représentation très schématique, en demi-coupe axiale, d'un mode de réalisation particulier d'un disjoncteur selon l'invention. Des inserts télescopiques introduisant un débattement ▵ permettent que la course L du piston dans le volume de compression durant la phase de compression du gaz soit supérieure à la distance R de recouvrement des premier et second contacts.
La figure 8 est une représentation très schématique, en demi-coupe axiale, d'un disjoncteur selon l'invention possédant des moyens de manoeuvre du second contact qui sont séparés de ceux du premier contact.
La figure 9 est une représentation très schématique, en demi-coupe axiale, d'un système d'inserts à ressorts introduisant un débattement Δ permettant un résultat équivalent à celui procuré par le dispositif décrit à la figure 7.
Sur les figures, un disjoncteur selon l'invention est montré en demi-coupe axiale selon son axe de révolution A. Il comprend une enveloppe, de forme généralement cylindrique non représentée sur les figures, à l'intérieur de laquelle est disposé un premier contact 1 qui est creux et qui est mobile en translation suivant la direction A avec une chambre de coupure cylindrique 2 entourant coaxialement le contact 1. La chambre de coupure 2 forme un volume de soufflage 3 et un volume de compression 4 séparés par une couronne 5 coaxiale au contact 1, qui s'étend radialement depuis le contact 1 et qui est solidaire de celui-ci . Le volume de soufflage est fermé par une buse 6 et communique à travers la couronne 5 par un clapet unidirectionnel 7 avec le volume de compression 4 qui est fermé par un piston 8.
Le disjoncteur comprend encore dans l'enveloppe un second contact 9 en forme de tige qui vient s'insérer dans le contact creux 1 en position de fermeture du disjoncteur. Ce contact 9 est coaxial au contact 1 et traverse le col de la buse 6 en position de fermeture du disjoncteur comme visible sur la figure 1. En fonction du positionnement du mécanisme de manoeuvre, non représenté sur les figures, le contact 9 ou le contact 1 est déplacé en translation suivant la direction A pour être inséré dans l'autre contact ou être séparé de ce dernier.
Le mouvement du contact 9 est renvoyé en sens contraire au contact 1 par un mécanisme pivotant fixe dans l'enveloppe du disjoncteur, illustré par 10 et qui peut être un système de crémaillères ou de leviers de renvoi de sorte que les deux contacts se déplacent toujours en sens contraire selon la direction A.
Le piston 8 est solidaire en mouvement du contact 9 par l'intermédiaire notamment d'une liaison mécanique 11 téléscopique qui s'étend suivant la direction A et qui est formée d'un premier cylindre 12 prolongeant l'arrière du piston 8 et d'un second cylindre 13 coulissant sur le cylindre 12. Une liaison périphérique (14), pouvant être constituée d'un troisième cylindre ou de bielles de liaison disposées autour de l'axe A, entoure le second cylindre 13 et y est fixée de même qu'au second contact 9 par des moyens de fixations connus. Cette liaison périphérique (14) comporte avantagement un tronçon cylindrique en matière isolante 15. Le contact 1 comporte sur une partie de sa longueur un bourrelet périphérique 16 sur lequel prennent appui des billes 17 disposées dans des ouvertures 18 ménagées dans le cylindre 12 et venant s'engager dans une gorge périphérique interne 19 du second cylindre 13 dans la phase de compression de gaz, c'est-à-dire en début d'ouverture.
Figure 1, dans la position de fermeture du disjoncteur, le piston 8 est écarté de la culasse formée par la couronne 5 à l'extrémité de la chambre de compression opposée au piston, et les billes 17 en appui sur le bourrelet 16 sont engagées dans les gorges 19 du second cylindre 13. La liaison télescopique 11 est alors verrouillée dans sa position déployée. Lors d'une première partie d'une opération d'ouverture, le contact 1 est déplacé dans un certain sens suivant la direction A, ici vers la droite, et le contact 9 est déplacé dans le sens opposé suivant la direction A, ici vers la gauche comme indiqué par les flèches. On peut noter que ce déplacement mutuel des contacts peut aussi être assuré par une poussée du mécanisme de manoeuvre, non représenté sur les figures, sur le second cylindre 13. La liaison télescopique 11 est alors verrouillée par les billes 17 qui transmettent la poussée du second cylindre 13 à la partie 12A du premier cylindre 12 qui se prolonge par le piston 8. De ce fait, le piston 8 est déplacé en sens contraire du contact 1 et donc de la culasse 5 de sorte qu'en se rapprochant l'un de l'autre, la culasse 5 et le piston 8 compriment le gaz dans le volume de compression 4. On peut noter, comme illustré sur la figure 4, que la petite partie annulaire 12B du premier cylindre 12, située à l'extrémité du cylindre opposée au piston, ne subit aucun effort venant des billes, de sorte qu'un jeu peut exister entre les billes et ladite partie annulaire 12B. Quant à la partie 12A du premier cylindre 12, elle comporte au niveau des ouvertures 18 des logements présentant chacun une portion de surface sphérique complémentaire à la surface de la bille en appui contre ce logement, afin de limiter les pressions de contact exercées par les billes sur ladite partie 12A lors de la compression du gaz. Afin de limiter les contraintes subies par la liaison télescopique 11 au niveau des billes 17, la profondeur des gorges 19 du second cylindre 13 est typiquement comprise entre 30% et 50% du diamètre D des billes. La partie 12A du premier cylindre 12 peut donc avoir une épaisseur jusqu'à 70% du diamètre D des billes. Il peut n'y avoir qu'un faible espace entre ladite partie 12A et le bourrelet périphérique 16 sur lequel prennent appui les billes 17. Comme illustré sur la figure 4, le jeu entre les billes et la partie annulaire 12B permet que le diamètre minimal G de l'ouverture 18 soit supérieur au diamètre D des billes, même lorsque I' espace entre la partie 12A du premier cylindre 12 et le bourrelet périphérique 16 est réduit au minimum.
Figure 2, quand le piston 8 arrive en butée contre la culasse 5 à la fin de la compression du gaz, les billes 17 sont positionnées à une extrémité du bourrelet 16 et s'effacent de la gorge 19 pour libérer le verrouillage de la liaison télescopique 11 qui peut se rétracter, comme illustré sur les figures 5 et 6. Ainsi, après la fin de la compression du gaz, le piston 8 est poussé par la culasse 5 et est déplacé dans le même sens que le contact 1, c'est à dire en sens contraire du contact 9.
Figure 3, le disjoncteur est en fin d'ouverture et la distance d'isolement d entre les deux contacts 1 et 9 est atteinte.
La longueur L du volume de compression 4 suivant la direction A est sensiblement égale à la longueur R de la zone de recouvrement des contacts, ainsi qu'à la longueur du déplacement des billes 17 sur le bourrelet 16. La distance d'isolement d entre les deux contacts 1 et 9 est par ailleurs sensiblement égale à la longueur du déplacement relatif du second cylindre 13 par rapport au cylindre 12 suivant la direction A.
La figure 7 illustre une variante de réalisation d'un disjoncteur à double mouvement des contacts d'après l'invention. Une partie de l'opération de compression du gaz du volume de compression s'effectue avant le commencement de la phase de mise en mouvement des premier et second contacts, laquelle est retardée par rapport au déclenchement de l'ouverture de l'interrupteur pour permettre au piston d'avoir parcouru une distance Δ lorsque le mouvement des contacts est enclenché. Le retard au déplacement des premier et second contacts est procuré par deux systèmes d'inserts télescopiques 20 et 21 qui séparent respectivement le premier contact 1 et la liaison périphérique 14 chacun en deux parties selon la direction longitudinale (A). Chaque système d'insert permet ainsi d'introduire un certain débattement longitudinal entre les deux parties du même élément qu'il sépare. Pour la compréhension du principe, la figure 7 est représentée avec un jeu ▵ constitué d'un espace de gaz, mais d'autres variantes peuvent être envisagées. Par exemple, les inserts 20 et 21 peuvent consister chacun en un ressort joignant les deux parties qu'il sépare. Des systèmes de blocage des premier et second contacts doivent alors être mis en place de façon à maintenir immobiles ces contacts tant que le déplacement du piston 8 dans le volume 4 n'a pas atteint la longueur Δ souhaitée. Un système de renvoi de mouvement, par exemple depuis les cylindres 12 ou 13 de la liaison télescopique 11, peut déverrouiller ces systèmes de blocage dès que la longueur Δ est atteinte, les ressorts étant alors comprimés, pour permettre la mise en mouvement des premier et second contacts avec une accélération importante.
Ce dispositif permet d'augmenter le volume de compression, au détriment du temps de séparation des contacts qui augmente, ainsi que la masse des éléments mobiles. A volume de compression équivalent, on peut diminuer la distance R de recouvrement des premier et second contacts en augmentant Δ.
Figure 9, le retard au déplacement des premier et second contacts est ici procuré par des moyens consistant en un seul système d'inserts télescopiques, tels que des ressorts 26, permettant d'introduire un certain débattement longitudinal entre le second cylindre 13 et la liaison périphérique 14. Cette dernière peut être prolongée par une partie cylindrique 14A entourant le second cylindre 13 et pouvant coulisser le long de celui-ci, par exemple grâce à des roulements à billes. Le mécanisme pivotant 10 permettant de coordonner les mouvements des premier et second contacts traverse le second cylindre 13 par des ouvertures longitudinales prévues à cet effet. Dans ce dispositif, le mécanisme de manoeuvre du disjoncteur, non représenté, est relié au second cylindre 13 et agit en poussée dans le sens de la flèche sur la figure lors de l'ouverture du disjoncteur. Le système de blocage des premier et second contacts peut ici être réalisé par un dispositif unique 30, consistant par exemple en un bras pivotant verrouillable 31 retenant la liaison périphérique 14 par un ergot, ce bras pouvant être déverrouillé de façon connue par la poussée du second cylindre 13 sur un élément 32 commandant le mouvement dudit bras, dès que ledit second cylindre a parcouru une distance Δ.
La figure 8 représente un disjoncteur dont les moyens constitutifs sont équivalent à ceux du disjoncteur décrit aux figures 1 et 3, à l'exception des moyens de manoeuvre 25 du second contact qui sont séparés des moyens 24 manoeuvrant le premier contact. Dans le dispositif représenté, la course L du piston 8 durant la phase de compression du gaz est égale à la distance R de recouvrement des premier et second contacts. Il est aussi possible d'obtenir une longueur de compression L supérieure à R en séparant le premier contact 1 en deux parties par un système d'inserts télescopiques 20 tel que représenté à la figure 7. Les moyens de manoeuvre 25 seront alors actionnés avec un certain retard par rapport aux moyens 24, en fonction du débattement Δ procuré par ledit système d'inserts, de façon à synchroniser les déplacements des premier et second contacts.
Enfin, il est aussi possible de réaliser un disjoncteur possédant un simple mouvement de contact et tel que la course L dudit piston dans le volume de compression durant la phase de compression du gaz soit au moins égale à deux fois la distance R de recouvrement du contact mobile avec le contact fixe. En effet, au vu du dispositif à double mouvement des contacts décrit figure 8, les moyens de manoeuvre 25 peuvent être supprimés pour rendre le second contact fixe. Ainsi, la séparation des contacts a lieu lorsque le premier contact s'est déplacé d'une distance égale à la distance R de recouvrement, c'est à dire aussi lorsque le piston s'est déplacé d'une distance R. Le déplacement relatif du piston 8 par rapport à la culasse 5 du volume de compression, c'est à dire la longueur L de compression, est alors égal à deux fois à la distance R de recouvrement, voire supérieur à 2 x R si le contact 1 est séparé en deux parties par un système d'inserts télescopiques 20 tel que représenté à la figure 7.
En comparaison, comme mentionné dans le préambule, les dispositifs connus de l'art antérieur ne permettent d'obtenir que L typiquement compris entre R et 1,25 x R.

Claims (13)

  1. Un interrupteur à soufflage d'arc, possédant une chambre de coupure à compression de gaz réduite, comprenant un premier contact (1) et un second contact (9), le premier contact étant mobile selon une direction longitudinale (A) et solidaire de la chambre de coupure (2) dans laquelle du gaz est comprimé par un piston (8), des moyens de déplacement dudit piston étant agencés pour que son mouvement change de sens dans l'enveloppe de l'interrupteur après la phase de compression du gaz, caractérisé en ce que lesdits moyens de déplacement comprennent une liaison télescopique (11) reliée audit piston et en ce que la longueur du déplacement dudit piston dans ladite enveloppe pendant ladite phase de compression est au moins égale à la longueur du déplacement dudit premier contact pendant cette même phase de compression.
  2. L'interrupteur selon la revendication 1, dans lequel ledit second contact est mobile selon ladite direction longitudinale (A) en sens contraire dudit premier contact.
  3. L'interrupteur selon la revendication 2, dans lequel ledit piston (8) est alternativement en liaison avec le second et le premier contact durant l'opération d'ouverture de l'interrupteur.
  4. L'interrupteur selon la revendication 3, dans lequel ledit piston est solidaire du second contact mobile par l'intermédiaire de la liaison télescopique (11) pendant toute la phase de compression du gaz, et s'en désolidarise après la séparation desdits premier et second contacts pour devenir solidaire dudit premier contact.
  5. L'interrupteur selon l'une des revendications 1 à 4 dans lequel la liaison télescopique (11) est formée d'un premier cylindre (12) prolongeant le piston et entouré d'un second cylindre (13), ce dernier étant fixé à une liaison périphérique (14) solidaire en permanence du second contact mobile, ladite liaison télescopique comprenant un ensemble de blocage se débloquant en fin de compression du gaz pour permettre au mouvement du piston de changer de sens et de suivre le mouvement du premier contact après la séparation des premier et second contacts.
  6. L'interrupteur selon la revendication 5, dans lequel ledit ensemble de blocage est constitué par des billes (17) disposées dans des ouvertures (18) ménagées dans le premier cylindre (12), lesdites billes étant engagées dans des gorges périphériques (19) internes au second cylindre (13) durant la phase de compression du gaz afin de bloquer ladite liaison télescopique.
  7. L'interrupteur selon la revendication 6, dans lequel la profondeur desdites gorges périphériques est comprise entre 30% et 50% de la longueur D du diamètre des billes.
  8. L'interrupteur selon l'une des revendications 5 à 7, dans lequel la partie cylindrique (12A) du premier cylindre (12) comporte au niveau des ouvertures (18) des logements présentant chacun une portion de surface sphérique complémentaire à la surface de la bille en appui contre ce logement, afin de limiter les pressions de contact exercées par les billes sur ladite partie (12A) lors de la compression du gaz.
  9. L'interrupteur selon la revendication 1, dans lequel une partie de l'opération de compression du gaz du volume de compression s'effectue avant le commencement de la phase de mise en mouvement du premier contact, laquelle est retardée par rapport au déclenchement de l'ouverture de l'interrupteur pour permettre au piston d'avoir déjà parcouru une certaine distance lorsque le mouvement du premier contact est enclenché.
  10. L'interrupteur selon les revendications 5 et 9, dans lequel le délai de commencement de ladite phase d'ouverture est procuré par des moyens consistant en deux systèmes d'inserts télescopiques (20, 21) séparant respectivement le premier contact (1) et la liaison périphérique (14) chacun en deux parties selon la direction longitudinale (A), chaque système d'inserts permettant d'introduire un certain débattement longitudinal entre les deux parties du même élément qu'il sépare.
  11. L'interrupteur selon les revendications 5 et 9, dans lequel le délai de commencement de ladite phase d'ouverture est procuré par des moyens consistant en un système d'inserts télescopiques (26) permettant d'introduire un certain débattement longitudinal entre le second cylindre (13) et la liaison périphérique (14).
  12. L'interrupteur selon la revendication 1, dans lequel ledit second contact est fixe dans ladite enveloppe et dans lequel la course L dudit piston dans le volume de compression durant la phase de compression du gaz est au moins égale à deux fois la distance R de recouvrement du contact mobile avec le contact fixe.
  13. L'interrupteur selon l'une des revendications 5 à 12, dans lequel le premier contact est relié au second cylindre (13) de la liaison télescopique (11) par un mécanisme pivotant à leviers (10) permettant aux dits premier contact et second cylindre de se déplacer à même vitesse en sens contraires.
EP01400884A 2000-04-18 2001-04-05 Interrupteur à soufflage d'arc, possédant une chambre de coupure à compression de gaz réduite et un mouvement alternatif du piston Expired - Lifetime EP1148527B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0004987 2000-04-18
FR0004987A FR2807870B1 (fr) 2000-04-18 2000-04-18 Interrupteur a soufflage d'arc, possedant une chambre de coupure a compression de gaz reduite et un mouvement alternatif du piston

Publications (2)

Publication Number Publication Date
EP1148527A1 true EP1148527A1 (fr) 2001-10-24
EP1148527B1 EP1148527B1 (fr) 2004-12-15

Family

ID=8849377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400884A Expired - Lifetime EP1148527B1 (fr) 2000-04-18 2001-04-05 Interrupteur à soufflage d'arc, possédant une chambre de coupure à compression de gaz réduite et un mouvement alternatif du piston

Country Status (6)

Country Link
US (1) US6489581B2 (fr)
EP (1) EP1148527B1 (fr)
AT (1) ATE285116T1 (fr)
CA (1) CA2344256C (fr)
DE (1) DE60107747T2 (fr)
FR (1) FR2807870B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE484067T1 (de) * 2004-08-23 2010-10-15 Abb Technology Ag Schaltkammer und hochleistungsschalter
ATE349067T1 (de) * 2004-08-23 2007-01-15 Abb Technology Ag Hochleistungsschalter mit bewegungsumkehr
FR2877136B1 (fr) * 2004-10-27 2006-12-15 Areva T & D Sa Cinematique d'entrainement dans un disjoncteur hybride
FR2924267A1 (fr) * 2007-11-22 2009-05-29 Areva T & D Sa Disjoncteur haute tension a echappement de gaz ameliore
FR2947377B1 (fr) * 2009-06-29 2011-07-22 Areva T & D Sa Valve a clapet de decharge destinee a decharger un gaz dielectrique entre deux volumes d'une chambre de coupure de disjoncteur haute ou moyenne tension
US9035211B2 (en) 2011-07-20 2015-05-19 Pennsylvania Breaker, Llc Gas blast interrupter
JP6289856B2 (ja) * 2013-10-16 2018-03-07 株式会社東芝 ガス遮断器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331935A (en) * 1964-12-21 1967-07-18 Westinghouse Electric Corp Gas-blast circuit breaker having dual piston means providing double-acting puffer arrangement
DE3930548A1 (de) * 1989-09-13 1991-03-21 Licentia Gmbh Schalter mit selbsterzeugter lichtbogenbeblasung
EP0540971A1 (fr) * 1991-11-04 1993-05-12 Gec Alsthom Sa Disjoncteur à haute ou moyenne tension à triple mouvement
FR2753564A1 (fr) * 1996-09-17 1998-03-20 Gec Alsthom T & D Sa Disjoncteur a auto-soufflage et compression reduite
EP0895262A1 (fr) * 1997-07-24 1999-02-03 Gec Alsthom T & D Sa Interrupteur à gaz à volume d'expansion thermique compressible

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69507453T2 (de) * 1995-05-04 1999-09-02 Ansaldo Industria S.P.A. Hochspannungsschalter mit dielektrischem Gas mit Selbst-Beblasung
FR2767221B1 (fr) * 1997-08-11 1999-09-10 Gec Alsthom T & D Sa Disjoncteur a auto-soufflage et a compression reduite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331935A (en) * 1964-12-21 1967-07-18 Westinghouse Electric Corp Gas-blast circuit breaker having dual piston means providing double-acting puffer arrangement
DE3930548A1 (de) * 1989-09-13 1991-03-21 Licentia Gmbh Schalter mit selbsterzeugter lichtbogenbeblasung
EP0540971A1 (fr) * 1991-11-04 1993-05-12 Gec Alsthom Sa Disjoncteur à haute ou moyenne tension à triple mouvement
FR2753564A1 (fr) * 1996-09-17 1998-03-20 Gec Alsthom T & D Sa Disjoncteur a auto-soufflage et compression reduite
EP0895262A1 (fr) * 1997-07-24 1999-02-03 Gec Alsthom T & D Sa Interrupteur à gaz à volume d'expansion thermique compressible

Also Published As

Publication number Publication date
CA2344256C (fr) 2003-11-11
US20010035396A1 (en) 2001-11-01
CA2344256A1 (fr) 2001-10-18
FR2807870B1 (fr) 2002-05-24
DE60107747D1 (de) 2005-01-20
US6489581B2 (en) 2002-12-03
EP1148527B1 (fr) 2004-12-15
FR2807870A1 (fr) 2001-10-19
ATE285116T1 (de) 2005-01-15
DE60107747T2 (de) 2006-02-23

Similar Documents

Publication Publication Date Title
EP1983538B1 (fr) Disjoncteur avec chambre de coupure à double mouvement et à structure inversée
EP1271590B1 (fr) Dispositif interrupteur pour haute ou moyenne tension à coupure mixte par vide et gaz
EP2791957B1 (fr) Ensemble conducteur mobile pour sectionneur, comprenant un ressort permettant d'accelerer la separation des contacts d'arc
EP0342109A2 (fr) Capsule à enveloppe tournante pour flacons et récipients analogues
FR2495985A1 (fr) Cloueur a air comprime
EP0296936B1 (fr) Mécanisme de commande d'écartement rapide et contrôle de deux pièces en contact
CA2344256C (fr) Interrupteur a soufflage d'arc, possedant une chambre de coupure a compression de gaz reduite et un mouvement alternatif du piston
EP2402969B1 (fr) Chambre de coupure pour disjoncteur à moyenne ou haute tension à énergie de manoeuvre réduite
EP0807946B1 (fr) Disjoncteur à haute tension à auto-soufflage
WO2014108558A1 (fr) Sectionneur a contact d'arc rotatif
EP2545573B1 (fr) Disjoncteur hybride utilisant un interrupteur avec retour sur fermeture
EP0897185B1 (fr) Disjoncteur à auto-soufflage et à compression réduite
CA2141505C (fr) Mecanisme d'actionnement d'une chambre de coupure de protection
FR2825058A1 (fr) Servomoteur a deux sauts differencies fixe et variable
EP0895262A1 (fr) Interrupteur à gaz à volume d'expansion thermique compressible
EP0884745B1 (fr) Disjoncteur à résistance de fermeture
EP2402970B1 (fr) Chambre de coupure pour disjoncteur a moyenne ou haute tension a energie de manoeuvre et dimensions reduites
EP0845796A1 (fr) Disjoncteur à piston semi-mobile
EP2619783B1 (fr) Disjoncteur comportant un dispositif d'insertion de resistance dans une ligne de transport de courant
CH688702A5 (fr) Disjoncteur à haute tension ayant une chambre de coupure à volume de soufflage variable.
EP2465127A1 (fr) Chambre de coupure pour disjoncteur a moyenne ou haute tension a energie de man uvre reduite
EP0903502A1 (fr) Vérin à verrouillage et de déverrouillage
EP1557584B1 (fr) Ressort à gaz comprimé à extensions intermédiaire et maximale variables
EP0377529A1 (fr) Vérin d'actionnement à fluide
FR2755293A1 (fr) Disjoncteur a piston semi-mobile et a haut pouvoir de coupure de courants capacitifs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020424

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041215

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60107747

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050405

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050405

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20041215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: AREVA T&D SA

Effective date: 20050430

26N No opposition filed

Effective date: 20050916

BERE Be: lapsed

Owner name: S.A. *AREVA T&D

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080423

Year of fee payment: 8

Ref country code: DE

Payment date: 20080428

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080408

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080425

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090406